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ABSTRACT 
Modern network intrusion detection systems need to perform regular 
expression matching at line rate in order to detect the occurrence of 
critical patterns in packet payloads. While deterministic finite 
automata (DFAs) allow this operation to be performed in linear time, 
they may exhibit prohibitive memory requirements. In [9], Kumar et 
al. propose Delayed Input DFAs (D2FAs), which provide a trade-off 
between the memory requirements of the compressed DFA and the 
number of states visited for each character processed, which 
corresponds directly to the memory bandwidth required to evaluate 
regular expressions. 

In this paper we introduce a general compression technique that 
results in at most 2N state traversals when processing a string of 
length N. In comparison to the D2FA approach, our technique 
achieves comparable levels of compression, with lower provable 
bounds on memory bandwidth (or greater compression for a given 
bandwidth bound). Moreover, our proposed algorithm has lower 
complexity, is suitable for scenarios where a compressed DFA needs 
to be dynamically built or updated, and fosters locality in the 
traversal process. Finally, we also describe a novel alphabet reduction 
scheme for DFA-based structures that can yield further dramatic 
reductions in data structure size. 

Categories and Subject Descriptors 
C.2.0 [Computer Communication Networks]: General – 
Security and protection (e.g., firewalls) 

General Terms 
Algorithms, Performance, Design, Security. 

Keywords 
Deep packet inspection, DFA, regular expressions. 

1. INTRODUCTION 
Signature-based deep packet inspection has taken root as a dominant 
security mechanism in networking devices and computer systems. 
Most popular network security software tools—including Snort 
[10][11] and Bro [12]—and devices—including the Cisco family of  

Security Appliances [13] and the Citrix Application Firewall [14]—
use regular expressions to describe payload patterns. In addition, 
application-level signature analysis has been recently proposed as an 
accurate means to detect and track peer-to-peer traffic, enabling 
sophisticated packet prioritization mechanisms [17].    

Regular expressions are more expressive than simple patterns of 
strings and therefore able to describe a wider variety of payload 
signatures, but their implementations demand far greater memory 
space and bandwidth. Consequently, there has been a considerable 
amount of recent work on implementing regular expressions for use 
in high-speed networking applications, particularly with 
representations based on deterministic finite automata (DFA). 

DFAs have attractive properties that explain the attention they 
have received. Foremost, they have predictable and acceptable 
memory bandwidth requirements. In fact, the use of DFAs allows one 
single state transition, and one corresponding memory operation, for 
each input character processed. Moreover, it has long been 
established that, for any given regular expression, a DFA with a 
minimum number of states can be found [3]. Even so, DFAs 
corresponding to large sets of regular expressions containing complex 
patterns can be prohibitively large in terms of numbers of states and 
transitions. Two recent proposals have tackled this problem in 
different ways, both trading memory size for bandwidth.  

First, since an explosion in states can occur when many rules are 
grouped together into a single DFA, Yu et al. [15] have proposed 
segregating rules into multiple groups and evaluating the 
corresponding DFAs concurrently. This solution decreases memory 
space requirements, sometimes dramatically, but increases memory 
bandwidth linearly with the number of concurrent DFAs. For 
example, using 10 DFAs in parallel requires a ten-fold increase in 
memory bandwidth. This characteristic renders the approach 
infeasible for large rule-sets that must be stored in off-chip memories.  

The second approach leverages the observation that the memory 
space required to store a DFA is a function of the number of states 
and the number of transitions between states. While the number of 
states can be minimized as a matter of course, the space needed to 
encode transitions can be reduced well beyond that of a straight-
forward representation. Kumar et al. [9] observe that many states in 
DFAs have similar sets of outgoing transitions. Substantial space 
savings in excess of 90% are achievable in current rule-sets when this 
redundancy is exploited. The proposed automaton, called a Delayed 
Input DFA (D2FA), replaces redundant transitions common to a pair 
of states with a single default transition. However, as explained in 
detail later, the use of default transitions implies that multiple states 
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may be traversed when processing a single input character. In fact, 
the D2FA approach requires a heuristic construction algorithm to 
bound the length of default transition chains in order to keep the 
memory bandwidth feasible. The original D2FA heuristic has three 
weaknesses: 1) it requires a user-provided parameter value to operate 
which can only be determined experimentally for a given rule-set, 2) 
it creates a data-structure whose worst-case paths may be traversed 
for each input character processed, and 3) it requires multiple passes 
over large support data structures during the construction phase. 

In this paper, we propose an improved yet simplified algorithm for 
building default transitions that addresses these problems. Notably, 
our scheme results in at most 2N state traversals when processing an 
input string of length N, independent of the maximum length of the 
default transition chain. On practical data sets, the level of 
compression achieved is similar than the original D2FA scheme, 
while providing a superior worst-case memory bandwidth bound. 
Moreover, when the D2FA scheme was configured to guarantee the 
same worst-case memory bandwidth bound than our algorithm, it 
produced a compression level about a factor of 10 smaller. 

Our approach is based on a simple observation: all regular 
expression evaluations begin at a single start state, and the vast 
majority of transitions between states lead back to the start state or its 
near neighbors. As will be seen, this simple observation explains the 
extraordinary redundancy among state transitions that is exploited in 
an oblivious manner by the D2FA technique. Furthermore, by 
formalizing the notion of state depth to quantify a state’s distance 
from the start state, it is possible to construct nearly optimal default 
paths with a far simpler algorithm. By leveraging depth directly 
during automaton construction, greater efficiency and simplicity are 
achieved. 

In describing our algorithm, we emphasize a number of details that 
relate directly to its practical implementation. First, we show that the 
algorithm can be incorporated directly into DFA generation—that is, 
into the NFA to DFA subset construction operation—which 
eliminates the need to either first generate a perhaps unfeasibly large 
uncompressed DFA prior to compression or to maintain the large 
support data structures required for subsequent DFA compression. 
This both allows larger rule-sets to be supported and decreases the 
cost of supporting frequent rule-set updates. 

Our discussion also encompasses data structure encoding details. 
Most notably, we describe a novel scheme for alphabet reduction that 
can be applied to any DFA-based automaton. By selectively 
assigning characters to classes based on their common use as edge 
labels, both the number of transitions and the number of bits needed 
to label all edges uniquely are dramatically reduced. This approach 
yields further data size reductions by factors ranging from 2 to 10 in 
real-world rule-sets. 

To our knowledge, the two primary contributions made in this 
paper—depth-driven default path construction and class-based 
alphabet reduction—represent the most efficient and practical 
proposals to date for regular expression evaluation in high-speed 
networking contexts.  

The remainder of this paper is organized as follows. In section 2, 
we give an overview of the D2FA technique by way of an example. 
In section 3, we present our algorithm for building default transitions 
and compare it with the original proposal in [9]. In section 4, we 
present a general coloring algorithm for alphabet reduction and 

further reduce the number of DFA transitions. In section 5, we 
discuss several encoding schemes which can be used to represent the 
compressed D2FA. In section 6, we present an experimental 
evaluation on data-sets used in the Snort and Bro tools and also in the 
Cisco security appliance. We then relate our work to the state of art 
(section 7) and conclude (section 8). 

2. MOTIVATION 
In this section, we describe the D2FA approach and explain its 
compression algorithm. For a more detailed description, the interested 
reader can refer to [9]. 

The basic goal of the D2FA technique is to reduce the amount of 
memory needed to represent all the state transitions in a DFA. This is 
achieved by exploiting the redundancy present in the DFA itself. To 
see how, consider a DFA with N states representing regular 
expressions over an alphabet Σ with cardinality |Σ| will contain N*|Σ| 
next state transitions. The authors of [9] observe that, in the case of 
practical rule-sets from commonly used network intrusion detection 
systems, many groups of states share sets of outgoing transitions. 
This redundancy can be exploited as follows. Suppose that states s1 
and s2 transition to the same set of states S={si,...,sk} for the same set 
of characters C={ci,...,ck}. In this situation, the common transitions to 
s1 and s2 can be eliminated from one of the two states, say s2, by 
introducing an unlabeled default transition from s2 to s1. State s2 will 
then contain only |Σ|-|S| labeled transitions which are not in common 
with s1. An example is shown in Figure 1. 

During the string matching operation, the traversal of the 
compressed DFA will be performed according to the traditional Aho-
Corasick algorithm [1], treating default transitions as failure pointers. 
In the example, if state s2 is visited on input character c, all its 
outgoing labeled transitions are first considered. If a labeled transition 
for character c exists, it is taken and determines the next state. 
Otherwise, the default transition (which leads to state s1) is followed, 
and state s1 is inspected for character c. Notice that s1 may or may not 
contain a labeled transition for character c. In the latter case, a default 
transition is followed again until a state containing a labeled 
transition for the current input character c is found. Thus, the number 
of state traversals involved in processing a character depends on the 
length of the default transition chains present in the D2FA.  

The heuristic proposed in [9] to build a D2FA aims to maximize 
space reduction given a worst case time bound, the latter expressed in 
terms of the maximum number of states visited for each character 
processed. That is, the heuristic explores the tension between 
increasing the number of default transitions to reduce memory size 
and decreasing their number to reduce memory bandwidth. 

Figure 1: Example of transition reduction after introducing a 
default transition (in grey and dashed) from s2 to s1. Common 
transitions to si...sk are deleted from s2. 
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As shown in [9], this tradeoff can be explored systematically as a 
maximum spanning tree problem on an undirected graph. If two 
states s1 and s2 have k labeled transitions in common, then 
introducing a default transition between the two will eliminate k 
labeled transitions. Therefore, the exploration space, also called a 
space reduction graph, consists of an undirected weighted graph 
having a vertex for each DFA state, and an edge connecting every 
two vertices sharing at least two outgoing transitions. The edge 
weights indicate the number of transitions that the endpoints have in 
common. 

This maximum spanning tree problem can be solved with 
Kruskal’s algorithm [5] in O(n2logn) time, n being the number of 
vertices in the space reduction graph. The algorithm analyzes the 
edges in decreasing order of weight, and connects the ones which do 
not generate loops (a partitioned data structure is used to speed up 
this check [8]). In the case of unconnected graphs, a forest of 
disjointed maximum spanning trees is returned. 

After the operation of Kruskal’s algorithm, the root of each tree 
can be selected so to minimize the length of the resulting chains of 
default transitions, which are then oriented accordingly. To this end, 
the node having the smallest maximum distance from any vertices 
within the same tree is chosen.  However, the resulting worst case 
time bound can still be unacceptably large. 

In order to limit the maximum default path length, the problem of 
determining a maximum spanning tree forest with bounded diameter 
is addressed. Since this problem is in general NP-hard, a heuristic is 
proposed. Specifically, the basic algorithm presented above is 
modified as follows. An edge under examination is selected only if its 
addition won’t cause the violation of the pre-established diameter 
bound. In order to do this efficiently, a distance vector is maintained 
and updated at every edge insertion. Finally, a further refinement to 
this heuristic consists in prioritizing, among the edges with the same 
weight, the ones whose introduction will lead to a smaller increase in 
the current diameter bound.  

An example of the operation of the algorithm is given in Figure 2. 
Figure 2(a) shows the original DFA (transitions leading to the initial 
state 0 are omitted for readability). The corresponding space 
reduction graph is represented in Figure 2(b), together with a 

maximum spanning tree obtained using the described heuristic with a 
diameter bound of 4 (that is, assuming a maximum default path 
length of 2). Notice that node 4, having a maximum distance from 
any vertices of 2, will be selected as the root of the tree and the 
default transitions will be oriented accordingly. The resulting D2FA is 
represented in Figure 2(c), where default transitions are colored grey 
and dashed. It can be observed that the introduction of default 
transitions removes 33 labeled transitions, equal to the weight of the 
spanning tree.  

Figure  shows a maximum spanning forest which results from 
setting the diameter bound to 2. Notice that, in this case, the default 
transitions will be directed towards states 0 and 4 and only 28 labeled 
transitions will be saved. That is, a better worst case time bound is 
obtained at the cost of a reduced memory size reduction. 

3. THE PROPOSAL 
It can be observed that the compression algorithm in the D2FA 
scheme is oblivious to the way a DFA is traversed, and operates only 
on number of outgoing transitions common to different states. We 
now take advantage of a simple fact – DFA traversal always starts at 
a single initial state s0 – in order to propose a more general 
compression algorithm which leads to a traversal time bound 
independent of the maximum default transition path length.  

Before proceeding, we need to introduce a term. For each state s,  
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Figure 3: Possible forest of maximum spanning trees for DFA 
in Figure 2(a) when diameter bound 2 is used. Additional low 
weight edges connecting states 2 and 7 to the other vertices are 
displayed.
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Figure 2: (a) DFA recognizing regular expressions: ab+c+, cd+ and bd+e over alphabet {a,b,c,d,e}. Accepting states are represented 
in grey; transitions to state 0 are omitted. (b) Corresponding space reduction graph. For readability, only edges with weight 
greater than 3 are represented. Additionally, edges with weight 3 connecting state 2, which otherwise would be disconnected, are 
displayed. One possible maximum spanning tree with diameter bound 4 is highlighted in bold. The bracketed value at each state 
represents the corresponding distance parameter. (3) Resulting D2FA (all the transitions are shown; default transitions are in grey 
and dashed). 
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we define its depth as the minimum number of states visited when 
moving from s0 to s in the DFA. In other words, the initial state s0 
will have depth 0, the set of states S1 directly reachable from s0 will 
have depth 1, the set of states S2 directly reachable from any of the S1 
(but not from  s0) will have depth 2, and so on. Clearly, the depth 
information for any DFA with n states can be constructed in O(|Σ|n) 
time through an ordered visit of the DFA starting at state s0. As an 
example, Figure (a) reports the depth information for the DFA 
considered earlier. Note that the depth of state 4 depends on it being 
reached directly from the initial state 0, even if transitions from other 
states to state 4 are also present in the DFA.    

The algorithm proposed is based on the following lemma. 

Lemma: If none of the default transitions in a D2FA lead from a 
state with depth di to a state of depth dj with dj ≥ di, then any string of 
length N will require at most 2N state traversals to be processed.  

In other words, a 2N time bound is guaranteed on all D2FA having 
only “backwards” transitions. In a sense, this can be thought of as a 
generalization of [1] to regular expressions. 

The proof of the lemma is trivial. Each character processed causes 
exactly one labeled transition and zero or more default transitions to 
be taken. Let us suppose that, at a given point, a chain of k default 
transitions must be taken from a state s. Since default transitions are 
only directed towards states with smaller depth, state s must have 
depth ≥ k. Thus, to get to state s, at least k labeled transitions (in 
excess to default transitions) must have been taken before. Therefore, 
the number of default transitions is always at least one less than the 
number of labeled transitions taken. Since a string of length N implies 
N labeled transitions to be followed, the total number of state 
traversals cannot be higher then 2N-1.  

Notice that the presence of “backwards” labeled transitions does 
not affect the proof. In fact, this implies that, if a state of depth k is 
visited at a point, then at least (and not exactly) k labeled transitions 
must have been taken before. In other words, backwards labeled 
transitions contribute to make the average case better than the worst 
case. 

 

3.1 Problem Formulation 
The problem can be now formulated as an instance of maximum 
spanning tree on a directed graph. In fact, since the default transitions 
can be oriented only in the direction of decreasing depth, the space 
reduction graph consists in this case of directed edges. Notice that, 
once a maximum spanning tree (or forest) has been determined, no 
extra computation to determine the root and the orientation of the 
default transitions is needed. 

 Two similar algorithms to find the optimal solution to the problem 
have been proposed by Chu et al.[6] and Edmonds [7]. In both cases 
the maximum spanning tree is basically determined in two steps: 
edge selection and cycle resolution. First, each vertex selects its 
outgoing edge with maximum weight, which will be added to a set 
E’. If E’ does not contain cycles, then its edges form a maximum 
spanning tree. Otherwise, each cycle is collapsed into a pseudo-node, 
and the weights of the edges exiting the pseudo-node are modified. 
The maximum weight edge exiting the pseudo-node is then selected 
and the previous edge exiting the same source vertex is excluded 
from E’. The basic idea is to eliminate each cycle by subtracting the 
minimum possible weight.   

 Note that the complexity of the algorithm resides in the cycle 
resolution phase. Fortunately, there is no need to perform this action 
in our instance of the problem. In fact, since edges in the space 
reduction graph are always directed towards decreasing depth, the 
graph does not contain any cycles. Therefore, any subset of edges 
belonging to it will be acyclic, too. 

 The complexity of the algorithm will depend only on the number 
of edges in the space reduction graph, that is, O(n2). 

3.2 An example 
An example of default transition construction with the proposed 
scheme is given in Figure , where the same DFA as in Figure 2 is 
used. In particular, Figure (b) represents the directed space reduction 
graph. Notice that, differently from Figure 2(b), there is no edge 
connecting nodes 4 and 6: in fact, the two states have the same depth. 
The root of the maximum spanning tree is now the initial state 0. 

  

Figure 4: (a) DFA recognizing regular expressions: ab+c+, cd+ and bd+e over alphabet {a,b,c,d,e}. Accepting states are represented 
in gray; transitions to state 0 are omitted. The bracketed value at each state represents its depth. (b) Corresponding (directed) space 
reduction graph. For readability, only edges with weight greater than 3 are represented. Additionally, edges with weight 3 
connecting state 2, which otherwise would be disconnected, are displayed. Directed maximum spanning tree is highlighted in bold. 
(3) Resulting D2FA (all the transitions are shown; default transitions are represented in grey and dashed). 

a

b

b

c

c

c

c

d

d

c

c c
c

c

b
d

d

e

a

b
d

0

1

4

6 7

2

3

5

8

from 3-8

d

[0]

[1]

[1]

[1]

[2]

[2]

[2]

[3]

[3]
a

b

b

c

c

c

c

d

d

c

c c
c

c

b
d

d

e

a

b
d

0

1

4

6 7

2

3

5

8

from 3-8

d

[0]

[1]

[1]

[1]

[2]

[2]

[2]

[3]

[3] 0

1 2

3

47

8

6 5

5

5

3

3

3

4

4

4

4

4

4

4

4

4
4

4

4

0

1 2

3

47

8

6 5

5

5

3

3

3

4

4

4

4

4

4

4

4

4
4

4

4
a

b
c

c

c d

b
d

e

0

1

4

6 7

2

3

5

8

d

[0]

[1]

[1]

[1]

[2]

[2]

[2]

[3]

[3]

d,e

a

b
c

c

c d

b
d

e

0

1

4

6 7

2

3

5

8

d

[0]

[1]

[1]

[1]

[2]

[2]

[2]

[3]

[3]

d,e

148



 

 

The corresponding D2FA is represented in Figure (c). Notice that, 
even if the default transitions are different compared to Figure 2(c), 
33 labeled transitions are again saved. In fact, the space reduction 
graph allowed several maximum spanning trees also in the undirected 
case, but the heuristic proposed in [9] did not privilege the one 
directed towards the initial state. On the other hand, the worst case 
traversal time bound has decreased. In fact, the diameter bound in 
Figure 2(c) is 4, leading to some default transition paths of length 2. 
This, in turn, translates into 3 state traversals for each character 
processed and to an overall O(3N) complexity for a string of length 
N.  

To achieve the same time complexity of Figure (c) using the 
algorithm described in section II, a diameter bound of 2 has to be 
utilized. As shown in Figure , this leads to a lower memory saving 
(only 28 labeled transitions can be removed). 

3.3  Algorithm 
While the concept of a space reduction graph is useful to relate this 
problem to the one solved in [9] and to help find an optimal solution 
to it, a support graph data structure is not really needed to find the 
maximum spanning tree. In fact, the whole problem is reduced to 
having each state select the state with lower depth having the most 
number of outgoing transitions in common with it. In the case of ties, 
preference is given to the smaller depth. This limits the default 
transition path length and enforces locality during traversal. 

 
procedure default_transition (DFA dfa=(n, δ(states, ∑)), 
           modifies set default); 
(1) list queue; set depth[n];  
(2) for state s ∈ states  ⇒ depth[s]=n; default[s]=s; rof  
(3) depth[0]=0;queue.push(0); 
(4) while (!queue.empty())⇒ 
(5)   state s= queue.pop(); 
(6)   int saving=0; 
(7)   for char c ∈ ∑ ⇒ 
(8)    if (depth[δ(s,c)]=n) ⇒  
(9)       depth[δ(s,c)]= depth[s]+1; queue.push(δ(s,c)); 
(10)    fi 
(11)   rof; 
(12)   for (state t ∈ states & depth[t]<depth[s]) ⇒ 
(13)       int common:=# common transitions btw. s and t; 
(14)       if (common > 1 &&  (common>saving ||  
(15)            (common=saving && depth[t]<depth[default [s]]))) 
(16)            saving:=common; 
(17)            default[s]=t; 
(18)       fi 
(19)  rof; 
(20) end while; 
end; 
 

 If the DFA traversal is performed in a breath-first fashion, both 
the default transitions and the depth computations can be done in a 
single pass, as shown in the pseudo-code above. The DFA is 
described in terms of the number of states n and of the function 
δ(states,∑)→states, which associates a next state to each (state, 
character) pair. A queue is introduced to implement the breath-first 

traversal. Notice that when a state s is extracted from the queue, all 
the states with a smaller depth have already been processed, and 
therefore the depth vector will contain a correct value for them. 
States with a higher depth can be ignored (initializing their depth to 
n will therefore ensure correct operation). While not shown in the 
pseudo-code, the removal of the redundant labeled transitions can 
also be performed in the same pass. 

Similarly, this same algorithm can be combined with subset 
construction (i.e., the NFA-to-DFA transformation used to create an 
initial DFA) so to generate default transitions directly during DFA 
creation. In fact, it is enough to ensure that new DFA states are 
queued according to increasing depth, as is done above. The 
generation of an initial compressed DFA eliminates the need to first 
construct an uncompressed one; we consider this issue concretely in 
Section 3.4.2. 

3.4 Discussion 
The compression scheme proposed in this paper and the one proposed 
in [9] (and summarized in section II) can be compared from several 
perspectives. The goal of this section is to qualitatively summarize 
the most important points. An experimental evaluation of the two on 
practical rule-sets is presented in section VII.    

3.4.1 Worst case time bound and memory reduction 
As mentioned, while the original D2FA scheme trades off worst-case 
bound on the processing time with memory size, the algorithm 
proposed here aims at achieving a constant 2N worst-case bound on 
the processing time. This is comparable with running the D2FA 
algorithm with a minimal diameter bound of two. 

 As far as memory size reduction is concerned, our expectations 
are: i) better compression when compared to D2FA with diameter 
bound equal to two, and ii) comparable compression when compared 
with D2FA with higher diameter bound. We offer two reasons for 
these expectations. 

 The first is due to how regular expressions are used in this 
context.. Intuitively, they are characterized by a limited number of 
“forward” labeled transitions corresponding to the matching 
conditions in the described patterns. However, most transitions are 
“backwards”: they correspond to mismatches, and they tend to return 
to the initial state and states closely connected to it. In the example of 
Figure 2(a), for instance, most transitions end at states 0, 1, 4 and 6. 
In the case of regular expressions with dot-star conditions, many 
transitions tend to fall back to the state the dot-star originates from 
(and to its close vicinity). Backwards default transitions will in 
general be able to replace backwards labeled transitions, which are 
the most numerous. 

 The second motivation is based on the nature of the problems 
addressed. Even if the directed-graph problem is more constrained 
than its undirected counterpart, at least when a high diameter bound is 
allowed, the algorithm proposed finds the optimal solution to it. On 
the other hand, the D2FA scheme proposes a heuristic which can find 
suboptimal solutions. Especially in case of heavily connected space 
reduction graphs, the optimal solution to the constrained problem can 
be better than the suboptimal solution of the loosely constrained one.  

3.4.2 Algorithmic complexity & practical details 
As far as asymptotic complexity is concerned, the original D2FA 
algorithm and the proposed one have O(n2logn) and O(n2) time 
bounds, respectively.  
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The complexity of the first reduction algorithm is kept low though 
the use of support data structures (space reduction graph, d-heap and 
partition data structure). In practice, this fact has important 
implications which impact the implementation and the running time 
of the algorithm itself when large DFAs are taken into consideration.  

Among the data structures listed above, the biggest and most 
problematic is the reduction graph. An adjacency list is an efficient 
graph edge representation; it allows fast navigation and requires 
about 17 bytes/edge when implemented as follows.    

struct wgedge {   

 vertex  l,r; // endpoints of the edge 

 weight  wt;  // edge weight 

 edge lnext; //link to next edge incident to l 

 edge rnext;  //link to next edge incident to r 

} *edges; 

A fully connected graph with about 11,000 nodes will require 1GB 
of memory just for storing this data structure. A possible way around 
is to build partial graphs, including only edges of given weights 
(which is compliant with Kruskal’s operation). This, however, leads 
to the need of several DFA scans, which negatively impact the 
overall running time. 

By not needing this support data structure, or the others, our 
proposed algorithm is not affected by these issues. Even if this may 
not be problematic in networking applications where the update rate 
is low, our scheme may be preferable in more dynamic scenarios 
which may occur in the future (for instance, if signature generation is 
made automatic). 

3.4.3 Additional aspects 
One additional interesting aspect is that D2FAs built with our 
proposed algorithm tend to foster locality during the traversal 
process. A probabilistic analysis of DFAs accepting the real-world 
regular expressions used below reveals that a small number of states 
accounts for a high percentage of the traversals. Intuitively, this can 
be explained by observing that mismatches are more likely to happen 
than matches, and that most transitions lead to a few states in the 
vicinity of the initial state. The probability of visiting a state with 
depth k is conditional upon the one of reaching the states leading to it, 
which must have depth at least k-1. Consequently, the probability of 
visiting a state tends to decrease as the depth increases.  
 Since the proposed algorithm tends to select states with low depth 
as targets of default transitions, it further accentuates the locality 
behavior of the DFA traversal operation. This suggests that the use of 
caches would positively affect the system throughput. The same is 
not true of a traditional D2FA, where the direction of the default 
transitions is not controlled and can lead far away from the initial 
state.  

4. REDUCING THE ALPHABET 
In this section we present a means to reduce the size of the alphabet 
and further decrement the number of transitions needed to represent a 

DFA. This technique is orthogonal to the one presented to far: it can 
be applied on top of it or on the original DFA before the default 
transition computation is performed. 
 The basic idea is the following: in a DFA recognizing regular 
expressions over an alphabet Σ each state has potentially |Σ| outgoing 
transitions, one for each symbol in Σ. However, Σ can be partitioned 
into classes of symbols C1,...,Ck which are indistinguishable for the 
purposes of the DFA operation. Two symbols ci and cj will fall into 
the same class if they are treated the same way in all DFA states. In 
other words, given the transition function δ(states, ∑)→states, 
δ(s,ci)= δ(s,cj) for each state s belonging to the DFA. Notice that it is 
not required that transitions on ci and cj lead to the same target from 
different source states.  

procedure character_class (DFA dfa=(n, δ(states, ∑)), 
          modifies set class); 
(1) int max_class=0; class ← 0; 
(2) for state s ∈ states  ⇒  
(3)   for state t ∈ states  ⇒ 
(4)      set char_covered[|∑|] ← false;           
(5)      set class_covered[|∑|] ← false;         
(6)      set remap[|∑|] ←0;  int on_zero=0; 
(7)      for  (char c ∈ ∑-{‘\0’} & δ(s,c)=t) ⇒ 
(8)         char_covered[c] := true; 
(9)         if (class[c]=0) ⇒          
(10)            if (on_zero=0) ⇒ on_zero = ++max_class; fi 
(11)            class[c]=on_zero; 
(12)         else 
(13)            class_covered[class[c]]=true; 
(14)         fi 
(15)      rof   
(16)      for (char c∈ ∑) ⇒ 
(17)           if (!char_covered [c] && class_covered[class[c]]) ⇒           
(18)             if (remap[class[c]]==0) ⇒ 
(19)                remap[class[c]]= ++max_class; 
(20)             fi 
(21)             class[c]=remap[class[c]]; 
(22)           fi; 
(23)      rof; 
(24)   rof; 
(25) rof; 
end; 

 

 Once the class translation C(Σ)→ {1..k} has been computed, the 
alphabet is reduced from cardinality |Σ| to k. k next state transitions 
will therefore suffice at each state. An additional alphabet translation 
table encoding the symbol-to-class mapping is required to allow the 
string matching operation. In practical scenarios (ASCII alphabet) 
this table will contain 256 entries, with a maximum width of 1 byte 
(for heavily compressed alphabets 5-6 bits per character may suffice). 
This indexing table can be efficiently cached and its access can be 
pipelined with the real DFA query. 
 Intuition about the potential transition savings implied by alphabet 
reduction is given by the following observations. First, regular 
expressions defined over an alphabet Σ tend in practice to use only a 

 0 1 0 2 3 1 4 

1 2 3 3 1 4 5 5 0 6 7 

Initial class translation

Final class translation
Character range from state s to t 

Figure 5: Example of the alphabet reduction algorithm when
processing transitions leading from state s to t. 
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subset of the symbols. The characters which do not appear in any 
patterns accepted by the DFA often translate into backwards 
transitions to the same state. Second, in practical cases there are 
groups of symbols naturally handled together. As an example, 
carriage return (CR) tends to be treated together with line feed (LF), 
and, when case is ignored, lowercase alphabetic characters [a-z] tend 
to appear with their uppercase counterparts [A-Z].  

As in the previous section, we want to provide a low complexity 
algorithm to perform alphabet reduction which operates by scanning 
the DFA without needing support data structures whose sizes are 
quadratic in the  number of DFA states. 

The basic idea is to build the character translation information by 
doing cluster-division. Specifically, the algorithm initially assumes to 
have a unique character class, say 0. It then loops over the states and 
analyzes the outgoing transitions. For each state s, characters leading 
to the same target t do potentially belong to the same class, unless 
they led to different targets for some state s’ previously processed. 

The operation of the algorithm for each pair of states (s,t) is shown 
in Figure. Suppose that the character translation before processing 
states (s,t) is as in the first row, and that the range of characters 
transitioning from s to t is as in the second row (bold). The following 
actions must be taken, as indicated on the third row: i) a new 
character class must be opened for bold characters previously mapped 
to class 0 (red segments 1 and 2); ii) the same character class can be 
preserved for bold characters overlapping a previously defined 
character class (blue segments 2,5,6,8, and 9); iii) new character 

classes must be opened in case of non bold characters intersecting a 
character class partially covered by bold characters (green segments 7 
and 10), iv) no action should be taken for non bold characters 
covering class 0 (pink segment 4) or any uncovered character class 
(yellow segment 11). 

The resulting algorithm is presented in the pseudo-code above. Its 
complexity is O(n2) – more precisely O(|Σ|n2) – and it can be 
combined with our proposed algorithm for default transition 
generation and subset construction. 

5. ENCODING 
There are several ways to encode a DFA whose transitions have been 
compressed with the above techniques. In this section, we briefly 
describe the two most appealing alternatives, namely, bitmaps and 
content-addressing. 

5.1 Bitmaps 
A scheme also exploited in a related context [18] consists of 
associating a bitmap as large as the alphabet size to each DFA state. 
Bits corresponding to uncompressed labeled transitions present in the 
current state can be set to 1; the remaining bits are set to 0. Thus, a 
state traversal will consist of two accesses: the first (bitmap) to 
determine whether the default pointer or a labeled transition must be 
followed, and the second to actually retrieve the next state 
information.  
 The basic disadvantage of this scheme is that it requires several 
accesses for each state traversal. However, bitmaps allow a compact 
memory representation. First, state identifiers can be simply 
represented through their base address in memory: in practical cases 
20-bit pointers are sufficient. Second, the length of the necessary 
bitmaps can substantially decrease after alphabet reduction. Third, 
other techniques proposed in the literature [19] allow bitmap 
compression. This is especially true for bitmaps having a restricted 
number of 1, as is the case of practical datasets (see section VI).  

5.2 Content addressing 
A second encoding technique, proposed in [16], consists in 
representing state identifiers with content labels, which are stored in 
memory as next state transitions. A state content label contains 
several fields: a state discriminator, the list of characters for which a 
labeled transition is defined, and an identifier for the default transition 
state. Since the size of a content label depends on the number of 
labeled transitions defined for the corresponding state, its use can be 

Table 1: Characteristics of the rule-sets 

Data-set 
 

#  
of 
RegEx 

ASCII 
length 
range 

% RegEx 
w/ wild-
cards 
(*,+) 

% RegEx 
w/ char 
ranges ≥ 5 

Snort24 24 6..70 37.5 50 
Snort34 34 15..99 38.2 32.4 
Snort31 31 16..120 41.9 93.5 
Cisco11 11 9..13 90.9 9.1 
Cisco43 43 15..73 32.6 27.9 
Cisco612 612 3..50 0 1.6 
Bro217 217 5..76 1.4 13.4 

Table 2: Comparison between the compression achieved through the D2FA basic algorithm and through our scheme. Different 
values of the diameter bound (DB) are reported in case of D2FA scheme (DB=∞: no bound is used)  

D2FA algorithm Our algorithm 
Original DFA Compression 

(as a function of the diameter bound) 
Dataset 
 

#  
 of 
states 

# of 
transitio
ns 

#  
distinct 
trans.  

% du- 
plicate
s 

DB=2 DB=6 DB=10 DB=14 DB=∞ 

max 
def. 
length 

Compr
ession 

max 
def. 
length  

Snort24 13886 3554816 36763 98.97 89.59 98.48 98.91 98.92 98.92 16 98.71 12 
Snort34 13825 3539200 38573 98.91 89.33 98.48 98.85 98.86 98.86 16 98.69 10 
Snort31 20052 5133312 54960 98.93 74.42 97.18 98.42 98.6 98.63 13 98.44 6 
Cisco11 24011 6146816 156566 97.45 86.73 97.08 97.37 97.38 97.38 12 96.63 8 
Cisco43 20320 5201920 48764 99.06 90.16 98.46 99 99.05 99.05 14 98.97 8 
Cisco612 11309 2895104 14618 99.5 79.3 97.46 98.93 99.18 99.25 12 99.09 5 
Bro217 6533 1672448 7221 99.57 76.49 97.9 99.07 99.4 99.41 9 99.33 9 
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effective only for those states which are highly compressed. The 
remaining states should have all their outgoing transitions represented 
in a traditional way. 
 The use of content labels has the benefit of allowing one memory 
access per state traversal. In fact, the analysis of the state identifier 
determines which state—the current one or the default transition’s 
target—must be analyzed to retrieve the next state information. The 
mapping between the content label and the effective memory address 
of the corresponding state is performed through a hash function. 
 In [16], a content-addressed D2FA (CD2FA) is proposed by the use 
of recursive content labels combined with a D2FA having mostly 
diameter bounds of 2 to require just one 64-bit wide memory access 
per character processed. The content labels are allowed to be 64 bits 
wide, making the scheme effective when a great percentage of the 
states have less than 5 labeled transitions. For data-sets where this 
condition does not hold (for instance, because of the frequent 
presence of larger character ranges) this scheme may not to be 
effective. 

6. EXPERIMENTAL EVALUATION 
In this section we present an experimental evaluation of the proposed 
algorithm on practical data-sets from the Snort and Bro intrusion 
detection systems and the Cisco security appliance. Snort rules have 
been filtered according to the headers ($HOME_NET, any, 
$EXTERNAL_NET, $HTTP_PORTS/any) and ($HOME_NET, any, 
25, $HTTP_PORTS/any). In the experiments which follow, rules 
have been grouped so to obtain DFAs with reasonable size and, in 
parallel, have datasets with different characteristics in terms of 
number of wildcards, frequency of character ranges and so on. The 
basic characteristics of the datasets are summarized in Table 1. 

 Our first goal is to compare the memory compression achieved 
through our scheme to that of D2FA. To this end, we implemented the 
D2FA algorithm [16] and ran it on these rule-sets with multiple 
diameter bound values. In one experiment, the diameter was left 
unbounded and the maximum default length was measured. The 
results are shown in Table 2, where the compression is expressed as 
the ratio between the number of deleted transitions and the original 
ones. Note that our algorithm achieves a degree of compression 
notably higher than the counterpart D2FA with diameter bound equal 
to two which has the same worst-case bound on bandwidth. 
Moreover, the compression is comparable to that of D2FA with no 
diameter bound, which, as pointed out and as the maximum default 
length values show, exhibits the worst performance in terms of 

throughput. Even if the amortized time complexity of our algorithm is 
2N independent of the maximum default path length, it is interesting 
to note that this parameter is kept lower than that of D2FA. 

 To clarify the significance of these compression, Table compares 
the number of transitions obtained using our scheme to that of the 
D2FA with diameter bounds of 2 and infinity. As can be seen, our 
algorithm yields in most scenarios a factor of 10 or more fewer edges 
than the D2FA. The advantage is greatest in cases like Bro217 and 
Cisco612 where the space reduction graphs are heavily connected 
and hence orienting and eliminating some edges does not greatly 
restrict the exploration space. 

 In Table we represent the result of performing alphabet reduction 
on the given DFAs. The achieved alphabet size and the compression 
both in relative and in absolute terms are shown.  The following 
observations can be made. First, alphabet reduction implies further 
compression on all the datasets and over all the algorithms and their 
parameterizations. Second, the degree of compression achieved by 
our algorithm is higher than 99% in all cases. Third, the performance 
of our algorithm gets closer to that of the unbounded D2FA and 
remains significantly better than D2FA with diameter bound equal to 
2. 

 Finally, we consider encoding the compressed DFA produced by 
our algorithm through content addressing and comparing the results 
to that of CD2FA[16]. To this end, we implemented the D2FA 
generation algorithm which is described in [16]. To perform alphabet 

Table 4: Effect of alphabet reduction. The degree of compression and the number of transitions before (BAR) and after (AAR) 
alphabet reduction are displayed. Our algorithm is compared to D2FA with diameter bound equal to 2 and without bound. 

D2FA algorithm, DB=2 D2FA algorithm, DB=∞  Our algorithm 
 compression %  compression % Compression % Dataset 

 
# of  
nodes 

alpha  
bet  
size BAR AAR 

transitions 
after AR BAR AAR 

transitions 
after AR BAR AAR 

transitions 
after AR 

Snort24 13886 46 89.59 97.87 75752 98.92 99.49 18095 98.71 99.4 21504 
Snort34 13825 51 89.33 97.63 84046 98.86 99.47 18856 98.69 99.43 20342 
Snort31 20052 53 74.42 94.48 283339 98.63 99.21 40347 98.44 99.13 44819 
Cisco11 24011 38 86.73 97.74 138922 97.38 99.24 46689 96.63 99.09 55955 
Cisco43 20320 65 90.16 97.09 151161 99.05 99.31 36037 98.97 99.27 37784 
Cisco612 11309 115 79.3 90.46 276110 99.25 99.33 19316 99.09 99.2 23139 
Bro217 6533 111 76.49 89.59 174035 99.41 99.43 9526 99.33 99.34 10957 

Table 3: Comparison between number of transitions with our 
scheme and D2FA. 

Original DFA 
 Transitions after 
compression 

D2FA Dataset 
 

# of 
states 

distinct 
 trans.. 

Our 
scheme DB=2 DB=∞ 

Snort24 13886 36763 46005 369879 38491 
Snort34 13825 38573 46298 377613 40225 
Snort31 20052 54960 80004 1313003 70389 
Cisco11 24011 156566 207303 815415 161135 
Cisco43 20320 48764 53463 511953 49570 

Cisco612 11309 14618 26218 599318 21630 
Bro217 6533 7221 11247 393130 9816 
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reduction, we use our algorithm since it is more effective and general 
than that proposed in [16]. Also, we assume 64-bit wide content 
labels. Because of that, even when using our scheme, we do not 
compress all those states which result in more than 5 labeled 
transitions and could therefore not be encoded with the defined 
labels. The results are represented in Table 5. It can be observed that 
the memory requirement of our scheme is better than that of CD2FA, 
by a factor varying from 2 to 10. Thus, CD2FA pays the better worst 
case time bound (one state traversal per character vs. the two of our 
scheme) in terms of greater memory requirement. In general, the 
CD2FA scheme is bound to a precise state encoding, whereas our 
results are more general and broadly applicable. 

7. RELATED WORK 
Sommer and Paxson [20] were among the first to point out that the 
use of regular expressions can be substantially more effective than 
exact-match strings when specifying attack signatures.  

In addition to the proposals already described, work in accelerating 
regular expressions has focused essentially on two distinct directions: 
FPGA-based implementations [21][22][23] and software-oriented 
approaches. The latter are amenable for deployment on general 
purpose processors or on small on-chip lookup engines coupled with 
off-chip memory banks [10][12][18][9][15][16]. The work presented 
in this paper locates itself in this second category.  

In the context of FPGA implementations, Sidhu and Prasanna [21] 
showed that, if each state is encoded through a flip-flop, regular 
expression matching can be performed using a non deterministic 
automaton (NFA) in linear time, without encountering the state 
blowup issues related with the use of DFAs. Complexity is moved 
into the necessity to properly route signals on the FPGA.   

Some advantages of software-based solutions are: their versatility, 
their limited cost of implementation, and the fact that they can be run 
at the higher clock rates associated with processors.  

In order to achieve deterministic performance, a software-based 
solution must make use of DFAs, whose size can grow exponentially 
with the complexity of the regular expressions they recognize. 
Memory requirements, both in terms of occupancy and bandwidth, 
play an essential role in bounding the performance of these systems. 
As discussed, effective compression techniques [9][15][16] to handle 
this problem have been proposed. This work represents a refinement  

and, in a sense, a generalization of the compression scheme proposed 
in [9]. 

8. CONCLUSIONS 
 In summary, in this work we propose a compression technique for 
DFAs which ensures at most 2N state traversals when processing a 
string of length N. Experiments on practical data-sets from several 
network intrusion detection systems show a level of compression 
comparable to that of D2FAs [9] with the advantage of a provably 
better worst case bound on the processing time. 

In addition to the strong quantitative performance results, the 
proposed scheme has substantial qualitative benefits, including 
greater generality, simplicity and lower complexity. In contrast to 
related work, the algorithm can be used also in scenarios where a 
DFA needs to be built dynamically or updated often. Finally, by 
fostering locality during traversal, the scheme is amenable to 
implementation in processor-based networking systems, such as 
Cisco's Silicon Packet Processor [25] and Intel's IXP network 
processors [1], where caches or fast memories are closely coupled to 
each processor core. 
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