
156 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 2, FEBRUARY 2008

Scalable Multigigabit Pattern Matching
for Packet Inspection

Ioannis Sourdis, Student Member, IEEE, Dionisios N. Pnevmatikatos, Member, IEEE, and
Stamatis Vassiliadis, Fellow, IEEE

Abstract—In this paper, we consider hardware-based scanning
and analyzing packets payload in order to detect hazardous
contents. We present two pattern matching techniques to compare
incoming packets against intrusion detection search patterns. The
first approach, decoded partial CAM (DpCAM), predecodes in-
coming characters, aligns the decoded data, and performs logical
AND on them to produce the match signal for each pattern. The
second approach, perfect hashing memory (PHmem), uses perfect
hashing to determine a unique memory location that contains
the search pattern and a comparison between incoming data and
memory output to determine the match. Both techniques are well
suited for reconfigurable logic and match about 2200 intrusion
detection patterns using a single Virtex2 field-programmable
gate-array device. We show that DpCAM achieves a throughput
between 2 and 8 Gb/s requiring 0.58–2.57 logic cells per search
character. On the other hand, PHmem designs can support 2–5.7
Gb/s using a few tens of block RAMs (630–1404 kb) and only
0.28–0.65 logic cells per character. We evaluate both approaches
in terms of performance and area cost and analyze their effi-
ciency, scalability, and tradeoffs. Finally, we show that our designs
achieve at least 30% higher efficiency compared to previous work,
measured in throughput per area required per search character.

Index Terms—Packet inspection, pattern matching, perfect
hashing, reconfigurable computing.

I. INTRODUCTION

MATCHING large sets of patterns against an incoming
stream of data is a fundamental task in several fields

such as network security [1]–[12] or computational biology
[13], [14]. For example, high-speed network intrusion detection
systems (IDS) rely on efficient pattern matching techniques to
analyze the packet payload and make decisions on the signif-
icance of the packet body. However, matching the streaming
payload bytes against thousands of patterns at multigigabit
rates is computationally intensive. Measurements on Snort
IDS [15] implemented on general-purpose processors show
that up to 80% of the total processing is spent on pattern
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matching [16], while the overall throughput is limited to a few
hundred megabits per second [16], [17]. On the other hand,
hardware-based solutions can significantly increase perfor-
mance and achieve higher throughput. Many hardware units
have been proposed for IDS pattern matching most of them in
the area of reconfigurable hardware [1]–[12], [18]. In general,
field-programmable gate arrays (FPGAs) are well suited for
this task, since designs can be customized for a particular set
of search patterns and updates to that set can be performed via
reconfiguration. Furthermore, the performance of such designs
is promising and indicates that FPGAs can be used to support
the increasing needs for high-speed network security.

Pattern matching is a significant issue in intrusion detection
systems, but by no means the only one. For example, handling
multicontent rules, reordering, and reassembling incoming
packets are also significant for system performance. In this
paper, we address the challenge of payload pattern matching in
intrusion detection systems. We present two efficient pattern
matching techniques to analyze packet payloads at multigi-
gabit rates and detect hazardous contents. We expand on two
approaches that we proposed in the past [8], [19], present and
evaluate them targeting the Snort IDS ruleset. The first one is
decoded CAM (DCAM) and uses predecoding to exploit pattern
similarities and reduce the area cost of the designs. We improve
DCAM and decrease the required logic resources by partially
matching long patterns. The improved approach is denoted as
decoded partial CAM (DpCAM). The second approach perfect
hashing memory (PHmem), briefly described in [19], combines
logic and memory for the matching. PHmem utilizes a new
perfect hashing technique to hash the incoming data and deter-
mine a unique memory location of a possible matching pattern.
Subsequently, we read this pattern from memory and compare
it against the incoming data. We extend the perfect hashing
algorithm in order to guarantee that for any given set a perfect
hash function can be generated, and present a theoretical proof
of its correctness. We evaluate both approaches and show that
they scale well as the pattern set grows. Finally, we compare
them with previous work, analyze the resources required, and
discuss the cost-performance tradeoffs for each case based on a
new performance efficiency metric.

The rest of this paper is organized as follows. In Section II,
we discuss related work. In Sections III and IV, we describe
our DpCAM and perfect hashing approaches, respectively.
In Section V, we present the implementation results of both
DpCAM and PHmem and compare them with related work.
Finally, in Section VI, we present our conclusions.

II. HARDWARE-BASED IDS PATTERN MATCHING

In the past few years, numerous hardware-based pattern
matching solutions have been proposed, most of them using
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FPGAs and following CAM-like [2]–[5], [7], [8], [20], [21],
finite automata [18], [1], [22], [6], or hashing approaches [19],
[23], [24]. Next, we describe some significant steps forward in
IDS pattern matching over the past few years.

Simple CAM or discrete comparators structures offer high
performance, at high area cost [2]–[4]. Using regular expres-
sions (NFAs and DFAs) for pattern matching slightly reduces
the area requirements, however, results in significantly lower
performance [1], [18], [22]. A technique to substantially in-
crease sharing of character comparators and reduce the design
cost is predecoding, applicable to both regular expression and
CAM-like approaches [5]–[8], [20]. The main idea is that in-
coming characters are predecoded resulting in each unique char-
acter being represented by a single wire. This way, an -char-
acter comparator is reduced to an -input AND gate. Yusuf and
Luk presented a tree-based CAM structure, representing mul-
tiple patterns as a Boolean expression in the form of a binary
decision diagram (BDD) [25]. In doing so, the area cost is lower
than other CAM and NFA approaches.

More recently, several hashing techniques were proposed for
IDS pattern matching. Cho and Mangione-Smith proposed the
use of prefix matching to read the remaining pattern from a
memory and reduce the area requirements [7], [11]. However,
this approach has limited performance and the restriction
of patterns having short unique prefixes. Papadopoulos and
Pnevmatikatos proposed a CRC-polynomial implementation
to hash incoming data and determine the possible match pat-
tern [24]. This design requires minimum logic at the cost of
higher memory requirements. Another efficient and low-cost
approach was presented by Attig et al. who used bloom filters
to perform pattern matching [23]. In order to perform exact
pattern matching, Attig et al. require external memory and the
performance of the system is not guaranteed under worst case
traffic (successive matching patterns or false positives).

Finally, a pattern matching approach designed for applica-
tion-specific integrated circuit (ASIC) was proposed by Tan and
Sherwood [12]. Instead of having a single finite-state machine
(FSM) with a single incoming ASCII-character as input, they
constructed eight parallel binary FSMs. Their designs support
up to 10 Gb/s in 0.13- m technology. A similar approach im-
plemented in FPGAs was proposed by Jung et al. in [26].

III. DECODED CAM

Simple CAM or discrete comparators may provide high per-
formance [2]–[4], however, they are not scalable due to their
high area cost. In [4], we assumed the simple organization de-
picted in Fig. 1(a). The input stream is inserted in a shift register,
and the individual entries are fanned out to the pattern compara-
tors. There is one comparator for each pattern, fed from the shift
register. This design is simple and regular, and with proper use
of pipelining, the circuit can be fast. Its drawback, however, is
the high area cost. To remedy this cost, we suggested sharing
the character comparators exploiting similarities between pat-
terns as shown in Fig. 1(b).

The Decoded CAM architecture illustrated in Fig. 2, builds
on this idea extending it further by the following observation:
instead of keeping a window of input characters in the shift reg-
ister each of which is compared against multiple search patterns,
we can first test for equality of the input for the desired charac-
ters, and then delay the partial matching signals. This approach

Fig. 1. Basic discrete comparator structure and its optimized version which
shares common character comparators.

Fig. 2. Decoded CAM: Three comparators provide the equality signals for
characters A, B, and C (“A” is shared). To match pattern “ABCA” we have
to remember (using shift registers) the matching of character A, B, C, for 3, 2,
and 1 cycles, respectively, until the final character is matched.

both shares the equality logic for character comparators and re-
places the 8-bit wide shift registers used in our initial approach
with single bit shift registers for the equality result(s). If we ex-
ploit this advantage, the potential for area savings is significant.
In practice, about 5 less area resources are required compared
to simple CAM and discrete comparators designs [8].

One of the possible shortcomings of our approach is that the
number of the single bit shift registers is proportional to the
length of the patterns. Fig. 2 illustrates this point: to match a
four-character long pattern, we need to test equality for each
character (in the dashed “decoder” block), and to delay the
matching of the first character by three cycles, the matching of
the second character by two cycles, and so on, for the width of
the search pattern. In total, the number of storage elements re-
quired in this approach is for a string of length

. For many long patterns this number can exceed the number
of bits in the character shift register used in the original CAM
design. To our advantage, however, is that these shift registers
are true first-input–first-outputs (FIFOs) with one input and one
output, as opposed to the shift registers in the simple design in
which each entry in the shift register is fan-out to comparators.

To tackle this possible obstacle, we use two techniques. First,
we reduce the number of shift registers by sharing their outputs
whenever the same character is used in the same position in mul-
tiple search patterns. Second, we use the SRL16 optimized im-
plementation of shift register that is available in Xilinx devices
and uses a single logic cell for a shift register of any width up
to 17 [27]. Together these two optimizations lead to significant
area savings. To further reduce the area cost of our designs, we
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Fig. 3. DpCAM: Partial matching of long patterns. In this example, a 31-byte
pattern is matched. The first 16 bytes are partially matched and the result is
properly delayed to feed the second substring comparator. Both substring com-
parators are fed from the same pool of shifted decoded characters (SRL16s) and
therefore sharing of decoded characters is higher.

split long patterns in smaller substrings and match each sub-
string separately. This improved version of DCAM is denoted
as DpCAM (decoded partial CAM). In doing so, instead of de-
laying the decoded data for a large number of cycles, we only
need to delay the partial match signal. Fig. 3 depicts the block
diagram of matching patterns longer than 16 characters. Long
patterns are partially matched in substrings of maximally 16
characters long. The reason is that the AND-tree of a 16 char-
acter substring needs only five LUTs, while only a single SRL16
shift register is required to delay each decoded input character.
Consequently, a pattern longer than 16 characters is partitioned
in smaller substrings which are matched separately. The partial
match of each substring is properly delayed and provides input
to the AND-tree of the next substring. This way all the substring
comparators need decoded characters delayed for no more than
15 cycles.

In order to achieve better performance, we use techniques
to improve the operating frequency, as well as the throughput
of our DpCAM implementation. To increase the processing
throughput, we use parallelism. We widen the distribution paths
by a factor of providing copies of comparators (decoders)
and the corresponding matching gates. Fig. 4 illustrates this
point for . To achieve high operating frequency, we
use extensive fine-grain pipelining. The latency of the pipeline
depends on the pattern length and in practice is a few tens of
cycles, which translates to a few hundreds of nanoseconds and
is acceptable for such systems.

In the DpCAM implementation, we also utilize a partitioning
technique to achieve better performance and area density. In
terms of performance, a limiting factor to the scaling of an im-
plementation to a large number of search patterns is the fan-out
and the length of the interconnections. If we partition the en-
tire set of search patterns in smaller groups, we can implement
the entire fan-out-decode-match logic for each of these groups
in a significantly smaller area, reducing the average length of
the wires. This reduction in the wire length though comes at
the cost of multiple decoders. Each character must be decoded
once in each of the groups it appears, increasing the cost. On
the other hand, smaller groups may require smaller decoders,
if the number of distinct characters in the group is low. Hence,
if we group together search patterns with more similarities, we
can reclaim some of the multidecoder overhead. We have imple-
mented a simple, greedy algorithm that partitions iteratively the
set of search patterns [8]. Additionally, partitioning reduces the
implementation time of the design (synthesis, place and route)
compared to a “flat” implementation flow. In the case of in-
cremental design changes (e.g., new rules are added), the gen-

Fig. 4. DpCAM processing two characters per cycle.

Fig. 5. DpCAM with multiple clock domains. Long, wide but slower busses
(depicted with thick lines) distribute input data over large distances to the mul-
tiple search matching groups. These groups operate at higher clock rates to pro-
duce results faster.

eration of the updated design bitstream is substantially faster
when following an incremental design flow (using prespecified
guide-files) compared to performing a new implementation of
the entire design. Finally, partial reconfiguration is also feasible,
when only a few blocks of the design need to be updated.

In the partitioned design, the multiple groups will be fed data
through a fan-out tree and all the individual matching results
will be combined to produce the final matching output. Each
partition is relatively small and hence can operate at a high fre-
quency. However, for large designs, the fan-out of the input
stream must traverse long distances. In our designs, we have
found that these long wires limit the frequency for the entire
design. To tackle this bottleneck, as depicted in Fig. 5, we use
multiple clocks: one slow clock to distribute the data across long
distances over wide busses and a fast clock for the smaller and
faster partitioned matching function.

IV. PERFECT HASHING MEMORY (PHMEM)

The alternative pattern matching approach proposed in this
paper is the PHmem. Instead of matching each pattern sepa-
rately, it is more efficient to utilize a hash module to determine
which pattern is a possible match, read this pattern from a
memory and compare it against the incoming data. Hardware
hashing for pattern matching is a technique known for decades.
We introduce a perfect hashing algorithm and extend previous
hardware hashing solutions for pattern matching based on
two approaches proposed in the early 1980s. The first one
used unique pattern prefixes matching to access a memory
and retrieve the remaining search patterns [28] (also later
used by Cho et al. in [7] and [11]), while the second showed
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Fig. 6. PHmem block diagram.

that a hash function for a set of items can be composed by
several subhashes of its subsets [29]. Fig. 6 depicts our PHmem
scheme. The incoming packet data are shifted into a serial-in
parallel-out shift register. The parallel-out lines of the shift
register provide input to the comparator which is also fed by the
memory that stores the patterns. Selected bit positions of the
shifted incoming data are used as input to a hash module, which
outputs the ID of the “possible match” pattern. For memory
utilization reasons (see Section IV-C), we do not use this pattern
ID to directly read the search pattern from the pattern memory.
We utilize instead an indirection memory, similar to [24]. The
indirection memory outputs the actual location of the pattern
in the pattern memory and its length that is used to determine
which bytes of the pattern memory and the incoming data are
needed to be compared. In our case, the indirection memory
performs a 1-to-1 instead of the N-to-1 mapping in [24], since
the output address has the same width (number of bits) as the
pattern ID. Finally, it is worth noting that the implementation
of the hash tree and the memories are pipelined. Consequently,
the incoming bitstream must be buffered by the same amount of
pipeline stages in order to correctly align it for comparison with
the chosen pattern from the pattern memory. This alignment is
implicitly performed by the shift register and in this manner we
can perform one comparison in each cycle.

A. Perfect Hashing Tree

The proposed scheme requires the hash function to generate a
different address for each pattern, in other words, requires a per-
fect hash function which has no collisions for a given set of pat-
terns. Furthermore, the address space would preferably be min-
imal and equal to the number of patterns. Instead of matching
unique pattern prefixes as in [28], we hash unique substrings in
order to distinguish the patterns. To do so, we introduce a per-
fect hashing method to guarantee that no collisions will occur
for a given set.

Generating such a perfect hash function may be difficult and
time consuming. In our approach, instead of searching for a
single hash function, we search for multiple simpler subhashes
that when put together in a tree-like structure will construct a
perfect hash function. The perfect hash tree, is created based on
the idea of “divide and conquer.” Let be a set of unique\ sub-
strings and a perfect hash function
of , then the perfect hash tree is created according to the fol-
lowing equations:

st half of nd half of

(1)

st half of st quarter of

nd quarter of (2)

and so on for the smaller subsets of the set (until each subset
contains a single element). The , etc., are functions that
combine subhashes. The , etc., are perfect
hashes of subsets (subhashes).

Following the previously discussed methodology, we create
a binary hash tree. For a given set of patterns that have unique
substrings, we consider the set of substrings as an matrix

. Each row of the matrix ( bits long) represents a substring,
which differs at least in one bit from all the other rows. Each
column of the matrix ( bits long) represents a different bit
position of the substrings. The perfect hash tree should have

output bits in order to be minimal. We construct the
tree by recursively partitioning the given matrix as follows.

• Search for a function (e.g., ) that separates the matrix
in two parts (e.g., ), which can be encoded in

bits each (using the SUB_HASH described in
Section IV-B).

• Recursively repeat the procedure for each part of the ma-
trix, in order to separate them again in smaller parts (per-
formed by HASH_TREE of Table I).

• The process terminates when all parts contain one row.
Table I depicts the formal description of the HASH_TREE. In

order to generate the hash tree, the HASH_TREE process recur-
sively splits the given set of items in two subsets. The number of
items that such two subsets may contain is an integer value that
belongs to SubsetSize. SubsetSize is calculated by the
HASH_TREE so that each subset can be encoded in
bits. To split a given set in two, a basic function is used, gen-
erated by the SUB_HASH as described in Section IV-B.

Fig. 7(a) depicts the hardware implementation of the binary
hash tree using 2-to-1 multiplexers for each tree node. In gen-
eral, a tree node splits a given -element set in two parts and
is represented by a 2-to-1 multiplexer ( bits wide).
The select bit of the multiplexer is the function generated by
SUB_HASH and selects one of the two encoded parts of the set

. The node output ( bits wide)
consists of the multiplexer output and the select bit of the mul-
tiplexer (MSbit). A leaf node of the hash tree separates three or
four elements and consists of a 1-bit 2-to-1 multiplexer and its
select bit. Each input of a leaf multiplexer is a single bit that sep-
arates two elements. To exemplify the hardware representation
of the algorithm consider the following: the hash function
of (1) is the output of the entire binary tree of Fig. 7(a) (k-bits)
created by the concatenation of and the output of the root
multiplexer. The is also used to choose between the inputs
of the root multiplexer which encode the two halves
of . Similarly, we can associate (2) with the second node of
the binary tree, and so on.

The binary perfect hash tree can separate a set of patterns;
however, we can optimize it and further reduce its area. In a
single search for a select bit, we can find more than one select
bits (in practice 2–5 bits) that can be used together to divide the
set into more than two parts (4 to 32). The block diagram of our
optimized hash tree is illustrated in Fig. 7(b). Each node of the
tree can have more than two branches and, therefore, the tree is
more compact and area efficient.
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TABLE I
PERFECT HASHING ALGORITHM

To prove that our method generates perfect hash functions,
we need to prove the following.

1) For any given set of items that can be encoded in
bits, our method generates a function

to split the set in two subsets that can be encoded in
bits (that is bits).

2) Based one the first proof, the proposed scheme outputs a
perfect hash function for the initial set of patterns.

In Section IV-B, we prove the first point and show that our
algorithm guarantees the generation of a function

for any given set . We prove next that such functions
when used in the tree-like structure will construct a perfect hash
function.

Proof: By definition, a hash function of set
which outputs a different value for each ele-

ment is perfect

(3)

Also, if , where and
is a hash function that separates the subsets

having a different output for elements of different subsets is also
perfect, that is

(4)

We construct our hash trees based on two facts. First, the “se-
lects” of the multiplexers separate perfectly the subsets of the
node; Section IV-B shows that our method generates a function

for any given set. Second, that the inputs of the leaf nodes are
perfect hash functions; this is given by the fact that each element
differs to any other element at least one bit, therefore, there ex-
ists a single bit that separates (perfectly) any pair of elements in
the set. Consequently, it must be proven that a node which com-
bines the outputs of perfect hash functions
of the subsets using a perfect hash function
which separates these subsets, outputs also a perfect hash func-
tion for the entire set .1

The output of the node is the following:2

Consequently, the outputs different values for either
two entries of the same subset
based on (3), or for two entries of different subsets

based on (4). Therefore, each tree
node and also the entire hash tree output perfect hash func-
tions.

B. PHmem Basic Building Function

There is more than one function that can
split a given set of items ( bits long) in two parts
and which can be encoded in bits (where

). The number of such functions is equal
to the combination of selecting items out of , where

is the number of items and . That is due
to the fact that any function which selects
any items out of the satisfies the previous condition.3 For
instance, when the number of items is a power of two, there

exist functions (e.g.,

). Moreover, all the possible input values ( bits long) that
do not belong to the set are “don’t care” terms since they do
not change the effectiveness of the function. This wide range
of functions suitable for our algorithm and the large number

1Assuming n subsets A;B; . . . ; N of x elements each, then
H ;H ; . . . ;H output dlog (x)e bits each, h outputs dlog (n)e bits,
and H outputs dlog (n)e+ dlog (x)e bits.

2Where “�” is the concatenation operator.
3The condition for a basic building function is the number of items of each

subset to belong to the SubsetSize, jA j; jA j 2 SubsetSize.
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Fig. 7. Perfect hash trees: the select of each multiplexer is a function generated by the SUB_HASH. (a) Binary hash tree. (b) Optimized hash tree.

of “don’t care” terms leave room to find a simple function that
meets our requirements.

There are several algorithms to minimize the cost of a logic
function such as the ones using exclusive-or sum of products
(ESOP) representations [30], [31], that are especially effective
in incompletely specified functions (having “don’t care” terms).
Although these algorithms can be used in our case, they require
to explicitly specify the output of the function for the input terms
of interest, limiting the alternative solutions to only a single
function out of . In our case, it is required to split the given
set of items using any of the functions rather than speci-
fying a single one.

We propose a new method (SUB_HASH) described in Table I,
to find a function to separate a given set of
items ( matrix, ) into two subsets and
which can be encoded in bits each. For simplicity,
we assume for any function that ,
where and

. Otherwise we can use the inverted .
Starting from a given set and the SubsetSize spec-

ified by HASH_TREE, the SUB_HASH exhaustively searches
whether any -input XOR function satisfies the condition.4 Vari-
able is assigned values between “1” and Threshold, where
Threshold can be a value between “1” and the length of the
items (bits). The greater the Threshold, the more compu-
tationally intensive the for-loop and on the other hand the more
XOR functions are checked. In case a function satisfies the con-
dition then the process is terminated and the identified function
is returned. Otherwise, the function that produces subsets closer
to the SubsetSize is picked and a new SUB_HASH iteration
starts. In case the found function outputs “1” for more than
SubsetSize items of the specified set, then the following is
performed: the new set is the subset of items for which the
outputs “1”, the SubsetSize remains the same and the re-
turned function is the product of and the result of the new
SUB_HASH call. When outputs “1” for less than Subset-
Size items, the new set is the subset for which outputs “0”,
while the new SubsetSize consists of the elements in Sub-
setSize each one subtracted by .4 In this case, the re-
turned value is the sum of and the function returned by the

4jA j is the number of A items for which F outputs “1”.

Fig. 8. Example of using SUB_HASH to split a Set in two subsets which require
one bit less to be encoded compared to the set. Note that each F function (e.g.,
F ; F ; F ; and F ) is the result of a SUB_HASH call and consists of either a
single column selection or an XOR of multiple columns. For presentation rea-
sons, the items of the set are sorted so that F outputs “0” for the upper items of
the set and “1” for the rest, however, any function that outputs equal number of
“0’s” (and “1’s”) with the F of the example would have the same functionality.

new SUB_HASH call. Fig. 8 depicts an example of a set split in
two using SUB_HASH. The process requires four iterations be-
fore it meets the condition, while the last intermediate function
needs to be inverted in order to meet the condition. In summary,
when the condition is not met then the same process is repeated
to a subset of the set as specified before. The subset is smaller
than the set of the previous iteration by at least one item. That is
due to the definition that every item differs in at least one bit po-
sition compared to any other item, and consequently, there exists
a single-bit input function which outputs for at least one item of
the set a different value compared to the rest of the items

. This way it is guaranteed that the recursive process will ter-
minate with a solution in a finite number of
steps. In practice, all the results obtained in this paper required
a single iteration of SUB_HASH having a .

C. Pattern Preprocessing and Implementation Details

To generate a PHmem design for a given set of IDS patterns,
we first extract the patterns from the Snort ruleset and group
them so that patterns of each group have a unique substring. We
then reduce the length of the substrings, keeping only the bit-po-
sitions that are necessary to distinguish the patterns (in practice
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Fig. 9. Example of storing patterns in the pattern memory. There are five
groups of patterns, distributed in the pattern memory such that each memory
bank (block RAM) contains patterns of one or two groups.

11–26 bits). Finally, we generate the hash trees for every re-
duced substring file.

We store the search patterns in the widest Xilinx dual-port
block RAM configuration (512 entries 36 bits), a choice that
limits group size to a maximum of 512 patterns. Patterns of the
same group should have unique substrings (for simplicity pre-
fixes or suffixes) in order to distinguish them using hashing. The
grouping algorithm takes into account the length of the patterns,
so that longer patterns are grouped first. Patterns of all groups
are stored in the same memory, which is constructed by sev-
eral memory banks. Each bank is dual-ported, therefore, our
grouping algorithm ensures that in each bank are stored patterns
(or parts of patterns) of maximally two different groups. This re-
striction is necessary to guarantee that one pattern of each group
can be read at every clock cycle. Fig. 9 depicts an example of
the way patterns are stored in the pattern memory. In our de-
signs, the memory utilization is about 60%–70%. We use an in-
direction memory to decouple the patterns ordering of a perfect
hashing function from their actual placement in the memory;
this flexibility allows us to store patterns sorted by length and
increase memory utilization.

In order to achieve better performance, we use several tech-
niques to improve the operating frequency and throughput of
our designs. We increase the operating frequency of the logic
using extensively fine-grain pipelining in the hash trees and the
comparator. The memory blocks are also limiting the operating
frequency so we generate designs that duplicate the memory
and allow it to operate at half the frequency of the rest of the
design. To increase the throughput of our designs, we exploit
parallelism. We can widen the distribution paths by a factor of 2
by providing two copies of comparators and adapting the proce-
dure of hash tree generation. More precisely, in order to process
two incoming bytes per cycle, we first replicate the comparators
such that each one of them compares memory patterns against
incoming data in two different offsets (0 and 1 byte offsets),
and their match signals are ORed. Furthermore, each substring
file should contain two substrings of every pattern in offsets 0
and 1 byte. These substrings can be identical, since they point
out the same pattern, but they should be different compared to
the rest of the substrings that exist in the file. This restriction
makes grouping patterns more difficult resulting in a potentially
larger number of groups (in practice, 9–11 groups instead of 8).
The main advantage of this approach is that using parallelism
does not increase the size of the pattern memory. Each pattern
is stored only once in the memory, and it is compared against
incoming data in two different offsets.

Fig. 10. Required number of shift registers (SRL16) in DpCAM and DCAM
designs, for different partitioning and degree of parallelism. Fewer shift registers
indicate higher sharing.

V. EVALUATION AND COMPARISON

In this section, we first present our implementation results of
the DpCAM and PHmem structures. We then evaluate the effi-
ciency of our designs, investigate the effectiveness of utilizing
memory blocks and/or DpCAM for pattern matching, and fi-
nally, compare our designs against related works.

A. Evaluation

We implemented both DpCAM and PHmem using the rules
of the Snort open-source intrusion detection system [15]. Snort
v2.3.2 has 2188 unique patterns of 1–122 characters long,
and 33 618 characters in total. We implemented our designs
using Virtex2 devices with -6 speed grade, except DpCAM
designs that process 4 bytes/cycle, which were implemented
in a Virtex2-8000-5, the only available speed grade for the
largest Virtex2 device. We measure our pattern matching de-
signs performance in terms of processing throughput (gigabits
per second), and their area cost in terms of number of logic
cells required for each matching character. For designs that
require memory, we measure the memory area cost based on
the observation that 12 bytes of memory occupy area similar to
a logic cell [32]. In order to evaluate our schemes and compare
them with the related research, we introduce a new perfor-
mance efficiency metric (nPEM) which takes into account both
performance and area cost described by the following equation:

Performance
Area

Throughput
Logic Cells

Characters

(5)

1) DpCAM Evaluation: To evaluate DpCAM and compare
it to DCAM, we implemented designs that process 1, 2, and 4
bytes/cycle ( 1, 2, and 4) with different partition sizes: par-
titions of 64, 128, 256, 512 patterns (G64, G128, G256, G512)
and designs without partitioning (NG).

DpCAM Versus DCAM: DpCAM targets the increased
sharing of decoded characters, while the rest of the design
is similar to DCAM. We can estimate the number of distinct
shifted characters needed for each design by counting the
number of SRL16 shift registers, with fewer SRL16s indicating
better character sharing. Fig. 10 plots the number of SRL16s
used for DCAM and DpCAM designs of several different data-
path widths and partition sizes. DpCAM needs up to 25% less
SRL16s and up to 15% less total area, while the improvement
is higher in the case of small partition sizes where sharing
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Fig. 11. PHmem and DpCAM performance, area cost, and efficiency. Memory
area is calculated based on the following equation: 12 � MEMbytes =

Logic Cell. (a) DpCAM and PHmem performance. (b) DpCAM and PHmem
area cost. (c) DpCAM and PHmem efficiency.

possibilities are limited. The frequency in both cases is similar
and consequently DpCAM is more efficient than DCAM.

DpCAM Results: Fig. 11(a) illustrates the performance in
terms of processing throughput for the five partition sizes
and datapath width of 1, 2, and 4 bytes/cycle. Designs that
process 1 byte/cycle achieve 1.4 to 3 Gb/s throughput, while
designs that process 2 bytes/cycle can support 1.9 to 5.5 Gb/s.
Furthermore, designs with 4 bytes datapaths have a processing
throughput between 3.2 to 8.2, implemented on a 5 speed
grade Virtex2 device as there are no 6 grade devices large
enough to fit them. From our results, we can draw two general
trends for group size. The first is that smaller group sizes lead
to higher throughput. The second is that when the group size
approaches 512 the performance deteriorates, indicating that
optimal group sizes will be in the 64-256 range.

We measured area cost and plot the number of logic cells
needed for each pattern character in Fig. 11(b). Unlike perfor-
mance, the effect of group size on the area cost is more pro-
nounced. As expected, larger group sizes result in smaller area
cost due to the smaller replication of comparators in the dif-
ferent groups. In all, the area cost for the entire Snort rule set is

0.58–0.99, 1.1–1.6, and 1.8–2.7 logic cells/character for designs
that process 1, 2, and 4 bytes/cycle, respectively.

While smaller group sizes offer the best performance, it ap-
pears that if we also take into account the area cost, the medium
group sizes (128 or 256) become also attractive. This conclusion
is more clear in Fig. 11(c) where we evaluate the efficiency of
our designs (Performance/Area Cost). For the most effi-
cient design is G256, for P=2 is G64, G128, and G256 group-
ings have similar efficiency, while for where the designs
are larger and thus more complicated the best performance/area
tradeoff is in G64.

2) PHmem Evaluation: Fig. 11(a)–(c) illustrates the perfor-
mance, area cost, and efficiency of perfect hashing designs. We
implemented designs that process 1 and 2 incoming bytes/cycle
( 1 and 2). Apart from the designs that operate in a single
clock domain (denoted as PHm), there are designs with double
memory size (denoted as PHDm) that operates in half the op-
erating frequency relative to the rest of the circuit. Our per-
fect hashing design that processes one byte/clock cycle achieves
2 Gb/s of throughput, using 35 block RAMs (630 kb), and re-
quiring 0.48 equivalent logic cells (ELC) per matching char-
acter (counting also the area due to the memory blocks). A de-
sign that utilizes double memory to increase the overall perfor-
mance of the pattern matching module achieves about 2.9 Gb/s,
requiring 0.9 ELCs per matching character. The design that
processes 2 bytes/cycle achieves 4 Gb/s, while needing 0.69
ELCs per character. When using double size of memory and
process 2 bytes/cycle, PHmem can support more than 5.7 Gb/s
of throughput, requiring 1.1 ELCs per matching character. It is
noteworthy that about 30%–50% of the required logic is due to
the registered memory inputs and outputs and the shift registers
of incoming data. Matching subpatterns of constant length and
then merging the partial results as implemented in [24], would
possibly decrease this area cost.

3) PHmem DpCAM: PHmem designs present a significant
disadvantage when the pattern set includes very long patterns.
The pattern memory in this case should be wide enough to fit
these long patterns, resulting in low memory utilization. Conse-
quently, we implemented designs that use PHmem for matching
patterns up to 50 characters long and DpCAM for longer pat-
terns. These designs, as Fig. 11 illustrates, have similar perfor-
mance with the original PHmem designs and lower area cost,
leading to an increase of the performance efficiency metric by
10%–25%.

B. Memory-Logic Tradeoff

DpCAM and PHmem offer a different balance in the re-
sources used for pattern matching. The decision of following
one of the two approaches, or the combination of both, is related
to the available resources of a specific device. In general, using
a few tens of block RAMs is relatively inexpensive in recent
FPGA devices, while running out of logic cells can be more
critical for a system. Counting ELCs that include memory
area gives an estimate of the designs area cost. By using this
metric to measure area, we evaluate and compare the efficiency
of PHmem and DpCAM designs. Fig. 11(c) illustrates the
performance efficiency metric of DpCAM and PHmem. It is
clear that the perfect hashing designs outperform DpCAM,
since they require less area and maintain similar performance.
PHmem designs with DpCAM for matching long patterns are
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Fig. 12. Normalized area cost per matching character of different PHmem,
DpCAM designs that match 18 and 33.6 K pattern characters. The values are
normalized to the designs that match 18 K characters.

even more efficient. The reason is that they have a better pattern
memory utilization (over 70%) and therefore require fewer
resources. Designs that require more logic usually lead to more
complicated implementation (synthesis, place and route, and
wire distances) and require longer cycle times. Consequently,
PHmem is simpler to synthesize compared to DpCAM, while
the cycle time variation from one design to another is negli-
gible. In summary, even though the nPEM (5) gives an estimate
of which approach is more efficient, it is difficult to make a
decision in advance, since the pattern matching module will be
part of a larger system.

C. Scalability

An IDS pattern matching module needs to scale in terms of
performance and area cost as the number of search patterns in-
creases. That is essential since the IDS rulesets and the number
of search patterns constantly grow. Two different pattern sets
were used to evaluate the scalability of our designs. Apart from
the one used in our previous results which contains about 33 K
characters, an older Snort pattern set (18 K characters) was em-
ployed for this analysis. Both DpCAM and PHmem designs do
not have significant performance variations as the pattern set
grows from 18 to 33 K characters. Fig. 12 depicts how the area
cost scales in terms of ELCs per character. Generally speaking,
DpCAM area cost scales well as the pattern set almost doubles
since character sharing is more efficient. DpCAM designs that
match over 33 K characters require about 75% of the LC/char
compared to the designs that match 18 K characters. On the
other hand, PHmem shows some small variations in area cost
primarily due to variations in the pattern memory utilization,
however, in general the area cost is stable. Finally, both DCAM
and PHmem have only up to 5% variations in throughput with
the PHmem designs being more scalable due to their reduced
area cost. In summary, both DCAM and PHmem scale well in
terms of performance and resource utilization as the number of
patterns increases, which is promising since the IDS pattern set
grows rapidly.

D. Comparison

In Table II, we attempt a fair comparison with previously
reported research on FPGA-based pattern matching designs
that can store a full IDS ruleset. Table II contains our results
as well as the results of the most efficient recent related ap-
proaches for exact pattern matching. Here the reader should
be cautioned that some related works were implemented and
evaluated on different FPGA families. Based on previous
experience of implementing a single design in different device

families [8], [19] and the Xilinx datasheets [27], we estimate
that compared to Virtex2, Spartan3 is about 10%–20% slower,
while Virtex2Pro is about 25%–30% faster. Fig. 13 illustrates
the normalized nPEM of our designs and related work, taking
into account the device used for the implementation. Note that
the previous results intend to give a better estimate of dif-
ferent pattern matching designs since different device families
achieve different performance results. Compared to related
works, PHmem has at least 20% better efficiency.
DpCAM has slightly lower or higher efficiency compared to
the most of the related works, while PHmem+DCAM is at least
30% better.

Compared to Attig et al. Bloom Filters design [23], PHmem
has better efficiency [19]. Bloom filters perform approximate
pattern matching, since they allow false positives. Attig et
al. proposed the elimination of false positives using external
SDRAM which needs 20 cycles to verify a match. Since the
operation of this SDRAM is not pipelined, the design’s perfor-
mance is not guaranteed under worst case traffic.

It is difficult to compare any FPGA-based approach against
the “Bit-Split FSM” of Tan and Sherwood [12], which was im-
plemented in ASIC 0.13- m technology. Tan and Sherwood at-
tempted to normalize the area cost of FPGA designs in order to
compare them against their ASIC designs. Based on this normal-
ization, our best PHmem design has similar and up to 5 lower
efficiency compared to “bit-split FSM” designs, that is: 492 and
540 Gb/s/(char/mm ) for PHmem and PHmem+DpCAM, com-
pared to 556–2 699 Gb/s/(char/mm ) for Bit-split. Despite the
fact that our approach is less efficient than the previous ASIC
implementation, there are several advantages to oppose. The im-
plementation and fabrication of an ASIC is substantially more
expensive than an FPGA-based solution. In addition, as part
of a larger system, a pattern matching module should provide
the flexibility to adapt on new specifications and requirements
on demand. Such flexibility can be provided more effectively
by reconfigurable hardware instead of an ASIC. Therefore, re-
configurable hardware is an attractive solution for IDS pattern
matching providing flexibility, fast time to market, and low cost.

VI. CONCLUSION

We described and compared two reconfigurable pattern
matching approaches, suitable for intrusion detection. The first
one (DpCAM) uses only logic and the predecoding technique
to share resources. The second one (PHmem) requires both
memory and logic, employing an in practice simple and com-
pact hash function to access the pattern memory. The proposed
PHmem algorithm guarantees the generation of a perfect hash
function for any given set of patterns. Both techniques were
implemented in reconfigurable hardware and evaluated in
terms of area and performance. We analyzed their tradeoffs and
discussed their efficiency compared to related work. Utilizing
memory turns out to be more efficient than using only logic,
while the combination of PHmem and DpCAM produces the
most efficient designs. PHmem and DpCAM are able to support
up to 5.7 and 8.2 Gb/s throughput, respectively, in a Xilinx
Virtex2 device. Our perfect hashing technique achieves about
20% better efficiency compared to other FPGA-based exact
pattern matching approaches and when combined with the
DpCAM for matching long patterns can be up to 30% better.
Even compared to ASIC designs our approach has comparable
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TABLE II
COMPARISON OF FPGA-BASED PATTERN MATCHING APPROACHES

Fig. 13. Normalized nPEM of PHmem, DpCAM and related work. The per-
formace of designs implemented in devices other than Virtex2 are normalized
as follows. Spartan3:� 1.2; Virtex2Pro: �1:25[8], [19], [24], [27].

results. Both DpCAM and PHmem scale well in terms of per-
formance and area cost as the IDS ruleset grows. Consequently,
perfect hashing provides a high throughput and low area IDS
pattern matching which can keep up with the increasing size of
IDS rulesets, while DpCAM minimizes the cost of matching
long patterns.
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