
Computer Networks 50 (2006) 1406–1423

www.elsevier.com/locate/comnet
Packet classification using diagonal-based
tuple space search q

Fu-Yuan Lee *, Shiuhpyng Shieh

Department of Computer Science and Information Engineering, National Chiao Tung University,

Hsinchu, Taiwan 300, Taiwan

Received 8 January 2004; received in revised form 27 March 2005; accepted 21 June 2005
Available online 16 August 2005

Responsible Editor: D. Stiliadis
Abstract

Multidimensional packet classification has attracted considerable research interests in the past few years due to the
increasing demand on policy based packet forwarding and security services. These network services typically involve
determining the action to take on packets according to a set of rules. As the number of rules increases, time for deter-
mining the best matched rule for an incoming IP packet will increase and subsequently incur long processing delay. To
address this issue, in this paper we propose a two-dimensional packet classification algorithm which focuses on reducing
time for classification while keeping reasonable memory requirement in practice. Our approach extends the tuple space
framework and then allows performing binary search on the tuple space. To our knowledge, the proposed scheme is the
first binary search scheme on two-dimensional tuples. With the proposed scheme, given a filter set with n two-dimen-
sional filters, it requires only O(log(w)) hash operations to determine the best matched filter, where w is the maximum
prefix length of filters. The proposed scheme achieves fast packet classification, and according to our experimental
results, it does not require huge memory space. This makes it useful for network applications that require high speed
packet classification.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Computer networks; Network security; High speed network; Layer 4 switching
1389-1286/$ - see front matter � 2005 Elsevier B.V. All rights reserv
doi:10.1016/j.comnet.2005.06.012

q This work is supported in part by National Science Council
and Institute for Information Industry.

* Corresponding author. Tel.: +886 3 571212.
E-mail address: leefy@csie.nctu.edu.tw (F.-Y. Lee).
1. Introduction

Many network services require packet classifi-
cation, such as packet filtering for VPN and fire-
wall, and packet forwarding for QoS routing.
These services typically involve classification of
ed.

mailto:leefy@csie.nctu.edu.tw

F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423 1407
incoming packets so as to determine subsequent
processing for each packet. This classification is
achieved with filters applied to each incoming
packet. Each filter consists of prefixes of packet
header fields, and specifies an action to take on
the packets matching all the prefix specifications.
(Note that range format is usually used to specify
port numbers. However, any range of values can
be efficiently converted into a union of a set of pre-
fixes [18].) Upon arrival of an incoming packet,
packet classification is first performed to determine
an appropriate filter for the packet. Subsequently
the action specified by the filter is performed.

In this service paradigm, it is important to
accelerate packet classification since it can subse-
quently reduce the processing delay of each pack-
et. Linear search through all the filters is usually
too slow in practice. Hence, issues and techniques
for accelerating packet classification has been
intensively investigated in the last few years
[6,9,14] For the simplest case of packet classifica-
tion, i.e. each filter only specifies one prefix, Wal-
dvogel et al. [21] proposed a scheme performing
binary search on the prefix lengths of filters. In
their approach, filters are grouped according to
prefix lengths. As a result, filters in the same group
have the same prefix lengths and thus can be
searched in one hash operation. Moreover, since
these groups can be sorted according to the prefix
lengths, binary search can be applied on the set of
groups. Consequently, only OðlogðwÞÞ hash opera-
tions are required to find the longest matched pre-
fix for an incoming IP packet, where w represents
the maximum prefix length.

Srinivasan et al. [16] proposed the tuple space

framework which adopts the concept of searching
on prefix lengths to cope with multidimensional
packet classification. In multidimensional packet
classification, each filter defines prefix specifica-
tions on multiple packet header fields, and there-
fore each filter has more than one prefix length.
The vector of prefix lengths of a filter is called a
tuple, and the tuple space is the set of distinct
tuples in a filter set. Similar to Waldvogel�s work
[21], filters mapped to the same tuple can be
searched using one hash operation. Since the num-
ber of tuples is generally much smaller than the
number of filters, this approach can significantly
reduce the search space. Consequently, linear search
through all of the tuples is faster than that through
all filters. However, as the number of fields k used
for classification increases, the total number of
tuples can grow up to O(wk). In this case, though
the search space is reduced, linear search through
all the tuples may still has long delay.

Based on the basic tuple space search, two other
algorithms, namely Rectangle Search [16] and Bin-
ary Search on Columns [22], which both further
improve the search efficiency in the tuple space
are proposed. Both algorithms focus on two-
dimensional packet classification. Given n filters,
Rectangle Search requires 2 * w � 1 hashes per
lookup. The memory space requirement is
O(n * w). As shown in [16], without using more
memory space, it is impossible to obtain a packet
classification algorithm running faster than Rect-
angle Search. Warkhede et al. [22] re-examined this
claim and discovered that Srinivasan�s argument
heavily depends on having conflicts in the filter
set. However, it has been shown that conflicts
can be removed by inserting new filters into the
original filter set [3,10]. Thus, by assuming the fil-
ter sets are conflict free, the search efficiency can be
further improved. Using Warkhede�s approach, it
requires O(n * log2(w)) memory space, and uses
only Oðlog2ðwÞÞ hashes to determine the best
matched filter.

In addition to the tuple-space based ap-
proaches, there are other schemes for multidimen-
sional packet classification proposed in the
literature. Grid-of-Tries [18] is a trie-based algo-
rithm for two-dimensional packet classification.
It requires O(n * w) memory space and 2 * w � 1
memory accesses per lookup. Cross producting
[18] requires d * w memory access and O(nd) mem-
ory space, where d represents the number of
dimensions. Baboescu et al. [2] proposed Extended
Grid-of-Trie (EGT) algorithm to cope with gen-
eral multidimensional packet classification. Similar
to the original Grid-of-Trie approach, EGT re-
quires O(n * w) memory space and O(w) memory
accesses. Recursive-flow classification (RFC) [7]
is a general multidimensional packet classification
scheme which can determine the best matched fil-
ter in constant time. Although the search efficiency
is high, RFC suffers from memory blowup. Similar

1408 F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423
to RFC, other schemes such as Hi-Cuts [8], Seg-
ment Tree [19], and Range-Matching [13], all suffer
from the same memory blowup problem if the
number of filters becomes large. Thus, as men-
tioned above, existing packet classification algo-
rithms either suffer from bad search performance
or require huge memory space.

Particularly in this paper, we are concerned
with the design of fast two-dimensional packet
classification algorithms, which are considered
important for many emerging source-address in-
volved packet forwarding services/applications
[12], such as multicast [5,15,20], the measurement
of traffic between networks, and some resource
reservation protocols. In these services/applica-
tions, packet forwarding decisions are made
according to a set of rules, each of which contains
specifications for both source and destination ad-
dresses of an IP packet to match. An Internet rou-
ter providing these services has to accelerate its
packet classification by employing fast two-dimen-
sional packet classification algorithms so as to
keep pace with the increasing high volume of net-
work traffic.

To address this issue, in this paper, a fast two-
dimensional packet classification algorithm based
on tuple space search is proposed. In the original
construction of tuple space, binary search cannot
work well, and this motivates a new construction
of tuple space which is suitable for binary search
on tuples. The proposed tuple space construction
is similar to original construction presented in
[16]. The use of pre-computation and markers
were originally proposed in [16], and they appear
in the proposed scheme as well. The major differ-
ence between our tuple space construction and
the original one is on the introduction of a new
auxiliary filter, called resolver. As we shall see in
Section 2.2, with the original construction, the
set of remaining tuples for a successful probe into
a tuple (i.e. a matched filter is found at the tuple)
overlaps the remaining tuples for a failing probe.
Therefore, binary search fails to operate in the ori-
ginal tuple space construction. While, in our
scheme, with the aid of resolvers, the set of remain-
ing tuples for a successful probe and that for a fail-
ing probe are disjoint. In other words, our
approach can divide a tuple space into two disjoint
parts no matter a probe is successful or failing, and
this characteristic makes binary search on the
tuple space effective.

The efficiency in search time costs a larger stor-
age requirement. In the proposed scheme, given n
two-dimensional filters, where each prefix is at
most w bits, time complexity for searching is
OðlogðwÞÞ and space complexity is O(n2) in the
worst case. The worst case may occur if the filters
severely conflict with each other. Fortunately, as
reported [7], the number of conflicts in practice is
much smaller than in the worst case. In other
words, the worst case unlikely happens in practice.
The contribution of this paper is to show that bin-
ary search on tuple space is possible, and our
scheme is practical for network applications which
require high speed packet classification.

This paper is organized as follows. In Sections 2
and 3, fundamentals of tuple space search and ba-
sic ideas behind the proposed scheme are de-
scribed. In Section 4, proposed diagonal-based
tuple space search algorithm is presented. Evalua-
tion and comparison are discussed in Section 5.
Finally, a brief conclusion is given in Section 6.
2. Fundamentals of tuple space search

In this section, packet classification problem is
formally defined, the basic idea of tuple space
search is reviewed, and the idea behind the pro-
posed algorithm is described.

2.1. Problem statement

A classifier is a set of filters and each filter is
composed of prefix specifications on one or more
selected packet header fields. A filter f consisting
of k prefix specifications is often referred to as a
k-dimensional filter. A k-dimensional filter can be
represented as (f [1], f [2], . . . , f [k]), where each f [i]
is a prefix specification on a packet header field.
A packet p is said to match a filter f if and only
if prefixes of the selected packet header fields of
p are correspondingly the same as the prefixes
specified by f. Since it is possible that a packet
can match more than one filter and each filter
may specify different actions, it is necessary to

F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423 1409
determine which action to take. Generally, each fil-
ter is associated with a priority. Among the filters
that a packet p matches, the filter with the highest
priority is selected as the best matched filter. Given
a classifier containing n filters and a packet p,
packet classification is the process of determining
the best matched filter for the packet p. This paper
is concerned about the two-dimensional packet
classification problem. We assume that each filter
is two-dimensional, and prefixes are expressed as
a bit string ending with the wildcard symbol. For
instance, ‘‘10*’’ specifies the most two significant
bits are ‘‘10’’ and the ‘‘*’’ denotes the wildcard
symbol.

2.2. Fundamentals of the tuple space search

Tuple space search is motivated by two obser-
vations. First, the number of distinct combinations
of prefix lengths is usually much smaller than the
number of filters in a classifier. For instance in
the case of destination-based packet forwarding,
although each router can have hundreds to thou-
sands of prefixes in the routing table, the number
of distinct prefix lengths is at most 32. For a
two-dimensional classifier, where each filter speci-
fies the prefixes of source addresses and destina-
tion addresses, it can have at most 1024
(=32 * 32) distinct combinations of prefix lengths.
In the following context, each distinct combination
of prefix length is called a tuple. The length vector

of a tuple refers to the combination of prefix
lengths. For example, (24,16) is a tuple which indi-
cates that filters mapped to this tuple have 24-bit
prefix specification in its first dimension and
16-bit prefix specification in the second dimension.

The second observation is that search on filters
mapped to the same tuple requires only one hash
operation. Since filters mapped to the same tuple
have the same number of bits in each field corre-
spondingly, the concatenation of prefixes of each
filter can be used to create a hash key. The hash
keys are then used to map filters in the same tuple
to a hash table. Specifically, each tuple has a hash
table used to store filters mapped to the tuple. Con-
sider a two-dimensional filter f = (x, y) mapped to
a tuple T. Let xky denote the concatenation of x

and y, and H(.) be the hash function used to create
hash keys of filters. If v = H(xky), then filter f is
stored in the v-th entry in tuple T�s hash table. To
test if a packet p can match any filter in a tuple
T, a hash key is created by concatenating the re-
quired number of bits from the selected packet
header fields according to the length vector of T.
Then, filters indexed by the hash key of p are then
compared to the packet sequentially. If the packet
matches one of the filters indexed by the hash
value, a matched filter is found. In this way, the
tuple space framework can significantly reduce
the search space. Even without any additional
improvements, linear search through all the tuples
is generally faster than linear search through all
filters.

Some readers might be interested in the way to
create hash functions which are used to generate
hash keys in tuple space. One simple approach is
to use w2 hash functions, each of which is espe-
cially associated with a tuple in the tuple space.
For instance, a hash function which takes a 32-
bit input is used to create hash keys for filters
mapped to tuple (16, 16), and another hash func-
tion taking a 33-bit input is used for filters in tuple
(16, 17). Furthermore, perfect hash functions [11]
can be used to minimized hash collisions. How-
ever, this approach would incur hidden costs in
creating and maintaining the w2 hash functions.
One way to eliminate the cost, for instance, is to
use only one hash function, which takes a 2w-bit
input. In this case, to generate a hash key for a fil-
ter (x, y), we first need to append a required num-
ber of 0 s or 1 s to the end of xky (in order to make
it a 2w-bit input), and then use the resulting 2w bits
as the input to the hash function. Currently, there
have been several studies on creating hash func-
tions that can produce hash keys for filters in an
appropriate way, such as semi-perfect hash func-
tions [17], and hashing using multiple hash func-
tions [4]. In this paper, we assume that H(Æ)
represents a hash function which can automati-
cally append its input to 2 * w bits and create hash
keys for filters.

Search on tuple space can be further improved
based on two ideas, namely pre-computation and
markers. To describe the two ideas, several nota-
tions must be introduced first. Given a two-dimen-
sional tuple Ta = (i, j) where i, j denote the number

Fig. 2. Partition of the tuple space if the probe in tuple T fails.

1410 F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423
of bits in the first and the second dimensions
respectively, the rest of tuples can be partitioned
into three disjointed sets, S(Ta), L(Ta) and IC(Ta).
A tuple Tb = (m,n), where Tb 5 Ta, is an element
of S(Ta) if m 6 i, n 6 j. Similarly, Tb is an element
of L(Ta) if m P i, n P j. If Tb is neither in S(Ta)
nor in L(Ta), then Tb is in IC(Ta). Fig. 1 shows
the partition of a two-dimensional tuple space into
three sets.

Since the length vector of each tuple in L(T) is
coordinate-wise greater than T, a filter f mapped
to a tuple in L(T) can leave a marker in T. The
marker is a filter obtained by using only T[i] bits
of the i-th field of f, where T[i] represents the i-th
element of T�s length vector.

Similarly, since the length vector of each tuple
in S(T) is coordinate-wise smaller than T, for each
filter, say f in T, it is possible to pre-compute the
best matched filter of f in the set of filters that
are mapped to a tuple in S(T) and store it with
the filter.

Consider a tuple space in which pre-computa-
tion is completed, and each filter leaves markers
in tuples belonging to S(T) where T denotes the
tuple the filter maps into. Then, if no matched
filter is found in a tuple T for a given packet, filters
mapped to tuples in L(T) can be eliminated from
the search space. This is because if there exists a
matched filter mapped to the tuple in L(T), its
marker entry in T will have a match. Thus, if the
Fig. 1. Partition of the tuple space.
probe in a tuple T fails, the search space can be re-
stricted to the filters mapped to the tuples in S(T)
and IC(T), as shown in Fig. 2.

Similarly, if the probe in T obtains a matched
filter, then filters mapped to tuples in S(T) can be
eliminated from the search space. This is because
if another matched filter mapped to a tuple in
S(T), it has been pre-computed and stored with
the matched filter in T. In other words, if the probe
in T returns a match, the search space can be re-
stricted to the filters mapped to the tuples in
L(T) and IC(T), as shown in Fig. 3.
Fig. 3. Partition of the tuple space if the probe in tuple T

succeeds.

F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423 1411
2.3. Proposed tuple space search strategy

Based on the basic idea of tuple space search
presented above, a new tuple space construction
is proposed to support binary search on tuples.
In the new tuple space construction, IC(T) and
S(T) can be eliminated from the search space if a
matched filter is found in T. The idea behind the
new construction is based on the following obser-
vation. Given a packet p, consider that a matched
filter f found in tuple T. For any filter g mapped to
a tuple in IC(T), g can be a matched filter of p if
and only if g and f are overlapped, that is, f[i] is a
prefix of g[i], and g[j] is a prefix of f[j]. In other
words, any filter mapped to a tuple in IC(T) can
be eliminated from the search space if it does not
overlap with f.

Next, consider those filters which overlap with
the matched filter f. Filters which overlap with f

can be eliminated with the aid of auxiliary filters
called resolvers. Consider a filter g mapped to a
tuple in IC(T) overlaps with f, a resolver r is cre-
ated by taking the longer prefixes in each dimension
from f and g. It is clear that r is mapped to a tuple
in L(T). In addition, the best matched filter (f or g)
can be pre-computed and stored with r after the
pre-computation process. In this way, filter g can
be eliminated from search space. Consequently,
by using resolvers, filters mapped IC(T) can be
eliminated whenever a matched filter is found in T.

Consider a classifier F, we say that the tuple
space of F is filter conflict resolved if and only if
one of the following criteria are satisfied: (1) each
filter in F does not overlap with any other filters
in F. That is, for any pair of (fi, fj), fi 5 fj, fi does
not overlap with fj. (2) for each pair of overlapped
filters (fi, fj), fi 5 fj, there must be a filter which is
equivalent to the resolver o fi and fj. Similarly,
we say that a tuple space is filter-marker conflict re-

solved if the following criterion is satisfied: for any
pair of filter and marker (fi,mj), where fi denotes a
filter in F, and mj represents a marker of a filter fj,
if fi overlaps with mj then there must be a filter
equivalent to the resolver of fi and mj. (Note that
so far, we do not specify how the markers are gen-
erated. It is also worthy to notice that a filter-mar-
ker conflict resolved tuple space is filter conflict
resolved. However, a filter conflict resolved tuple
space is not necessary to be filter-marker conflict
resolved.)

For instance, consider a small classifier contain-
ing two filters: f1 = (10*, 100111*) and f2 = (101*,
10000*). Since f1 does not overlap with f2, this clas-
sifier is filter conflict resolved. However, it is not
filter-marker conflict resolved because f1 may be
overlapped with f2�s markers, e.g. (101*, 100*).
So far, we have not described the way markers
are generated, and this is just an example to illus-
trate the way of constructing a filter-marker con-
flict resolved tuple space. To make the tuple
space filter-marker conflict resolved, the conflicts
between f1 and f2�s markers must be resolved. Sim-
ilarly, the conflicts between f2 and f1�s markers
must be resolved as well. It is not hard to find that
the number of resolvers created depends on the
way markers are created. Later in this section,
we will present the details of marker creation.
After all the resolvers are generated, by definition,
the resulting tuple space is filter-marker conflict
free. Finally, for each filter f, including the filters
in F, markers and resolvers, mapped to a tuple
T, its best matched filter information (computed
from S(T)) is then pre-computed and stored with f.

Then, given a filter-marker conflict resolved
tuple space, as proved in Lemma 1, if there is a
matched filter in tuple T, IC(T) and S(T) can be
eliminated from search space.

Lemma 1. Given a filter-marker conflict resolved

tuple space, if there is a filter or marker in tuple T

which can match a given packet p, then filters

mapped to tuples in S(T) and IC(T) can be

eliminated from the search space.

Proof. In short, S(T) is eliminated by pre-compu-
tation and IC(T) is eliminated by resolvers. Since
any matched filter in S(T) can be pre-computed
and stored with f, it is clearly that filters mapped
to tuples in S(T) can be eliminated from search
space.

Next, consider the filters which are mapped to
tuples in IC(T). If filter h mapped to a tuple in
IC(T) and is the best matched filter for packet P,
then h overlaps with f. Afterwards, since the tuple
space is filter-marker conflict resolved, there must
be a filter which is equivalent to the resolver

1412 F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423
generated by both f and h, and the resolver is
mapped to a tuple in L(T). The resolver is certainly
a better matched filter than f and h. Since the best
matched filter information is stored with the
resolver, h can also be eliminated from the search
space.

If h is not a matched filter for the given packet
p, filter h can thus be eliminated from search space.
Therefore, in summary it is unnecessary to search
filters mapped to tuples in IC(T) no matter
whether there is matched filter mapped to a tuple
in IC(T) or not. h
Fig. 4. Generating markers in the tuple space.

Fig. 5. The diagonal tuples examined in order to resolve filter-
markers conflicts for filters mapped to tuple T(i, j).
3. Diagonal-based tuple space search

Based on Lemma 1, a new tuple space search
algorithm is proposed. The proposed scheme,
called diagonal-based tuple space search algorithm,
applies binary search on tuples and thus requires
only O(log(w)) hashes to determine the best
matched filter in a two dimensional filter set. As-
sume the search space is a w * w square tuple
space, and the filter set F contains n two-dimen-
sional filters. Each field of a filter is a string of bits
(at most w bits) representing the prefix of a packet
header field. In addition to the filters in F, markers
and resolvers are used to create a filter-marker
conflict free tuple space. Details for generating
markers as well as resolvers, and the proposed
packet classification algorithm are presented next.

First, we describe how markers are created.
Given a filter set F with n two-dimensional filters,
consider a filter f mapped to tuple (i, j). Let
s = min(i, j). Then markers of filter f are created
and inserted into the set of tuples which are in
the line from (i, j) to (s, s) and from (s, s) to
(1, 1). For example, as shown in Fig. 4, filters
mapped to tuple (16, 24) leave markers in tuples
(16, 23), (16, 22), (16, 21), . . . , (16, 17), (16, 16),
(15, 15), . . . , (2, 2), (1, 1).

After markers of all filters in F are created, then
resolvers are created. Reflecting to the way that
markers are created, creating resolvers is quite
easy. It consists of two steps. First, resolvers are
created for each pair of overlapped filters in the
original filter set F. After that, the markers of these
resolvers are generated. Next, in the second step, a
resolver is created if there is a filter overlapped
with a marker in a diagonal tuple. Consider a filter
mapped to a tuple T(i, j) and, without lose of gen-
erality, let i < j. In this step, only conflicts need be
examined between this filter and markers in diago-
nal tuples from (i + 1, i + 1) to (j � 1, j � 1),
shown in Fig. 5. Afterwards, resolvers created
leave their markers in the tuple space. Finally,
pre-computation is performed for all the filters
(including the filters in the original classifier F,
markers and resolvers). In this way, a filter-marker
conflict resolved tuple space is constructed.

Fig. 7. Resolving the conflicts between filter f and markers in
area I.

F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423 1413
It is worthy to note that the first step is to con-
struct a filter conflict resolved tuple space, and the
second step is to resolve conflicts between filters
and markers. We will show that in the second step,
for a filter f1 mapped to a tuple T(i, j), where i < j,
resolving the conflicts between the filter f1 and
markers mapped to diagonal tuples from (i + 1,
i + 1) to (j � 1, j � 1) is sufficient for constructing
a filter-marker conflict resolved tuple space.

Notice that a marker can be overlapped with a
filter f1 mapped to a tuple T(i, j) only if the marker
is mapped to a tuple in IC(T). In other words, for a
filter f1 mapped to a tuple T(i, j), we only have to
consider markers mapped to tuples in IC(T) and
resolve possible conflicts between f1 and the mark-
ers. To resolve these conflicts, as shown in Fig. 6,
we first partition the IC(T) into four areas: areas
I, II, III and diagonal tuples.

Next, we discuss the way to resolve possible
conflicts between f1 and markers in each area.
First, consider the case that there is a marker m1

in area I overlapped with f1. As shown in Fig. 7,
there must exist a filter f2 which generates m1. f2

is mapped to a tuple in area I, and is overlapped
with f1. (m1 is assumed to be overlapped with f1.
m1 and f2 have the same prefix bit string in their
first dimension, and the bit string of m1�s second
dimension is a prefix of the bit string of f2�s second
dimension. Since m1 is overlapped with f1, f2 is
overlapped with f1.) Therefore, there must have
Fig. 6. Consider a tuple T(i, j). The IC(T) can be partitioned
into four areas: area I, II, III, and diagonal tuples.
been a resolver r1 created from f1 and f2. Recall
that r1 also generates its markers in the tuple
space. We can find that one of these markers will
certainly be identical to the resolver of f1 and m1.
As a result, resolving the conflict between f1 and
m1 is redundant and can be reduced. By the same
argument, we do not need to examine and resolve
the conflicts between f1 and markers in area I.

Second, consider the case that there is a marker
m2 in area II, and m2 is overlapped with f1. As
shown in Fig. 8, the existence of m2 implies that
there must be a marker m3 in the diagonal tuple
Fig. 8. Resolving the conflicts between filter f and markers in
area II.

Fig. 9. Resolving the conflicts between filter f1 and markers in
area III. The resolver of f1 and f3 is above the diagonal.

Fig. 10. Resolving the conflicts between filter f and markers in
area III. The resolver of f1 and f3 is below the diagonal. This
figure shows that the resolver of f1 and marker m4 is identical to
a marker of r3.

1414 F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423
(in the same column with m2) such that m3 and m2

have the same prefix bit string in the first dimen-
sion, and the prefix bit string in the second dimen-
sion of m3 is actually a prefix of the bits strings in
the second dimension of m2. Since m2 is assumed
to be overlapped with f1, m3 is overlapped with
f1 as well. Thus, a resolver, r2, will be created from
m3 and f1. Moreover, we can also find that r3 actu-
ally is identical to the resolver created from m2 and
f1. Since the two resolvers are identical, we can
skip resolving the conflict between f1 and m2. Sim-
ilarly, by the same argument, we do not need to re-
solve the conflicts between f1 and markers in area
II.

Finally, consider the case that there is a marker
m4 in area III and m4 is overlapped with f1. The
existence of m4 implies that there must be a filter
f3 generating m4 in area III. Since m4 is overlapped
with f1, we can know that f3 is also overlapped
with f1. Therefore there must be a resolver r3 cre-
ated from f1 and f3 in the tuple space. r3 generates
its markers in two different ways reflecting to its
position in the tuple space. Let (x, y) denote the
tuple that r3 mapped into. Then, if x < y, r3 is
above the diagonal of the tuple space, and r3 leaves
its markers in tuples (x, y � 1), (x, y � 2), . . . ,
(x, x), (x � 1, x � 1), . . . , (1, 1). If x > y, r3 is below
the diagonal, and it leaves markers in tuples
(x � 1, y), (x � 2, y), . . . , (y, y), (y � 1, y � 1), . . . ,
(1, 1). If x = y, r3 is mapped to a diagonal tuple,
and its markers will be in tuples (x � 1, y � 1),
(x � 2, y � 2), . . . , (1, 1).

As shown in Fig. 9, when r3 is above the diago-
nal, there will be resolvers created from f1 and the
markers, generated by r3, in diagonal tuples. No-
tice that one of these resolvers is identical to the re-
solver created from f1 and m4. Thus, we can know
that resolving the conflict between f1 and m4 is
unnecessary because the corresponding resolver
has been created. If r3 is mapped to a diagonal
tuple, we can find the same result. Next, consider
the case that r3 is below the diagonal. As shown
in Figs. 10 and 11, we can also find that the resol-
ver created from f1 and m4 is identical to one of the
horizontal markers generated by r3, or it will be
identical to one resolver created from f1 and the
markers in diagonal tuple, which is generated by
r3.
Based on previous discussion, we show that the
proposed approach can efficiently construct a fil-
ter-marker conflict resolved tuple space. Here, we
give an example of constructing an filter-marker
conflict resolved tuple space. Consider a classifier
containing two filters f1 = (10*, 100111*) and
f2 = (101*, 10000*). f1 leaves following markers:
(10*, 10011*), (10*, 1001*), (10*, 100*), (10*,
10*), (1*, 1*), and f2 leaves following markers:
(101*, 1000*), (101*, 100*), (10*, 10*), (1*, 1*).

Fig. 11. Resolving the conflicts between filter f and markers in
area III. The resolver of f1 and f3 is below the diagonal. This
figure shows that the resolver of f1 and marker m4 is identical to
a resolver created from f1 and a marker of r3.

Fig. 12. Probing a diagonal tuple would divide the tuple space
into to regions.

Fig. 13. Example for Tlmdt = (16, 16).

F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423 1415
Since f1 is not overlapped with f2, the tuple space is
filter conflict resolved. Next, We can find that f1

only overlaps with f2�s marker (101*, 100*) and
that f2 does not overlap with f1�s markers. In this
example, only one resolver is created, i.e. (101*,
100111*), and it leaves following markers: (101*,
10011*), (101*, 1001*), (101*, 100*), (10*, 10*),
(1*, 1*). In this tuple space, we can find that filters
may leave identical markers, and the filter-marker
conflict resolved tuple space has two original filters
f1 and f2, one resolver, and nine markers.

Consider the problem of finding the best
matched filter in a given filter set F. The first step
is to construct a filter-marker conflict free tuple
space. Then, by every hash probe into a diagonal
tuple T, the tuple space is divided into two regions,
as shown in the Fig. 12. If a matched filter is found
in a diagonal tuple, then as proved in Lemma 1, re-
gion 2 can be eliminated from the search space. On
the other hand, if no matched filter is found, then
there cannot be any matched filters in L(T). In
other words, Region 1 can be eliminated from
the search space.

Thus, it is clear that if there is a matched filter
found in a diagonal tuple T = (m, m), and in the
same time, if there is no matched filter found in
tuple (m + 1, m + 1), then the remaining search
space can be restricted to the set of tuples:
{(i, j) ji = m, m 6 j 6 w or j = m, m 6 i 6 w}. In
this case, the tuple T is called the last matched diag-

onal tuple, denoted as Tlmdt. For instance, as
shown in Fig. 13, if Tlmdt = (16, 16), then the
remaining search space includes tuples: (32, 16),
(31, 16), (30, 16) . . . , (16, 16), (16, 17), . . . , (16, 31),
(16, 32).

In the proposed tuple space search algorithm,
the first step is to find Tlmdt which helps reduce
the search space drastically. Notice that given two
diagonal tuples Ti = (i, i) and Tj = (j, j), Tj is either
in L(Ti) or in S(Ti). In other words, every pair of

1416 F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423
diagonal tuples are comparable. Then, with mark-
ers and pre-computation, Tlmdt can be found by
binary search on diagonal tuples. This is because
if a matched filter is found in a diagonal tuple Ti,
the search space is then restricted in L(Ti). On the
other hand, if there is no matched filter found in
Ti, the search space is restricted in S(Ti). As a
result, since there are only w diagonal tuples, it
requires O(log(w)) hashes to determine Tlmdt.

Once Tlmdt is determined, a naive search algo-
rithm is to probe all remaining tuples and thus re-
quires O(w) hashes. However, the search time can
be further reduced by applying binary search on
the remaining tuple. Thus, only O(log(w)) hash
probes in total is required. Our improvement is
based on observation that all the remaining tuples
are either in the same column or row with Tlmdt.
Similar to the case of determining Tlmdt in the set
of diagonal tuples, with markers and pre-computa-
tion, tuples in the same column (or row) can be
considered a sorted list of objects and thus binary
search can be applied. In this way, only two more
binary search, where one for tuples in the same
column and the other for tuples in the same row,
are sufficient to determine possible matched filters.
In summary, it requires at most 3 * log(w) hashes
to find the best matched filter in F for a given
packet p.
4. Tuple space construction and search algorithm

So far, the basic idea of the proposed tuple
space construction and the skeleton of the diago-
nal-based binary search algorithm is presented.
In this section, the construction of tuple space is
further improved such that the number of markers
and resolvers are reduced, while in the same time,
retaining the same search efficiency. In this section,
we described details of the enhanced tuple space
construction and the proposed diagonal-based
binary search algorithm.

As mentioned previously, a filter f mapped to
tuple (i, j) leaves (max(i, j) � 1) markers. Conse-
quently the classifier in total creates O(n * w)
markers. To reduce the number of markers, the
functionality of markers is examined. In the pro-
posed search strategy, markers are used funda-
mentally to guide the search algorithm to find f

if the best matched filter is f. In other words, a fil-
ter f can only generate markers in the tuples that
will be probed by the search algorithm while
searching for the best matched filter is f. Conse-
quently, only O(n * log(w)) markers are created.
In comparison with O(n * w), the number of mark-
ers is significantly reduced.

4.1. Tuple space construction

To describe the tuple space construction algo-
rithm, several notations must be defined. First, a
tuple is a non-empty tuple if there is at least one fil-
ter, marker or resolver mapped to the tuple. Then
all of the non-empty tuples in the tuple space can
be partitioned into a set of tuple groups. A tuple
group, denoted as TG(i), is the collection of non-
empty tuples that are in the same column or row
with a diagonal tuple T = (i, i) and that are
mapped to L(T). The set of non-empty tuples of
TG(i) in the same column is denoted as TG(i).col.
Similarly, the set of non-empty tuples of TG(i) in
the same row is denoted as TG(i).row. For exam-
ple, TG(10).col = {(i, 10)j if (i, 10) is a non-empty
tuple and 11 6 i 6 w} and TG(10).row = {(10, i)j
if (10, i) is a non-empty tuple and 11 6 i 6 w}.
TG(10) = TG(10).col [TG(10).row.

Algorithm 1. Construct balanced binary
search trees for tuple groups
1:
 for i = 1 to w do
2:
 if TG(i).col 5 ; then
3:
 Construct a balanced binary search
tree on TG(i).col, denoted
as TG(i).col-tree
4:
 end if
5:
 if TG(i).row 5 ; then
6:
 Construct a balanced binary search
tree on TG(i).row, denoted
as TG(i).row-tree.
7:
 end if
8:
 end for
9:
 Construct a balanced binary search
tree on non-empty diagonal tuples.
denoted as diagonal-tuple-tree.

er Networks 50 (2006) 1406–1423 1417
Pseudo-code in Algorithm 2 shows the construc-

tion of a filter-marker conflict resolved tuple space.
From lines 2–5, all the filters create markers in diag-
onal tuples. Afterwards, resolvers are created by the
pseudo code in Algorithm 3. Next, balanced binary
search trees are created for each tuple groups and
diagonal tuples. This is accomplished by the pseudo
code shown in Algorithm 1. At this step, for each
tuple group, say TG(i), two balanced binary search
trees, denoted as TG(i).row-tree and TG(i).col-tree
for non-empty tuples in the tuple group are con-
structed, where the former denotes the tree con-
structed using tuples in the same row while the

Algorithm 2. The construction of a filter-marker
conflict resolved tuple space

F.-Y. Lee, S. Shieh / Comput
1:
 Construct the tuple space.

2:
 Create resolvers for each pair of overlapped

filters in F
3:
 for all filter f (including filters in F and the
resolvers created previously) do
4:
 Let T = (i, j) be the tuple that f mapped
to, and s = min(i, j)
5:
 filter f leaves a marker in the diagonal
tuple (s, s).
6:
 end for
7:
 Construct diagonal-tuple-tree using
Algorithm 1
8:
 for all filter f (including filters in
F and resolvers) do
9:
 Let f mapped to tuple T that is a
element of TG(i).
10:
 for each ancestor tuple T 0 of tuple
(i, i) in diagonal-tuple-tree do
11:
 if T 0 2 S(T) then
12:
 Insert a marker into tuple T0 for filter f.

13:
 end if
14:
 end for
15:
 end for
16:
 Resolve conflicts between filters and markers
in the diagonal tuples using Algorithm 3
17:
 Construct row-trees and col-trees
for each tuple group, using Algorithm 1.
18:
 for all filter f (including filters
in F and resolvers) do
19:
 Let f mapped to tuple T that is a
element of TG(i).
20:
 if T is a element of TG(i).row then
21:
 foreach ancestor node T 0 of T in
TG(i).row-tree do
22:
 if T 0 2 S(T) then
23:
 Insert a marker into tuple T 0

for filter f.

24:
 end if
25:
 end for
26:
 else if T is a element of TG(i).col then
27:
 for each ancestor tuple T 0 of T in
TG(i).col-tree do
28:
 if T 0 2 S(T) then
29:
 Insert a marker into tuple T 0

for filter f.

30:
 end if
31:
 end for
32:
 end if
33:
 end for
34:
 Pre-computation using Algorithm 4.
Algorithm 3. The creation of resolvers that
resolve conflicts between filters and markers
1:
 for all filter f in F do
2:
 for i = 1 to w do
3:
 for all filter or marker g in tuple (i, i) do

4:
 if f is overlapped with g then
5:
 Create a resolver for f and g,
and insert the resolver
into the tuple space.
6:
 end if
7:
 end for
8:
 end for
9:
 end for
Algorithm 4. The pre-computation of the best
matched filter for each filter in the tuple space
1:
 for all Tuple T 2 tuple space do
2:
 for all filter or marker f 2 T do
3:
 for all Tuple T 0 2 S(T) do

4:
 for all filter g 2 T 0 do
5:
 if f match g then
6:
 Set g as the best matched filter of f.

7:
 end if
8:
 end for
9:
 end for

1418 F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423
10:
 end for
11:
 end for
latter denotes the tree constructed using tuples in the
same column. Moreover, a balanced binary search
tree, denoted as diagonal-tuple-tree, is constructed
which is built on the non-empty diagonal tuples.

From lines 8–28, the rest of markers are created
and inserted to the tuple space. Consider a filter f

in tuple T and without loss of generality assume
that tuple T belongs to TG(i).col of a tuple group
TG(i). Filter f first leaves markers in the tuples that
are in S(T) and that are on the path from tuple T

to the root tuple in the balanced binary search tree
TG(i).col-tree. Then, f leaves markers in the tuples
of S(Td) that are on the path from tuple Td to the
root tuple in the diagonal-tuple-tree, where Td de-
notes the diagonal tuple (i, i). Note that consider
two tuples Ta and Tb in the same binary search
tree, tuple Tb is in the right subtree of tuple Ta if
Tb is in L(Ta). On the other hand, Tb is in the left
subtree if Tb is in S(Ta). At the final step, pre-com-
putation is performed and its pseudo-code is
shown in Algorithm 4.

4.2. Binary search scheme

The diagonal-based tuple space search algo-
rithm is described in Algorithm 5. First, the algo-
rithm performs binary search to determines Tlmdt

using balanced binary search tree, diagonal-tuple-

tree. Next, the search algorithm traverses the row
tree and column tree corresponding to

Algorithm 5. The proposed binary search
algorithm
1:
 best-matching-filter nil
2:
 Tuple T diagonal-tuple-tree.root

3:
 repeat
4:
 if a matching filter or marker f found
at Tuple T then
5:
 Tlmdt T
6:
 T T.right-child

7:
 if f is a filter then
8:
 best-matching-filter f
9:
 else
10:
 best-matching-filter The
pre-computed best matching
filter stored with marker f.
11:
 end if
12:
 else
13:
 T T.left-child

14:
 end if
15:
 until T is a leaf node in the
diagonal-tuple-tree
16:
 Let T be represented as (i, i)

17:
 Let T TG(i).col-tree.root

18:
 repeat
19:
 if matching a filter or marker
at Tuple T then
20:
 T T.right-child

21:
 if f is a filter then
22:
 best-matching-filter f
23:
 else
24:
 best-matching-filter The
pre-computed best matching
filter stored with marker f.
25:
 end if
26:
 else
27:
 T T.left-child

28:
 end if
29:
 until T is a leaf node in TG(i).
col-tree.root
30:
 Let T TG(i).row-tree.root

31:
 repeat
32:
 if matching a filter or marker
at Tuple T then
33:
 T T.right-child

34:
 if f is a filter then
35:
 best-matching-filter f
36:
 else

37:
 best-matching-filter The

pre-computed best matching
filter stored with marker f.
38:
 end if
39:
 else
40:
 T T.left-child

41:
 end if
42:
 until T is a leaf node in TG(i).col-row.root

43:
 Output best-matching-filter.
the Tlmdt. In this way, a best matched filter can be
determined. Theorem 1 shows that O(log(w)) hash

F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423 1419
operation is sufficient to determine the best
matched filter.

Theorem 1. The binary search algorithm finds the

best matched filter in O(log(w)) hashes.

Proof. The search algorithm traverses path from
root down to some leaf in the diagonal-tuple-tree
and subsequently traverses two binary search trees
associated with the diagonal tuple Tlmdt. Height of
the balanced binary search tree on diagonal tuples
is at most dlog(w)e. Similarly the height of bal-
anced binary search trees in each tuple group are
also at most dlog(w)e. Therefore, the total number
of hashes equals to O(log(w)), and thus time com-
plexity of the search algorithm is O(log(w)). h
Table 1
Comparison of time and space complexities

Scheme name Search time Memory space

Linear tuple space search O(w2) O(n)
Rectangle search O(w) O(nw)
Grid-of-trie O(w) O(nw)
Extended grid-of-trie O(w) O(nw)
Binary search on columns O(log2(w)) O(n log2(w))
Proposed scheme O(log(w)) O(n2)
4.3. Dynamic update of filter sets

In addition to the determination of the best
matched filter for a packet, some applications,
such as firewall, may have the demand to dynam-
ically insert or delete filter rules. To insert a new
filter rule, as we do in constructing a filter-marker
conflict resolved tuple space, the first step is to re-
solve possible conflicts between the new filter and
original filters. Then, markers of the new filter
are inserted into the tuple space, and subsequently
the resolves for the new markers and original
filters are created. Finally, pre-computation is
performed.

Deleting a filter from a classifier is more compli-
cated than inserting a new one. First, we have to
remove all the resolvers and markers created from
this filters. Notice that different filters may leave
identical markers. Thus, a marker can actually be
removed only after all the filters or resolver creat-
ing the marker are deleted. After the removal of
resolvers and markers of the deleted filter, pre-
computation is executed on the new tuple space.

It is clear that the need of pre-computation
makes our scheme more geared toward static filter
set or filter set that changed infrequently. It is hard
to guarantee that the insertion and deletion of a fil-
ter can be completed at line-rate. However, for
applications that can tolerate some delay in adjust-
ing filter sets, our approach is applicable and pro-
vides fast packet classification.
5. Performance evaluation and comparison

This section first gives complexity comparison
with other packet classification algorithms. Subse-
quently, the experimental setup and measurement
result on the memory requirement of the proposed
algorithm are described.

5.1. Complexity comparison

Table 1 shows the comparison of proposed
scheme with existing classification algorithms
which focus on two-dimensional packet classifica-
tion. Comparison is made in terms of search time
and memory space requirement. In the compari-
son, n denotes the number of filters in the classifier
and w represents the maximum prefix length of
filters.

As can be seen from Table 1, linear search
through all of the tuples w2 hashes and subse-
quently may incur too much delay in the worst
case. Rectangle Search, Grid-of-Trie and Extended
Grid-of-Trie have the same number of memory ac-
cess. Binary Search on Columns provides better
search efficiency while the proposed scheme has
the best search performance. The penalty for the
fast packet classification is the large memory space
used. However, the worst case is unlikely to hap-
pen unless the filters in the classifier are severely
overlapped with each other.

5.2. Estimation of memory requirement

Although the proposed scheme may use large
memory space in the worst case, the memory
requirement is likely to be much smaller in prac-
tice. This will be shown by some typical experi-
ments later in this section. Since there is no

1420 F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423
publicly available large filter sets, it is hard to
know the memory usage of the proposed scheme
under the use of real-life filter sets. Thus, artifi-
cially created filter sets are used to estimate the
memory requirement of the proposed scheme.
According to the algorithm presented in Algo-
rithm 2, there are at most O(n * log(w)) markers.
It is clear that the number of resolvers is the dom-
inating factor of the memory requirement. To esti-
mate the memory space overhead caused by
resolvers, Resolver overhead is defined as (number
of resolvers/number of filters). In the following,
various types of filter sets are examined so as to
identify characteristics that may affect the resolver
overhead.

In our experiment, prefixes in the publicly avail-
able BGP tables [1] are used to construct filter sets.
Prefixes are first categorized according to their
originating AS numbers. Prefixes with the same
originating AS number are classified into the same
category and each category may has one to thou-
sands of prefixes. Fig. 14 shows the distribution
of number of prefixes in each category.

Given a set of prefixes, it is possible that a prefix
prefix1 may be the prefix of another prefix prefix2.
Then, we say that the covered count of a prefix is k

if the prefix is a prefix of other k prefixes in the set.
For example, consider a set of five prefixes ex-
pressed in CIDR format, 140.0.0.0/8, 140.113.0.0/
16, 140.113.1.0/24, 140.113.2.0/24, 140.113.3.0/24.
Then, the covered count of 140.0.0.0/8 is 4. The
average covered count is 1.4.

A two-dimensional filter set can be created by
cross-producting prefixes of two categories. As
mentioned before, without large publicly available
Fig. 14. Number of prefixes with the same originating AS
number.
classifiers, so far the best we can do is to create
random filter sets. In our experiments, the source
prefix and destination prefix are randomly selected
from two categories respectively. However, since
most of the categories have only one prefix,
cross-producting prefixes of two categories can
create classifiers with a small number of filters
only. To generate a large filter set, one straightfor-
ward approach is to combine categories. This
would create groups of prefixes, where each group
can have sufficient number of prefixes. Then, it will
be much easier to create large filter sets by cross-
producting prefixes of two groups. In our experi-
ments, the average covered counts of categories
are used to joint categories together. According
to the average covered count, all the categories
can be partitioned into five sets, as shown in Table
2.

Then, we choose to combine the top eight cate-
gories, in terms of number of prefixes, to create a
larger set of prefixes. Tables 3–7 show the selected
top eight categories in each group.

Afterwards, five groups of prefixes can be con-
structed by joining prefixes of the top eight catego-
ries. Table 8 shows the number of prefixes and
average covered count of the generated prefix
groups.

Now, there are 5 prefix groups, where each
group has sufficient number of prefixes. By cross
producting prefixes of two groups, 10 combina-
tions can be generated. Table 9 shows the 10 types
of combination and the corresponding covered

level. The covered level of a two dimensional clas-
sifier is defined as the product of the average cov-
ered counts of the two groups which constitutes
the classifier. Notice that covered count is defined
to characterize one dimensional filter sets while
covered level is for multi-dimensional classifiers.
Table 2
Number of categories in the five groups

Group ID Range of covered count # of categories

1 2 6 covered count 8
2 1.5 6 covered count < 2.0 27
3 1 6 covered count < 1.5 113
4 0.5 6 covered count < 1 954
5 0 6 covered count < 0.5 13,988

Table 3
Information of the 8 ASs in the first group

AS number # of prefixes Average covered count

14654 147 2.251701
9930 85 2.082353
3776 49 2.142857
4787 44 2.636364
9129 25 2.440000
4758 23 2.173913
12150 23 3.347826
4800 12 2.166667

Table 4
Information of the 8 ASs in the second group

AS number # of prefixes Average covered count

9583 231 1.800866
11172 171 1.508772
19864 105 1.600000
3573 71 1.647887
10029 66 1.863636
9425 52 1.576923
2706 49 1.530612
8795 36 1.555556

Table 5
Information of the 8 ASs in the third group

AS number # of prefixes Average covered count

5668 205 1.341463
13609 197 1.208122
3464 147 1.374150
19916 127 1.102362
15105 93 1.129032
4471 80 1.012500
8717 72 1.305556
9829 70 1.285714

Table 6
Information of the 8 ASs in the fourth group

AS number # of prefixes Average covered count

65529 888 0.740991
7132 861 0.739837
4323 600 0.901667
6197 518 0.532819
4355 395 0.772152
27364 290 0.948276
4755 225 0.946667
6140 224 0.696429

Table 7
Information of the 8 ASs in the fifth group

AS number # of prefixes Average covered count

701 1503 0.140386
1239 962 0.214137
3908 884 0.363122
702 729 0.106996
7843 632 0.370253
852 526 0.076046
6198 477 0.343816
209 472 0.271186

Table 8
Information of the five groups

Group ID # of prefixes Average covered count

1 408 2.311275
2 781 1.658131
3 991 1.243189
4 4001 0.765059
5 6185 0.318998

Table 9
Ten types of combinations

Combination ID (Group ID, Group ID) Covered level

1 (1, 2) 3.832397
2 (1, 3) 2.873352
3 (2, 3) 2.061370
4 (1, 4) 1.768262
5 (2, 4) 1.268568
6 (3, 4) 0.951113
7 (1, 5) 0.737292
8 (2, 5) 0.528940
9 (3, 5) 0.396575
10 (4, 5) 0.244052

F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423 1421
For instance, consider combination 1 which is
made from group 1 and group 2, its covered level
is 3.832397 = (2.311275 * 1.658131).

In the following experiments, we attempt to
show that the resolver overhead is related to the
covered level. The observation is that classifiers
created from combinations with high covered level
will have higher resolver overhead. To confirm the
observation, we randomly created classifiers with
different number of filters for each combination.
In our experiments, for each combination, classifi-
ers consisting of 100, 200, . . . , 1900, 2000, 4000,
8000, 10,000 filters respectively were created. For

1422 F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423
each size, 500 randomly created filter sets were
tested. In each test, the resolver overhead was cal-
culated. Fig. 15 shows experimental results of clas-
sifiers with the number of filters fewer than 2000.
Table 10 shows the results of classifiers with
4000, 8000, 10000 filters.

It is clearly that the experimental results shown
in Fig. 15 and Table 10 confirm the observation.
For instance, classifiers created from combination
1, which has the highest covered level, have the
highest resolver overhead. On the other hand, clas-
sifiers created from combination 10 have the low-
est resolver overhead.

Additionally, the highest resolver overhead ob-
served in our experimental result is 0.5. It indicates
that, in the experiment, resolvers require half
Fig. 15. Resolver overhead of classifiers generated from differ-
ent combinations and with different sizes.

Table 10
Resolver overhead of classifiers of size 4000, 8000 and 10000

Combination
ID

Resolver overhead in different filter set size

4000 8000 10000

1 0.265551 0.444161 0.520234
2 0.19495 0.335861 0.394862
3 0.068694 0.126703 0.153178
4 0.057959 0.103177 0.122906
5 0.023154 0.042083 0.050485
6 0.016713 0.031242 0.037887
7 0.015111 0.029033 0.035152
8 0.005154 0.009521 0.011782
9 0.003872 0.007244 0.008948
10 0.001429 0.002592 0.003339
memory space compared to the memory space
used by original filters in the classifier, that is, if
the covered level of real-life classifiers is small,
our approach may not require huge memory space
to store resolvers.

Finally, we use a firewall database on hand to
illustrate the memory requirement of the proposed
scheme. The firewall is currently deployed to pro-
tect a network with twenty personal computers, a
web server, a samba server, a SMTP server, and
three ftp servers. There are in total 71 firewall rules.
We use the source address and destination address
specifications to construct a two-dimensional clas-
sifier. The covered level of the classifier is 0.01. Only
four resolvers (the resolver overhead is 0.056) and
in total 162 two-dimensional filters in the tuple
space are created. Memory space used by the tuple
space is about 5K bytes. This evaluation result may
help show that the memory requirement of the pro-
posed scheme is feasible for network devices such as
routers, firewalls or NAT devices.
6. Conclusion

Two-dimensional packet classification is impor-
tant for many network applications. Many schemes
have been proposed to accelerate this operation. In
this paper, we proposed a binary search algorithm
that performs packet classification in O(log(w))
hash operations. The memory usage can reach
O(n2) in the worst case. However, if the covered
count of a filter set is small, the memory require-
ment is reasonably low. In other words, our ap-
proach can provide fast packet classification
operation for classifier with small covered level.
For classifiers with large covered level, our scheme
is still applicable if search efficiency is much more
important than storage considerations.
References

[1] Bgp table data. Available from: <http://bgp.potaroo.
net/>.

[2] F. Baboescu, S. Singh, G. Varghese, Packet classification
for core routers: Is there an alternative to cams? in:
Proceedings of INFOCOM 2003, 2003.

http://bgp.potaroo.net/
http://bgp.potaroo.net/

F.-Y. Lee, S. Shieh / Computer Networks 50 (2006) 1406–1423 1423
[3] F. Baboescu, G. Varghese, Fast and scalable conflict
detection for packet classifiers, in: Proceedings of Inter-
national Conference on Network Protocols 2002, 2002.

[4] A. Broder, M. Mitzenmacher, Using multiple hash func-
tions to improve IP lookups, in: Proceedings of INFO-
COM, vol. 3, Apr. 2001, pp. 1454–1463.

[5] B. Cain, S.E. Deering, I. Kouvelas, B. Fenner, A. Thyag-
arajan, Internet Group Management Protocol, Version 3,
Internet Engineering Task Force, RFC 3376, Oct. 2002
[Online]. Available from: <http://www.rfc-editor.org/rfc/
rfc3376.txt>.

[6] A. Feldmann, S. Muthukrishnan, Tradeoffs for packet
classification, in: Proceedings of IEEE INFOCOM, 2000,
pp. 1193–1202.

[7] P. Gupta, N. McKeown, Packet classification on multiple
fields, in: Proceedings of ACM SIGCOMM, 1999, pp. 147–
160.

[8] P. Gupta, N. McKeown, Classifying packets with hierar-
chical intelligent cuttings, IEEE Micro 20 (1) (2000) 34–41.

[9] P. Gupta, N. McKeown, Algorithms for packet classifica-
tion, IEEE Network (March/April) (2001) 24–32.

[10] A. Hari, S. Suri, G. Parulkar, Detecting and resolving
packet filter conflicts, in: Proceedings of IEEE INFOCOM,
2000, pp. 1203–1211.

[11] D.E. Knuth, The Art of Computer Programming: Sorting
and Searching, vol. 3, Addison-Wesley Professional, 1998.

[12] V. Kumar, T. Lakshman, D. Stiliadis, Beyond best effort:
router architectures for the differentiated services of
tomorrow�s Internet, IEEE Communications Magazine
36 (May) (1998) 152–164.

[13] T.V. Lakshman, D. Stiliadis, High-speed policy-based
packet forwarding using efficient multi-dimensional range
matching, in: Proceedings of ACM SIGCOMM, 1998,
pp. 203–214.

[14] C. Macian, R. Finthammer, An evaluation fo the key
design criteria to achieve high update rates in packet
classifiers, IEEE Network (November/December) (2001)
24–29.

[15] J. Moy, Multicast Extensions to OSPF, Internet Engineer-
ing Task Force, RFC 1584, Mar. 1994 [Online]. Available
from: <http://www.rfc-editor.org/rfc/rfc1584.txt>.

[16] V. Srinivasan, S. Suri, G. Varghese, Packet classification
using tuple space search, in: Proceedings of ACM SIG-
COMM, 1999, pp. 135–146.

[17] V. Srinivasan, G. Varghese, Fast address lookups using
controlled prefix expansion, ACM Transaction on Com-
puter Systems 17 (1) (1999) 1–40.

[18] V. Srinivasan, G. Varghese, S. Suri, M. Waldvogel, Fast
and scalable layer four switching, in: Proceedings of ACM
SIGCOMM, Sep. 1998, pp. 191–202.

[19] C.-F. Su, High-speed packet classification using segment
tree, in: Proceedings of IEEE GLOBECOM, 2000, pp.
582–586.

[20] D. Waitzman, C. Partridge, S.E. Deering, Distance Vector
Multicast Routing Protocol, Internet Engineering Task
Force, RFC 1075, Nov. 1988 [Online]. Available from:
<http://www.rfc-editor.org/rfc/rfc1075.txt>.
[21] M. Waldvogel, G. Varghese, J. Turner, B. Plattner,
Scalable high speed ip routing lookups, in: Proceedings
of ACM SIGCOMM, September 1997, pp. 25–36.

[22] P. Warkhede, S. Suri, G. Varghese, Fast packet classifica-
tion for two-dimensional conflict-free filters, in: Proceed-
ings of IEEE INFOCOM, 2001, pp. 1434–1443.

Fu-Yuan Lee received the BS degree in
computer science from National Chiao
Tung University in 1998. He is cur-
rently a Ph.D. student in the Depart-
ment of Computer Science and
Information Engineering at National
Chiao Tung University. His research
interests are in the areas of computer
networks and network security.
Shiuhpyng Shieh is a professor and
former chairman of Department of
Computer Science and Information
Engineering of National Chiao Tung
University. He is also, and the presi-
dent of Chinese Cryptology and
Information Security Association
(CCISA), which is the largest and a
highly respectable academic organiza-
tion on information security research
in Taiwan. He has worked as advisor

to many institutes, such as National Security Bureau, GSN-

CERT/CC, National Information and Communication Secu-
rity Task Force. Before joining NCTU, He participated in the
design and implementation of the B2 Secure XENIX at IBM,
Federal Sector Division, Gaithersburg, Maryland. He also
designed and developed NetSphinx, a network security product,
for Formosoft Inc., which is awarded 1999 network product of
the year, Taiwan.

He received the M.S. and Ph.D. degrees in electrical and
computer engineering from the University of Maryland, College
Park. He is a senior member of IEEE, and an editor of ACM
Transactions on Information and System Security, Journal of
Computer Security, and Journal of Information Science. He
was on the organizing committees of numerous conferences,
such as ACM conference on Computer and Communications
Security, IACR Asiacrypt. Dr. Shieh published over a hundred
academic articles, including papers, patents, and books.
Recently he received the Outstanding Research Award from
National Chiao Tung University for his academic achievement
in research, and the Outstanding Achievement Award from
Executive Yuan of Taiwan. His research interests include
internetworking, distributed operating systems, and network
security.

http://www.rfc-editor.org/rfc/rfc3376.txt
http://www.rfc-editor.org/rfc/rfc3376.txt
http://www.rfc-editor.org/rfc/rfc1584.txt
http://www.rfc-editor.org/rfc/rfc1075.txt

	Packet classification using diagonal-based tuple space search
	Introduction
	Fundamentals of tuple space search
	Problem statement
	Fundamentals of the tuple space search
	Proposed tuple space search strategy

	Diagonal-based tuple space search
	Tuple space construction and search algorithm
	Tuple space construction
	Binary search scheme
	Dynamic update of filter sets

	Performance evaluation and comparison
	Complexity comparison
	Estimation of memory requirement

	Conclusion
	References

