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ABSTRACT 
A large body of research literature has focused on improving the 

performance of longest prefix match IP-lookup. More recently, 

embedded memory based architectures have been proposed, which 

delivers very high lookup and update throughput. These architec-

tures often use a pipeline of embedded memories, where each stage 

stores a single or set of levels of the lookup trie. A stream of 

lookup requests are issued into the pipeline, one every cycle, in 

order to achieve high throughput. Most recently, Baboescu et al. 

[21] have proposed a novel architecture, which uses circular mem-

ory pipeline and dynamically maps parts of the lookup trie to dif-

ferent stages. 

In this paper we extend this approach with an architecture called 

Circular, Adaptive and Monotonic Pipeline (CAMP), which is 

based upon the key observation that circular pipeline allows de-

coupling the number of pipeline stages from the number of levels 

in the trie. This provides much more flexibility in mapping nodes 

of the lookup trie to the stages. The flexibility, in turn, improves 

the memory utilization and also reduces the total memory and 

power consumption. The flexibility comes at a cost however; since 

the requests are issued at an arbitrary stage, they may get blocked if 

their entry stage is busy. In an extreme case, a request may block 

for a time equal to the pipeline depth, which may severely affect the 

pipeline utilization. We show that fairly straightforward techniques 

can ensure nearly full utilization of the pipeline. These techniques, 

coupled with an adaptive mapping of trie nodes to the circular 

pipeline, create a pipelined architecture which can operate at high 

rates irrespective of the trie size. 

Categories and Subject Descriptors 
C.2.6 [Computer Communication Networks]: Internet-

working – Standards (e.g., TCP/IP) 

General Terms: Algorithms, Design. 

Keywords 
Internet router, IP lookup, longest prefix match. 

1. INTRODUCTION 
Recent advances in optical and signaling technology have pushed 

network link rates beyond 10 Gbps, with 40 Gbps  

links now appearing. A line card terminating a 40 Gbps IP link 

needs to forward a minimum-sized packet within 8 ns. To do so, 

the outgoing line card must be identified based on the packet’s 

destination address and the current set of IP routes. Thus, the rout-

ing table must be searched every 8 ns. This is challenging because: 

i) IP address lookup requires a longest prefix match, which in turn 

requires several sequential memory accesses per match, and ii) 

global routing tables contain over one hundred thousand prefixes 

and are growing. The dual challenges of serialized access and large 

datasets have inspired a number of novel algorithms and data struc-

tures. Many implementations rely on tree-based data structures, 

such as tries, to encode IP route tables. In these schemes, the long-

est prefix is found by traversing the trie from the root node to the 

matching leaf node, using a stride of one or more bits from the 

search string. 

In order to forward packets at increasing link rates, modern 

routers employ specialized hardware based on these ideas to per-

form IP lookup. Memory bandwidth is an important concern in any 

implementation, whether it is based on off-chip memory or an 

ASIC. For example, at 40 Gbps rates, a multi-bit trie of stride 4 

requires 8 memory accesses every 8 ns. Achieving this bandwidth 

using a single memory is challenging. A number of researchers 

have proposed a pipelined trie. Such tries enable high throughput 

because when there are enough memories in the pipeline, no mem-

ory stage is accessed more than once for a search and each stage 

can service a memory request for a different lookup each cycle. 

Most recently, Baboescu et al. [21] have proposed a circular 

pipelined trie, which is different from the previous ones in that the 

memory stages are configured in a circular, multi-point access pipe-

line so that lookups can be initiated at any stage. At a high-level, 

this multi-access and circular structure enables much more flexibil-

ity in mapping trie nodes to pipeline stages, which in turn main-

tains uniform memory occupancy. In this paper, we extend this 

approach with an architecture called Circular, Adaptive and Mono-

tonic Pipeline (CAMP). Our work, while also exploiting a circular 

pipeline, differs from the previous circular pipeline proposals in 

several ways. 

First, CAMP differs in the way the trie is split into sub-tries. 

While [21] aims at having a large (~4000) number of equally sized 

sub-tries, our design strives for simplicity. Thus, CAMP splits a trie 

into one root sub-trie and multiple leaf sub-tries. Root sub-trie 

handles first few bits (say r) of the IP address, and it is imple-

mented as a table, indexed by the first r bits of the IP address. With 

this, there may be up to 2 r leaf sub-tries; each of which can be in-

dependently mapped to the pipeline. By judiciously mappings 

these, the systems maintain near-optimal memory utilization, not 

only in memory space but also in number of accesses per pipeline 

stage. 

Second, having a reduced number of sub-trie of different sizes, 

we propose a different heuristic to map them to the pipeline stages. 
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As a matter of fact, our scheme proves to be much simpler, which 

also gracefully handles incremental updates. 

Finally, our design uses a different mechanism to maximize 

pipeline utilization and handle out of order lookup conditions. In 

particular, we aim at having not more than one access per pipeline 

stage for any lookup. CAMP goes further and decouples the de-

pendence of number of pipeline stages from the number of trie 

levels. Thus it can employ a large number of compact and fast pipe-

line stages to enable high throughput while consuming low power. 

With large number of stages, pipeline utilization may degrade sig-

nificantly. To this end, CAMP employs effective schemes to 

achieve high utilization. 

We also present an extensive analysis of the design tradeoffs and 

their impact on lookup rate and power consumption. For real rout-

ing tables storing 150 thousand prefixes, CAMP achieves 40Gbps 

throughput with a power consumption of 0.3 Watts. Projections on 

250 thousand prefixes show a power consumption of 0.4 Watts at 

the same throughput. 

The rest of the paper is organized as follows. In Section II we 

discuss the related work. In Section III we describe the operation of 

pipelined trie. In Section IV we present a heuristic to map trie 

nodes to pipeline stages. In Section 5 we present experimental re-

sults and in Section VI we discuss worst-case scenarios. Finally, in 

section VII, we summarize our findings. 

2. BACKGROUND 
IP lookup consists of determining the longest prefix matching the 

destination address field within the routing database of variable 

length prefixes. Longest prefix match for IP lookup has been 

widely studied. Some well known IP-lookup mechanisms encom-

passes from TCAM [9][10] to Bloom filters [6] to hash tables [1] 

based schemes. Since these are not directly related to the current 

work, we will focus on the trie based lookup schemes. 

2.1. Trie based IP Lookup 
A large fraction of memory-based solutions use lookup tries. A trie 

is an ordered tree data structure associating a string sx to each node 

nx; sx is not explicitly stored at any point of the tree, but can be 

derived by following the path from the root of the trie to the leaf 

node nx. A basic property of tries is that all descendants of a node 

nx share a common prefix, represented by the string associated to 

nx. In context of IP lookup, a binary trie representing a routing 

table can be built by traversing each prefix from the leftmost to the 

rightmost bit, and inserting in the trie, a left child for each 0 and a 

right child for each 1. For an example, see Figure 1(a) and (b). 

Nodes corresponding to the valid prefixes must be marked with a 

prefix pointer. Lookup is performed by traversing the trie according 

to the bits in the IP address. When a leaf is reached, the last marked 

node traversed corresponds to the longest matching prefix. 

As illustrated in Figure 1(b), each node contains two pointers: 

one into the array of child nodes and one prefix pointer. To reduce 

memory usage, leaf pushing (Figure 1(c)) has been proposed [1], 

wherein prefixes at non-leaf nodes (e.g.: P1, P3) are pushed down 

to the leaves. Thus, each node stores either a prefix pointer or a 

pointer to the array of children. However, leaf-pushed nodes may 

need to be replicated at several leaves (e.g.: P3). Therefore on aver-

age, leaf pushing does not halve the memory. Moreover, it also 

complicates the updates. 

If several bits are scanned for each node traversal, then the re-

sulting data structure is a multibit trie. The number of bits scanned 

once is stride. A node with stride d will have a maximum of 2d 

child nodes. In multi-bit trie, some prefixes may be expanded to 

align to the stride boundaries, which may increase the size of the 

routing table. However, during a node traversal, multiple bits are 

scanned, which reduces the number of scans. Since the time to 

complete a lookup is determined by the trie depth, the choice of 

stride depends upon the lookup time-memory tradeoff: lower strides 

allow a more compact data structure but require more memory 

accesses, whereas higher strides reduce the lookup time at the cost 

of more memory. 

Controlled prefix expansion has been introduced [2] in order to 

address the above issue. Given the maximum number of memory 

accesses allowed for a lookup (i.e., trie depth), this technique uses 

dynamic programming to determine the stride leading to the mini-

mum total memory. However, this involves two important limita-

tions: first, it is suitable for building a trie from scratch but does not 

support incremental updates; second, while reducing the total 

memory, this technique does not control the per level memory oc-

cupancy in a pipelined trie. The reason for this will be explained 

shortly. 

2.2. Pipelined IP Lookup Tries 
An effective way to tackle the time-memory tradeoff is to recognize 

that tries are well suited for data structure pipelining [7][8]. A 

common way to pipeline a trie is to assign each trie level to a dif-

ferent stage so that a lookup request can be issued every cycle, thus 

increasing the throughput. Besides increasing the throughput, such 

pipelined implementations are also suitable for handling updates. 

In fact, as proposed in [7], software preprocessing of prefix inser-

tions and deletions can be exploited in order to determine the nec-

essary per-level modifications to be performed in the trie. In a sec-

ond phase, those write operations can be inserted in the pipeline in 

the form of “write bubbles”. Because of the sequential character of 

the pipeline operation, straightforward techniques can prevent write 

operations from interfering with the existing lookups. 

In a pipelined implementation, it is desirable for nodes to be dis-

tributed uniformly across pipeline stages. [7] applies an extended 

version of controlled prefix expansion to achieve this objective. 

Rather than minimizing the total memory, the modified algorithm 

aims at minimizing the size of the largest trie level, while still keep-

ing the total memory low. Through the use of variable-stride tries 

(having a fixed per level stride but allowing different strides at  
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Figure 1: (a) Routing table; (b) corresponding unibit 

trie; (c) corresponding leaf-pushed unibit trie. 
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Figure 2: (a) Routing table; (b) corresponding unibit 

leaf pushed trie; (c) unibit trie with jump nodes. 



 

different levels), it achieves a discretely balanced prefix dis-
tribution across pipeline stages. 

An alternative approach is presented in [8], where height-based 

(rather than level-based) pipelining is proposed. The work does not 

aim at balancing memory utilization; rather, it focuses on guaran-

teeing worst case performance bounds. In particular, it focuses on 

leaf-pushed unibit tries using a technique called jump nodes, which 

limits the number of copies of a leaf-pushed node. The usage of 

jump nodes is exemplified in Figure 2, where all descendants of 

node Y represent either the prefix P4 (leaf-pushed) or P5. Clearly, 

all internal nodes in the subtree rooted at Y can be condensed into a 

jump node carrying the information about the remaining portion of 

P5. In [8], authors argue that jump nodes ensure that the number of 

leaves in a leaf pushed unibit trie is equal to the number of pre-

fixes, which enables O(1) updates. Unfortunately, since not all the 

copies of leaf-pushed nodes can be removed by using jump nodes 

(see P1 in Figure 2), such claims are incorrect. Moreover, height-

based pipelining leads to unbalanced stages; as a workaround, 

hardware-based pipelining has been proposed, which, adds to com-

plexity and power consumption. 

As we have already mentioned, the most recent and the most ef-

ficient pipelined trie has been proposed in [21], which uses a circu-

lar pipeline with dynamic pipeline entry points. 

2.3. Efficient Encoding of Multibit-Trie Nodes 
The last relevant aspect studied in the literature is the use of com-

pression to reduce memory requirements. In particular, the Lulea 

scheme [4] is suited for tries using leaf pushing, whereas the Tree 

Bitmap algorithm [5] focuses on non-leaf-pushed multibit tries. 

Specifically, Tree Bitmap allows O(1) updates as compared to 

Lulea, while requiring comparable memory. As mentioned previ-

ously, due to the limited effectiveness of leaf pushing in reducing 

the total memory requirements, we focus on non-leaf-pushed tries. 

Our infrastructure in a way is orthogonal to these compression 

techniques. Therefore, we first present our mapping algorithm on a 

simple unibit trie and then show its adaptation to multibit tries and 
Tree Bitmap scheme. 

3. CAMP 
Pipelining is an effective way to achieve high lookup rates. Previ-

ous pipelined schemes are based on the assumption that the pipe-

line is linear, and has a unique entry and exit point; moreover, it is 

assumed that a global mapping is performed on the entire trie. We 

remove both assumptions based on the observation that practical 

prefix-sets present us considerable opportunity to split a trie into 

multiple sub-tries; thus, different pipeline entry points can be as-

signed to them. This leads to many mapping opportunities, from 

which assignments may be chosen to achieve balanced pipeline 

stages. Moreover, it also eliminates two important limitations faced 

by any global mapping based scheme, namely, 1) the number of 

pipeline stages is bound to the maximum prefix length, and 2) add-

ing a memory bank  requires a complete remapping (in scenarios of 

an overflow generated by a sequence of prefix insertions). 

We introduce Circular Adaptive and Monotonic Pipeline 

(CAMP) using a set of 8 small prefixes shown in Figure 3 along 

with the corresponding binary trie. Pipelining this trie will require 

6 stages. A level-based mapping will result in 1, 2, 3, 5, 2 and 2 

nodes in stages 1 to 6, respectively, while a height-based mapping 

will result in 6, 4, 2, 1, 1 and 1 nodes. Thus, both of these mapping 

creates unbalanced pipeline and the degree of imbalance is depend-

ent upon the prefix set. 

We now consider splitting this trie into four sub-tries. Since pre-

fix P1 is only 1-bit long, we first expand it to 2 bits using con-

trolled prefix expansion (see Figure 3). Now, all prefixes in the 

database are longer than 2-bits; therefore, the upper two levels of 

the trie can be stored in a direct index table, which leaves us with 

three sub-tries of four levels each. More generally, when a routing 

database contains prefixes all of which are longer than x-bits 

(shorter prefixes are expanded to x-bits), then the first x levels of 

the trie can be replaced by a direct index table containing 2x entries, 

each of which points to one of the up to 2x sub-tries with height at 

most 32 – x. 

With multiple subtries, we now seek to obtain a balanced map-

ping of nodes to pipeline stages. We exploit the fact that requests 

can enter and exit at any stage, thus roots of sub-tries can be 

mapped to any stage. If we also allow a request to wrap-around 

through the pipeline (i.e., by taking advantage of the circular pipe-

line), we can get a high degree of flexibility in mapping. Nodes 

descended from the root of a sub-trie can be stored at subsequent 

pipeline stages, wrapping around once the final stage is reached. In 

the example above, the 3 sub-tries constructed from the 8 prefix 

table can be mapped to a four stage circular memory pipeline with 

dynamic entry points as shown in Figure 4. Note that the first two 
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Figure 4: A four stage circular pipeline and the way 

the three subtries in Figure 3 are mapped onto them. 
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Figure 3: (a) Routing table (prefixes shorter than 2-

bits are expanded using controlled prefix expansion) 

(b) unibit trie of six levels; (c) Direct index table for 

first 2-bits, (d) resulting 4 sub-tries of four levels each. 



 

bits are used to determine the entry stage into the pipeline and sub-

sequent bits are processed within different pipeline stages. 

3.1. General Dynamic Circular Pipeline 
A general circular pipeline may not require a node to be stored in a 

stage adjacent to the parent node’s stage. For example, the two 

nodes of the first sub-trie in the previous example can be stored at 

any two distinct stages, because, irrespective of the way they are 

stored, a lookup request for this sub-trie will access each stage only 

once. However, this will require the pipeline to insert no-ops when 

request traverses a stage where the required node is not present. 

Supporting no-ops increases the flexibility in storing the nodes of 

various sub-tries which can lead to more balanced pipeline stages. 

On the other hand, as will be shown later, it may complicate the 

update scenario. 

A general circular pipeline has three important properties, i) it 

allows dynamic entry and exit points, ii) it is circular, thus all 

neighboring stages are connected in one direction, and iii) it sup-

ports no-ops for which requests are simply passed over whenever 

the designated node is not found. The corresponding mapping algo-

rithm maps the root of each sub-trie to some pipeline stage and 

subsequent nodes are mapped such that, a) a node is stored at a 

stage which is at least one ahead (including wraparound) of the 

stage where its parent is stored, and b) all lookup paths terminate 

before making a circle through the pipeline. Thus, nodes along any 

path are mapped in a monotonically increasing pipeline stage and 

every lookup is guaranteed to make at most one access to a memory 

stage. 

It can be argued that the lookup throughput of a general circular 

pipeline matches that of any other pipeline because a lookup re-

quest accesses a memory at most once. However, allowing dynamic 

entry points introduces new problems due to request conflicts. A 

request contending to enter the i th stage may have to wait until a 

bubble (idle cycle) arises there. In an extreme case, a request may 

have to wait for such a bubble indefinitely, if other requests are 

entering the pipeline every cycle and keeping its entry stage busy. 

This may lead to non-deterministic performance, low pipeline utili-

zation and out-of-order request processing. However, as we will see 

next, relatively straightforward techniques coupled with a small 

speedup in pipeline operating-rate ensure deterministic perform-

ance. 

3.2. Detailed Architecture of the CAMP 
The schematic block diagram of a CAMP system is shown in 

Figure 5, which consists of a circular pipeline of memories. The 

first block performs a direct table lookup on the first x-bits of the 

address (x being the initial stride in the lookup trie), which pro-

vides the stage where the root node of the corresponding sub-trie is 

located. Subsequently, a lookup request to traverse through the 

sub-trie is dispatched into that stage. All requests are stored in the 

ingress FIFO in front of each memory stage. As soon as the corre-

sponding stage receives a bubble (idle cycle), the request at the 

head of the FIFO is issued into the pipeline. Once a request travers-

ing through the pipeline reaches the stage containing the last node, 

it comes out with either the valid next hop information or a no 

match. 

The ingress FIFO in front of each stage plays a critical role in 

improving the efficiency. Consider a system without such queues. 

It is possible that a stream of n lookup requests enters a given stage 

resulting in a train of n requests in the pipeline. All subsequent 

requests contending to enter the pipeline may have to wait for n 

cycles. Thus, the efficiency can be as low as 50%, because the 

pipeline services n requests and then waits for n cycles before ser-

vicing subsequent requests. The worst-case efficiency can be even 

lower. Consider a situation when a request enters the pipeline and 

the next waits for 1 cycle. After it enters, the third has to wait for 2 

cycles. Thus, the i th request waits for i–1 cycles, which will lead to 

a very low efficiency. 

The ingress FIFO serves as a reorder buffer, which obviates the 

above head of line blockings. If a request must wait for few cycles 

before it can be serviced, it stays in its queue and therefore does not 

block the subsequent requests. Quite intuitively, larger request 

queues will improve the efficiency of the pipeline, as they will 

provide extended immunity against requests which must block 

before being serviced. 

While improving the dispatch rate into the pipeline, these FIFOs 

also leads to requests being serviced out of order. Therefore, an 

optional reorder buffer is present at the output, which restores the 

order of requests. Reordering is optional because the problem of 

out-of-order arises only among the packets destined to different 

destinations. A single TCP flow will never experience any reorder-

ing, as any two packets having the same prefix (thus designated to 

the same “next hop”) always traverse thru the same path in the 

lookup trie. Hence, these requests will contend to enter the pipeline 

at the same stage, where they are always serviced in a first-in first-

out order. We now introduce the metric of pipeline efficiency and 

characterize it for different pipeline configurations and input traffic 

patterns. 

3.3. Characterizing the Pipeline Efficiency 
One metric characterizing the efficiency of CAMP is pipeline utili-

zation. Pipeline utilization is the fraction of time the pipeline re-

mains busy provided that there is a continuous backlog of lookup 

requests. Another metric, which more directly reflects the perform-

ance, is Lookup per Cycle or LPC, i.e. the rate at which lookup 

requests are dispatched into the pipeline. 

A linear pipeline guarantees an LPC of 1 however pipeline utili-

zation can remain low if a majority of prefixes are not 32-bits long 

(hence they do not use all stages). In a CAMP pipeline, on the 

other hand, pipeline utilization can approach one therefore requests 

may be dispatched at rates higher than one per cycle. It can happen, 

i) when most requests do not make a complete circle through the 

pipeline, or ii) when there are more pipeline stages than there are 

levels in the trie. Thus, whenever some pipeline stages are not trav-

ersed by a request, new requests contending to enter there can be 

issued. Note that, practical IP lookups, where a majority of prefixes 

are only 24-bits long, leave a large fraction of stages unused. 
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Figure 5: Schematic block diagram of a CAMP system 



 

In order to evaluate the efficiency of CAMP, we have performed 

a first order analysis of the pipeline utilization and the resulting 

LPC. To simplify the analysis presented here, we assume that all 

requests make one complete circle through the pipeline and there 

are as many pipeline stages as there are levels in the trie (in this 

case pipeline utilization will be equal to the LPC). Later we con-

sider scenarios, when requests do not make a complete circle. The 

only variant now is the entry point in the pipeline. We consider 

following four distributions of the entry points of the arriving re-

quests: i) uniformly random, ii) uniformly random short burst of 

requests at each pipeline stage, and iii) uniformly long burst of 

request at each stage, and iv) weighted random, so some pipeline 

stages receives more requests than the others. 

Not surprisingly, long burst of requests result in high utilization 

because when many requests arrive at a stage, they are serviced 

without conflict. On the other hand, when the burst lengths are 

comparable to the pipeline depth, trains of requests are created and 

subsequent bursts may have to wait before they can be dispatched. 

Uniformly and weighted random request arrivals can be modeled 

using a discrete time Markov chain, however, we skip the details 

due to space constraints. 

We continue with the results from our software simulations, 

where we generate the above four request arrival patterns and 

measure the resulting LPC. Our representative setup has 24 pipe-

line stages and requests circle through all stages before exiting. In 

Figure 6, we report the LPC for different request queue sizes. It is 

clear that, a LPC of 0.8 can be achieved for all traffic patterns, once 

the request queue size is 32. This suggests that CAMP remains 

80% efficient for practically all traffic patterns. In another experi-

ment, we fixed the request arrival rate at 0.8 per cycle and request 

queue size at 32 and measured the discard rate and the average 

delay experienced by a request. After running the experiment for 

more than 100 million iterations, no requests were discarded and 

the average delay experienced by a request was only a few tens of 

cycles. 

3.4. When is LPC greater than one? 
While the LPC of a linear pipeline is always one, the LPC of 

CAMP can be engineered to be greater than one, which can im-

prove the throughput. This is possible because CAMP enables a 

trie data-structure to be pipelined further, up to the number of 

stages much higher than the number of levels in the trie. For exam-

ple, the mapping of the three sub-tries shown in Figure 3 to a six 

stage pipeline is shown in Figure 7. As we will see soon, with many 

sub-tries, it is not difficult to determine the offsets for each of them 

so that every stage of the pipeline remains nearly uniformly popu-

lated. When there are many stages in the pipeline, each sub-trie 

(and its lookup requests) will span only a fraction of all stages. This 

can lead to a dispatch rate higher than one per cycle, assuming that 

all arriving requests do not traverse the same sub-trie. In fact, when 

sub-tries and therefore the associated prefixes are nearly uniformly 

dispersed all around the stages (because stages are balanced), it is 

less likely that all lookup requests will contend to enter one stage. 

An orthogonal factor leading to higher LPC is the fact that most 

prefixes are in close vicinity of 24-bits. 

It is neither difficult nor expensive to implement more pipeline 

stages than the levels in a trie. From a practical perspective, a 

multi-bit trie with the appropriate node encoding (tree-bit map or 

shape shifting trie), can not only reduce the total memory require-

ment by also effectively increase the number of stages in the pipe-

line. For example, a stride of k will reduce the number of levels 

(and the memory accesses) in a trie by a factor of k, which can di-

rectly lead to a k-times higher LPC. 

We now present the LPC of a setup where there are 32-stages in 

the pipeline and the sub-tries contain the leftmost 24- prefix bits. 

Each sub-trie uses tree-bit map of stride 3, thus a single lookup 

path spans across at most 8 pipeline stages. In this experiment, we 

also assume that the average prefix length is 24-bits, thus a request 

on average traverses through only 6 stages. As plotted the LPC in 

Figure 8, the LPC ranges from 3 to 5, even for large bursts of traf-

fic. For smaller bursts, which are more realistic, LPC is even 

higher. 

4. MAPPING IP-LOOKUP TRIES TO CAMP 
In order for the proposed infrastructure to operate, we need a map-

ping algorithm which assigns the trie nodes to the pipeline stages. 

The primary purpose of the algorithm is to achieve a uniform dis-

tribution of nodes to stages. In particular, the mapping should 

minimize the size of the biggest (and bottleneck) stage. This will 

not only enable high throughout but also reduce the chances of 

unbalanced pipeline during updates. 
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Figure 6: LPC of CAMP versus request queue size. 
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Figure 8: LPC of CAMP versus request queue size. 



 

4.1. Problem Formulation 
We can formulate the above problem as a constrained graph color-

ing problem, where colors represent the pipeline stages, and graph 

represents the set of sub-tries. The following two constraints guide 

the coloring: i) every color should be nearly equally used, and ii) a 

relation of order, when traversing a sub-trie from the root to the 

leaves, must be associated with the color assignment. The first con-

straint captures the intent of achieving a uniform distribution of 

nodes across the pipeline stages. The second constraint arises due 

to the fact that nodes must be mapped to the circular pipeline in 

such a way that any lookup request makes at most one complete 

circle through the pipeline. Thus, all paths from root to leaf must be 

assigned distinct colors in a monotonic order (including wrap-

around). 

If we represent each colors by an integer, the relation of order is 

the “saturated <” relation. In other words, if we have N colors (1, 2, 

..., N) then the following relation will hold: 1<2<...<N<1. A map-

ping which doesn’t preserve such an order relation is exemplified 

in Figure 9(a). Such a mapping can lead a lookup to circle through 

the pipeline multiple times, thus reducing the overall throughput. A 

mapping which preserves the order relation is illustrated in Figure 

9(b), where all paths from root to leaf (i.e. any lookup operation) 

traverse through a color at most once. Naturally there can be sev-

eral mapping choices which will preserve the order relation and we 

are interested in those which lead to a nearly uniform usage of dif-

ferent colors. We believe that such a constrained graph coloring 

problem is NP-hard and can be reduced to the well known bin-

packing problem therefore we present a heuristic algorithm to ob-

tain a near optimal solution. 

4.2. The Min-Max coloring algorithm 
Several simple heuristics can be obtained to perform the coloring 

which preserves the order relation. For instance, each sub-trie can 

be colored by first randomly selecting a color for the root node and 

then incrementing the color when proceeding towards the leaves. 

While such a randomized scheme may lead to fairly balanced color 

distributions in case of a large number of sub-tries, it may be not 

satisfactory when there are not that many sub-tries or when some 

sub-tries are significantly larger than others. We therefore introduce 

a more effective coloring heuristic. In particular, if we color sub-

tries sequentially, at each coloring step we want to exploit the in-

formation about the current status of the color distribution. 

A min-max coloring heuristic seeks to obtain uniform color us-

age by coloring the sub-tries in a sequence such that the larger sub-

tries are colored before the smaller ones. Such a sequence is moti-

vated by the well-known bin-packing heuristic and can be attrib-

uted to the fact that if tries are colored in a decreasing size se-

quence then the coloring of smaller tries can effectively correct the 

unbalances caused by the already colored bigger tries. Thus, min-

max heuristic first sorts all sub-tries according to their size and then 

in a decreasing order, assigns colors to the nodes of the sub-tries. 

For the currently selected sub-trie, the coloring needs to restore any 

discrepancy in the color usage until now. Since, the choice of a 

color for the root determines the colors for all subsequent nodes 

therefore, min-max algorithm tries all possible colors to color the 

root node (subsequent nodes are colored with increasing color val-

ues) and tracks the color usage for each choice. Eventually it picks 

the one which results in the most uniform color usage and moves 

on to the next sub-trie. Figure 10 illustrates the application of the 

min-max heuristic on a set of four sub-tries. 

4.3. Additional considerations 
The above coloring heuristic only considers unitary increment be-

tween colors of a node and those of its children. It would be possi-

ble to add further flexibility in color assignment by removing this 

constraint, without affecting the correctness of the system. The 

shaded area in Figure 11(a) illustrates such possibility. The added 

flexibility may lead to more uniform usage of colors however it 

complicates the coloring. The complexity may be acceptable if the 

mapping were static, however in practical systems, updates often 

adds and removes nodes from the tries, in which case, remapping a 

large part of the trie may be needed if the unitary increment con-

straint was not applied. As an example, let us add a bottom right 

node to the tree shown in Figure 11(a). Since color 4 is already 

used at the leaf, the colors of the nodes in the shaded area must be 

reassigned, as illustrated in Figure 11(b). Due to these costly up-

dates, we do not consider possibility of skipping colors between 

adjacent levels. 

5. EXPERIMENTAL EVALUATION 
In this section we evaluate the memory requirements and perform-

ance of CAMP and compare it with those of linear pipelined 

schemes proposed earlier. We first consider unibit tries and show 

how the selection of initial stride affects the node distribution 

across various stages. Subsequently, we analyze the impact of route 

updates on a balanced CAMP pipeline. Thereafter, we extend these 

analyses to a multi-bit trie implementation and show how having 
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Figure 9: a) invalid assignment: matching P1 causes 

one extra loop of the circular pipeline; b) valid as-

signment: the circular pipeline is traversed only once. 
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Figure 10: Example coloring with min-max heuristic. 
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Figure 11: An insertion operation causes a subtree 

rotation in case of  skip-level assignment. 



 

more pipeline stages than trie levels in a CAMP system affects the 

node distribution. We conclude with a brief analysis of power dis-

sipation and die area. Our study focuses mainly on practical data-

bases: we therefore begin with a brief discussion of the IPv4 ad-

dress allocation process and trends in BGP routing table growth. 

5.1. BGP Routing Tables and Trends 
BGP tables have grown steadily over past two decades from less 

than 5000 entries in the early 1990s to nearly 75,000 entries in 

2000 to up to 135,000 entries today. The trends in the growth are 

well studied in [12][13], which highlight that 16 to 24-bit long 

prefixes makes up the bulk of the BGP table. It has been shown that 

a small fraction (<1%) of prefixes are longer than 24-bits and are 

likely to remain so in the near future due to the address aggregation 

and route aggregation techniques. The use of prefix length filtering 

also limits the propagation of longer prefixes throughout the global 

BGP routing domain. 

Another important trend concerns updates in BGP tables. A ma-

jority of updates are linked to network link failure and recovery 

which removes a set of neighboring prefixes from the trie and 

quickly adds them back either due to the link recovery or due to the 

discovery of an alternative path. 

To summarize the BGP trends: i) the number of prefixes in BGP 

tables has grown nearly exponentially and is likely continue to 

grow; ii) prefixes smaller than 26-bits make the bulk of the BGP 

table and is likely to remain so in the near future; iii) route updates 

can concentrate in short periods of time; however, updates rarely 

change the shape of the trie even after extended period of time. 

We now discuss the memory requirement of pipelined tries. 

Unless otherwise specified, the experiments reported in this section 

are based on a dataset consisting of more than fifty BGP tables 

obtained from [11] and [15], containing anywhere from 50,000 to 

135,000 prefixes. 

5.2. Practical Considerations 
Two important issues must be addressed when designing a CAMP 

pipeline: i) choice of the number of stages and ii) selection of the 

initial stride, which divides a trie into multiple sub-tries. We post-

pone their discussion to subsequent sections, and concentrate on 

another important design aspect. For a given number of stages and 

initial stride, how to dimension each stage and how does it compare 

with a linear pipeline? 

To answer these questions, we determine the memory require-

ment of every pipeline stage for an array of routing tables in our 

dataset. Thereafter, from among all these data points, we compute 

the maximum memory requirement of every stage. Since some 

tables contain fewer prefixes than others, it is likely that they will 

require relatively less memory at each stage and hence may not 

contribute to the maximum computation. Therefore, we normalize 

the memory requirement of a stage for a given prefix set before 

considering it for the maximum computation. Thus the impact of 

prefix set’s size are eliminated but that of the prefix trends and 

length distribution are preserved. This gives us a first order esti-

mate of the memory required at each pipeline stage for the today’s 

prefix sets. 

In Figure 12(a) we plot the normalized size of each stage of a 

CAMP pipeline for all routing tables. The initial stride is set to 8, 

thus all subsequent uni-bit sub-tries require 25 pipeline stages. A 

“dot” represents the size of the corresponding pipeline stage for a 

prefix-set. The maximum size of each pipeline stage from among 

all dots is shown as an envelope in solid line. In Figure 12(b) and 

(c), we draw similar plots for a linear pipeline using a level to stage 

and height to stage mapping, respectively. We then add up the 

maximum size of each stage, represented by the envelope. This 

provides us the total memory overhead of each scheme (printed in 

the same plots). It can be noted that CAMP has a total memory 

overhead of 2.4% as compared to 23% in height to stage mapping 

and 31% in level to stage mapping. Thus, not only does CAMP 

allow a more balanced distribution of nodes to stages (highlighted 

by Figure 12), but it also reduces the total memory. 

5.3. Initial stride and number of sub-tries 
The selection of the initial stride determines the number of sub-tries 

a trie will be split into. Specifically, an initial stride of k will lead to 

up to 2k sub-tries. A large number of sub-tries generally lead to 

more balanced pipeline stages. On the same dataset used in the 

previous analysis, we verified that the 2.4% memory overhead re-

ported for an initial stride of 8 reduces to 0.02% and 0.01% for 

initial strides of 12 and 16, respectively. Larger initial strides, how-

ever, come at a cost. The direct indexed array which processes the 

initial k-bits and selects a sub-trie has 2k entries. Therefore, an ini-

tial stride of 12, which requires a 4k entries table, is preferable over 

16, which requires 64k entries table. 

5.4. Incremental Updates 
From the previous discussion it is clear that CAMP mapping algo-

rithm leads to uniform pipeline utilization once an appropriate 

initial stride is chosen. We now study the effect of updates, which 

may disturb a balanced system. The goal of the discussion is two-

fold: first, we seek to evaluate the degree of imbalance that can be 

introduced by incremental updates in extreme scenarios; second, 

we seek to determine a bound on the extra memory needed to com-

pensate for the imbalance.  
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Figure 12: Normalized memory requirements of each pipeline stage in a binary trie a) CAMP using min-max  heuristic, 

b) level to pipeline stage mapping, c) height to stage mapping. Leaf pushing was not done in these experiments. 



 

An extreme (and unlikely) scenario is created by considering a 

subset of BGP tables from [11], each containing nearly 105,000 

prefixes, and simulating a sequence of migrations from one table to 

the other. System begins in a balanced state (an initial stride of 12 

is assumed) and each successive migration incrementally removes 

all prefixes belonging to the previous table and adds the ones pre-

sent in the new table. During migration, the node to stage assign-

ment of already existing sub-tries is preserved (and extended to the 

newly added nodes of the same sub-tries), while the roots of the 

newly added sub-tries are assigned a random stage. The results of 

these experiments are reported in Figure 13, where several distinct 

simulations have been run starting from a different routing table. 

The sizes of the smallest and the largest pipeline stage, normalized 

with respect to the total table size, are shown by a sequence of min-

max data points in black-gray shade. The upper and lower envelope 

of all max-min data points is drawn in the same plot. It is clear that, 

even in this extreme case, the imbalance leads to only 4% increase 

in the occupancy of the largest stage. 

A more realistic scenario has been created by considering 

monthly snapshots of the rrc00 routing table over time, from 2002 

till 2006 [15], during which, the table grew from 90126 prefixes to 

135520 prefixes. Two cases are considered: in the first one, a bal-

anced node to stage assignment is performed at the beginning 

(2002) and incremental updates are carried out until 2006 without 

any intermediate rebalancing. In the second case, the system is 

rebalanced, once every year, with a new (and balanced) node to 

stage assignment. Figure 14, reporting the result of this experiment, 

can be read as Figure 13 with the difference that the x-axis now 

reports the timestamp of each table snapshot. Without rebalancing, 

the maximum variation in the occupancy of the largest memory 

stage is 6%, while with rebalancing it is 4%. Note that such varia-

tion decreases every year; in particular, it is limited to less than 1% 

after 2006. In fact, as the routing table grows and the trie becomes 

relatively denser, it becomes more difficult to disturb a balanced 

system. 

We conclude that, even in extreme update scenarios, the occu-

pancy of a CAMP pipeline stage can increase only marginally. 

Hence, small memory over-provisioning should be adequate. Al-

though there are effective methods to rebalance a CAMP system in 

face of real-time incremental updates, the limited amount of imbal-

ance and the infrequent need of rebalancing renders them not 

worthwhile. 

5.5. Multi-bit tries 
Until now, we have only considered a uni-bit trie lookup. We now 

extend our evaluation to multi-bit tries where tree-bit maps are used 

to represent multi-bit nodes. The first design issue is to determine a 

stride which minimizes the total memory. We accomplish this ex-

perimentally by applying different strides on our datasets and 

measuring the total memory. The results are reported in Figure 15. 

It is obvious that strides of 3, 4 and 5 are the most appropriate 

choices. 

When selecting the stride from among the three choices above, 

CAMP has relatively higher flexibility than a linear pipeline. In 

case of a linear pipeline, a higher stride will reduce the number of 

memory stages, which may increase the size of each stage. A linear 

pipelined trie will therefore generally prefer conservative strides 

(e.g.: 3) so as to keep the bottleneck stage smaller, even though this 

may lead to non optimal total memory. CAMP, on the other hand, 

may choose relatively higher stride due to the fact that pipeline 

stages are uniformly sized and no single stage is the bottleneck. 

Additionally, as we will show in the next subsection, CAMP exhib-

its more flexibility in selecting the number of pipeline stages which 

can reduce their size independent of the adopted stride. 

5.6. Number of pipeline stages 
A key property of CAMP is that the number of pipeline stages can 

be different from the number of trie levels. It enables a trie data-

structure to be pipelined to many more stages. Besides reducing the 

size of each pipeline stage (thus enabling them to run faster), more 

stages also improves the overall LPC, leading to a higher through-

put. Despite these obvious benefits, a large number of stages may 

lead to a relatively less balanced distribution of nodes across differ-

ent stages. 

We experimentally quantify the impact of number of stages on 

the node distribution. We keep an initial stride at 9 and the stride of 

each sub-trie is 5. In Figure 16, we vary the number of pipeline 

stages from 6 thru 30 and plot the excessive nodes allocated to the 

largest pipeline stage (percentage of the average number of nodes 

in a stage). Clearly, more stages result in higher imbalance as the 

largest stage is relatively more occupied. However, note that, even 

for 30 pipeline stages, the largest stage is less than 1% bigger than 

the average stage. Therefore, we can conclude that the overall im-

pact of higher number of pipeline stages on the node distribution is 

very nominal. 
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Figure 13: Successive migrations between a set of 22 

distinct BGP tables. The upper and lower bound of 

the relative pipeline size are highlighted. 
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Figure 14: Effect of incremental updates over time; 

two scenarios are represented: once without and one 

with yearly rebalancing. 



 

5.7. Power Dissipations and Area Estimates 
We now characterize the power dissipation and die area of a 

CAMP system. The analysis is carried out assuming a 0.09µm 

CMOS process and using CACTI3.2 [16]. The evaluation considers 

large synthetic prefix sets, besides our original dataset. We allocate 

an additional 25% memory to account for pathological conditions 

which may arise in the future. Wherever there is choice, we pick 

optimum memory configuration (number of banks and the clock 

frequency), which meets a given throughput objective. Finally, 

throughout the experiments, we use a tree-bit mapped multi-bit trie 

of stride 5. 

In Figure 17(a), we plot the power dissipation of the system for 

different link rates. As shown, the power dissipation for 1 million 

prefixes is 7 Watts when a 5-stage pipeline is used, and drops down 

to 3.4 Watts when a 10-stage pipeline is used. This can be ex-

plained as follow. The size of each stage is halved (from 1.6 MB to 

0.8 MB) when doubling the number of stages. A single bank mem-

ory of these sizes has an access time of 4.2 ns and 2.2 ns, respec-

tively. Therefore, achieving a 160 Gbps throughput requires a 4-

bank and 2-bank memory, respectively, the former consuming 33% 

more energy per clock cycle. A smaller number of stages also lead 

to a lower LPC, thus requiring clocking the memory at higher rates. 

Another interesting observation is that 1 million prefixes on a 10 

stage pipeline dissipates less power than 600k prefixes on a 5 stage 

pipeline. In order to obtain an optimum number of pipeline stages 

which minimizes the power dissipation, we measure the power 

dissipation while varying the number of stages. In Figure 17(c) we 

plot the power dissipation of a 1 million and 600k prefix CAMP 

system providing 160 Gbps throughput. Power dissipation clearly 

drops as we increase the number of stages, however, beyond 15 

stages, the reductions are nominal. It happens because every stage 

is 0.5 MB in a 15-stage pipeline, and a single banked memory of 

this size has access time of less than 2 ns, sufficient to provide 160 

Gbps. Beyond 25 stages, the increase in power due to the more 

individual components exceeds the reductions due to higher LPC. 

Hence, the overall power dissipation begins to increase. 

The cost and yield of an ASIC vastly depends on the die size, 

therefore, we also quantify the die size of a CAMP system. In 

Figure 17(b), we plot the area in cm2, required by a 5- and 10-stage 

CAMP for different link rates. As expected, larger number of pre-

fixes results in proportionally larger area. We report the area re-

quirements as a function of the number of pipeline stages in Figure 

17(c), which suggests that as the number of stages increases, area 

first decreases and then increases after certain point. However, area 

sensitivity is small, because area is mostly independent of the LPC 

and clock frequency and only loosely coupled to the number of 

banks. 

6. WORST-CASE PREFIX SETS 
We have till now considered only practical routing tables. For 

completeness, we briefly discuss a worst-case scenario for CAMP 

and describe a technique to handle it.  Due to lack of space, we 

focus only on the main ideas. 

What distinguishes CAMP from static pipelined tries is its abil-

ity to use uniformly occupied memories. Therefore, the worse-case 

for CAMP arises when it is not trivial to split a trie into multiple 

sub-tries and uniformly map them to different stages. Recall that we 

divided a single trie into up to 2k sub-tries by separately consider-

ing the initial k-bits of the address. As shown in Figure 18(a), any 

trie which begins with a long skinny section is difficult to be split. 

If we attempt to split such a trie, it will require a large initial stride, 
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Figure 15: Total memory requirements of a tree-bit 

mapped multi-bit trie with different stride values. 
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Figure 17: Power consumption and area estimates of different CAMP configurations. 
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Figure 16: Percentage overshoot of size of the largest 

pipeline stage from the average pipeline stage size. 



 

which can make the direct index table (2initial stride entries) prohibi-

tively large. 

In order to handle these worst-case conditions, we propose an 

adaptive CAMP, which allows a trie to be split into a parent sub-

trie and multiple child sub-tries. This way, not only can we directly 

control the number and size of sub-tries generated, but we can also 

ensure that the resulting sub-tries are equal in size. The process 

begins with assigning rank (total number of its descendents) to each 

node. We then distinguish all nodes with rank equal to the size of 

the sub-tries we want to generate. These nodes form a sub-trie of 

which they are the root. The procedure is illustrated on the above 

trie in Figure 18(b), where root node of each resulting sub-trie is 

shown. 

This procedure can directly lead to a more balanced CAMP. 

However, a direct index table can no longer be employed for the 

parent sub-trie. To address this problem, we simply treat this sub-

trie as other sub-tries and map it to the same pipeline. Thus, a re-

quest is first dispatched into the pipeline to parse the parent sub-

trie, and then another request is dispatched to parse one of the child 

sub-trie. This may reduce the LPC, however allocating more pipe-

line stages can easily mitigate this issue. 

7. CONCLUDING REMARKS 
To summarize, we have introduced CAMP, which is an extension 

of a recently proposed novel IP lookup architecture based on a 

multi-point access circular pipeline of traditional memories. CAMP 

enables near optimal and uniform memory utilization in face a large 

number of updates. A key feature of the architecture is that the 

number of stages in the pipeline is decoupled from the number of 

levels in the trie. Hence, a large number of smaller memory stages 

can be employed, leading to a higher throughput at lower area and 

power dissipation. CAMP also ensures fast incremental updates, 

which has been validated on a collection of real and synthetic pre-

fix sets. 

There are many ways the CAMP architecture can be extended 

further. One possibility is to consider off-chip memories. Since the 

architecture provides a balanced usage of space and bandwidth, an 

array of high bandwidth off-chip memories can be employed and 

accessed in a pipelined order. Thus, CAMP is directly applicable to 

a modern network processor which contains several independent 

memory channels. Another possible research direction is further 

exploration of the proposed adaptive CAMP, so that it enables even 

simpler incremental update, which can provide deterministic per-

formance irrespective of the dynamically changing prefix sets. 
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Figure 18: a) a worst-case prefix set, b) the way adap-

tive CAMP splits a trie into parent and child sub-tries. 


