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Abstract

For the last few years, there is an explosive growth in the development and the deployment of network applications that transmit and
receive audio and video over the Internet. In order for such multimedia applications to function properly, networks need to provide the
level of performance, which is called the quality of services (QoS). An essential element for the Internet routers to provide the QoS is the
packet classification which classifies incoming packets into classified flows. Based on the pre-defined rules composed of multiple header
fields, incoming packets are classified into a specific flow, and packets are treated differently according to the classified flow. Efficient
packet classification algorithms have been widely studied, but none of known algorithms except the linear search considers the priority
of rules in constructing the data structure of classification tables. In this paper, we propose a priority-based quad-tree (PQT) algorithm
for packet classification. In constructing a quad-tree generated based on recursive space decomposition, the priority of rules is primarily
considered in the proposed algorithm. In the simulation using the class-bench databases, the proposed algorithm achieves very good per-
formance in the required memory size and reasonable performance in the classification speed. The proposed algorithm also provides
good scalability toward large classifiers.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Internet protocol (IP) deployed today provides a
best-effort service to all the datagram it carries. In order
words, the Internet makes its best effort to move each dat-
agram from a sender to a receiver as quickly as possible,
but it does not make any guarantee about the end-to-end
delay or inter-packet delay. Due to the lack of effort to
deliver packets in a timely manner, it is an extremely chal-
lenging problem to develop successful multimedia network-
ing applications for the Internet. In order for the
multimedia applications to be successful in the Internet,
the Internet routers need to provide the different quality
levels to different applications [2]. To meet these
requirements, the routers should be able to perform
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resource reservation, admission control, and output
scheduling, and a pre-requisite to deploy these mechanisms
is the packet classification [3]. Flow-aware routers capable
of performing the packet classification distinguish and
classify the incoming traffic into different flows and apply
the different class of services to each flow.

Class is assigned by the rules composed of several fields
in a packet header, and the set of rules is called classifica-
tion table. Packet classification is the process of determin-
ing the class for an incoming packet by referring the
classification table in the routers. Rules matching to the
incoming packet headers are searched, and the rule with
the highest priority is selected as the final match. Flow-
aware routers with the packet classification capability can
provide packet filtering, traffic rate limiting, class-based
routing, and accounting and billing [3].

As the same as the IP address lookup in the Internet
routers, the packet classification needs to be performed
for all incoming packets in real-time, but the packet
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classification has much more complex data structures
and operations than the IP address lookup. It has to
process layer-4 fields in addition to layer-3 fields and
needs to perform different types of operations for each
field.

There are many recent contributions to packet classifi-
cation [4]. The search time, the required memory size, and
the update performance are three major metrics in evalu-
ating packet classification algorithms. The packet classifi-
cation algorithms focus on optimizing some of the three
requirements and allow tradeoffs amongst the metrics
depending on the needs of various applications. Area-
based quad-tree (AQT) [5] is considered one of the most
prominent packet classification algorithms which achieve
good search time and the small memory size compared
to other algorithms [6].

In this paper, we propose an efficient packet classifica-
tion algorithm which improves the search time and the
required memory size compared to the AQT. Based on
the recursive space decomposition of the AQT, the pro-
posed algorithm additionally utilizes the priority of rules
in reducing the number of tree levels and in removing
empty nodes.

The organization of this paper is as follows: Section 2
describes the related works of packet classification algo-
rithms. Section 3 describes the concept of recursive space
decomposition which is the basic construction of the
AQT algorithm and our proposed algorithm. In Section
4, we propose the priority-based recursive space decompo-
sition for the packet classification. Section 5 presents
simulation results and performance comparison using
class-bench databases [1], and Section 6 briefly concludes
the paper.

2. Related works

The basic structure in storing classification table is to
arrange the rules linearly in the order of priorities and
then to search from the highest priority rule toward
the lower priority rules. The search finishes when it
either finds the matched rule or reaches the end of the
list (default case). Even though the linear search is the
only algorithm which considers the priority of rules in
a search process and requires a small amount of mem-
ory of O(N), it does not provide good scalability
because of the O(N) search time. To reduce the search
time, ternary content addressable memory (TCAM) is
widely used for packet classification in various router
equipment companies [7,8]. TCAM provides very good
search performance which is a single memory access.
However, it consumes large power and about six times
larger area than ordinary memories, and it is rather
expensive. Hence packet classification algorithms using
ordinary memories instead of TCAM should be studied.
Packet classification algorithms can be categorized as
trie-based algorithms, heuristics-based algorithms, and
geometric algorithms [3,4].
2.1. Trie-based algorithms

Trie-based algorithms construct tries using a destination
prefix and a source prefix among the fields composing clas-
sification table. A hierarchical trie (H-trie) [3,4] first con-
structs a trie for each dimension (field) and builds a
multidimensional trie by hierarchically connecting tries in
each dimension. Each node of the first trie is connected
to the second trie hierarchically so that each field is to be
searched consequently. The H-trie has very simple data
structure, but the drawback is to require back-tracking
because a packet can match multiple rules. Assuming that
the maximum length is W and the number of fields is d, the
H-trie requires O(Wd) search time and O(NdW) memory
size. Set-pruning trie algorithm improves the search time
to O(dW) by removing the back-tracking in the hierarchical
trie [3,4]. The back-tracking is removed by copying all
matched rules residing in the search path into leaves. Hence
it requires O(Nd) memory size for the price of the improved
search time. Using pre-computation of the best matching
rule (BMR) of each node and switching pointers for jump-
ing from one node to another node, grid-of-trie algorithm
overcomes the both disadvantages of the back-tracking
and the rule-copying [16]. The grid-of-trie requires
O(Wd�1) search time while it maintains O(NdW) memory
size. However, the grid-of-trie does not provide incremen-
tal update because of the excessive pre-computation.

The intrinsic problem of the trie structures described
above is that there would be a large number of empty
nodes which is not associated with rules, and it results in
large memory size and long search time. Recently, a packet
classification algorithm based on two-dimensional binary
prefix tree has been proposed, and the algorithm removes
empty nodes in the trie structures [10]. It provides O(N)
memory size and O(log2 N) search time.

2.2. Algorithms based on heuristics

HiCuts (Hierarchical Intelligent Cuttings) [11] and
tuple-space search [12] algorithms are based on heuristic
characteristics of real packet classifiers. HiCuts partitions
the multidimensional search space based on heuristics that
exploit the structure of classifiers. The characteristics of a
decision tree such as its depth, the degree of each node,
and the local search decision to be made at each node are
chosen in pre-processing classifiers. A small number of
rules are stored into each leaf nodes of HiCuts tree, and
they are searched linearly. The HiCuts has some issues that
the search time highly depends on the characteristics of
classifiers and it requires excessive pre-processing time.

Tuple-space search algorithm decomposes a classifica-
tion query into a number of exact match queries [12]. Uti-
lizing the fact that the number of tuples which is composed
of the fixed lengths of the source and the destination prefix
is small, the algorithm splits a classification table into mul-
tiple tuples. The set of rules mapped to the same tuple is of
a fixed and known length and is stored into a hash table.
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Each tuple is searched sequentially by hashing, and hence
the classification speed depends on the number of tuples.

2.3. Geometric algorithms

The geometric interpretation of the packet classification
is based on that a d-dimensional rule represents a hyper-
rectangle in a d-dimensional space while a prefix represents
a contiguous interval on a number line. A packet header
represents a point in the d-dimensional space. Classifying
a packet is to find the highest-priority hyper-rectangle that
contains the point representing the packet.

In cross-producting algorithm [9], for each dimension in
classification table, every possible case is primarily listed,
and a cross-product table is constructed. For each entry
of the cross-product table, the best matching rule is pre-
computed and stored. In search, the results of each one-di-
mensional search are combined and used as a pointer in
approaching the cross-product table. This algorithm pro-
vides fast classification since packet classification is
achieved by multiple one-dimensional searches (which
can be performed in parallel) and a lookup to the cross-
product table, but it has disadvantages that it requires
the huge size of memory, O(Nd), because of multiple one-
dimensional tables and the cross-product table and it has
difficulty in table update because of the pre-computation
in building the cross-product table.

There are several algorithms based on multiple one-di-
mensional searches for packet classification [13–15]. In
these algorithms, each rule corresponds to a bit position.
From each one-dimensional search, multiple bit vectors,
in which matched rules are set in the corresponding bit
position, are generated, and they are logically ANDed to
conclude the matched rules in all fields. If more than one
bit are set in the final bit vector, the rule corresponding
to the left most bit position is the best match or the highest
priority match.

In area-based quad-tree (AQT) algorithm [5], the two-
dimensional search space using the source and the destina-
tion prefix fields is recursively partitioned into four equal
sized spaces. If the partitions are repeated by L times, 4L

equal sized spaces are obtained, and each space is repre-
sented by L-bit prefix pairs. Each rectangular search space
is mapped into a node in a quad-tree. In other words, the
entire space is mapped into the root node of the quad-tree,
and four equal-sized quadrants which partition the entire
space are mapped into four children of the root node,
and so on. The AQT defines a crossing filter as a rule which
spans at least one dimension of the rectangular space. The
rules included in crossing filter set (CFS) are stored into the
corresponding quad-tree node. The AQT is a very efficient
data structure in the sense that it defines the geometrical
representation of rules and maps each rule into a quad-tree
node. However, it has some problems which prevent from
being practically used. The classification speed is directly
related to the depth of the quad-tree, and the depth of
the quad-tree in the AQT is usually W, where the W is
the maximum length of prefixes. Moreover, the constructed
quad-tree in the AQT is very sparse, and this means that
the quad-tree has a lot of empty internal nodes which waste
the memory space.

In recent research, by analyzing the characteristics of
real classifiers, Baboescu et al. have reported that efficient
two-dimensional algorithms can be effectively used for mul-
tidimensional packet classification [16]. According to their
observation on real classifiers, if we filter rules considering
the source and the destination prefixes at the same time,
less than five rules are remained as candidate matches for
more than 95% of incoming packets.

Based on Baboescu’s approach, in this paper, we have
proposed an efficient two-dimensional algorithm which fil-
ters rules using the source and the destination prefixes and
performs the linear search for the candidate rules. Our pro-
posed algorithm is based on the recursive space decomposi-
tion in the AQT, but our approach primarily considers the
priorities of rules in building the quad-tree. In other words,
in each rectangular space, among the rules belonged to a
rectangular space, the highest priority rule is stored in the
first place into the corresponding quad-tree node and then
the rules included in the CFS are stored. In this way, higher
priority rules are stored in a higher level of the quad-tree,
and hence they are compared earlier. Empty internal nodes
in the AQT are completely removed in our proposed tree
since each node includes at least a rule which is the priority
rule, and hence the depth of the quad-tree is reduced in our
proposed algorithm compared with the AQT.

3. Space decomposition

3.1. Space decomposition and quad-tree

Among the fields which compose rules, each of the
source and the destination prefixes can be considered as a
range in the geometric point of view. Hence two fields
can be expressed as a rectangle in a two-dimensional
(2D) space, and d fields can be expressed as a hyper-rectan-
gle in a d-dimensional space. In this paper, a rule is consid-
ered as a rectangle in a 2D space defined by the prefix pair.

If W is the maximum prefix length, the size of entire
search space is the size of 2W · 2W. Assuming that the pre-
fix pair of a rule is (S, D) and the length of prefix S and pre-
fix D is i and j, respectively, the rule can be expressed as a
rectangle with the size of 2W�i · 2W�j.

An incoming packet which has the source and the desti-
nation IP addresses can be represented by a point (the
smallest rectangle with size 20 · 20) in the 2D space, and
the rectangles which contain the point are the matched
rules. Since rectangles can be overlapped in the 2D space,
a packet which is represented by a point can be matched
by multiple rules. In this case, the rule with the highest pri-
ority is selected as the final match.

Each rectangular 2D space is mapped into a node in a
quad-tree, i.e., the entire space is mapped into the root
node of the quad-tree, and four equal-sized quadrants
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which partition the entire space are mapped into four chil-
dren of the root node, and so on. Figs. 1 and 2 represent
the correspondence between the recursive space decompo-
sition and the quad-tree. Fig. 1 shows the recursive decom-
position of 2D space while Fig. 2 shows the corresponding
quad-tree. The first rectangle in Fig. 1 represents the entire
search space and corresponds to the root node in Fig. 2.
The second four quadrants by first decomposition in
Fig. 1 correspond to the four child nodes of the root node
in Fig. 2. While the entire search space is represented by the
wildcard prefix pair (*, *), the first decomposed quadrants
are represented by the prefix pairs (0*, 0*), (0*, 1*),
(1*, 0*), and (1*, 1*), respectively.
3.2. Crossing filter (CF)

Fig. 3 shows the relationship between the search space
and a rule rectangle which can be positioned in the 2D
space. A rule can be called a filter in 2D space since it
allows candidate matches to get through. In Fig. 3, a space
A has the size of 2k · 2k, and a prefix pair (Si, Dj) with
lengths i and j bits is represented by a filter F. If the space
A and the filter F is not related as in Fig. 3(a), they are dis-
joint. If A is identical to F as in Fig. 3(b), A does not need
to be further decomposed for F. If both prefix length of F is
longer than k (i > k, j > k), then A need to be decomposed
for F to be stored at a quad-tree node in a lower level. If
one of prefix lengths is equal to k and the other prefix
length is longer than k (i > k, j = k or i = k, j > k), then fil-
ter F crosses one of two dimensions as in Figs. 3(d) and (e).
Crossing filters (CF) are defined as the filters which cross a
space in at least a dimension, and the crossing filters are
stored at a quad-tree node corresponding to the space
A. Since a space is decomposed recursively by half in each
Fig. 1. Recursive decompo

Fig. 2. Qua
dimension, the case when any filter crosses over the bound-
ary of A as shown in Fig. 3(f) would not happen.

4. Proposed algorithm

4.1. Proposed priority-based quad-tree (PQT)

The AQT maps a search space into a quad-tree node
using the recursive space decomposition and stores the
crossing filters into the quad-tree node. However, the
AQT does not consider the priorities of rules in building
the quad-tree. The priority information of rules can be
effectively used in building the efficient quad-tree. In this
paper, we propose a priority-based quad-tree (PQT) for
packet classification.

4.1.1. Building procedure

The basic concept in building the proposed PQT is to
store the highest priority rule among the rules belonged
to a rectangular space into the corresponding node. In
order words, from the root node which corresponds to
the entire space, the rule with the highest priority is stored
into the root node. If there are crossing filters for the entire
space which are the rules with the length of the source pre-
fix or the destination prefix 0, then they are additionally
stored in the root node. The space is decomposed into four
equal-sized spaces, and the rule with the highest priority
among the rules included in the decomposed space is stored
in the node corresponding to the space. Crossing filters, if
exists, are also stored in the node. If multiple rules are
stored in a node, then these rules are connected by a linked
list in the order of the priority. The space decomposition is
repeated until every rule is stored.

Since the AQT only stores crossing filters at each node, a
rule is stored at the node in the level of the minimum length
sition of the 2D space.

d-tree.



Fig. 3. Relationship between the search space and the 2D filter. (a) Filter F and Square A are disjoint. (b) Filter F = (Si, Dj), and i = k, j = k. (c) Filter
F = (Si, Dj), and i > k, j > k. (d) Filter F = (Si, Dj), and i > k, j = k. (e) Filter F = (Si), Dj, and i = k, j > k. (f) Filter F1 = (Si, Dj, and i > k, j < k; filter
F2 = (Si, Dj, and i < k, j > k.
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of the two prefixes. If a prefix pair of a rule is (Si, Dj) with
the length of i bits and j bits, then the rule is stored at a
node in the level of min(i, j). Hence if the maximum of
min(i, j) is W, then the tree depth would be W in the
AQT. Moreover, if there are rules with long prefix lengths,
many empty nodes will be generated since the space decom-
position needs to be performed until the crossing filter con-
dition is satisfied.

On the other hands, in the proposed PQT, there will be
no empty node and the tree depth is greatly reduced since
the highest priority rule belonged to a decomposed space
is stored in the corresponding node even if it does not sat-
isfy the crossing filtering condition. According to [16],
source and destination prefixes which constitute rules
mostly have the lengths of 0, 16, 24, and 32 in the classifi-
cation tables of real routers. If the AQT is applied for actu-
al classification tables, the tree depth is typically greater
than 30. In the PQT, the tree depth is reduced significantly,
Table 1
An example classification table

Rule No. Src. prefix len Src. prefix Dst. prefix len

0 5 10100* 2
1 5 11110* 0
2 1 0* 5
3 1 0* 5
4 3 111* 5
5 5 01110* 4
6 1 1* 5
7 0 * 5
8 4 1100* 0
9 4 1101* 4

10 3 010* 0
11 4 0110* 0
since the rules with the prefix length of greater than 16 can
be stored in a much higher level by their priorities.

Table 1 shows an example classification table which is
composed of 12 rules. The source prefix, the destination
prefix, the source port number, the destination port num-
ber, and the protocol type are the fields that compose of
the classification table. Rules with smaller rule number
assume to have higher priorities. Fig. 4 represents the 2D
rectangular space that the source and the destination pre-
fixes of the rules in Table 1 correspond to. Fig. 5 shows
the quad-tree built by the AQT, and Fig. 6 shows the
quad-tree built by the proposed PQT. In Fig. 6, the rules
represented with bold-italic such as R0, R2, R4, R5, and
R9 are the rules stored by the priorities in the nodes. In
other words, the rule R0 is stored into the root node
because it has the highest priority, and the rule R4 is stored
at a node in the level 1 since R4 has the highest priority in
the lower-right quadrant which corresponds to the prefix
Dst. prefix Src. port No. Dst. port No. Protocol type

01* >1024 >1024 *
* 80 80 TCP

11100* 80 80 UDP
11100* 88 88 TCP
11110* * >1024 UDP
0111* 80 80 TCP

10011* 21 21 TCP
10101* 80 80 *

* 88 88 TCP
1101* * * *

* >1024 >1024 TCP

* 80 80 *



Fig. 4. Rules in a 2D space by the source and the destination prefixes.

Fig. 5. The quad-tree by AQT.

Fig. 6. The quad-tree by proposed PQT.
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pair (1*, 1*). The rule R6 is stored at the same node as R4
since it satisfies the crossing filter condition. From the
Fig. 6, we can see that the quad-tree by the proposed
PQT has no empty node and a smaller tree depth than
the quad-tree by the AQT. In Table 1, the * symbol means
that the following bits are don’t care.

The data structure for the proposed PQT has a tree table
for storing the quad-tree structure and a rule table for stor-
ing the remaining fields. Table 2 shows the tree table for the
proposed PQT for the classification table. The number of
entries of the tree table is the same as the number of rules.
The first five entries (rows) show the rules that are stored
by priority in each node. If more than one rule is stored



Fig. 7. Entry structure of the tree table.
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in a node, these rules are linked by a linked list in the order
of priority. The entry structure of the tree table for storing
quad-tree structure is shown in Fig. 7. The first bit stored

by priority indicates whether it is stored into the node by
priority or by crossing filter condition. The source prefix
length and destination prefix length are stored with the
source and the destination prefixes. There are four valid

and pointer fields to store information about four child
nodes. If the valid bit is 0, there is no valid child in that
position. If the valid bit is 1, the pointer field represents
the memory pointer of the valid child. The linked list point-

er is used to point to the next rule that is stored in the same
node. Only when the source and the destination prefixes are
matched with an incoming packet in the search procedure,
the rule table search is invoked to compare with remaining
fields of the rule. The rule table pointer is used to point the
corresponding rule table entry.

Table 3 shows the rule table for the proposed PQT. The
number of entries in the rule table is the same as the num-
ber of rules. The rule table entry structure for storing the
remaining fields of rules are shown in Fig. 8. Since port
numbers can be represented by a range, the start and the
end of the range should be represented. The structure of
the rule table is simple, in which, the information about
Table 3
Rule table

Rule No. Src. port No. Dst. port No. Protocol type

0 >1024 >1024 *
1 80 80 TCP
2 80 80 UDP
3 88 88 TCP
4 * >1024 UDP
5 80 80 TCP
6 21 21 TCP
7 80 80 *
8 88 88 TCP
9 * * *

10 >1024 >1024 TCP
11 80 80 *

Fig. 8. Entry structures of the rule table.
the source port range, the destination port range, and the
protocol number is stored.

4.1.2. Search procedure

The search procedure to find the best match or the high-
est priority rule for a given packet starts at the first entry
(root node) of the tree memory. As the search goes to the
next lower level in the proposed PQT, the search space is
reduced to 1/4. When multiple rules are stored in a node,
the rules are searched linearly using the linked list in the
tree table.

The search procedure is represented by a flowchart in
Fig. 9. The current best match rule (BMR) is initially set
to N which is the same as the lowest priority rule. The
source and the destination IP addresses of the incoming
packet are compared with the prefixes of the rule that is
stored in the tree table. Only when they are matched,
search goes to the rule table using the rule table pointer in
order to make sure the remaining fields are also matched.
If the remaining fields are also matched, the current
BMR is updated with the matched rule number. If the
remaining fields are not matched, the search goes back to
the tree table. If the source and destination IP addresses
of the incoming packet in the tree table are not matched,
the linked list pointer is examined to see whether there exists
any other rule stored in the same node. If the linked list

pointer is valid, the comparison is repeated for the entries
linked by the linked list pointer.

If the matched rule was stored in that node because of its
priority, then it is the final BMR since it is the highest pri-
ority rule among the rules included in the search space, and
hence the search is over. If the matched rule was stored
because of the crossing filter condition, there could be a
matched rule with a higher priority at a lower level. Hence
the current BMR is remembered, and the search procedure
is continued to the child node that is pointed by the child

pointer. The child node is determined by the next bit of
the source and the destination addresses of the incoming
packet. Since the rule stored by the priority is firstly com-
pared among the rules stored at each node, if the current
BMR has higher priority than the priority of the rule that
is stored because of its priority in the node, the current
BMR becomes the final matched BMR and the search is
over. If the priority of the newly matched rule is higher
than the current BMR, and the BMR should be updated.
If there is no more child pointer to follow, then the current
BMR is the final BMR and the search is completed.



Fig. 9. Flow chart for search procedure.
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4.1.3. Update procedure

The incremental update of the classification table is par-
tially possible in our proposed algorithm. First, we consid-
er removing an existing rule. If a rule needs to be removed,
the rule is searched and the matched entry is removed
except the child pointers and the linked list pointer. The
child pointers and the linked list pointer of the removed rule
should be kept for search even though the rule itself is
removed. For dynamically changed classification tables,
repeated rule deletion will cause the waste of memory space
and it is not desirable, and hence the whole table should be
rebuilt in a regular interval.

Now we consider inserting a new rule. By searching the
tree table, we need to locate a node for the new rule to be
stored and determine whether the new rule should be
stored because of its priority into the node. In order words,
if the new rule has a higher priority than the priority rule
stored in the located node, the existing rule (stored by pri-
ority) in the located node is moved to an empty entry. The
new rule is newly stored in the located node, and the linked
list pointer needs to be updated to point the moved node.
Therefore, inserting a new rule in this case results in two
priority rules stored in a node, but it does not affect the
search procedure. If the new rule should be stored into
the node by crossing filter condition, it can be stored in
an empty entry in the tree table, and the order of rules in
the linked list of the node should be updated based on
the priority order. The maximum number of rules affected
by an insertion is limited by the maximum number of rules
stored in a node.

4.1.4. Optimization of the Proposed Algorithm

Since the number of entries of the tree memory and the
rule memory is the same, the tree memory and the rule
memory can be combined and implemented with a single
memory. The optimized structure of our proposed algo-
rithm shows the improved search performance since two
memory accesses are replaced by a single memory access.

5. Simulation and performance evaluation

Class-bench [1] is known to provide classification tables
similar to real classifiers used in the Internet routers and
input traces corresponding to each classification table.
We have performed simulations using three different types
of classification tables generated using class-bench, access
control lists (ACL), firewalls (FW), and IP chains (IPC).

Since search speed is highly dependent on the number of
memory accesses considering that the memory access is the
most time consuming operation in search process, we have
counted the number of memory accesses in searching the
highest-priority matching rule. Table 4 shows the perfor-
mance evaluation result in terms of the memory require-
ment (M), the worst-case number of memory accesses
(Twst), and the average number of memory accesses (Tavg)
according to the number of rules (N) in each classification



Table 4
Performance evaluation result of the proposed algorithm

N M (kbyte) Twst Tavg

ACL1K 958 30.7 75 35.6
ACL5K 4659 149.1 113 59.6
ACL10K 9735 311.5 127 86.3
FW1K 870 27.9 291 197.9
FW4K 4093 98.1 748 446.4
FW5K 4343 139.2 999 571.1
IPC1K 988 31.6 106 73.6
IPC5K 4467 143.0 295 202.1
IPC10K 9491 259.6 477 324.6

Table 5
Performance comparison with other algorithms for ACL type

ACL1K ACL10K

M (kbyte) Twst Tavg M (kbyte) Twst Tavg

H-trie 82.9 124 77.2 156.0 152 94.9
Bit vector 153.3 68 66.0 11.6 M 73 65.3
AQT 57.7 64 38.6 552.5 116 79.1
Proposed 30.7 75 35.6 311.5 127 86.3

Table 6
Performance comparison with other algorithms for FW type

FW1K FW5K

M (kbyte) Twst Tavg M (kbyte) Twst Tavg

H-trie 39.4 117 52.1 119.1 162 69.2
Bit vector 111.9 318 196.6 2.34 M 1044 738.8
AQT 36.0 444 369.3 491.3 1193 660.5
Proposed 27.9 291 197.9 139.2 999 571.1

Table 7
Performance comparison with other algorithms for IPC type

IPC1K IPC10K

M (kbyte) Twst Tavg M (kbyte) Twst Tavg

H-trie 121.6 128 71.9 291.2 222 96.3
Bit vector 154.3 80 63.6 8.0 M 401 275.1
AQT 72.9 119 94.5 424.6 697 573.3
Proposed 31.6 106 73.6 259.6 477 324.6
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table. We have tried to build classification tables in sizes of
1K, 5K, and 10K, but the class-bench does not produce the
classification tables in the exact size, and hence the number
of rules included in each type of classification tables is a lit-
tle different from the exact size. Moreover, for the FW type
classifier, the class-bench does not provide large size classi-
fication tables, and hence we have used classification tables
with the sizes of 1K, 4K, and 5K.

The memory requirement is the summation of the tree
table and the rule table, and it is proportional to the num-
ber of rules regardless of the type of classification tables
since the entry numbers of the tree and rule tables are
exactly same as the rule numbers. The number of memory
accesses is obtained using the optimized structure of our
proposed algorithm in searching the highest-priority
matching rule. The worst-case number of memory accesses
is counted in order to find out the worst-case bound in
search.

Table 4 shows that the performance of the ACL type is
better than other types in terms of the worst-case number
of memory accesses and the average number of memory
accesses. Note that for the rules stored in a single node, lin-
ear search is performed in both of our proposed algorithm
and the AQT algorithm. Since ACL type does not have
many wild-card rules that should be stored at the root
node, it requires a smaller number of memory accesses in
linear search at the root node than other types. In case of
FW type, it has many wild-card rules as well as many cross-
ing filter rules that should be stored in a node, and hence a
lot of memory accesses are required in the linear search.
This is the reason that it shows the worst performance in
the required number of memory accesses. The search per-
formance of the IPC type is in-between. The simulation
results in Table 4 show that the required memory size
and the number of memory accesses in the proposed algo-
rithm are moderately grown as the size of classification
tables is grown, and hence the proposed algorithm provides
the scalability toward large classifiers.

Table 5–7 show the performance comparison with other
algorithms for the different types of classification tables. As
shown in the tables, for small size (1K) classification tables,
the proposed algorithm always requires the smallest mem-
ory size. For large size (5K and 10K) classification tables,
the proposed algorithm requires the comparable size of
memory with the H-trie algorithm except that H-trie
requires the smallest memory for ACL10K type. The bit-
vector algorithm consumes a huge amount of memory for
large classifiers, and hence it does not provide a good
scalability.

The performance of the worst-case and the average
numbers of memory accesses varies depending on classifi-
cation types. For example, in the average number of mem-
ory accesses, the proposed algorithm is the best in the
ACL1K type, the H-trie algorithm is the best in the FW
types and the IPC10K type, and the bit-vector algorithm
is the best in the ACL10K and IPC1K type.

Comparing the proposed algorithm with the AQT, the
proposed algorithm requires smaller memory size than
AQT in all cases as expected. In terms of the worst-case
and the average number of memory accesses, the proposed
algorithm shows better performance than the AQT for the
FW types and the IPC types, but the worse performance
for ACL10K type. It can be understood that since the pro-
posed algorithm additionally stores a priority rule to the
crossing filter rules in the AQT algorithm, if the probability
that given inputs do not match to the priority rule is high,
the extra memory access for the priority rule deteriorates
the search performance.

Summarizing the simulation result, the proposed algo-
rithm and the hierarchical trie (H-trie) algorithm can be
the solutions for the packet classification in overall
performance.
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6. Conclusions

The next-generation router demands packet classifica-
tion capability, and this paper proposed an efficient packet
classification algorithm based on recursive space decompo-
sition. The proposed algorithm builds an efficient quad-tree
by primarily considering the priority of rules in the recursive
space decomposition process. The highest priority rule that
is included in the search space is stored in the corresponding
node of the quad-tree, even though it does not satisfy the
crossing filter condition. By this way, empty nodes are com-
pletely removed and the tree depth is reduced. None of pre-
vious packet classification algorithms satisfies all the
performance metrics such as search speed, required memory
size, incremental update, and the scalability toward large
classifiers. They make compromise among the metrics.
The proposed packet classification algorithm achieves very
small memory requirement. Depending on the type of the
classification tables, the search speed of the proposed algo-
rithm varies but shows reasonably good performance in all
cases. The simulation results show that the required memo-
ry size and the number of memory accesses in the proposed
algorithm are moderately grown as the size of classification
tables is grown, and hence the proposed algorithm is also
very good in the scalability.
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