
Two-level Mapping based Cache Index Selection for
Packet Forwarding Engines

Kaushik Rajan† and R. Govindarajan†‡
‡Dept. of Computer Science & Automation

†Supercomputer Education & Research Center
Indian Institute of Science , Bangalore, India

kaushik@hpc.serc.iisc.ernet.in , govind@csa.iisc.ernet.in

Abstract

Packet forwarding is a memory-intensive application requir-
ing multiple accesses through a trie structure. The efficiency
of a cache for this application critically depends on the place-
ment function to reduce conflict misses. Traditional place-
ment functions use a one-level mapping that naively parti-
tions trie-nodes into cache sets. However, as a significant
percentage of trie nodes are not useful, these schemes suffer
from a non-uniform distribution of useful nodes to sets. This
in turn results in increased conflict misses. Newer organiza-
tions such as variable associativity caches achieve flexibility
in placement at the expense of increased hit-latency. This
makes them unsuitable for L1 caches.

We propose a novel two-level mapping framework that re-
tains the hit-latency of one-level mapping yet incurs fewer
conflict misses. This is achieved by introducing a second-
level mapping which reorganizes the nodes in the naive initial
partitions into refined partitions with near-uniform distribu-
tion of nodes. Further as this remapping is accomplished by
simply adapting the index bits to a given routing table the
hit-latency is not affected. We propose three new schemes
which result in up to 16% reduction in the number of misses
and 13% speedup in memory access time. In comparison, an
XOR-based placement scheme known to perform extremely
well for general purpose architectures, can obtain up to 2%
speedup in memory access time.

Categories and Subject Descriptors: C.2.1 :Network
Architecture and Design
General Terms: Design, Performance, Experimentation.
Keywords: Network Processors, Cache Architectures.

1. INTRODUCTION
The ever increasing demand for network bandwidth and
the need to support sophisticated streaming applications re-
quires routers to process packets at higher line rates. Due to
the memory intensive nature of packet forwarding, modern
day routers are constrained by the performance of the mem-
ory system rather than the processing capability. One of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’06,September 16–20, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-264-X/06/0009 ...$5.00.

key functionalities of routers is to forward incoming packets
through an appropriate output port. This involves looking
in a table of prefixes, finding the longest prefix match (LPM)
for the destination IP-address, and using the corresponding
output port.
Most algorithms used for LPM make use of a trie data struc-
ture to store the contents of the routing table [18][3]. Even
with efficient lookup algorithms, a single IP-lookup incurs
a significant number of memory accesses. For example, in
the worst case, the LC trie algorithm [14] requires 7 mem-
ory accesses and the Lulea algorithm [2] requires as many
as 12 memory accesses. With the requirement to process
packets at wire speeds (10Gbps or higher), a router has to
process more than 20 million packets every second. Under
such requirements supporting IP-lookup stresses the mem-
ory system greatly.
Routers typically have a multi-threaded multiprocessor ar-
chitecture. Caching is a technique orthogonal to multi-
threading for reducing memory access overhead in network
applications. While multi-threading hides memory latency
and improves processor utilization, caching reduces the num-
ber of accesses that go to memory and reduces average mem-
ory access time. It improves performance by reducing the
contention for memory, preventing saturation of memory
bandwidth and reducing the number of context switches.
Earlier work suggests that multi-threading alone is not suf-
ficient to ease the memory bottleneck. Caching can further
improve the throughput by up to 200% [12].
Various proposals have been made to use caches to speedup
the lookup algorithm [1][4][5][16][20]. However, it has been
observed that in packet forwarding applications the miss
rate can be as high as 75% because of poor locality patterns
and cache conflicts. Thus, any reduction in misses should
significantly improve the average case performance of the
router. Earlier studies reveal that there is more locality in
trie node accesses than in IP address accesses. Based on
this Low et. al. propose a single cache for the nodes of the
trie [1]. The Heterogeneously Segmented Cache Architec-
ture (HSCA) [16] further improves the performance of trie
node caches by separating out the cache for nodes that are
direct descendants of the root node (Level-One/LO nodes)
from that for Lower-Level (LL) nodes.
It is generally observed that the trie structure used for for-
warding employs a large branching factor (216) for the root
node [18] thus introducing a large number of superfluous
LO nodes (nodes which do not contain any information but
get added when using a fixed root branching factor, exam-
ple in Section 3). For the routing tables we use, a branch-



ing factor of 216 results in as many as 75% superfluous LO
nodes. As these superfluous nodes are interspersed with use-
ful nodes, using a conventional placement function (indexing
with lower order bits) for the LO cache may-not uniformly
distribute the useful nodes among the sets. The mapping

(a) Base Mapping

(b) Two-level Mapping

Figure 1: Mapping from nodes to sets

achieved by conventional placement functions is depicted in
Figure 1(a). In these mappings, the set of useful LO nodes
are partitioned based on the lower order log m bits into
m partitions. These m partitions are then mapped one-to-
one to m cache sets. Both the partitioning and the map-
ping of partitions to sets is rigid. While this rigidity in the
partitioning and mapping helps to achieve efficient direct
indexing and hence low hit-latency, we observe that it re-
sults in an uneven distribution of useful LO nodes among
partitions. Other placement schemes, like those based on
XOR functions [7], are also restrictive as they use a pre-
determined function of the address bits to form the index.
Alternative proposals such as software managed full associa-
tivity [8] and V-way cache [15] proposed in the context of
general purpose processors, reduce conflict misses by flexi-
bly mapping the accessed data to cache lines. However, this
flexibility is attained through indirection which results in
increased hit-latencies.
There are two main contributions of this paper.

• A two-level mapping framework which achieves the de-
sired flexibility to reduce conflict misses. The frame-
work (refer to Figure 1(b)) maintains a rigid partition-
ing of useful LO nodes into initial partitions (IP), but
reorganizes the nodes in the IPs into more evenly popu-
lated refined partitions (RPs) through intelligent cache
index selection. The RPs are then rigidly (one-to-one)
mapped to cache sets. By introducing an additional
layer of flexible mapping between IP and RP, a better
distribution of LO nodes to sets can be achieved.

• Three schemes to intelligently remap the nodes in IPs
into RPs. (i) In FLEX, the remapping is done by ex-
panding each of the IPs into two RPs by using a higher
order address bit that is most appropriate for that IP.
(ii) In IMAP we reorganize the IPs by combining 2 IPs
together to form a single RP. (iii) In V-ASSOC, each
RP is assigned either a high associativity or a low as-
sociativity based on the number of nodes mapping to

it. V-ASSOC is basically a two-level mapping based
variable associativity cache. In each of these schemes
the remapping used for one IP can be different from
that of another. This provides us with a flexibility
to adapt the node to set mapping to a given routing
table. We propose simple hardware implementations
to support FLEX, IMAP and V-ASSOC remapping
schemes. The implementations do not increase cache
access time making them attractive solutions.

We evaluate the performance of our schemes and compare
them with the base LO cache [16], the bit-selection scheme
(BS) [16] (Section 3.1.2 explains the algorithm) and an XOR
based placement scheme [7]. The XOR based placement
scheme forms a k-bit index by XORing two k-bit pairs from
the address. Such a placement function has been shown to
perform extremely well for general purpose processor caches.
In our experiments the lower order k bits of the address
(Ak−1, A0) are combined with the k bits (A15, A15−k). This
combination is chosen because the address of the 216 LO
nodes can only differ in the lower order 16 bits. Experi-
mental results indicate that our schemes achieve a better
node to cache set mapping. Further, FLEX and IMAP can
reduce the number of misses by 16% and achieve memory
access speedup of up to 13%. In comparison, the BS scheme
barely improves performance, while XOR based placement
achieves at best a 3% reduction in misses and 2% speedup
in memory access time.
The rest of the paper is organized as follows. Section 2
provides the necessary background and reviews the related
work. Section 3 motivates the need for two level mapping
with the help of an example. In Section 4 we describe the
hardware implementation. Section 5 presents the simulation
methodology and introduces the traces used for performance
evaluation. In Section 6 we report the experimental results
comparing the various schemes. We conclude in Section 7
with a summary of the results and suggest future enhance-
ments.

2. BACKGROUND AND RELATED WORK

2.1 Forwarding using Tries
In order to facilitate LPM routers typically represent the
routing table information in the form of a trie [3][18]. The
trie is traversed based on the bits of the incoming packet’s
destination IP-address. The various trie based schemes use
a compact representation of the simple binary trie and differ
only in the manner in which they compress the trie [3][18].
One common compression done in almost all trie based algo-
rithms is to use a large root branching factor (usually 216).
This is because most routing tables contain very few pre-
fixes of length less than 16. An efficiently compressed trie
structure commonly used in earlier cache studies [1][16] is
the Level Compressed trie [14][17]. An LC-trie is laid out
in an array (refer to Figure 2), with nodes closest to the
root (LO nodes) preceding the remaining nodes (LL nodes)
in the array. Once the trie is laid out in this way the index
of the array determines the memory address in the memory
space [16]. The size of a node can vary from 4 to 8Bytes and
the next-hop information can be stored either along with the
trie nodes [17] or in an additional auxiliary table1 [14].

1These contain information regarding the nexthops.



Figure 2: LC-trie and its array representation

2.2 Related work
Mudigonda et al [12] published an interesting study com-
paring various techniques for reducing the memory perfor-
mance bottleneck. The study reveals that a combination of
multi-threading and caching is essential for a balanced NP
architecture. Several proposals have been made for the us-
age of caches to speed up forwarding [1][4][5][16][20]. These
include caching schemes that cache the IP addresses or pre-
fixes and those that cache trie nodes. Notably, Chieueh
and Pradhan [5] introduce Intelligent Host Address Range
Caching (IHARC), which first converts prefixes into distinct
address ranges and then combines non-adjacent ranges shar-
ing a common output port. This work is extended by intro-
ducing additional splitting bits which facilitate a variable
cache set mapping, where, partitions to which more num-
ber of address ranges map, are given more sets [4]. Recent
research focuses on caching the data structures used for for-
warding [1][16]. The additional locality in accesses to the
nodes of a trie is exploited by using a cache to store the
recently accessed nodes of an LC-trie [1]. The authors of
HSCA [16] observe that LO nodes are accessed more often
than LL nodes. They also note that the locality among the
LO nodes is much more than the locality among LL nodes.
Both these observations are based on the fact that an access
to any of the leaf nodes has to necessarily pass through an
LO node, only a few of which are useful. Based on these
findings they propose a segmented cache organization with
a relatively large cache for LO nodes and a much smaller
cache for LL nodes. By skewing the cache sizes in favor of
the LO cache they are able to give more importance to the
LO nodes.
All these caching schemes share a few common features.
Firstly, caches proposed for forwarding accommodate ex-
actly one entry per cache line. This is because of the total
lack of spatial correlation between successively accessed pre-
fixes. Secondly, every-time the entries of the routing table
in-use change, the cache entries become stale and need to
be updated/flushed. However, even-though route updates
can happen frequently, the updates are made to a backup
routing table which is copied to the in-use table much less
frequently [11][3]. A major drawback of the above mentioned
caches is that they use a one-level mapping based placement
function. Our proposed two-level mapping framework differs
from these schemes in that we make use of the knowledge of
the distribution of useful nodes to improve cache placement.
Among enhancements proposed for general purpose proces-
sor caches, XOR based placement schemes [7] uses the in-

formation content of more address bits than the conven-
tional lower order bits to identify the cache index. Kharbutli
et. al. [10] introduce two new hash based indexing schemes
that try to eliminate the worst case conflict behaviour of
L2 caches. An Indirect Index Cache (IIC) [8] attempts to
achieve full associativity with the aid of software manage-
ment at the expense of a variable cache access time. Lastly,
in the V-way cache organization [15], the associativity of
various cache sets of an L2 cache is dynamically adjusted
according to the demands of the application. But, this flex-
ibility is introduced at the expense of an increased access
time. Our proposed two-level mapping based index selec-
tion schemes are able to reduce the potential for conflicts
without incurring additional hit time penalties.

3. MOTIVATION
In this section the drawbacks of one-level mapping based
cache indexing are illustrated with the help of an example.
Then the arguments in favor of two-level mapping are put
forth and the motivation for the proposed IP to RP remap-
ping schemes is provided.
Consider the routing table in Table 1. The table has 16 en-

Sno prefix prelen next-hop LO nodes
1 0001111 7 3 1
2 010000 6 3 2
3 0100010 7 2 1
4 01001 5 1 4
5 0110001 7 4 1
6 0111111 7 2 1
7 100000 6 1 2
8 10001 5 1 4
9 100100 6 2 2
10 1010010 7 5 1
11 110110 6 3 2
12 1101111 7 4 1
13 11100 5 1 4
14 1110100 7 2 1
15 1110111 7 4 1
16 11110 5 2 4

Table 1: Routing Table

tries with a maximum prefix length of 7. Now if we consider
a root branching factor of 27, the number of useful nodes
contributed by each entry is shown in the Table. These are
the only useful LO nodes in the trie. Hence out of a total
of 128 LO nodes there are 32 (25%) useful nodes and the
remaining 96 (75%) nodes are superfluous. If these useful
nodes were to be divided into 8 sets we would ideally want
each set to have exactly 4 nodes.

3.1 One-level mapping based placement

3.1.1 Conventional Mapping
The simplest way to map the nodes into cache sets would
be to partition the useful nodes based on the lower order
bits. Unfortunately, this naive partitioning will result in an
uneven distribution of useful nodes among sets. For the ex-
ample in Table 1, a 3 bit index would form eight sets with 5,
6, 4, 2, 4, 3, 2, and 6 nodes respectively as shown in Table 2.
Clearly the mapping is not ideally suited for caching. The
highly populated sets would have more conflicts while the
sparsely populated ones will be underutilized.



IP0 IP1 IP2 IP3 IP4 IP5 IP6 IP7

0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 1
1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 1 1
1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 - 1 1 1 0 1 0 0 1 1 0 1 1 0 1 - 1 1 1 0 1 1 1
1 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 - 1 1 0 1 1 0 0 - - 0 0 0 1 1 1 1
1 1 1 1 0 0 0 1 0 0 1 0 0 1 - - - - - 0 1 1 1 1 1 1

- 1 1 1 1 0 0 1 - - - - - 1 1 0 1 1 1 1
5 6 4 2 4 3 2 6

Table 2: Initial Partitions formed using bits b1, b2 and b3

3.1.2 Node to Set Mapping with BS
The Bit Selection algorithm [16] is a simple extension of con-
ventional indexing where, instead of using the lower order
bits, an attempt is made to choose the index bits that par-
tition the nodes most uniformly. The algorithm picks the
bits one at a time, picking the next bit based on how well it,
along with previously chosen bits, partitions the nodes. For
the example under consideration, the 3 bits chosen would
be b0, b1 and b4. When these 3 bits are used, the resulting
number of nodes per set is shown in Table 3. It can be ob-
served that we still have two IPs (sets) with 6 nodes which
are likely to end up having more conflicts than the four IPs
(sets) with 3 nodes each.

b1b0

00 01 10 11

b4
0 6 6 3 4
1 3 3 3 4

Table 3: Number of nodes per partition for 8 IPs
formed using bits b0, b1 and b4 chosen by BS

The reason for the non-uniform distribution in the above
two schemes is that they are very restrictive in cache index
selection, i.e., both use a fixed set of index bits to directly
determine the mapping from nodes to cache sets. Further,
conventional placement does not exploit the knowledge of
the distribution of useful LO nodes. It simply uses a pre-
defined function of the address bits to determine the cache
index. Even an XOR based placement scheme uses a prede-
termined function to form the index and makes no further
attempt to achieve a more uniform distribution.
A better mapping scheme would be one that can exploit
the knowledge of the distribution of useful nodes and yet be
flexible enough to adapt to changes in the routing table. In
addition, the flexibility achieved in placement should neither
significantly increase the hardware complexity, nor increase
the hit-latency. We achieve these goals through a two-level
mapping framework that adds a few decision bits per IP to
decide the RP to which it maps. The remapping from IP to
RP ensures better distribution; the usage of different deci-
sion bits for each IP makes the remapping adaptive and the
placement flexible; and, as the index is identified by using a
few additional multiplexers (as we will see in Section 4), the
hit time can still be accommodated in one clock cycle.

3.2 Two-level mapping based placement

3.2.1 FLEX
In FLEX, we use 2 conventional bits (b0, b1) to first identify
the IPs. In Table 4 the last two rows show the number of
nodes mapping to each set when each of b2, b3 .... b6 are
used in conjunction with b1 and b0. It can be seen that using
the same final bit for all IPs is not ideal. Instead in FLEX

Figure 3: Remapping of IP1 to RPs using IMAP

one among {b2, b3, b4, b5} is chosen to reorganize each IP
into two RPs. Note that this bit is chosen on a per IP basis.
The chosen bit and number of nodes for each RP are shown
in boldface in the last two rows of Table 4. This mapping is
better than that achieved by conventional mapping or BS.

3.2.2 IMAP
Even-though the mapping achieved by FLEX is ideal for
IP0, IP2 and IP3, it can be seen from Table 4 that for IP1

we are unable to find a bit which would split the IP into two
RPs with equal number of nodes. A closer look at IP1 (re-
fer Table 3.2.2) reveals that if we further partition it based
on bits b2b3 and combine the partition b2b3 = 00 with the
partition b2b3 = 11 to form an RP, we get an uniform map-
ping for IP1. This is what we achieve with IMAP. The 4
partitions of Table 4 are further partitioned based on bits b2

and b3 to get 16 partitions (refer to Table 5). Now, in each
column the IP with the most nodes in it is combined with
the IP having the least nodes in it (both shown in bold) to
form one RP, and the remaining IPs in the column form the
other RP. Note that IP2 which relies on bit b4 to get uni-
formly remapped in FLEX can still be uniformly remapped
in IMAP using b2 ⊕ b3. For the example in consideration,
using IMAP we obtain eight RPs with 5, 5, 3, 4, 4, 4, 3, and
4 nodes in them.

IP0 IP1 IP2 IP3

b6b5.......b1b0 b6b5.......b1b0 b6b5.......b1b0 b6b5.......b1b0

0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1
1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 1 1
1 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 1
1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 1 1
1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1
0 1 0 0 1 0 0 0 1 0 0 1 0 1 - 0 1 1 1 1 1 1
1 0 0 0 1 0 0 1 0 0 0 1 0 1 - 1 1 0 1 1 1 1
1 1 1 0 1 0 0 1 1 0 1 1 0 1 - -
2 3 6 6 5 3 3 6 6 6 2 2 3 5 4 3 2 4 4 2
7 6 3 3 4 6 6 3 3 3 4 4 3 1 2 5 6 4 4 6

Table 4: Initial Partitions formed using bits b0, b1



b1b0

00 01 10 11

b3b2

00 3 4 3 1
01 3 2 2 3
10 2 2 1 1
11 1 1 0 3

Table 5: Number of nodes per partition for 16 IPs

Number of Nodes Number of sets
per set base BS FLEX IMAP

1 0 0 0 0
2 2 0 0 0
3 1 4 3 2
4 2 2 3 4
5 1 0 1 2
6 2 2 1 0
7 0 0 0 0

Table 6: Number of partitions having the given
number of nodes

In Table 6 we compare the node to set (IP for one-level map-
ping and RP for two-level mapping) distribution obtained
by the various schemes for the routing table in considera-
tion. It can be observed that the IMAP and FLEX schemes
achieve a more uniform a distribution of nodes than the
base mapping and BS. In Section 6 we quantitatively com-
pare the distributions achieved by the various schemes on
real routers.

3.2.3 V-ASSOC
Recent research on caches in the general purpose domain
propose ways of achieving flexible associativity so as to make
better use of the cache lines [8][15]. However, these propos-
als are suited only to L2 and L3 caches. Through V-ASSOC
we propose a two-level mapping based variable associativity
cache that chooses a cache set with a higher (lower) associa-
tivity for RPs with more (fewer) nodes. More specifically,
the larger two IPs per column of Table 7 (shown in bold)
are mapped to larger RPs corresponding to cache sets with
more number of lines (higher associativity) in them, while
the remaining two are mapped to smaller RPs correspond-
ing to sets with lower associativity. This scheme attempts
to distribute the percentage of each partition that can be
cached more uniformly.

b0

0 1

b2 b1

00 5 6
01 4 2
10 4 3
01 2 6

Table 7: Number of nodes per partition for 8 IPs

4. CACHE ORGANIZATION
In this section we describe the cache organization needed
to implement each of the two-level mapping based schemes.
All schemes make use of a small number of decision bits
to add the required flexibility. The computation of these
bits is simple and can be done off-line without affecting the
performance of the router. Moreover, as these schemes add
only a few additional multiplexers in the implementation
they increase the hit latency only by a small fraction. This

increase can easily be accommodated within the same clock
cycle especially at the low clock rates at which NPs operate.
The working of all the schemes primarily involves the iden-
tification of two (four for V-ASSOC) candidate sets based
on conventional bits, and then choosing one among them
based on the decision bits. As the tag match, miss handling
and replacement mechanisms are implemented in a manner
identical to a conventional cache, in the rest of the section
we will focus on the identification of the set to which an
address maps (placement). Note that the schemes are ap-
plicable to both direct-mapped and set-associative caches of
any size. Below we describe the placement in a cache of 1024
sets needing 10 index bits.

4.1 Cache Architecture for FLEX
As illustrated in the previous section, FLEX can flexibly
choose its final index bit from among 4 higher order bits,
this information is stored using two decision bits per IP. The
set to which an address maps is identified as below (refer to
Figure 4). The lower order 9 bits are used to identify the
IP to which the address belongs and pick out two candidate
sets (set0, set1). One among b10, b11, b12 and b13 is then
chosen by the decision bits as the final bit of the index. The
selected bit is used to identify between the 2 candidate sets
(RPs).

Figure 4: Cache architecture for FLEX

The scheme requires two additional multiplexers, one for
selecting the final index bit and the other for choosing one
of the two sets. Apart from this 2∗512 = 1024 extra bits are
needed to store the decision bits. Whenever the trie used for
forwarding is changed and the cache is flushed, the decision
bits need to be re-computed and stored. The re-computation
takes less than 30 milliseconds real time (measured using the
linux time command) on a 2GHz Pentium 4 processor. This
can easily be done off-line without affecting performance.

4.2 Cache Architecture for IMAP
As explained previously, IMAP combines the best and worst
partition within a group2 of 4 partitions. In IMAP we start
with double the number of IPs (2048) and divide them into
groups such that partitions within a group differ only in
bits b10 and b11. The number of ways of combining four
partitions of a group into 2 sets (RPs) of two partitions

2the columns of the previous Section (Table 5) are being
referred to by a more formal term groups here.



each is given by

NIMAP =
4!

2!2!2!
= 3 (1)

These three possible combinations of b10 and b11 are de-

(a)
Case1; b10

(b)
Case2; b11

(c)
Case3; b10⊕ b11

Figure 5: Possible combinations of b10, b11 for a set

picted in Figure 5. It can be seen that for Case 1 of Figure 5,
b10 identifies the mapping from partitions to sets. Similarly
for Case 2 and Case 3, bit b11 and b10 ⊕ b11 respectively,
will identify the mapping. For a given address bits b1 to b9

Figure 6: Cache architecture for IMAP

can be used to index into the appropriate group (4 IPs) and
pick out the two candidate sets (RPs). For each group the
Case to which it conforms is indicated by the means of the
2 decision bits. The corresponding final index bit is chosen
based on the Case and used to identify the set among the
candidates. As in the case of FLEX two additional multi-
plexers are required. In addition to this one XOR gate needs
to be accommodated. IMAP also requires 2 ∗ 512 = 1024
bits to store the decision bits.

4.3 Cache Architecture for V-ASSOC
The lower order 10 bits are used to partition the nodes into
1024 IPs. As in IMAP, V-ASSOC then divides the parti-
tions into 4 groups such that the IPs in a group differ only
in bits b9 and b10. The larger two IPs of the group are iden-
tified as two larger RPs and mapped into sets with higher
associativity and the remaining two partitions are identified
as two smaller RPs and mapped to sets with lower associa-
tivity. Hence, like in IMAP, the four partitions in a group
need to be split into 2 pairs. However, unlike in IMAP, we
need to be able to differentiate between the two pairs to in-
dicate which pair gets higher associativity. Therefore, the
number of ways of dividing four partitions of a group into 2

Figure 7: Cache architecture for V-ASSOC

(a)
Case1; ¬(b9⊕ b10), b9

(b)
Case2; ¬ b9, b10

(c)
Case3; b10, b9

(d)
Case4; b9, b10

(e)
Case5; b9⊕ b10, b9

(f)
Case6; ¬ b10, b9

Figure 8: Possible combinations of b9, b10 for a pair.

non-identical sets of two partitions (IPs) each is given by

NV−ASSOC =
4!

2!2!
= 6 (2)

These six Cases are depicted in Figure 8. To distinguish
between the higher and lower associativity pair we can use
¬(b9 ⊕ b10) for Case 1, ¬b9 for Case 2, b10 for Case 3, b9 for
Case 4, b9 ⊕ b10 for Case 5, and ¬b10 for Case 6. Once the
pair to which an address maps is identified one among the
two sets (corresponding to the two entries in a pair) needs
to be identified. For this we can use b9, b10, b9, b10, b9 and
b9 respectively for Cases 1 to 6.
The decision bits of V-ASSOC need to pick one of the six
2 bit pairs of Figure 8. The lower order bits b8 to b1 are
used to identify the group and pick out 4 candidate sets.
Two additional bits are then chosen using 3 decision bits to
identify one among the 4 candidates. We therefore need 3
decision bits per group amounting to 3∗256 = 768 additional
bits. This scheme also needs two additional multiplexers.



5. EXPERIMENTAL METHODOLOGY
We evaluate the performance of the two-level mapping based
schemes using a trace-driven simulation methodology. We
use the dineroIV cache simulator [6] (appropriately mod-
ified) to measure the number of cache misses. We use
two routing tables for evaluation, the FUNET routing table
used commonly in literature [14][16], and a recent routing
table from the Oregon core router made available through
the Route Views Project [21]. The FUNET table contains
41578 entries and its LC-trie representation leads to 128865
trie nodes. The Oregon router contains 161516 entries and
338193 LC-trie nodes. The traces used for simulation and
the methodology used to generate them are explained in Sec-
tion 5.1. The evaluation of speedup in memory access time
from cache miss rates is described in Section 5.2.

5.1 Trace Generation Mechanism
Comprehensive evaluation of routers is made difficult by the
lack of publicly available IP header/address traces that cor-
respond to publicly available routing tables. Also, the IP
addresses in most of these traces are anonymized, and hence,
would lose some of the characteristics like prefix length dis-
tribution (elaborated below) of the original trace. We over-
come these difficulties by using synthetic traces generated
using the methodology proposed in [16] (henceforth referred
to as attribute preserving traces). Attribute preserving traces
emulate the locality and the prefix length distribution char-
acteristics of real traces better than other synthetic traces,
like randNET and randIP traces, used in literature [1][11].
We give a brief summary of the method here, more details
can be found in [16].
A major disadvantage of randNET and randIP is that they
do not preserve the temporal locality characteristics of real
traces. Attribute preserving traces introduce locality into
the trace by making use of the LRU stack algorithm orig-
inally proposed for general purpose applications [19]. The
advantage of this algorithm is that the locality in the gen-
erated trace can be improved (reduced) by increasing (de-
creasing) the value of the parameter θ while maintaining the
parameter A3 constant [19]. Another advantage of attribute
preserving traces is that they conform to the prefix length
distribution of realistic traces [13]. It is observed that for
real traces, the log of the average number of addresses that
hit a prefix of a given length decreases linearly with increas-
ing prefix length, for prefix lengths ranging from 13 to 24.
In particular, in this range, as the prefix length increases by
one, the log of the mean number of hits per prefix decreases
by 0.69. Also, in real traces, only a small percentage of
the traffic (about 5%) hits prefixes outside the prefix length
range of 13 to 24 bits. Attribute preserving traces emulate
this by ensuring that everytime a new entry is added to the
LRU stack it is done so that the prefix length distribution of
the synthetic trace follows that of realistic traces.

Name A θ Total addresses
FUNET router Oregon router

pld1M 10 1.8 1B 1B
pld10M 10 1.5 1B 1B
pld100M 10 1.2857 275M 150M
pld1B - - 1B 1B

Table 8: Traces used for performance evaluation

3The significance of parameters A and θ is explained in [19].

The traces used for performance comparison are listed in
Table 8. Traces pld1M, pld10M and pld100M were gener-
ated using the methodology described above. Trace pld1B
was generated without using the LRU stack but conforming
to prefix length distribution characteristic of realistic traces.
The suffix in the trace name gives us a measure of the num-
ber of unique entires that would be in the trace if it were to
contain a total of 1 billion entries. The total number of ad-
dresses in each trace is 1B (with the exception of pld100M)
which is 2 to 3 order magnitudes higher than used in earlier
studies [12][13][1]. Traces pld1M and pld10M which have
more locality represent traffic seen by edge routers. While
pld100M and pld1B which have lower locality are represen-
tative of traffic seen by core routers [16].

5.2 Measuring Speedup in Memory Access Time
The estimation of packet processing throughput and the
impact of two-level mapping on it is beyond the scope of
this paper. However, it is observed that the use of a multi-
threaded multiprocessor architecture ensures that there are
sufficient resources to feed the memory system continuously
with access requests. Further, it has been observed that in-
creasing number of threads gives only diminishing returns
and processor utilization saturates at about 32 threads [12]
as memory bandwidth becomes the limiting factor. Typi-
cally NPs have 64 or more threads and in this scenario the
memory access time has a significant impact on packet pro-
cessing throughput. The average memory access time [9] for
a cache inclusive memory hierarchy can be measured as

access time = hit time + miss rate ∗ miss penalty (3)

As the information in the auxiliary tables can be stored in-
ternally within the LC-trie itself [17] [16], the only memory
accesses are trie node accesses. Further, with the use of a
segmented cache architecture, accesses to the LO and LL
caches can be serviced in parallel. As the LL cache incurs
only a small fraction of accesses (reported to be less than
17% [16]) incurred by the LO cache, it is reasonable to as-
sume that the memory access time for the LL cache would
be covered by the LO cache accesses. The overall memory
access time can therefore be approximated by the memory
access time of the LO cache. We can hence calculate the
speedup in memory access time using the following formula.

speedup =
ht + mrbase ∗mp

ht + mrnew ∗mp
(4)

where mrbase is the miss rate of the base LO cache and
mrnew is the miss rate of the scheme in consideration. We
assume a hit time (ht) of 1 clock cycle and a miss penalty
(mp) of 100 clock cycles [1][12].

6. RESULTS AND INFERENCES
We compare the various two-level mapping based cache place-
ment schemes with existing one-level mapping based cache
placement functions in terms of, (i) the distribution of the
useful trie nodes among the cache sets, (ii) reduction in
number of misses, and (iii) memory access time speedup.
Although we evaluated the performance of caches of various
sizes and associativities, due to space constraints we only
report the performance for a cache with 8k lines for asso-
ciativities 1, 2, and 4. For V-ASSOC we simulate a 5k line
base cache with 5-way associativity and compare it with a
V-ASSOC cache of the same size with half its sets having



(a) Base Mapping (b) XOR (c) BS (d) FLEX

(e) IMAP (f) Conventional Mapping (g) V-ASSOC

Figure 9: Node distribution. y-axis represents number of cache sets in (a)-(e) and cache lines in (f)-(g). In
(f) & (g) the x axis values represent ranges not absolute values (5 refers to the range 4.5 < x ≤ 5)

.

associativity 4 and the remaining half with associativity 6.
This ratio of low : high is chosen based on the observation
that the number of nodes mapping to sets with lower asso-
ciativity is roughly two-third the number of nodes mapping
to sets with higher associativity.

6.1 Node to Set Distribution
Figure 9 shows the distribution of nodes to cache sets achieved
by conventional mapping, BS, XOR placement, FLEX, IMAP
and V-ASSOC for a cache with 1024 sets. These plots are
for the FUNET routing table. The trends observed with the
Oregon routing table are similar.
In the case of V-ASSOC, each set has either a high or a low
associativity, hence, instead of plotting the number of nodes
mapping to a cache set, we plot the average number of nodes
mapping to a cache line. As all lines within a set are equiv-
alent, a fair measure for the number of nodes mapping to a
cache line is obtained by dividing the number of nodes map-
ping to a set by the associativity of the set. Intuitively, the
scheme with a distribution having a narrow spread around
the mean value would be best suited for caching. The nat-
ural metric to measure this spread would be the coefficient
of variation (CoV ) of the number of nodes in a cache set
(cache line for V-ASSOC). The mean (µ) and coefficient of
variation CoV are calculated as

µ =
number of useful nodes

N
(5)

CoV =
1

µ

vuut 1

N

NX
i=1

(xi − µ)2 (6)

where N is the number of cache sets (lines for V-ASSOC)
and xi is number nodes mapping to the ith set (line).
The CoV values of the various schemes for the FUNET table
are shown in Table 9.

Scheme Useful nodes N µ CoV
Base LO 14859 1024 14.51 0.2251
XOR 14859 1024 14.51 0.2204
BS 14859 1024 14.51 0.1534
FLEX 14859 1024 14.51 0.1464
IMAP 14859 1024 14.51 0.1375
V-ASSOC 14859 5120 2.90 0.1536

Table 9: CoV values for various schemes

It can be seen that the XOR-based placement scheme, as
it does not make use of the knowledge of the distribution
of useful nodes, is unable to improve the node to set dis-
tribution. In comparison the remaining schemes achieve a
lower CoV . While this metric helps rank the schemes, only
a detailed cache simulation can tell whether they improve
performance.

6.2 Performance of IMAP and FLEX
Figures 10( 12) and 11( 13) compare the miss rate reduc-
tion and memory access speedup respectively for the Ore-
gon(FUNET) routing table. The plots in Figure 10 and 12
show the number of misses incurred by various schemes as
a percentage of the misses incurred by the base LO cache.
The performance improvements for the BS scheme are in-
significant and hence are not plotted4. Also the performance
trends for BS are identical to those of the XOR-based place-
ment scheme. It is observed that, in comparison to the
base scheme, the XOR-based scheme performs slightly bet-
ter for the FUNET route table, while for the Oregon route
table it degrades the performance. Even for configurations
where XOR performs better, it at best reduces the number
of misses by 3% and leads to a speedup of at-most 2%.

4This is consistent with the previous results reported for the
BS scheme [16].



(a) pld1M (b) pld10M (c) pld100M (d) pld1B

Figure 10: Miss rate comparisons for the Oregon route table.

(a) pld1M (b) pld10M (c) pld100M (d) pld1B

Figure 11: Speedup in memory access time, Oregon route table.

(a) pld1M (b) pld10M (c) pld100M (d) pld1B

Figure 12: Miss rate comparisons for the FUNET route table.

(a) pld1M (b) pld10M (c) pld100M (d) pld1B

Figure 13: Speedup in memory access time, FUNET route table.



Figure 14: Miss rate comparison for V-ASSOC

It is seen that for most configurations both FLEX and IMAP
perform better than the base cache. Among the two IMAP
performs better for all configurations reducing the misses by
up to 16% and attaining a speedup in memory acess time
of up to 13%. Note that the trace for which we achieve the
best miss reduction (pld1M trace) is not the one to attain
the best access speedup. This is because of the lower miss
rates of the pld1M trace, the trace with maximum locality.
This lower miss rate implies that in Equation 4 the hit time
(ht) becomes more significant, thereby diminishing the con-
tribution of miss rate reduction towards speedup. It can
also be observed that, even though the improvement in miss
rates fluctuates with change in locality, the memory access
time speedups achieved are more or less consistent.
Finally, it is to be noted that it is unlikely that in any sce-
nario either FLEX or IMAP will degrade performance dras-
tically. This is because, if the conventional bits are able to
achieve a uniform mapping, then both schemes will revert
to using the same index bits as the base case. That is, both
FLEX and IMAP have the choice of picking the base set of
index bits if they find nothing better.

6.3 Performance of V-ASSOC
Comparison of V-ASSOC with the base cache (refer to Fig-
ure 6.3) shows that V-ASSOC degrades the performance for
all traces. It is interesting to note that the coefficient of vari-
ation of V-ASSOC is slightly higher than that for BS (refer
to table 9). As BS does not provide significant benefits, it is
not surprising that V-ASSOC doesn’t either. Further it is
also possible that, even-though in the average case the nodes
in a group have a ratio 2 : 3 between the two sparser IPs and
the two denser IPs, there are still groups for which this does
not hold. As V-ASSOC can never revert to the conventional
configuration it would induce more conflicts for sets corre-
sponding to such groups and degrade cache performance.

7. CONCLUSIONS
Traditional caches enforce a rigid mapping between the par-
titions formed by the conventional lower order address bits
and cache sets. Such a mapping is unable to distribute the
useful trie nodes uniformly and results in increased con-
flict misses. This paper introduces a two-level mapping
framework which exploits the knowledge of the distribution
of useful LO nodes to partition the nodes more uniformly
among cache sets. Three two-level mapping based schemes
for remapping the nodes from naive Initial Partitions to Re-
fined Partitions are proposed. In all of the schemes each IP
is individually mapped to one or more RPs with the aid of a
few decision bits. We show that all these schemes achieve a

better mapping. Performance evaluation indicates that we
achieve up to 16% reduction in number of misses and 13%
speedup in access time.
In future we plan on adapting two-level mapping to general
purpose processor caches and reducing the conflict misses
incurred by performance critical memory instructions. We
plan to make use of the repetitive phase behaviour of pro-
grams to identify an efficient address to set mapping at run-
time and use this placement for future accesses.

Acknowledgments

This work was partly supported by a research grant from the Con-
sortium for Embedded and Internetworking Technologies (CEINT)
and Arizona State University, Tempe, USA. The authors are
thankful to the members of the High Performance Computing
Laboratory for their useful comments and discussions.

8. REFERENCES
[1] J-L. Baer, D. Low, P. Crowley and N. Sidhwaney. Memory

hierarchy design for a multiprocessor look-up engine. In Proc.
of Int. Conf. on Parallel Architectures and Compilation
Techniques, 2003.

[2] A. Brodnik, S. Carlsson, M. Degermark, and S. Pink. Small
forwarding tables for fast routing lookups.In Proc. of ACM
SIGCOMM’97, 1997.

[3] H.J.Chao. Next Generation Routers. Invited paper, IEEE
Proceeding, vol. 90, no. 9, pp. 1518-1558, 2002.

[4] T. Chieueh and K. Gopalan. Improving Route Lookup
performance using network processor cache. In IEEE/ACM
SC2002 Conf., 2002.

[5] T. Chieueh and P. Pradhan. Cache memory design for network
processors. In Proc.of Int. Symp. on High Performance
Computer Architecture, 2000.

[6] J. Edler and M.D. Hill. Dinero IV trace-driven uniprocessor
cache simulator. www.cs.wisc.edu/ markhill/DineroIV/, 1998.

[7] A. González, M. Valero, N. Topham, and J.M. Parcerisa.
Eliminating cache conflict misses through XOR-based
placement functions. Int. Conf. on Supercomputing, 1997.

[8] E.G.Hallnor and S.K.Reinhardt. A fully associative
software-managed cache design. In Proc. of Int. Symp.
Computer Architecture 2000, 2000.

[9] J.L. Hennessey and D.A. Patterson. Computer architecture: a
quantitative approach-3rd Ed. Morgan Kaufmann Publishers
Inc., San Francisco, CA, 2003.

[10] M.Kharbutli, K.Irwin, Y.Solilin, J.Lee. Using prime numbers
for for cache indexing to eliminate conflict misses. In Proc. of
IEEE Int. Symp. on High Performance Computer
Architecture, 2004.

[11] B.Lampson, V.Srinivasan, and G.Varghese. IP lookup using
multiway and multicolumn search. Proc. of IEEE Infocom, 98

[12] J. Mudigonda, H.M. Vin and R. Yavatkar. Overcoming the
memory wall in packet processing: hammers or ladders?
.In Proc. of Int. Symp. on Architectures for Networking and
Communication Systems, 2005.

[13] G. Narlikar and F. Zane. Performance modeling for fast IP
lookups. In Proc. of ACM SIGMETRICS, 2001

[14] S.Nilsson and G.Karlsson. IP-address lookup using LC-tries.
IEEE Journal on Selected Areas in Communications, 1999.

[15] M.K. Qureshi, D. Thompson, Y.N. Patt. The V-Way Cache:
Demand Based Associativity via Global Replacement. In Proc.
of Int. Symp. Computer Architecture, 2005.

[16] K. Rajan and R. Govindarajan. A Heterogeneously Segmented
Cache architecture for a packet forwarding engine. In Int.
Conf. on Supercomputing, 2005.

[17] V.C.Ravikumar, R.Mahapatra, J.C.Liu. Modified LC-trie based
efficient routing lookup. IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS’02), 2002.

[18] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous. Survey and
taxonomy of IP address lookup algorithms. IEEE Network
Magazine, 2001.

[19] D. Thiebaut, J.L. Wolf, H.S.Stone. Synthetic traces for
trace-driven simulation of cache memories. IEEE Transactions
on Computers, 1992.

[20] B.Talbot, T.Sherwood, and B.Lin. IP caching for terabit speed
routers. Proc. of IEEE Globcom, 1999.

[21] University of Oregon Route Views Project www.routeviews.org.


