
Bloom Filter Accelerator for String Matching
M. Nourani and P. Katta

Center for Integrated Circuits & Systems
The University of Texas at Dallas, Richardson, Texas 75080

{nourani,ppk031000}@utdallas.edu

Abstract— In this paper we present a hardware architecture
for string matching. Our solution based on using a Bloom filter
based pre-processor and a parallelized hashing engine is capable
of handling wire line speeds with zero false-positive probability.
String matching modules are extensively used in the network
security domain especially in network intrusion detection systems
where they are required to operate at wire line speeds. Our
analysis shows that our system is capable of matching 16000
strings and achieves throughput in excess of 100Gbps (i.e. capable
of handling 10 OC−192 links comfortably).

Index Terms— Bloom filter accelerator, Computer network
security, String matching, Pattern matching, Security monitoring

I. INTRODUCTION

Network Intrusion Detection Systems (IDS) identify intru-
sive or malicious behavior by monitoring network activity.
By performing deep packet inspection on packet payloads
in addition to packet headers, IDS systems are able to limit
spread of worms by scanning for malicious payloads. Popular
network IDS systems like Snort [1] identify suspicious
patterns that may indicate an attempt to attack, break into or
compromise a system. The most common approaches used in
IDS are statistical anomaly detection and string-match based
detection. To be effective, these systems need to scan every
byte of the packet payload and take appropriate action based
on string-match detection. Both of these systems use string
matching in one way or another. It has been shown [2] that
string matching is the most expensive part of execution in
Snort consuming 31% of its processing time and thus the most
critical component to improve snort’s (and equivalently any
IDS system’s) performance. With the average network speeds
doubling every year and the processor speeds doubling only
every 18 months [3], it is becoming increasingly difficult for
software based IDS systems to keep up with the increasing
network speeds, necessitating new special purpose hardware
solutions for string matching.

We describe a new architecture for a string matching engine
suitable for use in high performance IDS applications. Our
approach attempts to utilize a Bloom filter based accelerator to
improve on the processing speeds of current string matching
engines. A Bloom filter based accelerator engine is used to
reduce the number of strings that need to be inspected by the
core string-match unit boosting the throughput of the overall
system. We expect that the technique will be suitable for use
in high speed networks where string matching needs to be
performed at multi gigabit speeds in order to prevent becoming
a bottleneck. Additionally, most network processors like Intel
IXP1200 [4] and IBM PowerNP [5] now contain a dedicated
hashing unit. Using a string matching engine based on hashing
allows for a tighter integration with network processors and
reuse of dedicated hash generation circuitry.

A. String Matching Problem Definition

Given a set of n strings S = {s1,s2,s3, . . . ,sn} and a stream
of packets P, we would like to find out all occurrences of
S in P. The data P is streaming, which means we can look
at the data only once. Practically, n is a large number (e.g.
thousands). Also, as the location of the strings S in the packet
stream P is unknown, a string matching system should be able
to detect the strings at any location in the data stream.

B. Related Work

String matching problems have been extensively studied.
New algorithms like the Aho-Corasick-Boyer-Moore (ACBM)
[6] and setwise Boyer-Moore-Horspool [2] algorithm have
a better average case performance than classical algorithms
like Knuth-Morris-Pratt (KMP) [7], Boyer-Moore [8], Aho-
Corasick [9] and Commentz-Walter [10] but the performance
is still not good enough for multi-gigabit network speeds at
reasonable cost.

Several hardware architectures have also been suggested for
string matching. Techniques proposed in [11], [12], [13] use
DFA or NFA in FPGA for detecting strings. FPGA allows for
addition of strings through reconfiguration. These techniques
can perform string matching at very high speeds but require
reconfiguration which is expensive for addition and deletion
of strings. Also these architectures cannot be migrated to the
ASIC platform.

The simplest approach to string matching involves using a
ternary content addressable memory (TCAM) [14] to store
all the strings. Searches can be made in a single clock cycle
and as all the strings involved are distinct, such a TCAM-
based approach would require minimal decoding and would
be blazingly fast. However, the cost of such a system makes
this infeasible for sizes larger than a few strings.

Another interesting approach for string-matching is based
on Bloom filters [15] . Bloom filters initially conceived by
Burton H Bloom in 1970 are space efficient probabilistic data
structures that support membership queries on a large set of el-
ements. While false positives (i.e. identifying harmless strings
as suspicious) are possible, false negatives (i.e. overlooking a
pre-defined suspicious string) are not. Elements can be added
to a set easily but removing elements is somewhat tricky
(though this can still be handled using counting Bloom filters
[18]). Bloom filters have received a significant amount of
interest in literature and several variants have been suggested.
Spectral Bloom filters [16] are used to estimate frequencies,
Attenuated Bloom filters [17] are used to store neighbor
information. Bloomier filters [19] are extended Bloom filters
which allow execution of any arbitrary function on the set
unlike Bloom filters which limit to membership queries. When
applied to string matching, a Bloom filter based approach [20]

1-4244-1251-X/07/$25.00 ©2007 IEEE. 185

uses a Bloom filter with a very low false positive rate to filter
out most strings.

C. Main Contribution

When a packet is sent over the Internet, it typically traverses
a number of different networks before reaching its destination.
There is a high probability of packet fragmentation in transit.
Also when a number of packets are sent, these packets can
arrive out-of-order at the destination. Before checking the data
for malicious strings, the packet stream has to be reassembled
and separated based on flows. Architectures for packet stream
reassembly [21] [22] and for flow based stream separation
already exist. These systems are capable of presenting a
reassembled stream of data for further processing. We consider
that such a data stream is available to our system and deal with
the problem of efficiently finding malicious strings in these
streams.

Our approach uses a combination of Bloom filters and
parallel hashing. The data stream is initially passed through
a Bloom filter which acts as an accelerator. These selected
strings are then fed to a string dispatcher which dispatches
the strings to the PH (parallel hashing) engine [23]. The PH
engine performs a hash comparison and in case of a hash hit
compares the input string with the actual string to eliminate
any false-positives.

The PH engine uses distributed comparison and lookup
logic. By distributing comparison and lookup logic, the PH
engine processes significantly higher throughput than other
hashing based architectures while at the same time handling
significantly biased packet payloads without a significant drop
in performance. We show that even in the worst case our
system is no worse than existing hash based systems while
achieving an average throughput significantly higher than such
systems.

The rest of the paper is organized as follows. Section II gives
an overview of the system architecture. Section III provides an
overview of the Bloom filter accelerator. Section IV provides
an analysis of the throughput of the system and Section V
reports the experimental results.

II. PARALLEL HASHING ENGINE

Using Bloom filters for pre-processing is generic enough
to allow incorporation into any traditional string matching
engines. To show this, we integrate the accelerator with our
Parallel Hashing engine (PH). In this section we provide a
brief overview of the PH engine. For more details please refer
to [23].

The PH engine is a string-match engine based on parallel
hashing that processes multiple bytes of data per clock cycle.
In order to guarantee zero false-positivity the hash comparison
stage is followed by a string comparison phase. The engine is
capable of tolerating hash collisions and can be configured in
different ways depending on the application. Also as malicious
data can start at any offset in the data stream, the data window
(i.e the data that is currently being checked by the string match
engine) the window can only be extended by one byte every
step as shown in Figure 1.

The PH engine uses nh bit wide hash generators to identify
if any of the strings in its string table are present in the input

Direction of streaming data

...

...

...

...
1 Byte

Initial data window

Next data window

First Data block

Next Data block

Figure 1. Data windows for PH engine
l-byte data window from packet stream

S
tr

in
g

l-byte string

String table

tag1 ptr1 tag2 ptr2

Hash

comparator

co
m

p
ar

at
o

r

Match out

Hash
generator

n

h
n

t
n

o
h(w)

t(h(w)) o(h(w))

...
...

Hash table

...
...

np

p
i

Figure 2. Data flow through the engine

data stream. Each of the strings in the string table are of a
fixed l byte long. We hash the l byte strings to a nh bit value.

In the simplest case as the hash function is nh bits wide,
the size of the required hash table would be (2nh ×np) bits as
nh bits are used to index into the hash table and each location
contains a np bits pointer that points to the corresponding
string in the string table.

Instead we divide the hash table into a tag field nt bits wide
and an offset field of no bits, we use the no bits of the offset
to index into the hash table and store two sets of tag, pointer
in each location (i.e. we have two hash entries per location).
As the tag and offset fields are derived from the hash field,
nh = nt + no and the size of the hash table is now reduced
to (2no × 2(np + nt)) bits. This causes 2nt strings to hash to
the same location in the hash table. Reducing nt reduces the
number of strings that may be hashed to the same location and
hence reduces the probability of a hash collision. (i.e increase
the loadability of strings into the system) at the cost of more
memory consumption.

When loading a string si into the system, we first compute
the hash for the string h(si) of size nh bits. This is then split
into the tag t(h) of size nt and the offset o(h) of size no bits,
the string si can be loaded into the engine only if there is
at least one free entry in the hash table at location o(h) and
no entry at this location has the same tag value. If loadable,
the string is loaded into the string table at location pi and the
entry (t(h), pi) is loaded into the hash table at location o(h).

In the querying phase, a hash h(w) is computed on the
current l byte window of data, the computed hash is split
into the tag t(w) and the offset o(w). The two tags at o(w) are
extracted and compared to t(w). If a match is found, the data in
the window has to be compared with the actual string extracted
from the string table using pi to rule out the possibility of a
false positive. This ensures that the system never reports any
false-positives and forms the basis for our zero false-positive
claim. The data flow through the system is shown in Figure
2.

Instead of having one hash table as in the basic string

1-4244-1251-X/07/$25.00 ©2007 IEEE. 186

...

Hash
generator 1

Hash
generator m

Hash
generator 2

H
as

h
 r

es
o

lv
er

Hash

Hash

Hash

Hash

S
tr

in
g

 r
es

o
lv

er

String

String

String

O
u

tp
u

t
re

so
lv

er

m output matches

m input data streams

unit 1

unit 2

unit 3

unit k unit s

unit 2

unit 1

Figure 3. Parallel hashing string match engine

match engine, we split the hash table into k equal sized blocks
(called the hash blocks). Each of the k hash units shown
in Figure 3 contains one hash block along with a dedicated
comparator. The same idea is extended to string comparison.
The string table is broken into s equal sized blocks, each string
unit contains one string block with a dedicated comparator.
Multiple hashes can be compared in a single cycle if the hashes
index into hash blocks in different hash units. However, more
than one hash generators may index into the same hash block,
in order to resolve this, we have to arbitrate access to the
hash units. When more than one hash generators contend for
the same hash unit, only one of the contending generators
is allowed to access the hash unit, the remaining generators
contend for the unit in the next cycle. The same idea is
extended to the string units. Access to the string units from
the hash units is arbitrated by the string resolver.

In essence, we now have the (m, k, s) architecture of
Figure 3. m hash generators to generate hashes, k hash units
to compare the hashes and s string units to perform the string
comparison. As matches are signaled only after the data in
the window is compared against the actual string, there is no
possibility of false-positives forming the basis for our zero
false-positive claim. If matches need to be generated on a
per-channel basis in order to identify the stream carrying
the malicious data, an additional output resolver is added to
demultiplex the output from the string units.

Systems utilizing hashing have to deal with hash collisions.
In an IDS system, the set of pattern strings is dynamically
changing and hence it is impossible to construct a perfect
hash function. We deal with hash collisions in the PH engine
using an overflow TCAM. When a string cannot be loaded
into the engine because of a hash collision, it is loaded into
the overflow TCAM. During the querying phase the overflow
TCAM is searched in parallel to the engine.

III. BLOOM FILTER ACCELERATOR

A. Overview of the Bloom Filter

The Bloom filter uses nb independent hash functions to
generate nb non-distinct hash values in the range 1 to mb for
every l byte string. This mb bit vector can be considered as a
fingerprint of the hashed string. The initial programming phase
involves generating the mb bit fingerprint for each string in the
set S and then using these fingerprints to set bits in the mb bit
Bloom array. Previously set bits are never reset by subsequent
fingerprints and hence the Bloom array can be considered as
an logical OR of all the fingerprints of strings in set S. In

C
o

m
p

arato
r

Match

Bloom filter

Hash
Generation

Reset

Load

String

A
rray

B
lo

o
m

m
-b

it
b

8*l bit m
b

(k hash
functions)

b

Match

. . . .

Bloom
cell

cellsm
fro

m
 h

ash
 g

en
erato

r

LoadReset

bm b

Figure 4. (a) The Bloom filter (b) Memory and comparison Logic

the comparison phase, the mb bit fingerprint is generated for
every l−byte string in the data stream and compared against
the value stored in the Bloom array. If at least one of the
bits set in the fingerprint are not set in the Bloom array, then
the string can be safely ignored. If however, the fingerprint
matches, then further comparisons need to be made to ensure
that the string is not a false positive. The characteristics of
Bloom filter ensure that the false positive rate can be decreased
if either we decrease the number of elements in the set nb,
increase the length of the bit vectormb or increase the number
of hash functions kb.

B. Accelerator Design

The architecture of our Bloom filter is shown in Figure 4.
The Bloom filter consists of a hash generation block that uses
nb independent hash functions to generate an mb bit fingerprint
which is compared in the Bloom array to generate a single
match bit. The architecture of the Bloom array is shown in
Figure 4. The Bloom array consists of mb independent Bloom
cells and a single comparator.

The Bloom cell shown in Figure 5 consists of a D flip flop
and a few additional gates. The load line (active high) is used
to program the Bloom filter and hence program each of the
Bloom cells. During the load process (i.e when load is at logic
1), the D flop gets set if hash is asserted. Once set, the feedback
ensures that the D flop cannot be reset through either the hash
or the load lines. In order to reset the entire Bloom filter, a
separate reset connected to the clear input of the D flop is
used. Loading to Bloom cells refers to the process of storing
information about a set of strings in the Bloom filter so that
they can be compared against strings in the incoming data
stream.

In the comparison phase (i.e load is logic 0), the propagate
line is asserted if either the cell is not referenced (i.e. hash
is logic 0) or if the cell was referenced and a match was
found (i.e hash is logic 1 and D-flop has been set). Using this
modified signal simplifies the comparator reducing it to a set
of AND gates instead of the more expensive XOR gates.

The truth table for the Bloom cell is shown in Table I. The
value of the propagate line is ignored when load is asserted as
loading and comparison are not performed at the same time.
When in the comparison phase (i.e load is logic 0) the values
in the propagate column are the values fed to the comparator.
Unless a mismatch occurs in this Bloom cell (i.e this bit is set
in the fingerprint of the the string currently being compared

1-4244-1251-X/07/$25.00 ©2007 IEEE. 187

Q

D
CLR

Q
Load

Hash

Bloom cell

Reset

Propagate

Figure 5. Architecture of the Bloom cell

but this bit was never set in the loading phase) propagation
must be allowed. This scenario is represented in the second
row of the truth table. The values in the first and fifth rows
refer to cases in which the Bloom cell is not queried (i.e this
bit is not set in the fingerprint of the string currently being
compared) while the values in the seventh row refer to the
case where this Bloom cell matched (i.e this bit is set in the
fingerprint of the string currently being compared and also
during the loading phase).

For all but the second row in the truth table, this particular
Bloom cell cannot predict a mis-match and hence allows
values from other cells to propagate through the comparator
to the output, hence the name.

C. Advantages

Applications of Bloom filters in string-matching has tradi-
tionally focused on achieving lowest possible false positive
rates. Architectures like those proposed in [20] use a large
number of hash functions (e.g. 35 hash functions used in [20])
combined with significant amount of memory (e.g. mb

nb
= 50 in

[20]) to achieve low false positive rates. Our approach is based
on using a much small number of hash functions (one or two
depending on the filter selected. see Table II) and memory
(mb

nb
= 1 or 2 depending on the filter selected) to achieve a

significant reduction in the amount of work done by the PH
engine.

The performance of Intrusion detection systems (generally
those that use hash based string matching engines) typically
depends on the mix of malicious data in the data stream. Such
systems are usually designed with a fail-close mode whereby
the intrusion detection process is stopped if the system is
excessively overwhelmed and data is allowed to flow into the
system. The Bloom filter based accelerator when installed to
process data flowing into such systems would help the system
(providing a boost) when needed. The Bloom filter based
accelerator can be bypassed under normal circumstances to
minimize the latency through the IDS system.

D. Integration

The flow of data through the system is shown in Figure 6.
The data stream is fed through to the Bloom filter and also to
the dispatcher. This allows the Bloom filter to be bypassed if
required when the data rate is low. When passing through the
Bloom filter, a miss from the Bloom filter simply forwards the
data window. On the other hand, if the Bloom filter indicates a
possible match, the same l byte string from the data window

TABLE I

BLOOM CELL TRUTH TABLE

Q Load Hash Q+ Propagate Meaning

0 0 0 0 1 Propagation is allowed
0 0 1 0 0 Propagation NOT allowed
0 1 0 0 1 Ignored (loading phase)
0 1 1 1 1 Ignored (loading phase)
1 0 0 1 1 Propagation is allowed
1 0 1 1 1 Propagation is allowed
1 1 0 1 1 Ignored (loading phase)
1 1 1 1 1 Ignored (loading phase)

Data stream

.

Bloom filter

Dispatcher

PH Engine

Accelerator

m channels

8*l

Figure 6. (a)Architecture of the complete system

is now fed to the PH engine through the dispatcher which
performs a more thorough comparison. The packet dispatcher
is a simple load balancer that is used to dispatch data to the
different channels of the string match engine.

Normally, data flows through the packet dispatcher and
through the PH engine. However, if the dispatcher observes
that the PH engine is getting overloaded, the data stream is
routed through the Bloom filter which reduces the rate of data
flowing into the PH engine, as some of this data is processed
completely by the Bloom filter.

Due to the asymmetric nature of processing in the PH
engine (i.e some data windows are eliminated in the hash
comparison phase, while others need to be forwarded to the
third,string comparison phase), the PH engine may sometimes
get overwhelmed and start becoming a bottleneck. Our ar-
chitecture uses the Bloom filter as an aid in reducing the
load on the PH engine instead of using it as an extensive
filter with very low false positive. Hence, we get away with
higher false positive rates. Also, additionally our strategy is
completely hardware based and guarantees zero false positive
string matching primarily due to the string comparison phase
in the PH engine. As we store the strings in a separate table, we
can store additional information about the strings (for example
what actions needs to be taken) which allows our system to
comprehensively deal with different possible actions.

E. Handling Multiple Sized Strings

Our discussion up to this point has dealt with processing
strings of a fixed size using the Bloom filters. However in
order to handle real life traffic, our system can be extended
to deal with strings of multiple sizes. Let the lengths of the
strings vary from lmin to lmax.

Strings whose length lie in the range l + 1 to 2l can be
written as two strings of length l. These two strings can now

1-4244-1251-X/07/$25.00 ©2007 IEEE. 188

y cycles

First string of length l

string of length 2l-1

Second string of length l

2l-1 bytes

l bytes

l bytes

Figure 7. Handling multiple size strings using a single PH engine

be loaded into the Bloom filter based accelerator and the PH
engine configured for processing strings of size l. Generalizing
this further, strings whose length varies between (x− 1)l + 1
and (x)l can be written as x strings of length l. A string
of length l + y, y < l can be detected by consolidating two
matches generated y cycles apart. This strategy requires a state-
ful external processor to consolidate matches and compromises
on capacity of the PH engine to offer more flexibility. Figure
7 shows an example where a string of size 2l − 1 is broken
into two strings of size l which are l −1 cycles apart.

IV. THROUGHPUT ANALYSIS

In order to estimate the affect of adding the Bloom filter
based accelerator to the system, we compute the number
of bytes passing (i.e throughput) through the system. The
following notations are used:

• m : Number of channels of data (i.e. hash generators) in
PH engine

• k : Number of hash comparison units in PH engine
• s : Number of string comparison units in PH engine
• ph : Probability of a hash comparison without a collision
• qh : Probability of a hash comparison colliding
• ps : Probability of a string comparison without a collision
• qs : Probability of a string comparison colliding
• fb : The false positive rate of the Bloom filter
• mb : The number of bits in the Bloom array
• nb : The total number of strings loaded into the system
• f : The clock frequency (in Hz) at which the PH engine

operates
• RPH−BF : The number of bytes that can be processed by

the system per second by the system (i.e. Throughput).
In order to save space, we provide the rationale and list the

throughput of the PH engine RPH . A detailed approximation
is provided in [23].

The delay d experienced in advancing the window consists
of the delay in generating the hash dg, the delay in comparing
the hash dh and the delay in performing the string comparison
ds. Ideally, all three of these should be equal to one. Collisions
in the hash units and in the string units cause dh and ds to be
greater than one.

d = dg +dh +ds (1)

The Throughput of the PH engine depends on the charac-
teristics of the data stream. If the data stream contains a high
mix of suspicious strings, more references are made into the
string comparison stage causing more processing delay and
hence reducing the overall throughput. The best and the worst
case throughput of the PH engine are given by:

RPH
best =

f ·m
1+nh

Bytes/second (2)

RPH
worst =

f ·m
1+nh + ns

l

Bytes/second (3)

When a Bloom filter is added into the system, the Bloom
filter discards some of the data in the system forwarding a
selected data stream to the PH engine for further processing.

Bloom filters have been extensively studied and it is well
known [24] that the false positive rate of a Bloom filter f p is
dependent on the number of bits in the Bloom array mb, the
number of independent hash functions in the hash generator
kb and the number of strings inserted into the Bloom filter nb.
The false positive rate of the system is the ratio of number of
unsuspicious strings that were forwarded to the PH engine to
the total number of strings processed by the Bloom filter. It is
an indicator of the amount of un-suspicious strings sent to the
PH engine. The false positive rate of the Bloom filter [24] is:

fb = (1− e
−nbkb

mb)kb (4)

Let the total amount of data that can be processed by our
system be denoted by RPH−BF The amount of data being
processed by the PH engine RPH is given by:

RPH = RPH−BF × fb (5)

If the effects of the dispatcher are neglected and we assume
that the Bloom filter can always keep up with the requirements
of the PH engine, then the throughput of the system can be
computed by re-arranging and substituting the true value of
RPH from Equations 2 and 3. The resulting throughput of the
system RPH−BF is now given by:

RPH−BF
best =

RPH
best

fb
=

f ·m
1+nh

fb
Bytes/second (6)

RPH−BF
worst =

RPH
worst

fb
=

f ·m
1+nh+ ns

l

fb
Bytes/second (7)

V. EXPERIMENTAL RESULTS

In order to report the results in this section, we synthesized
the design using Synopsys design compiler [26] using library
files from Artisan targeting the 180nmT SMC fabrication pro-
cess. we extract the clock frequency from Synopsys design
compiler [26] and use it along with the simulation data to
calculate the projected throughput of the system. We believe
this to be an accurate estimate of the performance of the
engine when integrated into an network processor or other
such processors. Although the engine can operate at speeds
up to 350MHz, we report results at 250MHz due to the
limitations of commercially available SRAM IP cores for the
180nmT SMC process. Assuming SRAM cores that operate at
350MHz were available, the throughput as shown in Figure 8
would increase proportionally.

Traditionally very long Bloom filters (i.e. with mb
nb

around
50) have been used in string matching applications [20].

1-4244-1251-X/07/$25.00 ©2007 IEEE. 189

TABLE II

CHARACTERISTICS OF THE BLOOM FILTERS

Bloom filter mb
nb

kb

Filter #1 2 2
Filter #2 3 1
Filter #3 3 2

Figure 8. Number of bits processed through different configurations checking
for 16000 strings operating at a clock frequency of 250MHz

These approaches required very large Bloom filters in order to
guarantee low false positive rates. On the other hand we use
Bloom filters solely to accelerate the string matching process
and hence can get away with a much higher false positive
rate. It can be observed from [24] that allowing for a slightly
higher false positive rate significantly reduces the length of
the Bloom filter Accelerator. We experimented with three of
the smallest possible Bloom filters in order to minimize the
resource consumption. Assuming larger Bloom filters were
available, then higher throughput (as a result of lower false
positive rates in Bloom filter accelerator) can be achieved.

Figure 8 gives the projected throughput for various config-
urations of the system. The configurations of the three Bloom
filters listed in Figure 8 are given in Table II.

These results match reasonably well with the analytical
results calculated from Equations 11 and 12 for the Bloom
filter configuration of Filter #1 is shown in Figure 9. When
calculating RPH−BF

best and RPH−BF
worst in Section 3, we consider data

streams containing strings none of which have been loaded into
the engine and data streams that contain only strings loaded
into the system. The difference between the experimental
values and the calculated values can be attributed to the
randomness of the experimental data. It can be observed that
the experimental R closely matches the average throughput,

i.e
RPH−BF

best +RPH−BF
worst

2 .

REFERENCES

[1] M. Roesch, “Snort - Lightweight Intrusion Detection for Networks,”
Proceedings of the 13th Systems Administration Conference, 1999.

[2] M. Fisk and G. Varghese, “Fast Content-Based Packet Handling for
Intrusion Detection,” Technical report UCSD CS2001-0670, 2001.

[3] Internet Speed Mark in Guiness World Records Book,
www.eurekalert.org,2006.

Figure 9. Comparison of expected and computed speeds of the system
containing Bloom filter with mb

nb
= 2 and kb = 2

[4] Intel Corporation, “IXP2400 Handbook,” http://www.cs.ucr.edu/ bhuyan/
cs203A/IXP2400.pdf, Oct. 2006.

[5] R. Haas, C. Jeffries, L. Kencl, A. Kind, B. Metzler, R. Pletka, M.
Waldvogel, L. Freléchoux and P. Droz, “Creating Advanced Functions
on Network Processors: Experience and Perspectives,” IEEE Network,
17(4), pp 46-54, 2003 2001.

[6] S. Staniford C. J. Coit and J. McAlerney, “Towards Faster String
Matching for Intrusion Detection or Exceeding the Speed of Snort,”
DARPA Information Survivability Conference and Exposition, 2001.

[7] D. Knuth, J. H. Morris and V. Pratt, “Fast Pattern Matching in Strings,”
SIAM Journal on Computing, 6(2):323350, 1977.

[8] J. Moore and R. Boyer, “ A fast String Searching Algorithm,” Commu-
nications of the ACM, 1977.

[9] M. Corasick, A. Aho, “ Efficient String Matching: An Aid to Biblio-
graphic Search,” Communications of the ACM, 1975.

[10] B. Commentz-Walter, “A String Matching Algorithm Fast on the Aver-
age,” Proc. ICALP’79, LNCS v. 6, pages 118-132, 1979.

[11] R. Sidhu and V. K. Prasanna, “Fast Regular Expression Matching using
FPGA,” FCCM, 2001.

[12] Z. Barker and V. Prasanna, “Time and Area Efficient Pattern Matching
on FPGA,” FPGA, 2004.

[13] D. Caraver, R. Franklin and B. Hutchings, “Assisting Network Intrusion
Detection with Reconfigurable Hardware,” FCCM, 2002.

[14] R. Katz, F. Yu and T. Laskhman, “Gigabit Rate Packet Pattern Matching
with TCAM,” International Conference on Network Protocols (ICNP),
2004.

[15] B. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” ACM, 13(7):422-426, 1970.

[16] S. Cohen and Y. Matias, “Spectral Bloom filters,” Proc. SIGMOD, 2003.
[17] S. Rhea, and J. Kubiatowicz, “Probabilistic location and routing,” Proc.

INFOCOM, 2002.
[18] Fan, L., Cao, P., Almeida J., Broder A., “A summary cache: a scalable

wide-area web cache sharing protocol,” Proc. IEEE / ACM transaction
on Networking, 8 281-293, 2000.

[19] C. Bernard, J. Kilian, R. Rubinfield and A. Tal, “The Bloomer Filter:
An Efficient Data Structure for Static Support Lookup Tables,” Proc.
Fifteenth ACM-SIAM symposium on Discrete Algorithms, pp30-39, 2004.

[20] T. Sproull, J. Lockwood, S. Dharmapurikar and P. Krishnamurthy, “Deep
Packet Inspection using Parallel Bloom Filters,” Symposium on High
Performance Interconnects (HotI), 2003.

[21] M. Necker, D. Contis and D. Schimmel, “TCP-Stream Reassembly and
State Tracking in Hardware,” Proc. 10th Annual IEEE Symposium on
Field Programmable Custom Computing Machines, 2002.

[22] L. Andreas, L. Lucas and S. Stefan, “An analysis of FPGA-based
UDP/IP stack parallelism for embedded Ethernet connectivity,” Proc.
NORCHIP Conference, , pp94-97, Nov. 2005

[23] P. katta, M. Nourani and R. Panigrahy, “String Matching using Parallel
Hashing,” Proc. Parallel & Distributed computing , 2006.

[24] L. Fan, P. Cao, J. Almeida, and A. Broder, “Bloom Filters - the math,”
http://www.cs.wisc.edu/ cao/papers/summary-cache/node8.html, 2003.

[25] Altera Corporation, “Stratix-II Device Handbook,” Dec. 2005.
[26] Synopsys Inc., “User Manuals for SYNOPSYS Toolset Version

2005.06,” 2005.

1-4244-1251-X/07/$25.00 ©2007 IEEE. 190

