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Abstract— Network Intrusion Detection System (NIDS) per-
forms deep inspections on the packet payload to identify, deter
and contain the malicious attacks over the Internet. It needs
to perform exact matching on multi-pattern signatures in real
time. In this paper we introduce an efficient data structure called
Extended Bloom Filter (EBF) and the corresponding algorithm
to perform the multi-pattern signature matching. We also present
a technique to support long signature matching so that we
need only to maintain a limited number of supported signature
lengths for the EBFs. We show that at reasonable hardware cost
we can achieve very fast and almost time-deterministic exact
matching for thousands of signatures. The architecture takes the
advantages of embedded multi-port memories in FPGAs and can
be used to build a full-featured hardware-based NIDS.

I. INTRODUCTION

Some content strings of Internet packet payload, also known
as ‘“signatures,” imply network intrusion attempts. Signature-
based Network Intrusion Detection System (NIDS) collects
these signatures and scans the payload of the Internet packets
for them in order to identify, deter and contain such malicious
behaviors. A scalable and fast solution is needed to accom-
modate the largest signature set today and to sustain the real
time processing of the high-speed network.

Bloom Filter [4] is an efficient data structure enabling fast
membership query with tunable false positive rate. Dharma-
purikar et al have designed a multi-pattern signature-matching
scheme using Bloom Filters [6]. On the scan process, when-
ever the front-end Bloom Filter reports a possible match, the
string is extracted and used to probe another independent hash
table to decide the final match. There are two drawbacks in
this scheme. Firstly, the extra lookups in the hash table might
become the performance bottleneck due to the hash collisions.
Secondly, there are many different signature lengths and the
signature distribution on length is unbalanced, so to assign
each length a Bloom Filter is inefficient in memory usage.

We find that the scheme does not effectively use the
information revealed by the Bloom Filters and there is little
consideration about the string load balancing among different
Bloom Filters. To overcome these drawbacks, we propose an
extension of the Bloom Filter data structure and a new lookup
algorithm named Extended Bloom Filter (EBF). It is scalable
and suitable for fast incremental updates. The hardware-based
EBF is an alternative of the multi-pattern signature-matching
problem and outperforms the software-based algorithms.

In this paper, we review the related work in Section II and
then discuss our data structure and algorithms in Section III.
A theoretical analysis and simulations follow in Section IV
and V. Some improvements are presented in Section VI to
further reduce the memory usage and boost the performance.
The scheme to reduce the number of EBFs is introduced in
VII. We briefly talk about the hardware NIDS implementation
in Section VIII and conclude our contribution in Section IX.

II. RELATED WORK

Given a packet payload T' of length n and a set of m signa-
tures S[1]...S[m] of variable length for intrusion detection, the
signature-matching problem is to determine any exact match
of signature S[i] and a substring of 7. In NIDS, signature
matching is a crucial component and decides the overall
system performance. An analysis shows that in Snort, an open-
source software-based NIDS, the signature matching alone
consumes 30% to 80% of the CPU time [9]. While the network
bandwidth and the size of the signature set keep growing, to
perform real time detection is still far from realistic.

Boyer-Moore is the best-known algorithm for single string
matching and is actually adopted for the implementation of the
Snort. Fisk extended the Boyer-Moore algorithm to support
set-wise string matching [8]. Coit does similar work in [5].
Aho-Corasick [2] is a finite state automaton supporting multi-
pattern string matching. The major drawback is its excessive
memory consuming. A modified algorithm of Aho-Corasick
due to Tuck [14] reduces the amount of memory and improves
its performance. Wu-Manber [15] uses a hash table plus the
bad character heuristics to accelerate the searching speed. All
these algorithms are developed mainly for software imple-
mentation. Analysis and experiments show no such algorithm
is fast enough for real-time string matching in high-speed
network. Thus, a hardware-assisted or pure hardware solution
is becoming more and more attractive.

Sidhu [12] implemented Nondeterministic Finite Automaton
(NFA) in hardware and later Moscola [10] implemented De-
terministic Finite Automaton (DFA) in hardware to perform
regular expression matching. While the match speed is fast,
they both suffer the scalability problem: Too many states
consume too many hardware resources. Dharmapurikar then
proposed to use Bloom Filters to do the deep packet inspection
[6]. Attig implemented a prototype of this scheme [3]. Our
paper proposes significant improvement to this work and
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addresses more problems in a real hardware based NIDS im-
plementation. Recently, Yu proposed a TCAM-based scheme
for multi-pattern matching [16]. Despite the widely criticized
inefficiency of TCAM device, the long string matching support
involves multiple tables.

III. EBF DATA STRUCTURE AND ALGORITHM

struct EBF {
bit  hit;
integer counter;
struct llist* link_list;

}

struct llist {
struct slist* string;
struct llist* next;

}

Fig. 1. EBF Data Structure

EBF eliminates the need of another hash table for match
verification. Moreover, the information gained from the Bloom
Filter is exploited to accelerate the lookups. As shown in
Figure 1, each EBF bucket has three fields. The first field
(Hit Bit) is one bit and has the same definition as in the
original Bloom Filter. The second field is a counter that counts
how many signatures address the bucket. Unlike the Counting
Bloom Filter (CBF) [7], in which the counters are used for
update purpose only, EBF uses the counters to accelerate
the signature matching. The last field is a pointer. If some
signature sets the Hit Bit, this pointer will eventually lead to
it. All signatures hashed to a bucket are organized in a link
list. In order to save memory, only one copy of each signature
is stored and pointed by a pointer from the link list nodes. The
algorithm can be described as two steps: EBF programming
and membership query. Assuming the EBF contains m buckets
and r hash functions: H; ... H,., the algorithm to programming
a signature S is described in Figure 2.

Procedure Programming_EBF(S)
Allocate memory space for S at address m;
Store S at address m;
foriin 1tordo
k = Hi(S);
EBF[k].hit = 1;
EBFIK].counter ++;
Allocate memory space for a link list node
LN at address j;
LN.string = m;
LN.next = NULL;
Follow the link till a node LLN.next = Null;
LLN.next =j;

Fig. 2. Algorithm for EBF Programming

Figure 3 shows an example of EBF for which k£ = 3 and
m = 13. Four signatures have been programmed into the EBF
in sequence of S1, S2, §3, and 54.

Once the EBF is programmed, it is ready for membership
query. As described in Figure 4, the algorithm retains the basic
feature of Bloom Filter by filtering out the impossible match
quickly. Moreover, in case all Hit Bits are set for a string,
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Fig. 3. Programming the Extended Bloom Filter

Procedure Query_EBF(S)
min_counter = max possible number
foriin1tordo

k = Hi(S);
if EBF[K].hit == 0
There is no match, return;
else
if EBF[k].counter < min_counter
min_counter = EBF[k].counter;
min_index = k;
pt = EBF[min_index].link_list;
do while pt != Null
if pt.string == S
There is a match, return S;
else
pt = pt.next;
There is no match, return;

Fig. 4. Algorithm for Signature Matching in EBF

the counter mechanism guides us to only search a shortest
list to verify the membership. The algorithm is targeted at
hardware implementation so we can fully exploit the hardware
parallelism. All r hash functions can be calculated in parallel
and the multiple EBF buckets can be probed simultaneously.

It is straightforward to perform the signature update. To
insert a signature, we call the procedure Programming_EBF.
To delete a signature, we use the similar method described
in the CBF scheme with additional work to remove the corre-
sponding list node and recycle the memories. In all operations,
memory for signatures and list nodes are dynamically allocated
and de-allocated.

IV. ANALYSIS

Firstly, we analyze the average length of the link list in any
EBF bucket. Assuming there are n signatures, for a bucket,
the probability f.; that the Hit Bit is set by one signature is:

1
fset:]-_(]-_*)T (1)
m

The probability f;_s.; that a bucket’s Hit Bit is set by i
signatures is:

fi_set = ( ZL ) [1-(1- %)r]i(l — %)T(nfi) )

So the average length of link list l,,4 is

lavg = Ell] =21 0i X fisee =n(1—(1——=)") (@Q3)
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For the Bloom Filter, when the false positive probability is
minimized with respect to r, we get the relation

r = (m/n)ln2 “)

Based on these analysis, the approximation of link list
length as:

1
lavg =n(1 = (1= =)W min2 0.7 (5)

Under the same conditions, the probability for a bucket to be
empty is roughly 0.5. This implies that half of the total buckets
are never hit by any member signature. Using same parameters
as in [3]’s Bloom Filter implementation, the false positive rate
is as low as 0.00097 and the average link list length is only
0.4. This result shows that the link list is typically very short.

Theoretically, if the r buckets are randomly selected from
all the buckets with non-zero counter value, we would like to
know the expected shortest link list. Assuming the percentage
of buckets with a counter value of ¢ over all the buckets with
non-zero counter value is p;. P(j) is the probability that the
smallest counter value is j among the r randomly selected
buckets. Therefore, we get the equation:

P1)=1-P(>1)=1-(10-p1) (6)
and when 7 > 1
P(j)=1-P(<j)—P(>))
= (1 =% 2pe)" — (1= Sh_ype)" 9

The expected value of j is

E[jl =521 x P(j) =1+ 53,1 = Xi_ip)" (8)

We know that in the optimal case, half of the bucket have
a zero value counter, so we have the relation:

pi =2 X fi,set &)

Using the optimal EBF parameters, P(1) is greater than
0.99 and E[j] is slightly larger than one. This shows in most
cases actually, only the link lists with length one need to be
checked if none of the r hashed counters is zero. Note that
the analysis is not very strict and only reflect the approximate
results. We use simulations as backup in the following section.

V. SIMULATION

Simulation results support our theoretical analysis. We use
the same parameter configurations as in [3]: 1419 signatures
are programmed by 10 hash functions into a 20K-bucket EBF.
In the worst and extremely rare cases, at most two memory
accesses are needed. In case that the signatures are all 2-byte
long, we test all the 65535 possible strings, only seven of
them need two memory accesses and others need only one,
even though the link list lengths range from two to five. The
longer signature cases exhibit even better performance.

We also did some experiments based on the different com-
binations of the number of hash functions and EBF buckets
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Fig. 5. Simulation I

as shown in Figure 5. We ran a million queries that cover all
the programmed signatures. The “Max Length” curve indicates
the length of the longest link list in EBF. As more signatures
are programmed into EBF, the maximum length of link list
grows. Fortunately, we do not need to traverse the longest
list. The “Max Hit Length” curve shows the longest list we
need to traverse in order to find the matching in any query.
By decreasing the number of hash functions or increasing
the number of buckets, we can effectively lower this number.
However, using less hash functions may increase the false
positive rate and using more EBF buckets will increase the
resource consumption. Finally, the “Avg Hit Length” curve
shows the average length of the list we traverse during the
simulation. This number is typically less than two. For the
Snort signatures, we have shown for any specific length,
there are about or much fewer than 100 distinct signatures.
In this case, our experiments indicates only one list node
check is needed. By fine-tuning the parameters, we can support
more than 1000 signatures with tolerable number of memory
accesses.

To test the effect on Snort rule set, for each signature length,
we only program 200 distinct signatures in EBF. This leaves
spacious room for future update. By varying the number of
EBF buckets and the number of hash functions, we see how
the number of false positive match and average number of link
list accesses change as shown in Figure 6.

In a query process, once a string is matched at some list
node, there is no need to go through the following list nodes.
This actually makes the real average performance better than
the simulation results. In hardware, we could pipeline the
memory lookups to achieve even better performance.
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Fig. 6. Simulation II
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VI. EBF OPTIMIZATIONS

The EBF is stored in on-chip multi-port SRAM that enables
parallel access in one clock cycle. Beside the Hit Bit, we
budget 4 bits for the counter that supports link list length up to
15. We leave 11 bits to the pointer field that distinguish up to
2K signatures. Thus, each bucket is only 2- byte. With a 40K-
byte on-chip SRAM, we could support 2K any length signature
matching. Now we introduce several optimizations to further
improve the storage efficiency and lookup performance.

Max-Min Threshold: After all signatures are programmed,
the minimum link list length for each signature S; is min(S;).
A value B is maintained along with EBF, where B =
max{min(S;)...,¥S;}. The usage of B is straightforward:
whenever the Bloom Filter reports a match but the queried
minimum counter value is greater than B, we know for sure
this is a false positive so no link list access is needed. This
heuristics comes form the observation that given the small
false positive rate, min(S;) tends to be small. When 20K
buckets, 10 hash functions and 2000 signatures are used,
simulation shows B = 1 and for 1 million test inputs there are
114 false positive matches with shortest link list longer than
1. This simple improvement eliminates most of the expensive
and unnecessary memory accesses.

Compressed Counter:In previous description, we separate
the “Hit bit” and Counter in EBF. Actually, a non-zero counter
implies some signatures hit the bucket so the “Hit bit” is
redundant. A more aggressive counter scheme is used in EBF
implementation. Each on-chip EBF bucket only contains &
bits for a saturated counter, where k = [log(B + 1)| + 1.
The pointer field is maintained in a table located in off-chip
memories. In practical EBF configurations where B is often
less than two, two bits are enough to represent the counter and
differentiate all useful scenarios, where saturated value “11”
means the bucket is hit by three or more signatures. With
this optimization, same design mentioned at the beginning of
this section can be achieved by using only 40K-bit on-chip
memories. Note that this saturated counter scheme loses the
ability to track the real number of signatures in a list.

Shared Link List Nodes: In EBF, up to r link list nodes are
allocated for one signature since r hash functions are used.
Assuming each link list node is 4-byte and each signature is
32-byte, to support 2000 signatures we need roughly 144K-
byte memory. Considering in Snort rule set there are almost
50 distinct signature lengths, we have the scalability issue to
support multiple EBFs. By slightly modifying our algorithm,
we can greatly eliminate the data structure redundancy. Ideally,
if we always perform a deterministic lookup to the off-chip
memory, we need only store a single list node for a signature.
However, we want to support the fast incremental updates,
and the simple and unified control operations to EBF, so we
introduce a scheme that is not optimal but still significant in
memory reducing.

When we program a signature in EBF, we need update r
EBF buckets. We always insert the signature at the head of
the list. For all the buckets that have not been set by any

other signature, we only allocate one list node shared by these
buckets. Since we already know that most of lists in EBF
only include one node, this scheme can significantly reduce
the memory consumption compared with the original one.
The formal description of the improved algorithm is shown
in Figure 7

Procedure Programming_EBF_new(S)
Allocate memory space for S at address m;
Store S at address m;
token = 1;
foriin1tordo

k = Hi(S);
EBFI[k].counter ++;
if (EBF[K].hit == 1)
Allocate memory space for a link list node
LN at address j;
LN.string = m;
LN.next = EBF[K].pointer;
EBFI[K].pointer = LN
else
EBF[K].hit = 1;
if (token == 1)
Allocate memory space for a link list node

LN at address j;

token = 0;
LN.string = m;
LN.next = Null;
EBFI[K].pointer = LN;

Fig. 7. Improved EBF Programming Algorithm

In Figure 8, we use 10 hash functions and 20K EBF buckets
to test our improved algorithm. Simulation shows 63% to 90%
memory saving and the saving is more significant when the
number of signatures is smaller. However, the absolute saving
becomes bigger and bigger when the number of signatures
increases.
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Fig. 8. Memory Saving with Improved Algorithm

Other optimization is also possible. Since we only store each
signature once by using exogenous link lists, this doubles the
number of memory accesses to retrieve a signature. To improve
the lookup performance, we can save a short hash digest in
each link list node to avoid the unnecessary comparison with
the long signature itself by comparing the hash digest first.

VII. LONG SIGNATURE MATCHING

The signature lengths distribute in a large range from a few
bytes to hundreds. In a parallel computing environment, it
is infeasible to maintain an EBF for each signature length.
Based on the system resource availability, we set a threshold
t. Any signature longer than ¢ should be segmented into a set
of substrings with length of ¢ except the last substring that the
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length is possible shorter than ¢. Two more bits are needed
to store along with each substring in off-chip memory. One
bit indicates if this substring is a partial match, the other bit
indicates if this partial match substring is the first segment. We
also maintain two other tables. One is the Partial Match Table
(PMT) with ¢ x t bytes. One extra bit for each entry indicates
if this entry is valid. The other table is the Concatenate
Verification Table (CVT) that stores all the combinations of
two segments that form the substrings of the signatures. One
extra bit indicates if this is the last two segments. CVT could
be implemented using hash table or CAM.

From the start of payload scan, a pointer p is calculates as
(# of bytes scanned)% t. Table I shows the algorithm for
long signature matching.

TABLE I
LONG SIGNATURE MATCHING ALGORITHM

if a string is partial and the first segment
register it in entry p
else if a string is partial but not the first segment
if the PMT entry p is valid
concatenate this string with content in entry p
lookup the CVT
if found in CVT
if indicate this is the last block
report match
else
replace the old entry in PMT with this string
else
drop it
invalidate the entry p
else
drop it

For Snort rule set, if we set ¢ = 24, then PMT is only
576 bytes and the CVT needs to store only about 200 48-byte
substrings. We need only maintain less than 24 EBFs instead
of more than 50.

VIII. IMPLEMENTATION

Network Intrusion Detection Systems need to inspect the
packets based on both the header and payload. A hardware-
based NIDS, taking the advantages of the stat-of-art FPGA
technology, is proposed to implement the Snort rule matching.
Figure 9 illustrates the high-level overview of the system.
The layered protocol wrappers are used to handle the TCP/IP
header and maintain the flow state [11] and the module of
packet header classification is used to inspect the packet header
and help to match the full rules [13]. We implement our data
structure and lookup algorithm in string matching module to
identify the signatures.

An FPGA chip can contain more than 10-Mbits SRAMs,
configured in different depth and width [1]. We implement
the front-end EBF data structure on-chip by taking advantage
of these flexible multi-port SRAMs.

The link lists and signatures are stored in off-chip memory.
The memory management logic dynamically allocates the
memory for them. The operation takes several clock cycles.
This extra complexity only happens when we initialize or
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Fig. 9. FPGA-based NIDS

update the signatures in EBF. As we know, the database
updating is relatively infrequent compared with the signature
matching task, so this is not a serious concern.

IX. CONCLUSION

In this paper, we present a new data structure that extends
the classical Bloom Filter. We propose the corresponding al-
gorithms for hardware-based multi-pattern signature matching.
We also present a scheme to support long signature matching.
We demonstrate that our EBF algorithm is highly efficient in
terms of both throughput and memory storage. We integrate
this algorithm into a full-featured hardware-based NIDS. We
believe this is a key step towards building a real time NIDS,
which is capable of actively monitoring and filtering all pass-
through traffic even in a high-speed network.
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