
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 10, OCTOBER 2006 1793

A Memory-Efficient Parallel String Matching
Architecture for High-Speed Intrusion Detection

Hongbin Lu, Student Member, IEEE, Kai Zheng, Student Member, IEEE, Bin Liu, Member, IEEE, Xin Zhang, and
Yunhao Liu, Senior Member, IEEE

Abstract—The ability to inspect both packet headers and
payloads to identify attack signatures makes network intrusion
detection system (NIDS) a promising approach to protect Internet
systems. Since most of the known attacks can be represented with
strings or combinations of multiple substrings, string matching
is a key component, as well as the bottleneck in NIDS to address
the requirement of constantly increasing capacity. We propose
a memory-efficient multiple-character-approaching architec-
ture consisting of multiple parallel deterministic finite automata
(DFAs), called TDP-DFA. By employing efficient representations
for the transition rules in each DFA, TDP-DFA significantly
reduces the complexity. We also present a novel scheme to share
the storage of transition rules among multiple DFAs, substantially
decreasing the total storage cost, and avoiding the cost increase
being proportional to the number of DFAs. We evaluate this design
through theoretical analysis and comprehensive experiments. Re-
sults show that TDP-DFA is able to meet the critical requirement of
OC-768 wirespeed processing, as well as constituting a promising
way for scaling up to cope with throughput over 100 Gb/s in the
future.

Index Terms—Computer network security, finite automata,
parallel processing, site security monitoring, string matching.

I. INTRODUCTION

AS PROLIFERATION of Internet applications increases,
security becomes a problem within network solutions. In-

truders attempt to break into publicly accessible victim sys-
tems to misuse the functionality provided. Traditional network-
based security devices such as firewalls, performing packet fil-
tering on packet headers only, fail to identify attacks that use
unsuspicious headers. By inspecting both packet headers and
payloads to identify attack signatures, network intrusion detec-
tion system (NIDS) is able to discover whether hackers/crackers
are attempting to break in or launch a denial of service (DOS)
attack.

Because most of the known attacks can be represented with
strings or combinations of multiple substrings, string matching
is one of the key components in NIDS. String matching in
NIDS is computationally intensive in that, unlike simple packet

Manuscript received September 1, 2005; revised April 1, 2006. This work was
supported in part by the National Science Foundation of China under Contract
60373007 and Contract 6057312, in part by the Specialized Research Fund for
the Doctoral Program of Higher Education of China under Grant 20040003048,
and in part by the Tsinghua Basic Research Foundation (JCpy2005054).

H. Lu, K. Zheng, B. Liu, and X. Zhang are with the Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, China (e-mail:
lu-hb02@mails.tsinghua.edu.cn; zk01@mails.tsinghua.edu.cn; liub@tsinghua.
edu.cn; z-x02@mails.tsinghua.edu.cn).

Y. Liu is with the Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong (e-mail: liu@cs.ust.hk).

Digital Object Identifier 10.1109/JSAC.2006.877221

classifications, NIDS needs to scan both the headers and the
payloads of each incoming packet for thousands of suspicious
strings. Worse, the string lengths are variable. As a result, string
matching has become the bottleneck in NIDS to address the
requirement of constantly increasing capacity. In a popular
NIDS, such as Snort [1], 70% of total execution time and 80%
of instructions are for string matching routines [2]. Another
challenge for string matching mechanism is its vulnerability to
worst-case intended attacks. With knowledge of the rule set,
attackers can easily overload the string-matching operations by
generating worst-case input scenarios [2]. Thus, successfully
dealing with the worst-case scenarios is of great importance for
the string matching approach in NIDS.

Having been extensively studied for decades, existing solu-
tions to string matching continue to suffer low efficiency and
high storage consumption. Most of the previous works employ
a single-character-approaching algorithm, in which the worst-
case performance is strictly proportional to the memory fre-
quency. Consequently, a NIDS dealing with OC-768 (40 Gb/s)
capacity would require a memory accessing frequency of nearly
5 GHz, which is impractical with current technologies. Even
with recent advances, the evolution of memory frequency is far
slower than the increasing interface wirespeed [3].

Recently, researchers propose to increase the system
throughput by adopting embedded memory techniques based
on the following observations. First, using embedded memory
will greatly decrease the accessing latency due to the elimina-
tion of I/O drivers and external wires. With modern application
specific integrated circuit (ASIC) technology, high-speed em-
bedded memory can be compiled with custom logic on the
same silicon die. For example, embedded static RAM (SRAM)
blocks are able to run as fast as 1 GHz [4]. Second, vast paral-
lelism inside the chip can be exploited, which means hundreds
of embedded memory blocks can work together without limits
from off-chip bus bandwidth. However, before we can success-
fully use embedded memory to improve the string matching in
NIDS, the necessary memory size for string matching must be
minimized since embedded memory is very expensive. But in
previously proposed approaches, the desired increase in string
matching speed is linear with the extra storage space required,
leaving only an exorbitant way to gain speed with memory
space proportionally.

To address this issue, we propose a memory-efficient mul-
tiple-character-approaching scheme consisting of multiple par-
allel deterministic finite automata (DFAs), called transition-dis-
tributed parallel DFAs (TDP-DFA). The major contributions of
this work are as follows.

1) From observations of overlapping relationships among
real-life NIDS signatures, efficient representations for the

0733-8716/$20.00 © 2006 IEEE

1794 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 10, OCTOBER 2006

transition rules are designed to reduce the complexity of
each DFA.

2) Leveraging the correlations among the inputs to the parallel
DFAs, a novel scheme to share the storage of transition
rules among multiple DFAs is presented, thus significantly
reducing the total storage cost, and avoiding a cost increase
proportional to the number of additional DFAs required.

3) Various performance metrics of this design are studied via
theoretical analysis and comprehensive experiments. The
results show that to meet the demand of OC-768 wirespeed
(40 Gb/s) processing, less than 58 kB of on-chip binary
content addressable memory (BCAM) and 188 kB of em-
bedded SRAM are needed, and such requirements can be
easily supported by today’s on-chip memory techniques.

The remainder of this paper is organized as follows: Section II
reviews the related works. Section III presents the details of
TDP-DFA and analyzes its performance. Section IV shows
the experimental results. Finally, a conclusion is drawn in
Section V.

II. RELATED WORKS

Though many software-based string matching algorithms
[5]–[9] have been developed in the past decades, it is generally
believed that they cannot achieve multigigabit throughput. Re-
cently, many hardware-based algorithms have been proposed,
of which many solutions are based upon field-programmable
gate array (FPGA) [10]–[17].

Due to the abundance of parallelism and programmability in
FPGA, researchers can instantiate a large number of parallel
processing units, with each unit being in charge of one or several
patterns, thus significantly enhancing the throughput. However,
such approaches require time-consuming recompilation and re-
configuration of the FPGA upon any change of the rule set.

To support fast dynamic update and remain high-perfor-
mance, many algorithms resort to adopting fast memory
component, e.g., SRAM, content addressable memory (CAM),
or embedded memory. Yu et al. proposed a ternary content
addressable memory (TCAM)-based scheme [18] that can
successfully handle complex patterns such as arbitrarily long
patterns, correlated patterns, and patterns with negation. The
major concern is that every single-character processing requires
a TCAM access on average, which means even an 800 MHz
TCAM is employed, the capacity upper bound is limited to
6.4 Gb/s. Besides, many efforts have been made to optimize
the Aho–Corasick algorithm [19] for ASIC solutions in order
to benefit from its deterministic performance. Tuck et al. pre-
sented two schemes employing bitmap compression or path
compression [20]. Aldwari et al. broke down the rule set into
small ones according to the rules’ associative packet type infor-
mation in Snort database [21]. Tan et al. decomposed the whole
DFA to eight sub-DFAs, with each in charge of a certain bit
in every incoming character [22]. Cho proposed a memory-ef-
ficient string matching algorithm using hashing scheme [23].
These solutions dramatically reduce Aho–Corasick algorithm’s
storage cost and make it possible to implement the algorithm
with on-chip memory. However, they can only process at most
one character per clock cycle.

Fig. 1. The multiple-character-approaching model (w = 3).

With Bloom filters implemented with on-chip memory,
Dharmapurikar et al. presented two detecting schemes [24],
[25] that can process multiple characters per clock cycle and
attain average throughput up to multigigabit with moderate
memory consumption. But the proposed schemes are vulner-
able to malicious attacks since in the worst case they must
frequently access the relatively slow off-chip SRAMs to launch
exact string comparisons. Tripp also presented a multiple-char-
acter-approaching solution [26] which splits the entire DFA
into many tiny DFAs, where each DFA only searches for one
or several signatures to cut down the sharply increasing com-
plexity of the DFA caused by broadening the input width. To
resolve the alignment problem, however, most of the signatures
must be decomposed to multiple overlapped substrings, leading
to a proportional relationship between the storage cost and the
number of characters processed per clock cycle. In contrast, our
proposed TDP-DFA minimizes the storage cost for each used
DFA without affecting its performance, as well as keeping the
overall storage cost sublinear in the throughput.

III. TDP-DFA ARCHITECTURE

A. Basic Multiple-Character-Approaching Model

Aiming at processing multiple characters per clock cycle,
we present a model as illustrated in Fig. 1, where charac-
ters are regarded as a token, and then each signa-
ture is decomposed into one or more tokens. Note that appro-
priate number of wildcards, i.e., “*”s may be padded to make the
length of the signature an exact multiple of . According to the
Automata Theory [27], a corresponding NFA can be constructed
and converted to a DFA for detecting the token sequences. As is
the case in Fig. 1(a), the boundary of a single input window may
not be aligned with the starting character of the pattern, hence
we need to deploy DFAs for detection in parallel.

However, such a naïve scheme lacks scalability and memory
efficiency in that: 1) when constructed from a large string set,
the DFA may contain too many transition rules and 2) multiple
identical DFAs need be deployed. In what follows, we resolve
these two concerns in Sections III-B and III-C, respectively.

B. Optimized Implementation for a Single DFA

In this section, we will exploit the redundancy among the
transition rules within a single multiple-character-approaching

LU et al.: MEMORY-EFFICIENT PARALLEL STRING MATCHING ARCHITECTURE FOR HIGH-SPEED INTRUSION DETECTION 1795

TABLE I
ANALYSIS OF THE TRANSITION RULE SET FOR SNORT 2.3.3

DFA in pursuit of a storage-optimized implementation. We ex-
tract signatures from the Snort database and generate the cor-
responding DFA. Let denote the set of states which can be
reached from the starting state via only one transition. For ex-
ample, in Fig. 1(b), . The first three rows of Table I
show the data measured under three different configurations.
From the produced DFA, we learn that the number of transitions
is extremely large and most of the transitions point to the states
in . Moreover, all transitions pointing to “the same state” in

are labeled with the same string. This case is also intuitively
shown in Fig. 1(b), where all the states can jump to with the
transitions labeled as “dis.” The feature is explained as follows.

Let denote the shortest token sequence able
to drive the DFA from the root state to state , e.g.,

“pla,sti” in Fig. 1(b). Let de-
note the concatenation of and token . Then, in the
DFA, 1 if and only if (iff)
is the longest suffix of the sequence among the
“TSeq”s of all states. For example, in Fig. 1(b), (,
“pla”) is instead of since is a longer suffix
of , “pla” than . For any two states
and , it is obvious that the probability when has a
common token sequence with turns very low when

is large. Therefore, always holds when
, which explains why most transition

rules point to the states in .
According to the feature just discussed, the transition rule

set can be compressed by enabling wildcards to appear in the
“current state” fields of transition rules. For example, state

, and in Fig. 1(b) all have transitions to
labeled with “dis”; so these transitions can be replaced by a
single compressed transition rule “ ”.
Introducing wildcards incurs the necessity of assigning to
transition rules priorities as follows.

1) Transition rules containing no wildcards, e.g.,
“ , “pla”) ,” have the highest priority.

2) Transition rules containing one or more wildcards in the
labels, e.g., “ “y**” ,” have the lowest
priority.

3) Transition rules containing wildcards in the “current state”
fields, e.g., “ *,“dis” ,” have mid-priority.

1“nextstate(S; I) = N” stands for the transition rule with “current state”
field S, “input” field I , and “next state” field N .

Fig. 2. Structure and implementation of a DFA.

As shown in the last three rows in Table I, after applying
the compression scheme, the numbers of transitions are greatly
decreased, and the counts of the characters included in these
transitions are also reduced to the same magnitude as that of the
overall signature set, indicating that the compression eliminates
most of the redundancy.

Fig. 2(a) shows the implementation of a DFA, where is
still taken. The implementation consists of multiple lookup en-
gines (LEs), of which LE is responsible for matching against
transition rules with “input” field length , where

, and LE(0) is further deployed for matching transition rules
whose “current state” fields contain wildcards, so as to eliminate
the redundancy in the transition rules. Note that in Fig. 1(b), the
starting and ending states of the transition rules for short sig-
natures (whose lengths are less than , e.g., “at”, and the rest
can be called long signatures) are all , so they can be directly
matched, and thus extracted from the DFA to save storage for
the two state IDs. In Fig. 2(a), the SLE(1) and SLE(2) are de-
signed for detecting signatures with length 1 and 2, respectively.

The workflow of each DFA is described as follows. In each
clock cycle, the Splitter receives an input from the window, and
generates prefixes with lengths ranging from 1 to . Each of
them is then simultaneously sent to the LEs or SLEs with cor-
responding lengths. Note that every LE also needs the current
state as another input. When any entry is matched, the corre-
sponding LE or SLE sends out the entry’s associated Action ID
to activate specified operations, or the next state, or both. Re-
ceiving the “next states” from all LEs, the Priority Selector al-
ways chooses the one with the highest priority for usage as the
“current state” in the next clock cycle.

We then introduce the implementation of the LEs. As illus-
trated in Fig. 2(b), LE(3) is composed of a BCAM [28] along
with an associated SRAM, and stores only the transition rules
with length 3. The BCAM can search all of its entries in one
clock cycle and report the address of the first matching one if
any, driving the associative SRAM to send out the Action ID
and the “next state.” The other LEs and SLEs are built and work
in a similar fashion except for a little variation: LE(0) lacks

1796 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 10, OCTOBER 2006

Fig. 3. An example of CDLE with w = 3.

the “current state” field; LE(1) and LE(2) have different widths
of the “input” fields; besides, the SLEs vary in both different
input widths and lack of the two-state fields. Although the DFA
structure can be more easily implemented with TCAM, we still
choose BCAM because it can benefit the resource sharing mech-
anism introduced in Section III-C.

C. Resource Sharing Among Isomorphic LEs

In this section, we first introduce a key observation that when
leveraging the relationships among the parallel input strings, re-
source sharing is available among isomorphic LEs of different
DFAs. Based on this observation, the overall storage cost of the
system can be substantially reduced.

1) Composite Distributed Lookup Engine (CDLE): Given a
set of signatures abc, bcd, cde, xyz , a multiple-character-ap-
proaching model can be constructed according to the preceding
descriptions. For illustration, we take and group the
LE(3)s of the 3 DFAs together, as shown in Fig. 3(a), where LE
entries are represented in the form of “(‘current state’ number,
‘input’ field),” Note that the input windows of the three LE(3)s
are mutually overlapped. This poses a restriction that not ar-
bitrary two strings with length 3 can appear simultaneously in
the three input windows. For example, “bcd” and “xyz” cannot
emerge within one clock cycle, and hence the corresponding
entry (0,bcd) and (0,xyz) will never be matched simultaneously
in Fig. 3(a); in contrast, since the suffix “c” of string “abc” is
identical with one of the prefixes of string “cde”, entry (0,abc)
and (0,cde) may be matched at the same time, e.g., in Fig. 3(a).
We say two such entries are correlated to each other, and the
method to recognize the correlation is elaborated in Appendix I.
To utilize this feature for reducing the storage requirement, a
scheme called CDLE is proposed in Fig. 3(b).

Distinguished by an explicit Switching Fabric bridging be-
tween the LEs and parallel inputs, each input is preprocessed
by one Classifier that produces a -bit result vector (RV) for
its input, where the th bit (named) is set iff in
DFA# contains an entry matching the corresponding input. The
Switching Fabric is configured to transfer each incoming input
to an LE containing a matching entry as indicated by the corre-
sponding RV, establishing one-to-one mapping between the LEs
and the Classifiers. We can see from the example in Fig. 3(b)
that, the CDLE has less LE entries than the original scheme
depicted in Fig. 3(a), while providing equivalent performance,
since via enumeration it can be proven that, for any possible

combination of inputs, there always exists an appointing scheme
in the Switching Fabric satisfying: 1) all inputs are served in
one cycle and 2) no two inputs are sent to the same LE. Such a
scheme is named an “Acceptable Matching” in this paper. For a
CDLE to emulate the original LEs in both functions and perfor-
mance, the following two conditions must be met:

1) The Existence Condition: there always exists at least one
Acceptable Matching;

2) The Feasibility Condition: in each clock cycle, the
Switching Fabric can find at least one Acceptable Matching
if it exists.

In the remainder of this section, the entry assigning (EA) al-
gorithm assuring the Existence Condition, the scheduling algo-
rithm satisfying the Feasibility Condition and the Bloom-filter-
based scheme for implementing Classifiers in a CDLE will be
introduced in turn.

2) The EA Algorithm: The objective of the EA algorithm is
decomposed to the following.

Objective 1: Satisfying the Existence Condition.
Objective 2: Keeping the overall storage cost for the CDLE

as small as possible.
Objective 3: Keeping the storage cost for every LE as bal-

anced as possible. This objective is added to facilitate the hard-
ware design for CDLE.

It will be shown in Section III–C3 that even though these
objectives are achieved, the expected results are not sufficient
to make the scheduling algorithm efficient enough, unless the
following constraint is also applied, by which the temporal cost
of the scheduling algorithm is reduced from to .

The Fastidious Constraint: each entry should be assigned
only in the following two ways: 1) to a SINGLE LE and 2) to
ALL LEs in the CDLE.

With the three objectives under the Fastidious Constraint,
the problem confronted by the EA algorithm can be proven
NP-Hard,2 even when no account for Objective 3 is taken.
Therefore, we must turn to heuristic algorithms. The main
idea of the proposed approximation algorithm is described as
follows.

1) From all unassigned entries separate the following two cat-
egories in turn: a) self-correlated entries, of which every
one is correlated with itself and b) independent entries, of
which every one is not correlated with any other entries in
the same CDLE, except the self-correlated entries.

2) Assign as many as possible of the remaining entries to the
LEs without replication. In this process, any two correlated
entries must not be assigned to the same LE.

3) Replicate each of the remaining entries to all LEs after
step 2).

4) Replicate each of the self-correlated entries to all LEs.
5) Balance the sizes of the LEs with two measures:

• first, limiting the maximal number of entries assigned to
each LE in step 2);

• second, using the independent entries to smooth the dis-
crepancy among the entry numbers of all LEs.

The overall storage cost of the algorithm can be bounded by
maximizing the entries assigned in step 2) and minimizing those

2Because of the page limit, we put the NP-Hard proof on [29].

LU et al.: MEMORY-EFFICIENT PARALLEL STRING MATCHING ARCHITECTURE FOR HIGH-SPEED INTRUSION DETECTION 1797

Fig. 4. The EA algorithm.

Fig. 5. A greedy grouping algorithm.

Fig. 6. Illustration of the EA algorithm for a CDLE with w = 3.

assigned in step 3). The algorithm is shown in Fig. 4 and an
example is given in Fig. 6.

The EA algorithm can be justified according to the following
two lemmas proven in Appendix II:

Lemma 1: When all LEs are empty, the Existence Condition
is satisfied.

Lemma 2: Suppose that the Existence Condition is satisfied
for any assigning scheme, where entries in a given set have
been assigned; then for a scheme with assigned entries,
the Existence Condition is still satisfied if only 1) the new entry

Fig. 7. The scheduling algorithm.

Fig. 8. An example of scheduling.

assigned to an LE is not correlated with itself or any existing
entries inside OR 2) the new entry is replicated to all LEs.

3) The Scheduling Algorithm: The aim of the scheduling
algorithm can be derived from a maximum-bipartite-matching
problem [30] where each Acceptable Matching in the Switching
Fabric corresponds to a maximum matching in a bipartite. One
of the most up-to-date noniterative algorithms requires
to solve this problem and is too complex for hardware imple-
mentation [31]. Many efficient iterative matching algorithms
such as iSLIP [31] and DRRM [32] are proposed, and can
achieve 100% throughput by making certain assumptions on
the characteristics of the incoming traffic. Instead of resorting
to these algorithms, the Fastidious Constraint is imposed on
the EA algorithm to trade off its simplicity for the straightfor-
wardness of the scheduling algorithm.

With Fastidious Constraint guaranteed, the entry or entries
matching an input, if any, can only exist in one or all LEs. There-
fore, the result RV for any input can only have 0, 1, or bits
set. We denote any input with only one bit set in the result RV
by selective input. Then the Acceptable Matching can be cal-
culated by first appointing LEs to the selective inputs, and then
to the other inputs, as shown in Fig. 7 and illustrated in Fig. 8.
Note that we assume that in Pass 2 the LE with a less significant
order number is assigned with a higher priority. For example, in
Fig. 8(c), the third LE is appointed before the fourth LE.

Since the EA algorithm has assured the Existence Condition,
in Pass 1 of the scheduling algorithm, no two selective inputs
can be appointed to the same LE. In other words, each LE is ap-
pointed with at most one input. This feature remains in Pass 2, as
every LE is marked immediately after being appointed. There-
fore, the final result is an Acceptable Matching. In addition, no
input or LE is processed recursively in Pass 1 and Pass 2, which
bounds the temporal cost of the algorithm to O().

1798 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 10, OCTOBER 2006

Fig. 9. The structure of a classifier.

Fig. 10. Error caused by false positive (f. p.) and rescue.

4) The Implementation of Classifiers: We use Bloom filter
(BF) [33], a widely used membership-querying solution to im-
plement the Classifiers. A BF is a randomized data structure
that can represent a set of elements, e.g., strings in this paper. A
BF can be efficiently implemented based on embedded SRAM
with the aid of state-of-art ASIC technology [34]. Let “program”
refer to the operation to update a BF with a set of strings. Given
a string , a BF programmed with string set definitely re-
ports a hit if . But if , it may still report a hit
with probability . This situation is called false positive, and

indicates the false positive rate.
Let denote the number of RAM bits required, denote

the number of strings in the given string set , and denote the
number of hash functions used in a BF. The false positive rate of
the BF is approximately when . And
if is minimized with respect to , we get:

(3.1)

For simplicity, in our prototype, it is assumed that all BFs are
configured with the same small enough ().

The structure of a Classifier is shown in Fig. 9. For a given
input , the function of the RV Generator is twofold.

1) If all BFs or only one BF reports a hit, then for ,
the th bit in the RV output is set iff the th BF reports a hit.

2) According to the Fastidious Constraint, the entry or entries
matching a given input can exist in either all LEs or merely
one LE. Therefore, if more than one but not all of the BFs
report hits, or every BF report a miss, all bits in the RV
should be reset, causing the switching fabric to drop the
corresponding input.

Since false positives are inherent in BFs, valid inputs may be
dropped, as shown in Fig. 10(a). To avoid such situations, at the
end of the algorithm for every CDLE, we should test each entry
inside to check whether it would cause more than one but not
all BFs to report hits; if so, the entry should be replicated to all
LEs, as shown in Fig. 10(b), and the corresponding BFs should
be modified.

On the other hand, false positives in the BFs may also break
the Existence Condition, as shown in Fig. 11. Therefore, we
must revise the scheduling algorithm to appoint at each clock
cycle only one of the multiple inputs contending for an output,
and run iteratively until every one of them is processed. In

Fig. 11. LE contention.

Fig. 12. Look-ahead characters.

the worst case, cycles are needed to resolve the contention.
The performance degradation yielded will be analyzed in
Section III-E.

5) Further Improvement on CDLE: In the aforementioned
description of CDLE, two entries are correlated if only a suffix
of one entry is the same as one of the prefixes of the other,
e.g., (0,bcfa) and (0,abcd) when . This produces copious
amounts of correlated entries, resulting in the low storage effi-
ciency of the EA algorithm. For improvement, we introduce
additional input characters, called “look-ahead” characters, for
each input window, as shown in Fig. 12(a), where . Let
denote the number of DFAs. We note that though increases
with remains the same and satisfies . Accordingly,
we will use and instead of to specify the system configu-
ration in the rest of the sections.

After adding look-ahead characters, two entries are correlated
only when an entry’s suffix at least characters long is the
same as one of the prefixes of the other. For example, when

and , though still equals 4, (0, bcfa) and (0, abcd)
are no longer correlated since “bcfa” and “abcd” cannot appear
together in the input windows of Fig. 12(a). Another example is
presented in Fig. 12(b). For the given signature set , there are
four correlations when , while the number of correlations
decreases to 1 when . Understandably, the number of cor-
relations will diminish as the value of increases, however, also
resulting in the redundant storage for part of characters. There-
fore, the value of should be carefully tuned, which is illustrated
in experiments in Section IV.

D. Overall Architecture of TDP-DFA

In Section III-C, resource sharing is achieved among different
LEs, resulting in the CDLE implementation. Similarly, resource
sharing can also be introduced among SLE()s ()
resulting in the implementation of a CDSLE(), which differs
from the CDLE in two aspects: 1) no entry inside includes any
state ID and 2) the length of each input string is . The two
differences pose the limitation that a CDSLE() can only have
at most parallel input windows, so as to guarantee that
any two of them share a common substring at least characters

LU et al.: MEMORY-EFFICIENT PARALLEL STRING MATCHING ARCHITECTURE FOR HIGH-SPEED INTRUSION DETECTION 1799

Fig. 13. An example of TDP-DFA.

long. Consequently, to emulate SLE()s, at least 3

CDSLE()s should be deployed in parallel, and such a substi-
tution only makes sense when . Taking CDLEs and
CDSLEs as building blocks, the architecture of TDP-DFA is il-
lustrated in Fig. 13.

Comparing Fig. 13 with Fig. 2(a), we can see that TDP-DFA
differs from multiple parallel DFAs in that: 1) all LE()s are sub-
stituted with a single CDLE() and 2) all SLE()s are replaced
with a single Plane(), which consists of CDSLEs
if , or otherwise original SLE()s. Since CDLEs
and CDSLEs can emulate parallel LEs and SLEs, respectively,
TDP-DFA resembles the naïve model of parallel DFAs in terms
of both function and performance, while reducing the storage
requirement by effective resource sharing.

E. Theoretical Analysis

Assume that a pipeline for TDP-DFA is constructed appro-
priately by interleaving among several input flows, and that
BCAMs constitute the critical path in the circuit implementa-
tion, which means the highest clock frequency merely depends
on the BCAM access delay. Hence, in the ideal case LEs
working in parallel can achieve a throughput up to times faster
than that of a single BCAM scheme. However, according to
Section III–C4, due to the probability of false positive reports
given by the BFs, we may not actually achieve a full speedup
of .

We start by formalizing the worst-case condition (WCC) for
the string matching in the TDP-DFA as: for every clock cycle,
each BF within all CDLEs reports a hit, i.e., no matching traffic
can be excluded.

Under WCC, with respect to the Switching Fabric of a spe-
cific CDLE, in every clock cycle, each input port has a request.
If no conflict occurs, every input is appointed to a distinct output
port, and therefore all the matching requests can be performed
in parallel within one clock cycle; otherwise multiple clock cy-
cles may be required, e.g., if inputs conflict with each other
(i.e., they are appointed to the same output port), clock cycles
should be required to finish the corresponding string matching.
So, it is straightforward that the worst-case processing latency
of a CDLE actually depends on the maximum mutually con-
flicting input number of the corresponding Switching Fabric.

In the following, we will present the deduction of the per-
formance of TDP-DFA under WCC. Note that in Fig. 13, each
Priority Selector must wait for the results of all the CDLEs

3dxe means the minimum integer larger than x.

in the worst case, creating a bottleneck within the entire system.
Let denote the maximum number
of mutually conflicting input ports in the Switching Fabric of
the th CDLE, and denote the number of Classifiers in-
curring false positives in the th CDLE, and the mathematical
expectation of the processing latency (in terms of clock cycles)
of TDP-DFA , is given by

In order to obtain the probability , we

first work out .
Since and in our

prototype is very small (), we have

So, when .
And accordingly, if

Therefore, we ignore the influence of when
for the simplicity of deduction.

Suppose that for each input port with false positive hap-
pening, the probability to request each of the output ports is
equal, and the decision result of any BF is independent of each
other, then for any CDLE, we have

1800 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 10, OCTOBER 2006

Note the following.
• When two false positives occur, iff the cor-

responding two input ports request for the two output ports
which are not requested by the other input ports
without a false positive occurring.

• When two false positives occur, iff: 1) the
two corresponding input ports request for the same output
port which is not requested by any of the other input
ports without false positive occurring, OR 2) the two corre-
sponding input ports request for different output ports, only
one of which is also requested by one of the other input
ports without false positive occurring, OR (3) the two cor-
responding input ports request for different output ports,
both of which are also requested by one of the other
input ports without a false positive occurring.

• When two false positives occur, iff the two
corresponding input ports request for the same output port
which is also requested by one of the other input ports
without a false positive occurring.

Now, we go on to calculate

Note: iff for all the CDLEs, the

corresponding

So, we have

Fig. 14. Tradeoff for k.

We also define acceleration factor (AF) as , indi-
cating the speedup between the naive BCAM scheme and TDP-
DFA.

Note that, the performance deduction above virtually relies
on the assumption that the hash functions used in the BFs are
independent of the incoming traffic; thus no attacker is capable
of generating malicious traffic to drive the BFs to encounter con-
tinual false positives. This can be realized by keeping secret the
implementation details of the BFs, or building the BFs with re-
configurable hash functions which can be altered either manu-
ally or automatically.

IV. EXPERIMENTAL RESULTS

Using the pattern set from Snort (version 2.3.3, released in
April 2005), we extract 2234 distinct substrings containing
33 793 characters from the signature database.

In our prototype, the space for each state field in a CDLE
entry is 2 bytes, allowing the maximum number of states up to
65 536. This is large enough considering the maximum number
we measured in real cases is less than 6000. Similarly, the “Ac-
tion ID” field in an entry of the associated RAM also occupies
2 bytes.

In what follows, we will present the experimental results
measured under different configurations of TDP-DFA, which
mainly depend on three key parameters: 1) : the number of
hash functions each Bloom Filter contains; 2) : the number of
look-ahead characters; and 3) : the number of DFAs. After-
wards we will compare the results with other recent works.

Initially, we tune . From (3.1), we see that although the in-
crease of diminishes exponentially (and thus raises AF
towards , as shown in Fig. 14(a), it also enlarges the storage
cost of the Bloom filters proportionally since .
Fig. 14(b) shows when ranges from 9 to 12, the optimal gain/
cost ratio is attained. In our prototype, we choose for
simplicity, and the corresponding equals .

Then, we tune parameter . Fig. 15(a) shows the ratio of inde-
pendent entries goes up rapidly when increasing , as explained

LU et al.: MEMORY-EFFICIENT PARALLEL STRING MATCHING ARCHITECTURE FOR HIGH-SPEED INTRUSION DETECTION 1801

Fig. 15. Tradeoff for t.

in Section III–C4. The abundance of independent entries effec-
tively contributes to the balancing effect of the EA algorithm.
As shown in Fig. 15(b), when , the maximum discrep-
ancy among the numbers of entries allocated to each LE in a
CDLE remains minimized as 1. However, an increase in has
side effects. Fig. 15(c) and (d) show that increasing is unfa-
vorable since it raises BCAM consumption more quickly than it
reduces SRAM consumption. This is because increasing also
incurs redundant storage of some characters in multiple transi-
tion rules. Taking a comprehensive view on Fig. 15, it is obvious
that is the most optimal value, since it not only maintains
good balancing effect, but also avoids demanding much more
BCAM consumption than .

The last key parameter is . Let BCAM compression ratio de-
note the ratio of BCAM requirement before to after resource
sharing. Fig. 16(a) shows that the ratio increases with the incre-
ment of , and grows over 6 when exceeds 10, demonstrating
the good scalability of TDP-DFA.

However, raising is not always preferable to scale up the
system. Fig. 16(b) shows that when grows over 45, the SRAM
requirement no longer maintains the sublinear relationship with
. Fig. 16(c) further explains the tradeoff for with two nor-

malized gain/cost ratios. We can see that the ratios approach
the maximum when increases to about 20, but falls for higher
values of . The reason for this phenomenon is interpreted as
follows.

In TDP-DFA, the short signatures are stored less efficiently
than the long ones since multiple identical CDSLEs for de-
tecting short signatures need to be deployed in parallel, as ex-
plained in Section III-C. Based on the length distribution of sig-
natures in Snort shown in Fig. 16(d), we find that the length of
most signatures ranges from 1 to 20. This explains why the two
ratios in Fig. 16(c) fall when .

With two parameters appropriately tuned as and
, in Table II three different configurations of TDP-DFA

are compared with a few recent hardware-based string matching
mechanisms. Besides listing the performance and storage cost,
we also compute the memory efficiency of each solution, which

Fig. 16. Tradeoff for s.

is defined by (Rule set Size Throughput)/Memory Require-
ment, as shown in the last two columns. It is shown that, with far
less storage cost and a practical memory frequency, TDP-DFA
can manage string matching throughput and memory efficiency
remarkably higher than the other solutions. Furthermore, it not
only satisfies the critical requirement of OC-768 wirespeed, but
also demonstrates a promising way for scaling up to cope with
throughput over 100 Gb/s in the future.

V. CONCLUSION

NIDS has been widely accepted as an effective way to defend
Internet systems from attacks. Due to the ever-growing require-
ment on the capacity of NIDS, string matching algorithm, a key
component, has become the bottleneck to further improvement
in the performance of NIDS. To address this issue, we propose
a memory-efficient multiple-character-approaching architecture
suited for ASIC implementations, TDP-DFA. We introduce par-
allel DFAs with overlapping input windows to achieve the goal
of processing multiple characters in each clock cycle. By slight
modification to the straightforward representation of the tran-
sition rules, the complexity of each DFA is distinctively re-
duced. We also identify the correlations among the inputs to the
parallel DFAs, and propose a novel scheme using a Switching
Fabric-based structure and Bloom filter-based Classifiers for
sharing most of the transition rules among them, thus signifi-
cantly reduce the overall storage cost. Performance evaluation
shows that our design can deal with throughput well exceeding
OC-768 wirespeed even in the worst case. TDP-DFA meets the
size limitation of embedded memory, and is able to be imple-
mented on-chip with current ASIC technology.

APPENDIX I
COMPUTATION FOR FUNCTION CORRELATED

We start by defining a Boolean function
iff and are of the same type (i.e.,

1802 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 10, OCTOBER 2006

TABLE II
COMPARISONS WITH OTHER WORKS

Fig. 17. Illustration of computing function correlated. (s = w = 3).

with or without the “current state” field) and with the same
length in each field. Then, the function correlated can be com-
puted as follows.

Let () denote the concatenation of the
shortest string able to drive DFA from root state to '
“current state” and “input” field. For example,

((1,pla))=”displa” in Fig. 1.
Let and .

Let denote the number of DFAs, as defined in
Section III–C5. As illustrated in Fig. 17, two entries

and satisfy
iff and either of the

following two conditions is met:
1) ,1 then

;
2) , then

.

APPENDIX II
PROOF OF LEMMAS

Initially, let configuration map (CM) describe the state of the
Switching Fabric in a certain clock cycle, i.e., to specify the
destination LE for each input. A CM is a map defined as follows:

According to the definition of Acceptable Matching, given a
set of parallel inputs, if CM is an Acceptable Matching, it must
satisfy that

(II.1)

Proof of Lemma 1: When all LEs are empty, no input
should be sent to any LE for matching, and thus all inputs
should be dropped by the Switching Fabric immediately.
Hence, the Existence Condition is satisfied.

Proof of Lemma 2: It should be proven that, if exactly
entries have been assigned under the assumption in Lemma 2,
at least one Acceptable Matching can be found for any given in-
puts . According to the assumption in Lemma
2, at the moment between the th and the th entry assign-
ments, the Existence Condition is satisfied for the given inputs

, where we denote one of the existing Accept-
able Matching(s) by a Configuration Map .

In what follows, it is proven that if the st entry (denoted
by) is assigned obeying to either Principle A or Principle
B, then an Acceptable Matching can always be constructed by
slight revision of .

First, suppose is assigned to the th LE according to
Principle A. Since is not correlated with itself, it can be
matched by zero or merely one input in . If
there is none, it is obvious that is still an Acceptable
Matching for , and so . Oth-
erwise, supposing the th input matches , we construct a
CM as follows:

Since no entry in LE # is correlated with , no input
other than should be sent to LE # . In addition, because

is an Acceptable Matching, based on (II.1) and (II.2),
we get then CM or

.

LU et al.: MEMORY-EFFICIENT PARALLEL STRING MATCHING ARCHITECTURE FOR HIGH-SPEED INTRUSION DETECTION 1803

This indicates that CM is an Acceptable Matching for the
given input set and so .

Second, suppose is assigned to all LEs according to
Principle B. If there is no input equal to , it is obvious that

is still an Acceptable Matching for . Oth-
erwise, we denote the inputs equal to by ,
and the remaining inputs by . Since
is replicated to all LEs, can be sent to any LE
without causing a miss. Therefore, if are
appointed according to can be appointed
to the remaining LEs one to one.

Let
and denote as . We construct

a CM as follows:

(II.3)

Based on (II.1) and (II.3), again we get

This indicates that CM is an Acceptable Matching for the
given input set and so .

For any given input set, with the assumption in Lemma 2,
we can follow the above procedure to construct a corresponding
Acceptable Matching when exactly entries have been as-
signed, and hence Lemma 2 is proved.

REFERENCES

[1] Snort-the de Facto Standard for Intrusion Detection/Prevention, [On-
line]. Available: www.snort.org

[2] S. Antonatos, K. G. Anagnostakis, and E. P. Markatos, “Generating
realistic workloads for network intrusion detection systems,” presented
at the Proc. ACM Workshop on Software and Performance, Redwood
Shores, CA, 2004.

[3] S. Iyer, A. Awadallah, and N. McKeown, “Analysis of a packet switch
with memories running slower than the line rate,” in Proc. IEEE IN-
FOCOM, Mar. 2000, pp. 529–537.

[4] Embedded Memory, [Online]. Available: http://www.ti.com/research/
docs/cmosmemory.shtml

[5] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings-Prac-
tical On-Line Search Algorithms for Texts and Biological Sequences.
Cambridge, U.K.: Cambridge Univ. Press, 2002.

[6] C. J. Coit, S. Staniford, and J. McAlerney, “Towards faster string
matching for intrusion detection or exceeding the speed of snort,” in
Proc. DARPA Information Survivability Conf. Exposition (DISCEX
II’01), 2001, pp. 367–373.

[7] M. Fisk and G. Varghese, “Fast content-based packet handling for in-
trusion detection,” UCSD, UCSD Tech. Rep. CS2001–0670, 2001.

[8] K. G. Anagnostakis, E. P. Markatos, S. Antonatos, and M. Polychron-
akis, “E XB: A domain-specific string matching algorithm for intru-
sion detection,” presented at the 18th IFIP Int. Information Security
Conf., Athens, Greece, 2003.

[9] R. T. Liu, N. F. Huang, C. H. Chen, and C. N. Kao, “A fast string-match
algorithm for network processor-based network intrusion detection
system,” ACM Trans. Embedded Comput. Syst., vol. 3, pp. 614–633,
2004.

[10] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos, “Implementa-
tion of a content-scanning module for an Internet firewall,” in Proc.
11th Annu. IEEE Symp. Field-Programmable Custom Comput. Mach.,
Napa, CA, Apr. 2003, pp. 31–38.

[11] I. Sourdis and D. Pnevmatikatos, “Fast, large-scale string match for a 10
Gbps FPGA-based network intrusion detection system,” presented at
the 13th Conf. Field Programmable Logic and Appl., Lisbon, Portugal,
2003.

[12] C. R. Clark and D. E. Schimmel, “Scalable pattern matching for high
speed networks,” in Proc. IEEE Symp. Field-Programmable Custom
Comput. Mach., 2004, pp. 249–257.

[13] Z. K. Baker and V. K. Prasanna, “A methodology for synthesis of
efficient intrusion detection systems on FPGAs,” in Proc. Field-Pro-
grammable Custom Comput. Mach. 12th Annu. IEEE Symp., 2004, pp.
135–144.

[14] Y. Sugawara, M. Inaba, and K. Hiraki, “Over 10 Gbps string matching
mechanism for multi-stream packet scanning systems,” in Lecture
Notes in Computer Science. Heidelberg, Germany: Springer-Verlag,
2004, vol. 3203, Proc. 14th In. Conf. Field-Programmable Logic
Appl., pp. 484–493.

[15] S. Yusuf and W. Luk, “Bitwise optimised CAM for network intru-
sion detection systems,” in Proc. 15th Conf. Field Programmable Logic
Appl., 2005, pp. 444–449.

[16] Y. H. Cho and W. H. Mangione-Smith, “Fast reconfiguring deep
packet filter for 1+ gigabit network,” in Proc. IEEE Symp. Field
Programmable Custom Comput. Mach., Napa Valley, CA, 2005, pp.
215–224.

[17] M. E. Attig and J. Lockwood, “A framework for rule processing in re-
configurable network systems,” in Proc. 13th Annu. IEEE Symp. Field-
Programmable Custom Comput. Mach., Napa, CA, 2005, pp. 225–234.

[18] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packet pat-
tern-matching using TCAM,” in Proc. Netw. Protocols, 12th IEEE Int.
Conf., 2004, pp. 174–183.

[19] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, vol. 18, pp. 333–340, 1975.

[20] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion detection,”
in Proc. INFOCOM 23rd Annu. Joint Conf. IEEE Comput. Commun.
Soc., 2004, pp. 2628–2639.

[21] M. Aldwairi, T. Conte, and P. Franzon, “Configurable string matching
hardware for speeding up,” SIGARCH. Comput. Archit. News, vol. 33,
no. 1, pp. 99–107, 2005.

[22] L. Tan and T. Sherwood, “A high throughput string matching archi-
tecture for intrusion detection and prevention,” in Proc. Int. Symp.
Comput. Arch., 2005, pp. 112–122.

[23] Y. H. Cho and W. H. Mangione-Smith, “A pattern matching copro-
cessor for network security,” presented at the 42nd Des. Autom. Conf.,
Anaheim, CA, 2005.

[24] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, and J. W. Lock-
wood, “Deep packet inspection using parallel bloom filters,” IEEE
Micro, vol. 24, no. 1, pp. 52–61, 2004.

[25] S. Dharmapurikar and J. Lockwood, “Fast and scalable pattern
matching for content filtering,” presented at the Symp. Arch. Netw.
Commun. Syst., Princeton, NJ, 2005.

[26] G. Tripp, “A finite-state machine based string matching system for
intrusion detection on high-speed networks,” in Proc. EICAR Conf.,
2005, pp. 26–40.

[27] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, 2nd ed. Reading, MA: Ad-
dison-Wesley, 2000.

[28] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey,” IEEE J. Solid-
State Circuits, vol. 41, pp. 712–727, 2006.

[29] H. Lu, K. Zheng, B. Liu, X. Zhang, and Y. Liu, “A memory-efficient
parallel string matching architecture for high speed intrusion detec-
tion,” Tech. Rep., 2005. [Online]. Available: http://s-router.cs.tsinghua.
edu.cn/~luhongbin/publications/TR_string_matching.pdf

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms (2nd Edition). Cambridge, MA: Mass. Inst. Technol.,
2001.

[31] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188–201, Apr.
1999.

[32] H. J. Chao and J. S. Park, “Centralized contention resolution schemes
for a large-capacity optical ATM switch,” in Proc. IEEE ATM Work-
shop, Fairfax, VA, May 1998, pp. 11–16.

[33] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, pp. 422–426, 1970.

[34] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, Longest Prefix
Matching Using Bloom Filters. Karlsruhe, Germany: ACM Press,
2003, Proc. ACM SIGCOMM, pp. 201–212.

[35] Analog Bits Inc., High Speed Ternary CAM Datasheet, 2004. [On-
line]. Available: www.analogbits.com/pdf/High_Speed_T_CAM_
Datasheet.pdf

1804 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 10, OCTOBER 2006

Hongbin Lu (S’03) received the B.S. degree from
Beijing University of Posts and Telecommunications,
Beijing, China, in 2002. He is currently working to-
wards the Ph.D. degree in the Department of Com-
puter Science and Technology, Tsinghua University,
Beijing.

His research interests include network security,
network measurement, and packet classification.

Kai Zheng (S’02) received the B.S. degree from
Beijing University of Posts and Telecommuni-
cations, Beijing, China, in 2001. He is currently
working towards the Ph.D. degree in the Department
of Computer Science and Technology, Tsinghua
University, Beijing.

His research interests include IP address lookup,
packet classification, and pattern matching associated
network security issues.

Bin Liu (M’03) received the M.S. and Ph.D. degrees
in computer science and engineering from North-
western Polytechnical University, Xi’an, China, in
1988 and 1993, respectively.

From 1993 to 1995, he was a Postdoctoral Re-
search Fellow in the National Key Laboratory of
SPC and Switching Technologies, Beijing University
of Post and Telecommunications, Beijing, China. In
1995, he transferred to the Department of Computer
Science and Technology, Tsinghua University,
Beijing, as an Associate Professor, where he mainly

focused on multimedia networking including ATM switching technology
and Internet infrastructure. He became a Full Professor in the Department of
Computer Science and Technology, Tsinghua University, in 1999, and currently
is the Director of the Laboratory of Broadband Networking Technologies,
Tsinghua University. He led a team to prototype a 64 k� 64 k single-board
intelligent ISDN switch in 1997, which was transferred to ZTE, China, and has
been used in the field till today. As a pluralistic CTO of Weifang Beida Jade
Bird Huaguang Technology Company, Ltd., from 1996 to 1998, he led a team
of 150 people to build a BSP-80 broadband/narrowband hybrid super-large
capacity of carrier-class switch and put it into operation in Chinese telecom-
munication networks. From 1999 to 2001, he was a Principle Investigator of
a key project from the national 863 high-tech plan, where he led the team to
develop a high-performance scalable core router with capacity of 128 Gb/s,
which has been transferred to Bitway Networks Company, Ltd. His current
research areas include high-performance switches/routers, high-speed network
security, network processors, and traffic management.

Dr. Liu has received numerous awards from China. He is also a corecipient
of the 16th ICCC Best Paper Award among over 800 accepted papers. He has
served the Panel Chair of HPSR 2005, TPC of INFOCOM 2005/2006, ICCCN
2005, SUTC 2006, IWCMC 2006, and Globlecom 2006. He is a member of
Communications and Information Security Technical Committee (CISTC),
ComSoc.

Xin Zhang received the B.S. and M.S. degrees from
the Department of Automation, Tsinghua University,
Beijing. China. He is currently working towards
the Ph.D. degree at Carnegie Mellon University,
Pittsburgh, PA.

His current researches focus on the IP route
lookup, packet classification, as well as system and
algorithm design.

Yunhao Liu (M’04–SM’06) received the B.S.
degree in automation from Tsinghua University,
Beijing, China, in 1995, the M.A. degree from the
Beijing Foreign Studies University, Beijing, in 1997,
and the M.S. and Ph.D. degrees in computer science
and engineering from Michigan State University,
East Lansing, in 2003 and 2004, respectively.

He is currently an Assistant Professor in the
Department of Computer Science, Hong Kong
University of Science and Technology, Kowloon.
His research interests include peer-to-peer and grid

computing, sensor networks, pervasive computing, network security, and
high-speed networking.

Dr. Liu is a member of the IEEE Computer Society.

