Pipelined Heap (Priority Queue) Management for
Advanced Scheduling in High-Speed Networks

Aggelos loannou™ Member, IEEE, and Manolis Katevenis*, Member, IEEE

ABSTRACT: Per-flow queueing with sophisticated
scheduling is one of the methods for providing advanced
Quality-of-Service (QoS) guarantees. The hardest and most
interesting scheduling algorithms rely on a common compu-
tational primitive, implemented via priority queues. To sup-
port such scheduling for a large number of flows at OC-192 (10
Gbps) rates and beyond, pipelined management of the priority
queue is needed. Large priority queues can be built using either
calendar queues or heap data structures; heaps feature smaller
silicon area than calendar queues. We present heap manage-
ment algorithms that can be gracefully pipelined; they consti-
tute modifications of the traditional ones. We discuss how to use
pipelined heap managers in switches and routers and their cost-
performance tradeoffs. The design can be configured to any
heap size, and, using 2-port 4-wide SRAM’s, it can support ini-
tiating a new operation on every clock cycle, except that an in-
sert operation or one idle (bubble) cycle is needed between two
successive delete operations. We present a pipelined heap man-
ager implemented in synthesizable Verilog form, as a core inte-
gratable into ASIC’s, along with cost and performance analysis
information. For a 16K entry example in 0.13-micron CMOS
technology, silicon area is below 10mm? (less than 8% of a
typical ASIC chip) and performance is a few hundred million
operations per second. We have verified our design by simulat-
ing it against three heap models of varying abstraction.

KEYWORDS: high speed network scheduling, weighted
round robin, weighted fair queueing, priority queue, pipelined
hardware heap, synthesizable core.

I. INTRODUCTION

The speed of networks is increasing at a high pace. Signif-
icant advances also occur in network architecture, and in par-
ticular in the provision of quality of service (QoS) guarantees.
Switches and routers increasingly rely on specialized hardware
to provide the desired high throughput and advanced QoS. Such
supporting hardware becomes feasible and economical owing
to the advances in semiconductor technology. To be able to pro-
vide top-level QoS guarantees, network switches and routers
will likely need per-flow queueing and advanced scheduling
[Kumar98]. The topic of this paper is hardware support for
advanced scheduling when the number of flows is on the order
of thousands or more.

* The authors were/are also with the Department of Computer Science, Uni-
versity of Crete, Heraklion, Crete, Greece.

Per-flow queueing refers to the architecture where the packets
contending for and awaiting transmission on a given output link
are kept in multiple queues. In the alternative —single-queue
systems— the service discipline is necessarily first-come-first-
served (FCFS), which lacks isolation among well-behaved and
ill-behaved flows, hence cannot guarantee specific QoS levels
to specific flows in the presence of other, unregulated traffic.
A partial solution is to use FCFS but rely on traffic regula-
tion at the sources, based on service contracts (admission con-
trol) or on end-to-end flow control protocols (like TCP). While
these may be able to achieve fair allocation of throughput in
the long term, they suffer from short-term inefficiencies: when
new flows request a share of the throughput, there is a delay in
throttling down old flows, and, conversely, when new flows re-
quest the use of idle resources, there is a delay in allowing them
to do so. In modern high-throughput networks, these round-
trip delays —inherent in any control system— correspond to an
increasingly large number of packets.

To provide real isolation between flows, the packets of each
flow must wait in separate queues, and a scheduler must serve
the queues in an order that fairly allocates the available through-
put to the active flows. Note that fairness does not necessarily
mean equality —service differentiation, in a controlled manner,
is a requirement for the scheduler. Commercial switches and
routers already have multiple queues per output, but the number
of such queues is small (a few tens or less), and the scheduler
that manages them is relatively simple (e.g. plain priorities).

This paper shows that sophisticated scheduling among many
thousands of queues at very high speed is technically feasible,
at a reasonable implementation cost. Given that it is also feasi-
ble to manage many thousand of queues in DRAM buffer mem-
ory at OC-192 rates [NikoO1], we conclude that fine-granularity
per-flow queueing and scheduling is technically feasible even at
very high speeds. An early summary of the present work was
presented, in a much shorter paper, at ICC 2001 [Ioan01].

Section II presents an overview of various advanced schedul-
ing algorithms. They all rely on a common computational prim-
itive for their most time-consuming operation: finding the min-
imum (or maximum) among a large number of values. Previous
work on implementing this primitive at high speed is reviewed
in section II-C. For large numbers of widely dispersed values,
priority queues in the form of heap data structures are the most
efficient representation, providing insert and delete_minimum
operations in logarithmic time. For a heap of several thousand
entries, this translates into a few tens of accesses to a RAM per

heap operation; at usual RAM rates, this yields an operation
throughput up to 5 to 10 million operations per second (Mops)
[Mavro98]. However, for OC-192 (10 Gbps) line rates and be-
yond, and for packets as short as about 40 bytes, quite more
than 60 Mops are needed. To achieve such higher rates, the
heap operations must be pipelined.

Pipelining the heap operations requires some modifications
to the normal (software) heap algorithms, as we proposed in
1997 [Kate97] (see the Technical Report [Mavro98]). This pa-
per presents a pipelined heap manager that we have designed in
the form of a core, integratable into ASIC’s. Section III presents
our modified management algorithms for pipelining the heap
operations. Then, we explain the pipeline structure and the dif-
ficulties that have to be resolved for the rate to reach one heap
operation per clock cycle. Reaching such a high rate requires
expensive SRAM blocks and bypass paths. A number of al-
ternatives exist that trade performance against cost; these are
analyzed in section IV.

Section V describes our implementation, which is in synthe-
sizable Verilog form. The ASIC core that we have designed is
configurable to any size of priority queue. With its clock fre-
quency able to reach a few hundred MHz even in 0.18-micron
CMOS technology, operation rate reaches one or more hundred
million operations per second. More details, both on the algo-
rithms and the corresponding implementation, can be found in
[Ioann00].

The contributions of this paper are: (i) it presents heap man-
agement algorithms that are appropriate for pipelining; (ii) it
describes an implementation of a pipelined heap manager and
reports on its cost and performance; (iii) it analyzes the cost-
performance tradeoffs of pipelined heap managers. As far as
we know, similar results have not been reported before, except
for the independent work [Bhagwan00] which differs from this
work as described in section III-F. The usefulness of our re-
sults stems from the fact that pipelined heap managers are an
enabling technology for providing advanced QoS features in
present and future high speed networks.

II. ADVANCED SCHEDULING USING PRIORITY QUEUES

Section I explained the need for per-flow queueing in or-
der to provide advanced QoS in future high speed networks.
To be effective, per-flow queueing needs a good scheduler.
Many advanced scheduling algorithms have been proposed;
good overviews appear in [Zhang95] and [Keshav97, chapter
9]. Priorities is a first, important mechanism; usually a few lev-
els of priority suffice, so this mechanism is easy to implement.
Aggregation (hierarchical scheduling) is a second mechanism:
first choose among a number of flow aggregates, then choose
a flow within the given aggregate [Bennett97]. Some levels of
the hierarchy contain few aggregates, while others may con-
tain thousands of flows; this paper concerns the latter levels.
The hardest scheduling disciplines are those belonging to the
weighted round robin family; we review these, next.

A. The Weighted Round Robin Family

Figure 1 intuitively illustrates weighted round robin schedul-
ing. Seven flows, A through G, are shown; four of them, A, C,

D, F are currently active (non-empty queues). The scheduler
must serve the active flows in an order such that the service re-
ceived by each active flow in any long enough time interval is
in proportion to its weight factor. It is not acceptable to visit the
flows in plain round robin order, serving each in proportion to
its weight, because service times for heavy-weight flows would
become clustered together, leading to burstiness and large ser-

vice time jitter.
Current Time -
@ Flow: A B c D E
5 20 10 1 4
20

Weight:
100 25 50 2

Service Interval:

(A‘@ A AR A A D
T T

v v

U
132137

T T T T T
303237 5255 72 92 105 112

Fig. 1. Weighted round robin scheduling

We begin with the active flows ’scheduled” to be served in a
particular future ’time” each: flow A will be served at t=32, C
at t=30, D at t=37, and F at t=55. The flow to be served next
is the one that has the earliest, i.e. the minimum, scheduled
service time. In our example, this is flow C; its queue only
has a single packet, so after being served it becomes inactive
and it is removed from the schedule. Next, ’time” advances to
32 and flow A is served. Flow A remains active after its head
packet is transmitted, so it has to be rescheduled. Rescheduling
is based on the inverses of the weight factors, which correspond
to relative service intervals'. The service interval of A is 20, so
A is rescheduled to be served next at ’time” 32+20=52. (When
packet size varies, that size also enters into the calculation of
the next service time). The resulting service order is shown in
figure 1. As we see, the scheduler operates by keeping track
of a “next service time” number for each active flow. In each
step, we must: (i) find the minimum of these numbers; and then
(ii) increment it if the flow remains active (i.e. keep the flow as
candidate, but modify its next service time), or (iii) delete the
number if the flow becomes inactive. When a new packet of an
inactive flow arrives, that flow has to be (iv) reinserted into the
schedule.

Many scheduling algorithms belong to this family. Work-
conserving disciplines always advance the “current time” to the
service time of the next active flow, no matter how far in the
future that time is; in this way, the active flows absorb all the
available network capacity. Non-work-conserving disciplines
use a real-time clock. A flow is only served when the real-time
clock reaches or exceeds its scheduled service time; when no
such flow exists, the transmitter stays idle. These schedulers
operate as “’regulators”, forcing each flow to obey its service
contract. Other important constituents of a scheduling algo-
rithm are the way it updates the service time of the flow that
was served (e.g. based on the flow’s service interval or on some
per-packet deadline), and the way it determines the service time

Lin arbitrary units; there is no need for these numbers to add up to any specific
value, so they do not have to change when new flows become active or inactive.

(©Copyright IEEE - to appear in IEEE/ACM Transactions on Networking (ToN), 2007

of newly-active flows. These issues account for the differences
among the weighted fair queueing algorithm and its variants,
the virtual clock algorithm, and the earliest-due-date and rate-
controlled disciplines [Keshav97, ch.9].

B. Priority Queue Implementations

All of the above scheduling algorithms rely on a common
computational primitive for their most time-consuming oper-
ation: finding the minimum (or maximum) of a given set of
numbers. The data structure that supports this primitive opera-
tion is the priority queue. Priority queues provide the following
operations:

o Insert: a new number is inserted into the set of candidate
numbers; this is used when (re)inserting into the schedule
flows that just became active (case (iv) in section II-A).

o Delete Minimum: find the minimum number in the set of
candidate numbers and delete it from the set; this is used
to serve the next flow (case (7)) and then remove it from
the list of candidate flows if this was its last packet, hence
it became inactive (case (iii)).

e Replace Minimum: find the minimum number in the set
of candidate numbers and replace it with another number
(possibly not the minimum any more); this is used to serve
the next flow (case (i)) and then update its “next service
time” if the flow has has more packets, hence remains ac-
tive (case (ii) in section II-A).

Priority queues with only a few tens of entries or with priority
numbers drawn from a small menu of allowable values are easy
to implement, e.g. using combinational priority encoder cir-
cuits. However, for priority queues with many thousand entries
and with values drawn from a large set of allowable numbers,
heap or calendar queue data structures must be used. Other
heap-like structures [Jones86] are interesting in software but are
not adaptable to high speed hardware implementation.

) & e

L L2 L3 L4
3;‘30|55‘32|57‘99‘56‘37|125‘81‘104‘ \

(a)

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 mod 100

(b)

Fig. 2. Priority queues: (a) heap; (b) calendar queue

Figure 2(a) illustrates a heap. It is a binary tree (top), phys-
ically stored in a linear array (bottom). Non-empty entries are

pushed all the way up and left. The entry in each node is smaller
than the entries in its two children (the heap property). Inser-
tions are performed at the leftmost empty entry, and then pos-
sibly interchanged with their ancestors to re-establish the heap
property. The minimum entry is always at the root; to delete it,
move the last filled entry to the root, and possibly interchange it
with descendants of it that may be smaller. In the worst case, a
heap operation takes a number of interchanges equal to the tree
height.

Figure 2(b) illustrates a calendar queue [Brown88]. It is an
array of buckets. Entries are placed in the bucket indicated
by a linear hash function. The next minimum entry is found
by searching in the current bucket, then searching for the next
non-empty bucket. Calendar queues have a good average per-
formance when the average is taken over a long sequence of op-
erations. However, in the short-term, some operations may be
quite expensive. In [Brown88], the calendar is resized when the
queue grows too large or too small; this resizing involves copy-
ing of the entire queue. Without resizing, either the linked lists
in the buckets may become very long, thus slowing down inser-
tions (if lists are sorted) or searches (if lists are unsorted), or the
empty-bucket sequences may become very long, thus requiring
special support to search for the next non-empty bucket?.

C. Related Work

Priority queues with up to a few tens of entries can be imple-
mented using combinational circuits. For several tens of entries,
one may want to use a special comparator-tree architecture that
provides bit-level parallelism [Hart02]. In some cases, one can
avoid larger priority queues. In plain round robin, i.e. when all
weight factors are equal, scheduling can be done using a cir-
cular linked list®. In weighted round robin, when the weight
factors belong to a small menu of a few possible different val-
ues, hierarchical schedulers that use round robin within each
weight-value class work well [Stephens99] [KaSM97]. This
paper concerns the case when the weight factors are arbitrary.

For hundreds of entries, a weighted round robin scheduler
based on content addressable memory (CAM) was proposed
in [KaSCO91], and a priority queue using per-word logic (sort
by shifting) was proposed in [Chao91]. Their performance is
similar* to that of our pipelined heap manager (1 operation
per 1 or 2 clock cycles). However, the cost of these tech-
niques scales poorly to large sizes. At large sizes, memory is
the dominant cost (section V-D); the pipelined heap manager
uses SRAM, which costs two or more times less than CAM and

2In non-work-conserving schedulers searching for the next non-empty bucket
is not a problem: since the current time advances with real time, the scheduler
only needs to look at one bucket per time slot —empty buckets simply mean that
the transmitter should stay idle.

3Yet, choosing the proper insertion point is not trivial.

4except for the following problem of the CAM-based scheduler under work-
conserving operation: As noted in [KaSC91, p. 1273], a method to avoid ster-
ile” flows should be followed. According to this method, each time a flow be-
comes ready, its weight factor is ANDed out” of the sterile-bit-position mask;
conversely, each time a flow ceases being ready, the bit positions corresponding
to its weight factor may become sterile, but we don’t know for sure until we try
accessing them, one by one. Thus, e.g. with 16-bit weights, up to 15 ”sterility-
probing” CAM accesses may be needed, in the worst case, after one such flow
deletion and before the next fertile bit position is found. This can result in ser-
vice gaps that are greater than the available slack of a cell’s transmission time.

(©Copyright IEEE - to appear in IEEE/ACM Transactions on Networking (ToN), 2007

much less than per-word logic. Other drawbacks are the large
power consumption of shifting the entire memory contents in
the per-word-logic approach, and the fact that CAM often re-
quires full-custom chip design, and thus may be unavailable to
semi-custom ASIC designers.

A drawback of the CAM-based solution is the inability to
achieve smooth service among flows with different weights.
One source of service-time jitter for the CAM-based scheduler
is the uneven spreading of the service ’cycles” on the time axis.
As noted in [KaSC91, p. 1273], the number of non-service cy-
cles between two successive service cycles may be off by a fac-
tor up to two relative to the ideal number. A potentially worse
source of jitter is the variable duration of each service cycle.
For example, if flow A has weight 7 and flows B through H
(7 flows) have weight 1 each, then cycles 1 through 3 and 5
through 7 serve flow A only, while cycle 4 serves all flows; the
resulting service pattern is AAAABCDEFGHAAA-A..., yield-
ing very bad jitter for flow A. By contrast, some priority-queue
based schedulers will always yield the best service pattern,
ABACADAEAFAGAH-AB..., and several other priority-queue
based schedulers will yield service patterns in between the two
above extremes.

For priority queues with many thousands of entries, calen-
dar queues are a viable alternative. In high-speed switches
and routers, the delay of resizing the calendar queue —as in
[Brown88]— is usually unacceptable, so a large size is chosen
from the beginning. This large size is the main drawback of cal-
endar queues relative to heaps; another disadvantage is their in-
ability to maintain multiple priority queues in a way as efficient
as the forest of heaps presented in section III-D. The large size
of the calendar helps to reduce the average number of entries
that hash together into the same bucket. To handle such colli-
sions, linked lists of entries, pointed to by each bucket, could be
used, but their space and complexity cost is high. The alterna-
tive that is usually preferred is to store colliding entries into the
first empty bucket after the position of initial hash. In a calen-
dar that is large enough for this approach to perform efficiently,
long sequences of empty buckets will exist. Quickly searching
for the next non-empty bucket can be done using a hierarchy of
bit-masks, where each bit indicates whether all buckets in a cer-
tain block of buckets are empty [Kate87] [Chao97] [Chao99].
A similar arrangement of bit flags can be used to quickly search
for the next empty bucket where to write a new entry; here,
each bit in the upper levels of the hierarchy indicates whether
all buckets in a certain block are full.

Calendar queues can be made as fast as as our pipelined heap
manager, by pipelining the accesses to the multiple levels of
the bit mask hierarchy and to the calendar buckets themselves;
no specific implementations of calendar queues at the perfor-
mance range considered in this paper have been reported in the
literature, however. The main disadvantage of calendar queues,
relative to heaps, is their cost in silicon area, due to the large
size of the calendar array, as explained above. To make a con-
crete comparison, we use the priority queue example that we
implemented in our ASIC core (section V-D): it has a capac-
ity of 16K entries (flows) — hence the flow identifier is 14-bit
wide — and the priority value has 18 bits. This priority width al-
lows 17 bits of precision for the weight factor of each flow (the

18h bit is for wrap-around protection —see section V-B); this
precision suffices for the lightest-weight flow on a 10 Gb/s line
to receive approximately 64 Kb/s worth of service. The equiva-
lent calendar queue would use 2'7 buckets of size 14 bits (a flow
ID) each; the bit masks need 217 bits at the bottom level, and a
much smaller number of bits for the higher levels. The silicon
area for these memories, excluding all other management cir-
cuits, for the 0.18-micron CMOS process considered in section
V-D, would be 55mm?, as compared to 19mm? for the entire
pipelined heap manager (memory plus management circuits).

Finally, heap management can be performed at medium speed
using a hardware FSM manager with the heap stored in an
SRAM block or chip [Mavro98]. In this paper we look at high-
speed heap management, using pipelining. As far as we know,
no other work prior to ours ([Ioann00]) has considered and ex-
amined pipelined heap management, while a parallel and in-
dependent study appeared in [BhagwanOQ0]; that study differs
from ours as described in section III-F.

III. PIPELINING THE HEAP MANAGEMENT

Section II showed why heap data structures play a central
role in the implementation of advanced scheduling algorithms.
When the entries of a large heap are stored in off-chip mem-
ory, the desire to minimize pin cost entails little parallelism in
accessing them. Under such circumstances, a new heap oper-
ation can be initiated every 15 to 50 clock cycles for heaps of
sizes 256 to 64K entries, stored in one or two 32-bit external
SRAM'’s [Mavro98]°. Higher performance can be achieved by
maintaining the top few levels of the heap in on-chip memory,
using off-chip memory only for the bottom (larger) levels. For
highest performance, the entire heap can be on-chip, so as to
use parallelism in accessing all its levels, as described in this
section. Such highest performance —up to 1 operation per clock
cycle— will be needed e.g. in OC-192 line cards. An OC-192 in-
put line card must handle an incoming 10 Gbit/s stream plus an
outgoing (to the switching fabric) stream of 15 to 30 Gbit/s. At
40 Gbps, for packets as short as about 40 bytes, the packet rate
is 125 M packets/s; each packet may generate one heap opera-
tion, hence the need for heap performance in excess of 100 M
operations/s. A wide spectrum of intermediate solutions exist
too, as discussed in section I'V on cost-performance tradeoffs.

A. Heap Algorithms for Pipelining

Figure 3 illustrates the basic ideas of pipelined heap manage-
ment. Each level of the heap is stored in a separate physical
memory, and managed by a dedicated controller stage. The ex-
ternal world only interfaces to stage 1. The operations provided
are (i) insert a new entry into the heap (on packet arrival, when
the flow becomes non-idle); (ii) deleteMin: read and delete the
minimum entry i.e. the root (on packet departure, when the flow
becomes idle); and (iii) replaceMin: replace the minimum with
a new entry that has a higher value (on packet departure, when
the flow remains non-idle).

5These numbers also give an indication on the limits of software heap man-
agement, when the heap fits in on-chip cache. When the processor is very fast,
the cache SRAM throughput is the limiting factor; then, each heap operation
costs 15 to 50 cycles of that on-chip SRAM, as compared to 1 to 4 SRAM
cycles in the present design (section IV).

(©Copyright IEEE - to appear in IEEE/ACM Transactions on Networking (ToN), 2007

new entry min. entry

opcode toinsert deleted

ins/del/re
ins/re
==
2
w
@ insfre
° [L[[s
T
ins/repl
| Stagea ALl [[[[]ua

Fig. 3. Simplified block diagram of the pipeline

When a stage is requested to perform an operation, it per-
forms the operation on the appropriate node at its level, and then
it may request the level below to also perform an induced opera-
tion that may be required in order to maintain the heap property.
For levels 2 and below, besides specifying the operation and a
data argument, the node index, 7, must also be specified. When
heap operations are performed in this way, each stage (includ-
ing the I/O stage 1) is ready to process a new operation as soon
as it has completed the previous operation at its own level only.

The replaceMin operation is the easiest to understand. In fig-
ure 3, the given argl must replace the root at level 1. Stage
1 reads its two children from L2, and determines which of the
three values is the new minimum to be written into L1; if one
of the ex-children was the minimum, the given argl must now
replace that child, giving rise to a replace operation for stage 2,
and so on.

The deleteMin operation is similar to replace. To maintain the
heap balanced, the root is deleted by replacing it with the right-
most non-empty entry in the bottom-most non-empty level®. A
lastEntry bus is used to read that entry, and the correspond-
ing level is notified to delete it. When multiple operations are
in progress in various pipeline stages, the real “last” entry may
not be the last entry in the last level: the pending value of the
youngest-in-progress insert operation must be used instead. In
this case, the lastEntry bus functions as a bypass path, and the
most recent insert operation is then aborted.

The traditional insert algorithm needs to be modified as
shown in figure 4. In a non-pipelined heap, new entries are
inserted at the bottom, after the last non-empty entry (fig. 4(a));
if the new entry is smaller than its parent, it is swapped with
that parent, and so on. Such operations would proceed in the
wrong direction, in the pipeline of figure 3. In our modified
algorithm, new entries are inserted at the root (fig. 4(b)). The
new entry and the root are compared; the smaller of the two
stays as the new root, and the other one is recursively inserted
into the proper of the two sub-heaps. By properly steering —left

61f we did not use the last entry for the root substitution, then the smaller of
the two children would be used to fill in the empty root. As this would go on
recursively, leaves of the tree would be freed up arbitrarily, spoiling the balance
of the tree.

(b)

Fig. 4. Algorithms for Insert: (a) traditional insertion; (b) modified insertion
(top-to-bottom)

or right sub-heap- this chain of insertions at each level, we can
ensure that the last insertion will be guided to occur at precisely
the heap node next to the previously-last entry. The address of
that target slot is known at insertion-initiation time: it is equal
to the heap occupancy count plus one; the bits of that address,
MS to LS, steer insertions left or right at each level. Notice
that traditional insertions only proceed through as many levels
as required, while our modified insertions traverse all levels;
this does not influence throughput, though, in a pipelined heap
manager.

B. Overlapping the Operation of Successive Stages

Replace (or delete) operations on a node ¢, in each stage of
fig. 3, take 3 clock cycles each: (i) read the children of node
1 from the memory of the stage below; (ii) find the minimum
among the new value and the two children; (iii) write this mini-
mum into the memory of this stage. Insert operations also take 3
cycles per stage: (i) read node 7 from the memory of this stage;
(ii) compare the value to be inserted with the value read; (iii)
write the minimum of the two into the memory of this stage.
Using such an execution pattern, operations ripple down the
pipeline at the rate of one stage every 3 clocks, allowing an
operation initiation rate no higher than 1 every 3 cycles.

We can improve on this rate by overlapping the operation
of stages. Figure 5 shows replace (or delete) —the hardest
operation— in the case of ripple-down rate of one stage per cy-
cle. The operation at level L has to replace value C, in node i,
by the new value C’. The index ¢, of the node to be replaced,
as well as the new value C’, are deduced from the replace oper-
ation at level L-1, and they become known at the end of clock
cycle 1, right after the comparison of the new value A’ for node
11,—1 with its two children, B, and C. The comparison of C’
with its children, F and G, has to occur in cycle 2 in order to
achieve the desired ripple-down rate. For this to be possible, F

(©Copyright IEEE - to appear in IEEE/ACM Transactions on Networking (ToN), 2007

A i
L1 | A |
-
Lo lee] |
i ‘ \\\ F, iL+1
L[[o[e[Fle) |
ALl A=min{A’B,C}
compare |+ write
"B, C A”
c.i C”=min{C’,F,G}
p—— compare | write
D,E F,G C.FG c
Foip
RR ek
grd chid’n y ey e “
i - ‘ : t
— 1 i 5 \ 3 I clock cycles

Fig. 5. Overlapped stage operation for replace

and G must be read in cycle 1. However, in cycle 1, index i,
is not yet known —only index 771 is known. Hence, in cycle
1, we are obliged to read all four grand children of A (D, E,
F, G) given that we do not know yet which one of B or C will
need to be replaced; notice that these grand children are stored
in consecutive, aligned memory locations, so they can be easily
read in parallel from a wide memory. In conclusion, a ripple-
down rate of one stage every cycle needs a read throughput of 4
values per cycle in each memory’; an additional write through-
put of 1 entry per cycle is also needed. Insert operations only
need a read throughput of 1, because the insertion path is known
in advance. Cost-performance tradeoffs are further analyzed in
section I'V.

C. Inter-Operation Dependencies and Bypasses

Figure 5 only shows a single replace operation, as it ripples
down the pipeline stages. When more operations are simulta-
neously in progress, various dependencies arise. A structural
dependence between write-back’s of replace and insert opera-
tions can be easily resolved by moving the write-back of insert
to the fourth cycle (in figure 5, reading at level L is in cycle 0,
and writing at the same level is in cycle 3).

Various data dependencies also exist; they can all be resolved
using appropriate bypasses. The main data dependence for an
insert concerns the reading of each node. An insert can be is-
sued in clock cycle 2 if the previous operation was issued in
clock cycle 1. However, that other operation will not have writ-
ten the new item of stage 1 until cycle 3, while insert tries to
read it in cycle 2. Nevertheless, this item is actually needed by

"Heap entries contain a priority value and a flow ID. Only the flow ID of the
entry to be swapped needs to be read. Thus, flow ID’s can be read later than
priority values, so as to reduce the read throughput for them, at the expense of
complicating pipeline control.

the insert only for the comparison, which takes place in cycle 3.
At that time the previous operation has already decided the item
of stage 1, and that can be forwarded to the insert operation.
The read however is needed, since two consecutive operations
can take different turns as they traverse the tree downwards, and
thus they may manipulate distinct sets of elements, so that the
results of the read will need to be used instead of the mentioned
bypassing. Of course there is a chance that these bypasses con-
tinue as the two operations traverse the tree.

The corresponding data dependence for a delete operation is
analogous but harder. The difference is that delete needs to
read the entries of level 2, rather than level 1, when it is issued.
This makes it dependent on the updating of this level’s items,
which comes one cycle after that of level 1. So, unlike insert, it
cannot immediately follow its preceding operation, but should
rather stall one cycle. However it can immediately follow an
insert operation, as this insert will be aborted, thus creating the
needed bubble separating the delete from a preceding operation.

Besides local bypasses from the two lower stages (section V-
A), a global bypass was noted in section III-A: when initiating a
deletion, the youngest-in-progress insertion must yield its value
through the lastEntry bus.

The most expensive set of global bypasses is needed for re-
placements or deletions, when they are allowed to immediately
follow one another. Figure 6 shows an example of a heap where
the arrangement of values is such that all four successive re-
placements shown will traverse the same path: 30, 31, 32, 33.
In clock cycle (1), in the left part of the figure, operation A re-
places the root with 40; this new value is compared to its two
children, 31 and 80. In cycle (2), the minimum of the previous
three values, 31, has moved up to the root, while operation A is
now at L2, replacing the root of the left subtree; a new operation
B reads the new minimum, 31, and replaces it with 45. Simi-
larly, in cycle (3) operation C replaces the minimum with 46,
and in cycle (4) operation D replaces the new minimum with
41. The correct minimum value that D must read and replace is
33; looking back at the system state in cycle (3), the only place
where 33" appears is in L4: the entire chain of operations, in
all stages, must be bypassed for the correct value to reach L1.
Similarly, in cycle (4), the new value, 41, must be compared to
its two children, to decide whether it should fall or stay. Which
are its correct children? They are not 46 and 80, neither 45 and
80 —these would cause 41 to stay at the root, which is wrong.
The correct children are 40 and 80; again, the value 40 needs
to be bypassed all the way from the last to the first stage. In
general, when replacements or deletions are issued on every
cycle, each stage must have bypass paths from all stages below
it; we can avoid such expensive global bypasses by issuing one
or more insertions, or by allowing an idle clock cycle between
consecutive replacements or deletions.

D. Managing a Forest of Multiple Heaps

In a system that employees hierarchical scheduling (section
II), there are multiple sets (aggregates) of flows. At the second
and lower hierarchy levels, we want to choose a flow within
a given aggregate. When priority queues are used for this lat-
ter choice, we need a manager for a forest of heaps —one heap

(©Copyright IEEE - to appear in IEEE/ACM Transactions on Networking (ToN), 2007

Fig. 6. Replace operations in successive stages need global bypasses

per aggregate. Our pipelined heap manager can be conveniently
used to manage such a forest. Referring to figure 3, it suffices to
store all the heaps ”in parallel”, in the memories L1, L2, L3, ...,
and to provide an index 71 to the first stage (dashed lines), iden-
tifying which heap in the forest the requested operation refers
to.

Assume that N heaps must be managed, each of them having
amaximum size of 2"~ 1 entries. Then, n stages will be needed;
stage j will need a memory L of size IV X 27=1. In many cases,
the number of flows in individual aggregates may be allowed to
grow significantly, while the total number of flows in the sys-
tem is restricted to a number M much less than N x (2" — 1).
In these cases, we can economize in the size of the large mem-
ories near the leaves, L, L,_1, ..., at the expense of additional
lookup tables T7; for each aggregate a, T;[a] specifies the base
address of heap a in memory L;. For example, say that the
maximum number of flows in the system is M = 2"; individ-
ual heaps are allowed to grow up to 2" — 1 = M — 1 entries
each. For a heap to have entries at level L;, its size must be at
least 297 1; at most M/29~1 = 27=J*1 such heaps may exist
simultaneously in the system. Thus, it suffices for memory L
to have a size of (2" 7%1) x (29=1) = 27, rather than N x 27~}
in the original, static-allocation case.

E. Are Replace Operations needed in High Speed Switch
Schedulers?

Let us note at this point that, in a typical application of a
heap manager in a high speed switch or router line card, re-
placeMin operations would not be used —split deleteMin-insert
transactions would be used instead. The reason is as follows. A
number of clock cycles before transmitting a packet, the min-
imal entry E,, is read from the heap to determine the flow ID
that should be served. Then, the flow’s service interval is read
from a table, to compute the new service time for the flow. A
packet is dequeued from this flow’s queue; if the queue remains
non-empty, the flow’s entry in the heap, E,,, is replaced with
the new service time. Thus, the time from reading E,,, until re-
placing it with a new value will usually be several clock cycles.
During these clock cycles, the heap can and must service other
requests; effectively, flows have to be serviced in an interleaved
fashion in order to keep up the high I/O rate. To service other
requests, the next minimum entries after £, have to be read.
The most practical method to make all this work is to treat the
read-update pair as a split transaction: first read and delete F,,

—so that the next minima can be read— then later reinsert the
updated entry.

F. Comparison to P-Heap

As mentioned earlier, a parallel and independent study of
pipelined heap management was made by Bhagwan and Lin
[Bhagwan(00]. The Bhagwan/Lin paper introduces and uses a
variant of the conventional heap, called P-heap. We use a con-
ventional heap. In a conventional heap, all empty entries are
clustered in the bottom and right-most parts of the tree; in a
P-heap, empty entries are allowed to appear anywhere in the
tree, provided all their children are also empty. Bhagwan &
Lin argue that a conventional heap cannot be easily pipelined,
while their P-heap allows pipelined implementation. In our
view, however, the main or only advantage of P-heap relative
to a conventional heap, when pipelining is used, is that P-heap
avoids the need for the lastEntry bypass, in figure 3; this is a
relatively simple and inexpensive bypass, though.

On the other hand, P-heap has two serious disadvantages.
First, in a P-heap, the issue rate of insert operations is as low as
the issue rate of (consecutive) delete operations, while, in our
conventional heap, insert operations can usually be issued twice
as frequently as (consecutive) deletes (section IV). The reason
is that our insert operations know a-priori which path they will
follow, while in a P-heap they have to dynamically find their
path (like delete operations do in both architectures). Second,
our conventional heap allows the forest-of-heaps optimization
(section III-D), which is not possible with P-heaps.

Regarding pipeline structure, it appears that Bhagwan & Lin
perform three dependent basic operations in each of their clock
cycle: first a memory read, then a comparison, and then a mem-
ory write. By contrast, this paper adopts the model of contem-
porary processor pipelines: a clock cycle is so short that only
one of these basic operations fits in it. Based on this model, the
Bhagwan/Lin issue rate would be one operation every six (6)
short-clocks, as compared to 1 or 2 short-clocks in this paper.
This is the reason why [Bhagwan00] need no pipeline bypasses:
each operation completely exits a tree level before the next op-
eration is allowed to enter it.

IV. COST-PERFORMANCE TRADEOFFS

A wide range of cost-performance tradeoffs exists for
pipelined heap managers. The highest performance (unless one
goes to superscalar organizations) is for operations to ripple

(©Copyright IEEE - to appear in IEEE/ACM Transactions on Networking (ToN), 2007

down the heap at one level per clock cycle, and for new opera-
tions to also enter the heap at that rate. This was discussed in
sections III-B and III-C, and, as noted, requires 2-port memory
blocks that are 4-entry wide, plus expensive global bypasses.
This high-cost, high-performance option appears in line (i) of
Table I. To have a concrete notion of memory width in mind,
in our example implementation (section V) each heap entry is
32 bits —an 18-bit priority value and a 14-bit flow ID; thus, 128-
bit-wide memories are needed in this configuration. To avoid
global bypasses, which require expensive datapaths and may
slow down the clock cycle, delete (or replace) operations have
to consume 2 cycles each when immediately following one an-
other, as discussed in section III-C and noted in line (ii). In
many cases this performance penalty will be insignificant, be-
cause we can often arrange for one or more insertions to be in-
terposed between deletions, in which case the issue rate is still
one operation per clock cycle.

Dual-ported memories cost twice as much as single-ported
memories of the same capacity and width, hence they are a
prime target for cost reduction. Every operation needs to per-
form one read and one write-back access to every memory level,
thus when using single-port memories every operation will cost
at least 2 cycles: lines (iii) and below. If we still use 4-wide
memories, operations can ripple down at 1 level/cycle; given
that deletions cannot be issued more frequently than every other
cycle, inexpensive local bypasses suffice.

A next candidate to reduce cost is memory width. Silicon
area is not too sensitive to memory width, but power consump-
tion is. In the 4-wide configurations, upon deletions, we read
4 entries ahead of time, to discover in the next cycle which 2
of them are needed and which not; the 2 useless reads con-
sume extra energy. If we reduce memory width to 2 entries,
delete operations can only ripple down 1 level every 2 cycles,
since the aggressive overlapping of figure 5 is no longer feasi-
ble. If we still insist on issuing operations every 2 cycles, suc-
cessive delete operations can appear in successive heap levels
at the same time, which requires global (expensive) bypasses
(line (iv)). What makes more sense, in this lower cost configu-
ration, is to only have local bypasses, in which case delete op-
erations consume 3 cycles each; insert operations are easy, and
can still be issued every other cycle (line (v)). A variable-length
pipeline, with interlocks to avoid write-back structural hazards,
is needed. More details on how this issue rate is achieved can
be found in [Ioann00, Appendix A]. When lower performance
suffices, single-entry-wide memories can be used, reducing the
ripple-down rate to 1 level every 3 cycles. With local-only by-
passes, deletions cost 4 cycles (line (vi)). Insertions can still be
issued every 2 cycles, i.e. faster than the ripple-down rate, if we
arrange each stage so that it can accept a second insertion be-
fore the previous one has rippled down, which is feasible given
that memory throughput suffices.

Lines (vii) through (x) of table I refer to the option of placing
the last one or two levels of the heap (the largest ones) in off-
chip SRAMS, in order to economize in silicon area. When two
levels of the heap are off-chip, they share the single off-chip
memory. We consider off-chip memories of width 1 or 2 heap

8single-ported, of course

entries. We assume zero-bus-turnaround (ZBT)? SRAM; these
accept clock frequencies at least as high as 166 MHz, so we as-
sume no slow-down of the on-chip clock. For delete operations,
issue rate is limited by the following loop delay: read some en-
tries from a heap level, compare them to something, then read
some other entries whose address depends on the comparison
results. For off-chip SRAM, this loop delay is 2 cycles longer
than for on-chip SRAM, hence delete operations are 2 cycles
more expensive than in lines (v) and (vi). Insert operations have
few, non-critical data dependencies, so their issue rate is only
restricted by resource (memory) utilization: when a single heap
level is off-chip their issue rate stays unaffected; when two heap
levels share a single memory (lines (ix), (x)), each insertion
needs 4 accesses to it, hence the issue rate is halved.

V. IMPLEMENTATION

We have designed a pipelined heap manager as a core inte-
gratable into ASIC’s, in synthesizable Verilog form. We chose
to implement version (ii) of Table I with the 2-port, 4-wide
memories, where operations ripple down at the rate of one stage
per cycle. The issue rate is one operation per clock cycle, except
that one or more insertions or one idle (bubble) cycle is needed
between successive delete operations in order to avoid global
bypasses (section III-C). Replace operations are not supported,
for the reason explained in section III-E (but can be added eas-
ily). Our design is configurable to any size of priority queue.
The central part of the design is one pipeline stage, implement-
ing one tree level; by placing as many stages as needed next to
each other, a heap of the desired size can be built. The first three
and the last one stages are variations of the generic (central)
pipeline stage. This section describes the main characteristics
of the implementation; for more details refer to [loann00].

A. Datapath

The datapath that implements insert operations is presented
in figure 7 and the datapath for delete operations is in figure 8.
The real datapath is the merger of the two. Only a single copy
of each memory block, L2, L3, L4, L5, exists in the merged
datapath, with multiplexors to feed its inputs from the two con-
stituent datapaths. The rectangular blocks in front of memory
blocks are pipeline registers, and so are the long, thin vertical
rectangles between stages. The rest of the two datapaths are
relatively independent, so their merger is almost their sum. By-
pass signals from one to the other are labeled 72, I3,...; D2,
D3,.... These signals pass through registers on their way from
one datapath to the other (not shown in the figures).

In figure 7, the generic stages are number 3 and below. Stage
1 includes interface and entry count logic, also used for inser-
tion path evaluation. In the core of the generic stage, two val-
ues are compared, one flowing from the previous stage, and one
read from memory or coming from a bypass path. The smaller
value is stored to memory, and the larger one is passed to the
next stage. Bit manipulation logic (top) calculates the next read
address. In figure 8, the generic stages are number 4 and below.
The four children that were read from memory in the previous

9IDT trademark; see e.g. http://www.micron.com/mti/msp/html/zbtds.htm]

(©Copyright IEEE - to appear in IEEE/ACM Transactions on Networking (ToN), 2007

|| Pipelined Heap Cost-Performance Tradeoffs ||

L COST 1
I On-Chip SRAM Bypass Off-Chip SRAM Per formance (@rn
N num. of | Width Path Width Levels Cycles per | Cycles Per
E Ports (entries) | Complexity | (entries) | contained || Delete Op | Insert Op
(1) 2 4 global - - 1 1
(ii) 2 4 local - - lor2 1
(iii) 1 4 local - - 2 2
@iv) 1 2 global - - 2 2
v) 1 2 local - - 3 2
(vi) 1 1 local - - 4 2
(vii) 1 1 local 2 1 5 2
(viii) 1 1 local 1 1 6 2
(ix) 1 1 local 2 2 5 4
(x) 1 1 local 1 2 6 4
TABLE I

COST-PERFORMANCE TRADEOFFS WITH VARIOUS MEMORY CONFIGURATIONS & CHARACTERISTICS.

stage feed multiplexors that select two of them or bypassed val-
ues; selection is based on the comparison results of the previous
stage. The two selected children and their parent (passed from
the previous stage) are compared to each other using three com-
parators. The results affect the write address and data, as well
as the next read address.

B. Comparing Priority Values under Wrap-around

Arithmetic comparisons of priorities must be done carefully,
because these numbers usually represent time stamps that in-
crease without bound, hence they wrap-around from large back
to small values. Assume that the maximum priority value stored
in the heap, viewed as an infinite-precision number, never ex-
ceeds the stored minimum by more than 2P — 1. This will be
true if, e.g., the service interval of all flows is less than 2P, since
any inserted number will be less than m + 2P, where m was a
deleted minimum, hence no greater than the current minimum.
Then, we store priority values as unsigned (p + 1)-bit numbers.
When comparing two such numbers, A and B, if A-B is positive
but more than 27, it means than B is actually larger than A but
has wrapped around from a very large to a small value.

C. Verification

In order to verify our design, we wrote three models of a heap,
of increasing level of abstraction, and we simulated them in par-
allel with the Verilog design, so that each higher-level model
checked the correctness of the next level, down to the actual de-
sign. The top level model, written in Perl, is a priority queue
that just verifies that the entry returned upon deletions is the
minimum of the entries so far inserted and not yet deleted. The
next more detailed model, written in C, is a plain heap; its mem-
ory contents must match those of the Verilog design for test
patterns that do not activate the insertion abortion mechanism
(section III-A). However, when this latter mechanism is acti-
vated, the resulting layout of entries in the pipelined heap may
differ from that in a plain heap, because some insertions are

aborted before they reach their “equilibrium” level, hence the
value that replaces the root on the next deletion may not be the
maximum value along the insertion path (as in the plain heap),
but another value along that path, as determined by the relative
timing of the insert and delete operations. Our most detailed C
model precisely describes this behavior. We have verified the
design with many different operation sequences, activating all
existing bypass paths. Test patterns of tens of thousands of op-
erations were used, in order to test all levels of the heap, also
reaching saturation conditions.

D. Implementation Cost and Performance

In an example implementation that we have written, each
heap entry consists of an 18-bit priority value and a 14-bit flow
identifier, for a total of 32 bits per entry. Each pipeline stage
stores the entries of its heap level in four 32-bit two-port SRAM
blocks. We have processed the design through the Synopsys
synthesis tool to get area and performance estimates. Fora 16 K
entry heap, the largest SRAM blocks are 2K x 32. The varying
size of the SRAM blocks in the different stages of the pipeline
does not pose any problem: modern ASIC tools routinely per-
form automatic, efficient placement and routing of system-on-
a-chip (SoC) designs that are composed of multiple, heteroge-
neous sub-systems of random size each. Most of the area for
the design is consumed by the unavoidable on-chip memory.
For the example implementation mentioned above, the memory
occupies about 3/4 of the total area.

The datapath and control of the general pipeline stage has a
complexity of about 5.5 K gates'® plus 500 bits worth of flip-
flops and registers. As mentioned, the first stage differs signif-
icantly from the general case, being quite simpler. If we con-
sider the first stage together with the extra logic after the last
stage, the two of them approximately match the complexity of
one general stage. Thus, we can deduce a simplified formula

L0simple 2-input NAND/NOR gates

(©Copyright IEEE - to appear in IEEE/ACM Transactions on Networking (ToN), 2007

10

Stage 2
(<<1)

5
g

inserted item

£

2

v

El

—

=
£

RA Din WA

RA Din WA

D2 L2 D3 L3 D4 L4 D5 L5 D6
Dout Dout Dout Dout
Fig. 7. Datapath portion to handle insert operations
Stage 1 Stage 2 Stage 3 M H Stage 4 A
opr "stEty g + I o +
| s 1} =g |
iD H it
i | L T
KBS i 7
il) D3 = D4
o4
0]
o) i
Ll | 3
L | i
_ *E !] ! ! T
RAS] L_RAZ Tu L_IRAB U L_RAp i
D4 D5 D6
D3 | | Ds
B 14 15 16
l l
RA Din WA RA Din WA RA Din WA RA Din WA
L2 L3 L4 L5
Dout Dout Dout Dout
J J

Fig. 8. Datapath portion to handle delete operations

for the cost of this heap manager as a function of its size (the
number of entries it can support):

Cost =10 x (55K gates + 0.5K flip — flops) +

+ 2% x 32 memory_bits

where ¢ is the number of levels (¢ = log, (# entries)). For the
example implementation with 16 K entries, the resulting com-
plexity is about 80 K gates, 7 K flip-flops, and 0.5 M memory
bits.

Table IT shows the approximate silicon area, in a 0.18-micron
CMOS ASIC technology, for pipelined heaps of sizes 512
through 64 K entries. Figure 9 plots the same results in graph-
ical form. As expected, the area cost of memory increases lin-
early with the number of entries in the heap, while the datapath
and control cost grows logarithmically with that number. Thus,
observe that the datapath and control cost is dominant in heaps

with 1 K or fewer entries, while the converse is true for heaps
of larger capacities.

The above numbers concerned a low-cost technology, 0.18-
micron CMOS. In a higher cost and higher performance 0.13-
micron technology, the area of the 64 K entry pipelined heap
shrinks to 20 mm?, which corresponds to roughly 15 % of a
“typical” ASIC chip of 160 mm? total area''. Hence, a heap
even this big can easily fit, together with several other sub-
systems, within a modern switching/routing/network process-
ing chip. When the number of (micro-) flows is much higher
than that, a flow aggregation scheme can be used to reduce their
number down to the tens of thousands level, while maintaining
reasonable QoS guarantees. Alternatively, even larger heaps are
realistic, e.g. by placing one or two levels in off-chip memory
(Table I).

the pentium IV processor, built in 0.13-micron technology, occupies 146
mm

(©Copyright IEEE - to appear in IEEE/ACM Transactions on Networking (ToN), 2007

11

Heap | Levels | Mem Area datapath
Entries | Levels (mm?) (%) | area (mm?)
512 9 2.1 (43) 2.8
1K 10 3.1 (50) 3.1
2K 11 4.3 (56) 34
4K 12 6.3 (63) 3.7
8K 13 9.2 (70) 4.0
16K 14 14.5 a7 4.3
32K 15 234 (84) 4.6
64K 16 40.5 (89) 4.9
TABLE II

APPROXIMATE MEMORY AND DATAPATH AREA IN A 0.18-MICRON CMOS
ASIC TECHNOLOGY, FOR VARYING NUMBER OF ENTRIES

[J Memory Area [] Datapath Area
50 R i R T R T T

(93
(=}
T

Area (mm”\2)
s

b+«
512 1K 2K 4K 8K 16K 32K 64K
Mumber of Entries

Fig.9. Approximate memory and datapath area in a 0.18-micron CMOS ASIC
technology, for varying number of entries

We estimated the clock frequency of our example design (16
K entries) using the Synopsys synthesis tool. In a 0.18-micron
technology that is optimized for low power consumption, the
clock frequency would be 180 MHz, approximately'?. In other
usual 0.18-micron technologies, we estimate clock frequencies
around 250 MHz. For the higher-cost 0.13-micron ASIC’s, we
expect clocks above 350 MHz. For larger heap sizes, clock fre-
quency gets slightly reduced due to the larger size of the mem-
ory(ies) in the bottom heap level. However, this effect is not
very pronounced: on-chip SRAM cycle time usually increases
by just about 15% for every doubling of the SRAM block size.
Overall, these clock frequencies are very satisfactory: even at
200 MHz, this heap provides a throughput of 200 MOPS (Mop-
erations/s) (if there were no insertions in between delete op-
erations, this figure would be 100 MOPS). Even for 40-byte
minimum-size packets, 200 MOPS suffices for line rates of
about 64 Gbit/s.

12this number is based on extrapolation from the 0.35-micron low-power
technology of our ATLAS I switch chip [Korn97]

VI. CONCLUSIONS

We proposed a modified heap management algorithm that is
appropriate for pipelining the heap operations, and we designed
a pipelined heap manager, thus demonstrating the feasibility
of large priority queues, with many thousands of entries, at a
reasonable cost and with throughput rates in the hundreds of
million operations per second. The cost of these heap man-
agers is the (unavoidable) SRAM that holds the priority val-
ues and the flow ID’s, plus a dozen or so pipeline stages of a
complexity of about 5.500 gates and 500 flip-flops each. This
compares quite favorably to calendar queues —the alternative
priority queue implementation— with their increased memory
size (cost) and their inability to efficiently handle sets of queues
(forests of heaps).

The feasibility of priority queues with many thousands of en-
tries in the hundreds Mops range has important implications
for advanced QoS architectures in high speed networks. Most
of the sophisticated algorithms for providing top-level quality-
of-service guarantees rely on per-flow queueing and priority-
queue-based schedulers (e.g. weighted fair queueing). Thus,
we have demonstrated the feasibility of these algorithms, at rea-
sonable cost, for many thousand of flows, at OC-192 (10 Gbps)
and higher line rates.

Acknowledgements

We would like to thank all those who helped us, and in par-
ticular George Kornaros and Dionisios Pnevmatikatos. We also
thank Europractice and the University of Crete for providing
many of the CAD tools used, and the Greek General Secretariat
for Research & Technology for the funding provided.

REFERENCES

[Bennett97] J. Bennett, H. Zhang: “Hierarchical Packet Fair Queueing Algo-
rithms”, IEEE/ACM Trans. on Networking, vol. 5, no. 5, Oct. 1997, pp.
675-689.

[Bhagwan0O] R. Bhagwan, B. Lin: “Fast and Scalable Priority Queue
Architecture for High-Speed Network Switches”, IEEE Infocom 2000
Conference, 26-30 March 2000, Tel Aviv, Israel; http://www.ieee-
infocom.org/2000/papers/565.ps

[Brown88] R. Brown: “Calendar Queues: a Fast O(1) Priority Queue Imple-
mentation for the Simulation Event Set Problem”, Commun. of the ACM,
vol. 31, no. 10, Oct. 1988, pp. 1220-1227.

[Chao91] H. J. Chao: ”A Novel Architecture for Queue Management in the
ATM Network™, IEEE Journal on Sel. Areas in Commun. (JSAC), vol. 9,
no. 7, Sep. 1991, pp. 1110-1118.

[Chao97] H.J. Chao, H. Cheng, Y. Jeng, D. Jeong: “Design of a Generalized
Priority Queue Manager for ATM Switches”, IEEE Journal on Sel. Areas
in Commun. (JSAC), vol. 15, no. 5, June 1997, pp. 867-880.

[Chao99] H.J. Chao, Y. Jeng, X. Guo, C. Lam: "Design of Packet-Fair Queue-
ing Schedulers using a RAM-based Searching Engine”, IEEE Journal on
Sel. Areas in Commun. (JSAC), vol. 17, no. 6, June 1999, pp. 1105-1126.

[Hart02] K. Harteros: “Fast Parallel Comparison Circuits for Schedul-
ing”, Master of Science Thesis, University of Crete, Greece;
Technical Report FORTH-ICS/TR-304, Institute of Computer Sci-
ence, FORTH, Heraklio, Crete, Greece, 78 pages, March 2002;
http://archvlsi.ics.forth.gr/mugpro/cmpTree.html

[Ioann00] Aggelos D. Ioannou: ”An ASIC Core for Pipelined Heap Manage-
ment to Support Scheduling in High Speed Networks”, Master of Science
Thesis, University of Crete, Greece; Technical Report FORTH-ICS/TR-
278, Institute of Computer Science, FORTH, Heraklio, Crete, Greece,
November 2000; http://archvlsi.ics.forth.gr/muqpro/heapMgt.html

(©Copyright IEEE - to appear in IEEE/ACM Transactions on Networking (ToN), 2007

12

M. Katevenis: “Pipelined Heap (Prior-
ity Queue) Management for Advanced Scheduling in High
Speed Networks”, Proc. IEEE Int. Conf. on Communications
(ICC’2001), Helsinki, Finland, June 2001, pp. 2043-2047 (5 pages).
http://archvlsi.ics.forth.gr/muqgpro/queueMgt.html

[Jones86] D. Jones: ”An Empirical Comparison of Priority-Queue and Event-
Set Implementations”, Commun. of the ACM, vol. 29, no. 4, Apr. 1986,
pp. 300-311.

[Kate87] M. Katevenis: “Fast Switching and Fair Control of Congested Flow
in Broad-Band Networks”, IEEE Journal on Sel. Areas in Commun.
(JSAC), vol. 5, no. 8, Oct. 1987, pp. 1315-1326.

[Kate97] M. Katevenis, lectures on heap management, Fall 1997.

[KaSC91] M. Katevenis, S. Sidiropoulos, C. Courcoubetis: “Weighted Round-
Robin Cell Multiplexing in a General-Purpose ATM Switch Chip”, IEEE
Journal on Sel. Areas in Commun. (JSAC), vol. 9, no. 8, Oct. 1991, pp.
1265-1279.

[KaSM97] M. Katevenis, D. Serpanos, E. Markatos: “Multi-Queue Man-
agement and Scheduling for Improved QoS in Communication Net-
works”, Proceedings of EMMSEC’97 (European Multimedia Micropro-
cessor Systems and Electronic Commerce Conference), Florence, Italy,
Nov. 1997, pp. 906-913; http://archvlsi.ics.forth.gr/html_papers/ EMM-
SEC97/paper.html

[Keshav97] S.Keshav: ”An Engineering Approach to Computer Networking”,
Addison Wesley, 1997, ISBN 0-201-63442-2.

[NikoO1] A. Nikologiannis, M. Katevenis: “Efficient Per-Flow Queueing in
DRAM at OC-192 Line Rate using Out-of-Order Execution Techniques”,
IEEE International Conference on Communications, Helsinki, June 2001,
http://archvlsi.ics.forth.gr/muqpro/queueMgt.html

[Korn97] G. Kornaros, C. Kozyrakis, P. Vatsolaki, M. Katevenis: “Pipelined
Multi-Queue Management in a VLSI ATM Switch Chip with Credit-
Based Flow Control”, Proc. 17th Conf. on Advanced Research in VLSI
(ARVLSI’97), Univ. of Michigan at Ann Arbor, MI USA, Sep. 1997, pp.
127-144; http://archvlsi.ics.forth.gr/ atlasl/ atlasI_arvlsi97.ps.gz

[Kumar98] V. Kumar, T. Lakshman, D. Stiliadis: "Beyond Best Effort: Router
Architectures for the Differentiated Services of Tomorrow’s Internet”,
IEEE Communications Magazine, May 1998, pp. 152-164.

[Mavro98] I. Mavroidis: ”"Heap Management in Hardware”, Technical Report
FORTH-ICS/TR-222, Institute of Computer Science, FORTH, Crete, GR;
http://archvlsi.ics.forth.gr/muqgpro/heapMgt. html

[Stephens99] D. Stephens, J. Bennett, H. Zhang: “Implementing Schedul-
ing Algorithms in High-Speed Networks”, IEEE Journal on Sel. Ar-
eas in Commun. (JSAC), vol. 17, no. 6, June 1999, pp. 1145-1158.
http://www.cs.cmu.edu/People/hzhang/ publications.html

[Zhang95] H. Zhang: “Service Disciplines for Guaranteed Performance in
Packet Switching Networks”, Proceedings of the IEEE, vol. 83, no. 10,
Oct. 1995, pp. 1374-1396.

[Toan01] A. Ioannou,

Aggelos D. Ioannou (M ’01) received the B.Sc. and
M.Sc. degrees in Computer Science from the Univer-
sity of Crete, Greece in 1998 and 2000 respectively.
He is a digital system designer in the Computer Ar-
chitecture and VLSI Systems Laboratory, Institute
of Computer Science, Foundation for Research &
Technology - Hellas (FORTH), in Heraklion, Crete,
Greece. His interests include switch architecture, mi-
croprocessor architecture and high performance net-
works. In 2001-04 he worked for Globetechsolutions,
Greece, building verification environments for high
speed ASICs. During his M.Sc. studies (1998-2000) he designed and fully ver-
ified a high-speed ASIC implementing pipelined heap management. His home
page is: http://archvlsi.ics.forth.gr/ ~ioannou

Manolis G.H. Katevenis (M ’84) received the
Diploma degree in EE from the Nat. Tech. Univ.
of Athens, Greece, in 1978, and the M.Sc. and
Ph.D. degrees in CS from the Univ. of Califor-
nia, Berkeley, in 1980 and 1983 respectively. He
is a Professor of Computer Science at the Univer-
sity of Crete, and Head of the Computer Architec-
ture and VLSI Systems Laboratory, Institute of Com-
puter Science, Foundation for Research & Technol-
ogy - Hellas (FORTH), in Heraklion, Crete, Greece.
His interests are in interconnection networks and in-
terprocessor communication; he has contributed especially in per-flow queue-
ing, credit-based flow control, congestion management, weighted round-
robin scheduling, buffered crossbars, non-blocking switching fabrics, and in

remote-write-based, protected, user-level communication. Dr. Katevenis re-
ceived the 1984 ACM Doctoral Dissertation Award for his thesis on Re-
duced Instruction Set Computer Architectures for VLSI. His home page is:
http://archvlsi.ics.forth.gr/ ~kateveni

(©Copyright IEEE - to appear in IEEE/ACM Transactions on Networking (ToN), 2007

