Perfect Hashing for Network Applications

Yi Lu, Balaji Prabhakar Flavio Bonomi
Dept. of Electrical Engineering Cisco Systems
Stanford University 175 Tasman Dr
Stanford, CA 94305 San Jose, CA 95134
yi.lu,balaji@stanford.edu flavio@cisco.com

Abstract—Hash tables are a fundamental data structure in the set of keys changes drastically. We come up with various
many network applications, including route lookups, packet heuristics for minimizing the probability of rebuilding.
classification and monitoring. Often a part of the data path, .
they need to operate at wire-speed. However, several associativeA' Perfect Hashing
memory accesses are needed to resolve collisions, making them 1) Definitions:
slower than required. This motivates us to consider minimal « Perfect Hash FunctionSuppose tha$ is a subset of size

erfect hashing schemes, which reduce the number of memor
gccesses to ju%t 1 and are also space-efficient. y n of the universel/. A function h mappingU into the

Existing perfect hashing algorithms are not tailored for net- integers is said to bperfectfor S if, when restricted to
work applications because they take too long to construct and S, it is injective [6].
are hard to implement in hardware. » Minimal Perfect Hash Functiontet |S| =n and|U| =
This paper introduces a hardware-friendly scheme for minimal u. A perfect hash functiork is minimal if 2(S) equals
perfect hashing, with space requirement approaching3.7 times {0 n— 1} [6]
the information theoretic lower bound. Our construction is 7)

several orders faster than existing perfect hashing schemes. 2) Performance Parameters:

Instead of using the traditional mapping-partitioning-searching « Encoding size The number of bits needed to store the
methodology, our scheme employs a Bloom filter, which is known representation of.

for its simplicity and speed. We extend our scheme to the dynamic . . .
setting, thus handling insertions and deletions. « Evaluation time The time needed to compute(z) for
T € u.

I. INTRODUCTION « Construction timeThe time needed to compute

Hash tables constitute an integral part of many netwokevious Work. Fredman and Kondls used a counting argu-
applications. For instance, when performing IP address lookgignt to prove a worst-case lower bounddbg e+log log u—
at a router, one or more hash tables are queried to determin@ogn) for the encoding size of a minimal perfect hash
the egress port for an arriving packet. Hash tables are afg@ction, provided that, > n?*¢ [7]. The bound is almost
used in packet classification, per-flow state maintenance, affht as the upper bound given by Mehlhorn ridoge +
network monitoring. Given the high operating speeds of t@og logu + O(logn) bits [8]. However, Mehlhorn's algorithm
day’s network links, hash tables need to respond to querieshifis a construction time of ordeP(ne"ulogu)
few tens of nanoseconds. One often-used approach to search for a minimal perfect
Despite the advance in the embedded memory technologsish function involves three stages: mapping, partitioning and
it is still not possible to accommodate a hash table, often wigzarching. Mapping finds an injective function énwith a
hundreds of thousands of entries, in an on-chip memory [Emaller range. Partitioning separates the keys into subgroups.
Therefore, hash tables are stored in larger but slower off-ctipid searching finds a hash value for each subgroup so that
memories. It is very important to minimize the number ofhe resulting function iperfect More details can be found in
off-chip memory accesses and there has been much work[op [7].
this recently. For example, Song et. al. [1] proposed a fastFredman, Kons and Szemédi constructed a data struc-
hash table based on Bloom filters [2] and #eft scheme ture that uses spage+ o(n) and accommodates membership
[3], while Kirsch and Mitzenmacher [4] proposed an on-chigueries in constant time [10]. Fox et. al. [9] constructed an
summary that speeds up accesses to an off-chip, multi-leaéjorithm for large data sets whose encoding size is very
hash table, originally proposed by Broder and Karlin [5]. close to the theoretical lower bound, i.e., arond bits per
Our approach differs from the above in the constructickey. They also carried out experiments 88 million keys
phase: we construct a perfect hash function on-chip withcaind the construction time was 6 hours on a NeXT station.
consulting the off-chip memory. Moreover, the off-chip memSeparately, Hagerup and Tholey achievddg e +log log u +
ory is a simple list storing each key and its correspondingn + loglogw) encoding space, constant lookup time and
item; there is no additional structure to the list. Finally, th©(n + loglogu) expected construction time using similar
space we use, both on-chip and off-chip, is smaller and oapproaches [6].
scheme adapts well to the dynamic situation, allowing us toThe dynamic perfect hashing problem was considered by
perform insertions and deletions in constant time. A drawba€ketzfelbinger et. al. [11]. Their scheme takég1) worst-
of our scheme (and, indeed of any perfect hashing schemelase time for lookups an@(1) amortized expected time for
the dynamic setting is that it requires a complete rebuild ifisertions and deletions; it uséyn) space.

h(x) ‘ 0 ‘ 1 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 | 0 ‘ 1 ‘ 0 ‘ 0 ‘ 1 ‘ to the next. As a result of our construction, each key finds a
hash functiorh; (-) that puts it in a position thato onehas oc-

CBF | 0 ‘ 1 | 1 ‘ ()‘ 1 ‘ 0 ‘ B ‘O ‘ 7 | 1 ‘ 0 | 3 ‘ cupied. Equivalently, the set of predetermined hash functions
] hi(+), ..., hi(-) interpolate with one another to giveperfect
a unique bit for x hash functions:. This is not unlike the results of traditional
Fig. 1. Counting Bloom Filter and Unique Bits approaches: Each subgroup of keys is assigned a hash value so

that together they form a perfect hash function for the group.
We do not explicitly split the keys into subgroups, but the
B. Our Approach CBFsrandomly produces a subgroup for each hash function

Before setting out our approach, it helps to understand whiituses.
precisely, is involved in obtaining a minimal perfect haskgntributions
function for a setS. Given U and S C U, there are many

hash) functions which map' onto the set{0,1,...,n — 1}. - :)
(Howezler a very very smaIFsubset of the{se functionsi:};{e !nflnlty,_the encodmg SIZz€ goes toa m'”'m“m"‘@h bits. This
jectiveon S, and these are the minimal perfect hash functiorlfss 3.7 times the information-theoretic lower boundog e +

: = - logu — O(logn), without the requirement, > n?*tc. A
of interest. Thus, most approaches to finding minimal perfecﬁictial conétrfcti)on with a finite ngmber of CBEs givies
hashes involve cleverly searching the set of all hash functioﬁr?s as the encoding size
and hence are very time consuming. . . More practical motivations for using CBFs include the ease
Our approach is fundamentally different. By using countlng]c

. . ; N implementation in hardware and the small encoding size,
Bloom filters (explained below), we recursively find injections , . . .
; .~ "'Which enables the use of a fast on-chip memory. Construction
for randomsubsetsSy, Ss, ... of S onto a set of integers which

. is orders f r than existin hem verifi imulation.
is a constant factor larger tham. The key reason for our s orders faster than existing schemes as verified by simulatio

O L . . . In addition, we extend the algorithm to the dynamic situ-
algorithm’s simple construction is that it avoids SearChln%\'tion where encoding size only doubles from the static case
While Fox et. al. compute a minimal perfect hash function '

-) . and remaing®(n). Both insertions and deletions are handled
for 3.8 million keys in about6 hours on a NeXT station, we

o7 . . in constant time. Lookups consist of a single off-chip memory
are able to finish irv.7 seconds, on a Pentium4 machine fo

. . Lccess most of the time and two in the worst case.
the same number of keys. The construction time on the same

machine is125 milliseconds for a typical Ethernet address 1. MINIMAL PERFECTHASHING

table with100K entries. Section II-A illustrates the architecture and algorithm of
We will first describe the counting Bloom filter and oukhe CBE-based perfect hash. In Section 1I-B, we show that
particular way of using it. the minimum encoding size with the random approach goes to
2en asn becomes large. We also analyze the tradeoff between
) encoding size and maximum evaluation time. In Section II-
Let U denote the universe of keys and l&f = ¢ we analyze the algorithm’s construction time and failure

{z1,29,...,2,} be a subset of/. _ probability. We complete the section with simulation results.
A Counting Bloom Filter (denoted CBF) is a vect®r of

m counters. Available to us are (random hash) functions A- Description of Algorithm
hi(),...,hi(-) each of which maps am € U to a randomly 1) Architecture: The perfect hash table includes an on-chip
chosen element of the sét, ...,e,, }, Wheree; is anm-bit structure and a simple off-chip list, as illustrated by Figure
vector with only itsi*" bit set to 1. Leth(z) be the sum of 2. The on-chip structure containk CBFs, By, ..., By, with
hi(x), ..., hi(z). We refer toh(x) as the “signature” of. possibly different sizes, in the top layer. There is an indicator
Training a CBF involves setting the vectdrto the sum of layer in the middle, and an array of counters at the bottom. The
h(zx1), ..., h(zy), z1,...,z, € S. An example ofh(z) and the indicator layer is a series of bits, with* corresponding to a
resulting CBF are shown in Figure 1. valuel in the CBF counter above, and' for all other values.
Let the value of each counter b, ..., c,,,. As in a random The purpose of the indicator layer is to denote the presence of
ball-bin process, the distribution @f approximately follows a unique bit. The counters in the bottom layer have ramge
a Poisson distribution. There is always a portion of positiord are placed beneath evélyg n)th indicator bit. In Figure
that only one key is hashed to. We call such a positianigue 2, n = 16. The off-chip list can accommodate exactly|

In Theorem 1, we show that as the number of CBFs goes to

Counting Bloom Filter and Unique Bits

bit for the key. A unique bit is illustrated in Figure 1. entries, wheres' is the set of keys we want to store.
]] 2) Construction: Each CBF,B;, is assigned:; hash func-
Algorithm Overview tions. We start by training the first CBEB;, with all keys

We use a sequence of CBFs of different sizes. The keysS, as described in I-B. The indicator layer beneath the first
without a unique bit in the previous filter are carried ove€BF is updated accordingly, i.e., with & indicating a unique
bit. A counter in the bottom layer records the number 16 *
lKputh [12] aI;o notes the dif_ficulty in cpmputing minimal perfect_ hasrpresent in the indicator |ayer up to its position.
functions. He estimates that to firidfor the list of 31 frequently occurring dA" keys in S are hashed again with tHg hash functions.

English words, out of the universe of all English words, a search might nee) ’ -) >)
to examine10*3 possibilities. If a key finds a unique bib in B; belonging to its signature,

On-chip

Bl B2 B3 B4
CBF f{of1[2ToftioT2Toftfof3Tufojrfo{3jtjojrjoirjafojrjofrfojajajo}
Indicator{ o[L[oJo]t oJofo]t oJoft[o]t]ofoft[oft o[t ofo]1[o]1]o]oo]0] .
counters 1] 2] / [4] 5] 7] 9] / |10] %3_ .

|

Fig. 2. Minimal Perfect Hash Function

Off-chip list

B R
no of sections

Fig. 3. Tradeoff between space and number of sections

it consults the closest bottom-layer counter beféreand
determines thab is the j** unique bit. The key is hence Hence, lettingm; = n(1 — e~1)i~1, i.e., each CBF having

: . " o . cr :
inserted into he/™* slot of the off-chip list. . a size equal to the number of keys remaining, achieves the
The keys without a unique bit id3; continue to train the inimum. We can check thdt>2, m; = en. [}

7

CBF By, and the procedure repeats sequentially over all CBFSgacadq on the above theorem, the minimum size of the

until all keys are accommodated. Once the construction jigjicator layer isen for n keys. The total size of the counters
complete, only the indicator layer and the bottom counters ffthe bottom layer is alsen since each counter contaihgn
needed for subsequent lookups. The CBFs are only requilges anq the counters ategn bits apart. In total, the minimum

for construction. encoding size i€en.
In the event where some keys are not accommodated, we

denote it a “failure” and repeat the entire construction with @aximum Evaluation Time vs. Encoding Size
different set of hash functions. We will show in Section II-C While the infinit f CBE ides the mini
that the probability of failure can be made exponentially small lie Iné Infinite sequence o S provides the minimum-

with a linear increase in the encoding size. A realistic appfP2ce solution, it is impossible to evaluate an infinite number
g} hashes. This prompts us to look at the tradeoff between

cation can be designed to have a very low failure probabili di . d luation time in the fini
and succeeds with one run of construction most of the tim&¢0dINY siz€ and eva uat|.on t'm,e .|n.t e finite case. .
Since the sizes of CBFs in the infinite sequence is geometri-

3) Lookup: Given a keyx, we calculate its signature for s . ; :
each CBF. Once we encounter a uniqueltitelonging to its cally decreasing, the first few CBFs provide most of the unique

signature, we consult the closest bottom-layer counter bef&jés' For Fhis comparison, we distribu@%. of the entries
b and calculate the unique bit index We retrieve the item ©Ver the first few CBFs, and over-provide in the last CBF to

from the j** slot of the off-chip list. accommodate the remainirigh. We focus our attention on
the first few CBFs, assuming the over-provision in the last
B. Encoding Size CBF works the same for all cases under comparison.
Minimum Encoding Size We consider the case where the number of hashe#
gach CBF isl, following the same argument as in Theorem
Thus the number of CBFs is the same as the maximum
mber of hashes to be evaluated. Also, we assume that the
féad on each CBF is the same, thatns/m; = A\, wheren;
Is the remaining number of entries for CBFand m; is the

Theorem 1 The minimum number of bits needed to provid
n keys with one unigue bit each, with random hashing, goes]to
en asn becomes large. It is achievable with an infinite numb
of CBFs with geometrically decreasing size, each with a sin

hash function. . N
Proof. Assuming that the hash outputs are perfectly rando'q]%mb;erccglzcounters Irc]j ?BE Wwe will df'nd; thi tshpace tn_eeded
the counter value; in a CBF converges to a Poisson distri¥/"en S are used to accommo o O7 he entries.
The total number of keys accommodated by the fiGBFs

bution asn becomes large. _) :
ist = (1 —-(1—e))n. Letting {;, = 0.95n, we solve

We start with one CBF, and let the CBF containcounters. V05 h) tuni bi
Recall that one counter in the CBF corresponds to one Bit= — (1 — v0.05). Hence the proportion of unique bits
Aexp (—A), and the total space needed is

in the indicator layer in the final encoding. Assurhehash 7~

functions are assigned to the CBF. Hence the proportion of 2n/q = —2n[(1 — v/0.05)In (1 — v/0.05)] *

unique bits isf = (nk/m)exp (—nk/m). The proportionf]

is maximized withnk /m = 1, and fyae = e~ L. The tradeoff between spac/¢) and number of section$)(is

Let the number of keys with a unique bit BeWhenk = 1, plotted in Figure 3. Clearly, = 4 is the optimal tradeoff point

s = fm; whenk > 1, s < fm, since more than one ur,iquebetween space and number of sectidns.7 is the minimum-

bit might belong to the same signature in the latter case. FxRac€ point, which is the same as the answer obtained by

a fixedm, s < frmawm. HENCESmaz = finazm = m/e when gquatmg(l —(1—eHH to _0.95. In summary, a little increase

%k = 1. This shows that using one hash function per CBF |8 space reduces the maximum number of hash evaluations by

the optimal solution. almost half. A similar tradeoff can be exploited in general.
Sincem bits can provide unique bits for at mast/e keys,

a minimum ofen bits are required to accommodatekeys.

The proof also shows how to achieve the minimum encodingSince we choose to over-provide in the last CBF to ac-

size. Withk = 1, settingn = m for each CBF achieveg, ... commodate all the remaining entries, we are interested in

C. Construction Time and Failure Probability

the amount of space needed in the last section so that the Number of Keys| 1000 | 1000000 | 3800000
o ; . Section1 526 | 526286 | 2001952
probability of failure is small. Section? 558 T 349887 | 948100
Theorem 2 Let n be the number of keys remaining for the Section3 107 | 118137 | 448368
last section, and: be the space assigned for the section. Then Section4 63 56810 215679
the probability of failure can be made double-exponentially Section5 46 | 48880 | 185901
small inm, and the optimal number of hash functions in this TABLE |
section isk* = % In 2. UNIQUE BITS DISTRIBUTION FOR DIFFERENT NUMBER OF KEYS
Proof. Assuming the last section hashash functions. For
one particular item, the probability of not finding a uniqu 0=2.1=0
.- . On-chip A
position is 1 51 B B B1
_ (n—1)k1k —kng _ - -
P=[1-(1-=) = 0—em) CBF [0[1[2[0[1To 2 0T 03]t [o[T[o]3 i o[]o[1]2 o[t o[1 o]z [2]0]
m Indicator|0 |10 [0[T]o o o[T o]o[t]o[T]o]olr o]t e]1]efo] 1 o]1 o]o]ofo]
A failure occurs when at least one key cannot find a uniq Yy v 2 T T N S T
position’ SO . Off-chip list
_ —kn\pin 7n(lfe’ﬁ)k
me'l—].—(l—(].—e m)) —1—e

L o Fig. 4. Dynamic Perfect Hash Function
k* = 2 1In2 minimizes Pyq;. The optimizedPrq; = 1 —

exp (—n/28) = 1 — exp (—n(2-2/m)m) hence doubly

exponential inm. B completes on a Pentium4 machinel2b milliseconds. Again
The average construction time is closely related to the fait-can be reduced further in hardware.

ure probability. Construction successful in one pass requires

T = O(n). However, the actual construction time follows . EXTENSION: DYNAMIC PERFECTHASHING

a geometric distribution with parametét — Py,;;). So the A minimal perfect hash function is specifically optimized

average construction tim& = T/(1 — Prqi). The fast for one setS in order to achieve space efficiency. The static

construction of our algorithm require;,;; to be small. An nature of the minimal perfect hash makes it perform poorly

actual value ofP;.;; is given in section II-D. when S is dynamically changing. We propose an extension

of the unique bits idea to the dynamic setting, replacing the

minimal perfect hash function with a non-minimal perfect hash
The simulation is run on a Pentium4 machine with randomfyinction. As a “perfect” hash, it retains a»(1) lookup time.

generated keys. We present a design example to illustrate o _
experimental failure probability, unique bits distribution and\. Description of Algorithm

average construction time for a large number of keys. 1) Architecture: The architecture of a dynamic perfect hash
a) Design SpecificationSince4 CBFs give the optimal function is illustrated in Figure 4. The CBF layer and the

tradeoff point for95% entries (discussed in Section II-B), weindicator layer are the same as in the static case. There is

use a total ob CBFs. The corresponding proportion of uniquéio additional counter layer, and both CBF and indicator are

bits is 0.3375. retained at all times. The major change is in the off-chip list:

This gives a space ratio df56 : 0.74 : 0.35: 0.17 : 1.5, Instead of siz&S|, the list now contains as many slots as the

with a total size oB.6n. The number of hashes for theCBFs number of bits in the indicator layer. There is also a small

arel, 1, 1, 1, 12 respectively. CAM for accommodating collisions in a relatively rare event
b) Failure Probability: The experimental failure proba- (not shown in figure).

bility is obtained by running the algorithm with000 keys 2) Operations:

over 10° runs. We getPy,; = 0.0012. This translates into an a) Insertion: At insertion, a key compares the non-

average construction timg = 7'/0.9988 ~ T', whereT' is the negative bits in its signature with the corresponding CBF

duration of a successful construction with no repetition. counter sequentially. At each comparison, it takes action
¢) Unique Bits Distribution:The number of unique bits according to the counter value at the position (illustrated

in the first four CBFs is very close to what it is designed tih Figure 4). Let the corresponding indicator bit be

be, i.e.,0.3375 of the size of the section. This verifies the Case 1 ¢ = 0. This indicates that an empty slot in the off-

correctness of the approximated Poisson distribution. Here @ffp list is found. Change = 1 andi = 1, and the item is

data from arbitrary runs with different number of keys. inserted into the corresponding slot.

d) Construction Timefox et. al. performed experiments Case 2¢ = 1. This indicates the slot is occupied by another
on 3.8 million keys, and their algorithm completes in abouéentry and a collision has occurred. There is an option in the
6 hours. We run our simulation oB.8 million keys, with a algorithm torehash i.e., change: = 2 andi = 0. Both keys
C program on a Pentium4 machii@0 times. The average are re-inserted into the CBF. If they meet other collisions in
time for a successful construction 7573 seconds using the the process, rehash happens recursively. A rehash is successful
“clock” command. It will be significantly faster ifimplementedif all keys involved find a unique position.
in hardware. To avoid non-deterministic time for insertion, we limit the

For a typical Ethernet address table, the number of keys degels of rehash t@. When a rehash fails, the item is entered
in the hundreds of thousands. Fot @K keys, the algorithm into the external CAM.

D. Simulation Results

Case 3 ¢ > 1. Incrementc and move to the next CBF. If Since load balancing is used, each section is designed to
this is the last CBF, the item is entered into the CAM. be the same size35000 bits, which is slightly more than
b) Lookup: In normal situations, the index of the firstthe maximum flow number. The total space for the encoding
unique bit for a key yields the correct index into the off-chifis 1.1Mbits, and there are a total @&20,000 off-chip slots.
list. When there was a collision, or no unique bits were founthe first 3 CBFs havel hash, while the last one has
for the key at insertion, the lookup is redirected to the CAMhashes. The CAM is assigned a siz6% of the maximum
c) Deletion: A lookup is performed first. The entry isflow number. The table below tabulates the experiment output:
erased from the off-chip memory, or the CAM. Its signature
bits before its unique bit are subtracted from the CBF. And

| Number [Percentage]

L . . o Total Insertion 417931
the indicator for its unique bit is changed @o Total Lookup 1684091

d) Rebuild: If the CAM overflows, the whole structure Insertion into CAM 14799 3.54%
is rebuilt just as in the construction process of the minimal Lookups in CAM 67548 1.44%

. Average Hash Check at Insertion 1.52
perfect haShmg' . L Average Hash Check at Looku 1.57

e) Load balancing:In order to distribute the load over Flows Moved from CAM 2799 0.65%
all CBFs, each key chooses a random CBF (using hashing) as

o : X . . TABLE II
its first CBF. The insertion process continues sequentially, and

o PERFORMANCE PARAMETERS OF DYNAMIC PERFECT HASHING ON TRACE
wraps around until it covers all CBFs.

) A rebuild is not necessary in this experiment. Note that
B. Performance Evaluation despite the use df hashes, on average a unique bit is found
1) Space:Both the counting Bloom filter and the indicatobetween thel** and2"¢ hashes.
layer have qumber of blts.equal to a multlple of So the IV. CONCLUSION
space used i®(n). In the simulated design that follows, we o
use4 CBFs and each CBF has counters with deptht. It The paper presented a new approach to minimal perfect
consumes0 bits per key. hashing via counting Bloom filters. By generating random
2) Insertion: Due to limitation of space, we omit the Subgroups for pre-determined hash functions, we avoid the

calculation and instead present numbers for the probabillf€d of searching and as a result, speed up the construction.

of collision (P.) and rehash failureR,). Both have analytical N the limit, our encoding size 8.7 times the information-
formulae in terms of the load factor= nk/m, wheren is the theoretic lower bound. The resulting construction is hardware-

number of currently active flows; is the number of hashes infriendly and fits the need of high-speed network applications
one CBF, andn is the total space. Let the number of car¥ell.

be . REFERENCES

Fori=5and)\ = 0.25, P. = 0.2 and P, = 0.1. Most of
he i h d N 'Th K load. A El] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash
the time, the system does not operate with peak load. At 0ne- (ape |0okup using extended bloom filter: An aid to network processing,”

fifth the peak load)\ = 0.05, P, = 0.047 and P, = 0.005. SIGCOMM, (Philadelphia), Aug2005.

i — i _ [2] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
h\.Ne deSIQn)\.mafx ((1).25)] HZ;;; afntsm?ty S|C|):t mﬂt]he Oﬂt errors,” Communication of the ACMol. 13, no. 7, pp. 422-426, July
chip memory is found at leasi0% of the time. For the res 1970,

10%, the entry is inserted into the more power-consumingg] Andrei Broder and Michael Mitzenmacher, “Using multiple hash
CAM. In both cases, the insertion involves exactly one accesg, functions to improve ip lookups Proceedings of IEEE Infocom@001.
A. Kirsch and M. Mitzenmacher, “Simple summaries for hashing with
to the slower memory-))) multiple choices,”43rd Annual Allerton Conference on Communication,
3) Lookup / Deletion: The complexity of deletion is the Control and Computing, Se{2005. _ _ _
same as that of lookup. In most cases, the process involvBg A. Broder and A. Karlin, “Multilevel adaptive hashing Proceedings

. of the 1st ACM-SIAM Symposium on Discrete Algorithms (SQ
one access to the off-chip memarythe CAM. The only case 43-53, 1990. ymp 9 (SOPR)

where there is one access to the menwgithe CAM is when [6] Torben Hagerup and Torsten Tholey, “Efficient minimal perfect hashing

a collision occurred at insertion, and attempts at rehash failed, ' nearly minimal space STACS 2001, LNCS 200p. 317-326, 2001.
. . M. Fredman and J. Korak, “On the size of separating systems and
Hence, with probability”,., the process needs two accesses t0 " famjlies of perfect hash functionsSIAM J. Alg. Disc. Meth, no. 5,

slower memory, and otherwise one access suffices. pp. 61-68, 1984.

One heuristic we use is moving an entry from the CAM[S] K. Mehlhorn, “Data structures and algorithms, vol. 1: Sorting and
searching,” 1984.

to the off-chip memory, when it finds a unique bit later. Thisig] Edward A. Fox, Qi Fan Chen, and Lenwood S. Heath, “A faster
lowers the number of CAM lookups and the probability of a algorithm for constructing minimal perfect hash functiond5th Ann
CAM overflow. Int'l SIGIR Denmark 1992.

[10] M. Fredman, J. Kondls, and E. Szemeredi, “Storing a sparse table with

. . . o(1) worst case access timeJournal of the ACMvol. 31, no. 3, pp.
C. Trace-driven Simulation 538-544, July 1984.

i At ; ; ; 1] Martin Dietzfelbinger, Annar Karlin, Kurt Melhorn, Friedhelm Meyer
fl A IgOOkd appglcat.lon of the dynamic perfecth haSIhIngr:S th@ auf der Heide, Hans Rohnert, and Robert E. Tarjan, “Dynamic perfect
ow lookup table in routers. Hence we run the algorithm on hashing: Upper and lower boundsS1IAM J. Computing1990.
a 5 million packet CAIDA trace collected at 9:20am, Augl2] D. E. Knuth, “The art of computing programming. volume 3: Sorting
14, 2002. There are a total @i7931 flows. The number of ~and searching” pp. 506-507, 1973.

concurrently active flows reaches a maximumbad&53.

