
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

A Hybrid Hardware Architecture for High-Speed IP
Lookups and Fast Route Updates

Layong Luo, Gaogang Xie, Member, IEEE, Yingke Xie, Laurent Mathy, Member, IEEE, and
Kavé Salamatian, Member, IEEE

Abstract—As network link rates are being pushed beyond
40 Gb/s, IP lookup in high-speed routers is moving to hard-
ware. The ternary content addressable memory (TCAM)-based
IP lookup engine and the static random access memory
(SRAM)-based IP lookup pipeline are the two most common
ways to achieve high throughput. However, route updates in both
engines degrade lookup performance and may lead to packet
drops. Moreover, there is a growing interest in virtual IP routers
where more frequent updates happen. Finding solutions that
achieve both fast lookup and low update overhead becomes crit-
ical. In this paper, we propose a hybrid IP lookup architecture to
address this challenge. The architecture is based on an efficient
trie partitioning scheme that divides the forwarding information
base (FIB) into two prefix sets: a large disjoint leaf prefix set
mapped into an external TCAM-based lookup engine and a small
overlapping prefix set mapped into an on-chip SRAM-based
lookup pipeline. Critical optimizations are developed on both
IP lookup engines to reduce the update overhead. We show how
to extend the proposed hybrid architecture to support virtual
routers. Our implementation shows a throughput of 250 million
lookups per second (equivalent to 128 Gb/s with 64-B packets).
The update overhead is significantly lower than that of previous
work, the memory consumption is reasonable, and the utilization
ratio of most external TCAMs is up to 100%.

Index Terms—IP lookup, route updates, ternary content
addressable memory (TCAM), static random access memory
(SRAM)-based pipeline.

I. INTRODUCTION

I N INTERNET routers, IP lookup is a critical function which
determines how to forward an incoming packet by finding

the next hop for the destination IP address of the packet. Since

Manuscript received March 02, 2012; revised March 07, 2013; accepted May
21, 2013; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor P.
Crowley. This work was supported in part by the National Basic Research Pro-
gram of China under Grant 2012CB315801, the NSFC under Grant 61133015,
the NSFC-ANR pFlower project under Grant 61061130562, the National High-
tech R&D Program of China under Grant 2013AA013501, and the Strategic
Priority Research Program of CAS under Grant XDA06010303. The work of
L. Mathy was supported in part by Lancaster University. (Corresponding au-
thor: G. Xie)
L. Luo is with the Institute of Computing Technology, Chinese Academy

of Sciences, Beijing 100190, China, and also with the University of Chinese
Academy of Sciences, Beijing 100049, China (e-mail: luolayong@ict.ac.cn).
G. Xie and Y. Xie are with the Institute of Computing Technology, Chi-

nese Academy of Sciences, Beijing 100190, China (e-mail: xie@ict.ac.cn;
ykxie@ict.ac.cn).
L. Mathy is with the University of Liège, 4000 Liège, Belgium (e-mail:

laurent.mathy@ulg.ac.be).
K. Salamatian is with University of Savoie, 74016 Annecy-Le-Vieux, France

(e-mail: kave.salamatian@univ-savoie.fr).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2013.2266665

Fig. 1. (a) Sample FIB and (b) corresponding 1-bit trie.

the introduction of classless inter-domain routing (CIDR) in
1993, finding the next hop for a destination IP address has be-
come a longest-prefix matching (LPM) problem, i.e., given a
destination IP address, multiple matching IP address prefixes
of different lengths may exist in the forwarding information
base (FIB) of the router, and the longest such prefix must be
used to determine the next hop.
The longest-prefix matching problem naturally lends itself

to a hierarchical data structure for which a trie is an efficient
representation. An IP lookup trie contains two types of nodes:
1) prefix nodes that represent predefined prefixes for which valid
next-hop information exists; and 2) non-prefix nodes that do not
contain next-hop information. Fig. 1 shows a 1-bit trie built from
a sample FIB. For simplicity, we use a next-hop pointer to rep-
resent the next-hop information, and a “0” denotes an invalid
next-hop pointer (i.e., the node containing a “0” is a non-prefix
node).
With this trie data structure, the address space represented

by the prefix stored at a node is always contained within the
address space represented by the prefix stored at its ancestor
nodes. The longest-prefix matching of a destination address is
then determined by following a single path from the trie root,
with the longest-prefix match corresponding to the last prefix
node encountered before the end of the path. As there is only
one leaf node per trie-path, prefixes stored at different leaf nodes
are disjoint, i.e., the corresponding address spaces of two leaves
have no address in common.
As network link rates are being pushed beyond 40 Gb/s, IP

lookup with LPM becomes a major bottleneck in high-speed
routers. The high performance required by such high link rates
is hard to be achieved in software [1], and two major hardware
implementation techniques have been widely used to achieve
such high performance: ternary content addressable memory
(TCAM)-based IP lookup engines and static random access

1063-6692/$31.00 © 2013 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

memory (SRAM)-based IP lookup pipelines. Both of these
solutions can achieve a high throughput of one lookup per
clock cycle.
However, both of these solutions suffer from practical

problems. On one hand, TCAM-based IP lookup engines
have very high update cost because of overlapping prefixes.
On the other hand, SRAM-based IP lookup pipelines cannot
accommodate large FIBs common in typical situations due to
the limited size of on-chip SRAMs in the field-programmable
gate array (FPGA), which is a natural hardware choice for
implementing SRAM-based lookup pipelines. Additionally,
route updates in previous SRAM-based IP lookup pipelines
may lead to disruption to the IP lookup process and degrade IP
lookup performance.
In this paper, we mainly target fast incremental route up-

dates in high-speed routers. We propose a different view to the
problem of hardware IP lookup engine design. Rather than using
only one type of hardware solution, TCAM-based IP lookup
engine or SRAM-based IP lookup pipeline, we mix these two
in order to benefit from the positive points of each approach
without being hindered by their weaknesses. Our aim is to de-
sign a very fast lookup architecture that enables fast updates
concomitantly. For this purpose, we propose a hybrid lookup ar-
chitecture, composed of a TCAM-based lookup engine and an
SRAM-based lookup pipeline operating in parallel. An efficient
trie partitioning scheme is applied to partition the FIB of the
router into a large disjoint prefix set and a small set of prefixes
that overlap those in the disjoint prefix set (we call this latter
“overlapping prefix set” for short). The TCAM-based lookup
engine contains the disjoint prefix set, and the SRAM-based
lookup pipeline contains the overlapping prefix set. We show
that this hybrid architecture results in fast lookup combined with
easy and fast updates. We also show how our approach can be
applied in the context of virtual routers.
We implement the proposed hybrid architecture on our

PEARL hardware platform [2] and achieve a maximum
throughput of 250 million lookups per second (MLPS). Com-
parative results show that the update overhead is significantly
lower than that of previous work. Moreover, the memory
consumption in our architecture is reasonable, and our TCAM
memory can easily be dimensioned to achieve memory space
utilization close to 100%.
The rest of the paper is organized as follows. In Section II,

we present the state of the art and explain our design motiva-
tion and rationale. In Section III, we introduce our hybrid ar-
chitecture and describe the optimizations for fast updates. In
Section IV, we extend our approaches to support virtual routers.
In Section V, we describe the architecture implementation on
our PEARL platform and compare its performance to other tech-
niques. We discuss some extensions in Section VI and conclude
the paper in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we discuss two major hardware techniques
for implementing fast IP lookup, their practical problems, and
related work on these problems. We then explain our design
motivation and rationale.

A. TCAM-Based IP Lookup Engines

A TCAM implements a high-speed associative memory,
where in a single clock cycle a search key is compared simul-
taneously with all the entries (i.e., keys) stored to determine a
match and output the corresponding address. As TCAM entries
can be specified using three states (0, 1, and “X” meaning
don’t care), this type of memory is particularly well suited for
storing IP prefixes where masked bits are given “X” states.
Indeed, because of the “X” bits, several TCAM entries could
match a given IP address, so TCAMs are designed to always
return the first matching entry encountered (TCAM entries
have an intrinsic order represented by an address). Therefore,
in order to provide correct LPM operations, prefixes are stored
in the TCAM with reverse order in overlap, i.e., longest prefix
should be stored first. These order constraints result in a large
number of TCAM entry movements on some route updates,
with large impact on the lookup performance and possible
packet drops [3].
Because of the interest of the TCAM for IP lookup, sev-

eral research efforts have targeted the issue of TCAM updates.
In [4], two approaches named PLO OPT and CAO OPT have
been proposed. PLO OPT maintains the prefix-length order by
putting all the prefixes in order of decreasing prefix lengths and
keeping the unused (i.e., empty) space in the center of a TCAM.
CAO OPT relaxes the constraint to only overlapping prefixes
in the same chain (i.e., a single path from the trie root). Both
approaches can decrease the number of entry movements per
update. However, multiple entry movements are still needed
for a single route update in the worst case [4]. In another ap-
proach, order constraints can be totally avoided in a TCAM
by converting the whole prefix set into an equivalent minimum
independent prefix set (MIPS) [5] using the leaf pushing tech-
nique [6]. However, leaf pushing may lead to prefix expansion.
When a prefix is updated, all of its expanded prefixes have to be
modified. Therefore, multiple write accesses may still be needed
for a single route update. Additionally, TCAM updates can be
performed without packet drops by duplicating the TCAM, with
updates done to the shadow TCAM and the active one swapped
out. However, the TCAM memory requirements are double.

B. SRAM-Based IP Lookup Pipelines

The other major hardware implementation technique, which
can also achieve a high throughput of one lookup per clock
cycle, is the SRAM-based lookup pipeline [7], which corre-
sponds to a straightforward mapping of each trie level onto a
corresponding pipeline stage with its own SRAM memory. In
such solutions, the number of pipeline stages depends on the
stride used (i.e., the number of bits used to determine which
branch to take at each stage—in Fig. 1 and in the rest of this
paper, we use 1-bit strides for simplicity). Therefore, the lookup
pipeline will require a rather high number of separate SRAMs
(up to 33 in the case of IPv4). The FPGA is a natural hard-
ware choice for implementing the SRAM-based pipeline, as
it contains hundreds of separate SRAMs inside. Nevertheless,
the on-chip SRAM is generally a scarce resource that should
be allocated and utilized efficiently or be complemented by
external SRAMs [8]. One major issue here is that the shape of
a trie determines the size of the SRAM needed in each stage

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LUO et al.: HYBRID HARDWARE ARCHITECTURE FOR HIGH-SPEED IP LOOKUPS AND FAST ROUTE UPDATES 3

TABLE I
ANALYSIS OF REAL ROUTING TABLES

of the pipeline, so it is difficult to achieve high utilization of
SRAMs in all stages. While much work has been devoted to
this issue [9]–[11], the fact remains that on-chip SRAMs are
still insufficient to accommodate the typically large interdo-
main FIB (as shown in Table I, about 360 K prefixes to date).
For example, it has been reported [11] that Optimized Linear
Pipeline (OLP) can support 30 K IPv4 prefixes using 3.456 Mb
of on-chip SRAMs. Hence, given a state-of-the-art large
Virtex-6 FPGA (e.g., XC6VHX565T) with 32 Mb of on-chip
SRAMs, only about 277 K IPv4 prefixes can be stored using
OLP. This means that the memory size is still a challenge in the
SRAM-based lookup pipeline. Some optimizations [12], [13]
that reduce the lookup time complexity and the memory re-
quirement of the trie by multilevel hash tables can be adopted
in the SRAM-based lookup pipeline to reduce the number of
pipeline stages (i.e., the number of separate SRAMs needed)
and the total memory requirement in the pipeline.
When external SRAMs are used for complementing the

memory resource of trie-based pipelines, a few large levels are
moved into external SRAMs [8]. However, the size of those
levels is variable, and controlling the memory distribution
among these stages is challenging [8]. Therefore, external
SRAMs should be overprovisioned, and memory waste can
rarely be avoided. In 2–3 tree-based routers [14], the last few
stages of the SRAM-based pipeline are moved to external
SRAMs. In these routers, a 2–3 balanced tree is built so that the
size of memory needed in level is about twice of that in
level . However, it is impractical to find in the market external
SRAMs with exact required sizes. Due to this fact, it is hard to
avoid memory waste when using 2–3 tree-based routers, and
the memory utilization ratio is usually low.
Route updates are handled in the SRAM-based lookup

pipelines through a technique known as write bubbles [15],
which essentially pack write messages caused by updates into
write packets to be injected into the pipeline. Nevertheless, a
single port of the SRAM modules is used in a “half-duplex”
way for reading and writing in the past pipelines [15], [16].
This means that write bubbles may lead to disruption to the IP
lookup process and possible packet drops. Route updates in
the current Internet are known to occur frequently, with peak

Fig. 2. Two sets after the trie in Fig. 1(b) is partitioned. (a) Corresponding
disjoint prefix set and (b) overlapping trie.

update rates affecting thousands of prefixes per second [17].
In the presence of virtual routers, a same network event could
trigger simultaneous updates to multiple FIBs, thus increasing
the rate of updates to the hardware lookup engine. If write
bubbles may lead to packet drops in a single router, the sit-
uation is exacerbated drastically when it comes into virtual
routers. Fortunately, state-of-the-art FPGAs now integrate dual
port SRAMs, capable of concurrent reading and writing. This
resolves the problem of disruption caused by updates.

C. Design Motivation and Rationale

In this paper, we aim to achieve fast lookups and fast up-
dates simultaneously by benefiting from the strengths of both
the above hardware engines, without being hindered by their
weaknesses. The core idea of our solution is based on the em-
pirically observed structure of 1-bit tries built from real FIBs.
1) About 90% of all prefixes are stored in trie leaves [14] and
are thus disjoint from each other.

2) When the leaf nodes are removed from the original trie,
non-prefix internal nodes that only lead to those leaf nodes
can also be removed, and a much smaller trimmed trie re-
mains. The trimmed trie contains, on average, only about
12% of the nodes of the original trie.

The large disjoint prefix set [e.g., see Fig. 2(a)], resulting from
property 1), makes a TCAM the ideal component to look these
up, as naturally disjoint prefixes do not impose any order con-
straints within the TCAM, thus making updates trivial: No entry
movement is required, and a single write access is sufficient
for each update as no prefix expansion is introduced. The small
trimmed trie [e.g., see Fig. 2(b)] resulting from the removal of
the leaf prefixes from the original trie, which represents the set
of prefixes that overlap with the disjoint prefix set thus removed,
needs much less memory space and can be stored in the on-chip
SRAM-based lookup pipeline in the FPGA.We will refer to this
small trimmed trie as “the overlapping trie” (we will use the
terms overlapping trie and overlapping prefix set interchange-
ably throughout the paper). In fact, several such trimmed tries
can easily fit in current FPGA’s SRAMs. Additionally, by ex-
ploiting the dual port capabilities of SRAMs mentioned earlier,
updating this SRAM-based pipeline is also trivial.

III. PROPOSED ARCHITECTURE

In this section, we describe our hybrid IP lookup architecture
with fast updates for a single router. The main ideas of this paper
are first to use the above observation to partition a 1-bit trie built

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 3. Hybrid IP lookup architecture.

from the FIB of the router into a large disjoint leaf prefix set and
a small trimmed overlapping trie, and then to design a hybrid
lookup architecture to accommodate these two sets. The large
disjoint leaf prefix set is mapped into an external TCAM-based
IP lookup engine, while the small trimmed overlapping trie is
mapped into an on-chip SRAM-based IP lookup pipeline in the
FPGA.

A. Trie Partitioning Scheme

We use an efficient trie partitioning scheme similar to the set-
bounded leaf-pushing algorithm in [14] to partition the 1-bit trie
into two prefix sets and to benefit from the observation made in
Section II-C. First, all the leaf prefixes in the trie are collected to
form a large disjoint prefix set, and thus all the leaf nodes can be
removed from the trie. Then, we can further trim the remaining
trie by removing nonprefix leaf nodes recursively until all the
leaf nodes in the final trimmed trie are prefix nodes. Note that the
main difference between our approach and that applied in [14]
is that we are not using leaf pushing in the trimmed trie in order
to enable fast updates.
Fig. 2 illustrates the results after the trie partitioning scheme is

applied to the trie shown in Fig. 1(b). All the leaf prefixes (i.e.,
prefix 00*, 010*, and 111*) of the original trie [see Fig. 1(b)]
are moved to a disjoint prefix set [see Fig. 2(a)], and the cor-
responding leaf nodes are deleted from the trie. Then, the re-
maining trie can be further trimmed. For example, the node cor-
responding to prefix 01* [see Fig. 1(b)] becomes a leaf node,
but it does not contain next-hop information (i.e., it has become
a non-prefix leaf node), so it can be further removed. The final
trimmed trie is shown in Fig. 2(b) and represents the small over-
lapping prefix set (i.e., a small overlapping trie).

B. Overall Architecture

The hybrid IP lookup architecture is depicted in Fig. 3 and is
composed of two IP lookup engines operating in parallel. The
large disjoint leaf prefix set [e.g., see Fig. 2(a)] is stored in the
TCAM-based lookup engine, while the small overlapping trie
[e.g., see Fig. 2(b)] is mapped into the on-chip SRAM-based
lookup pipeline. The destination IP address of an incoming
packet is extracted in the header parser module and sent to
the two lookup engines in parallel. Meanwhile, the packet is
stored in a buffer waiting for the next-hop information. After
the lookups in both engines are finished (i.e., the lookup in
the TCAM-based engine must wait until the lookup in the
SRAM-based pipeline is finished), the priority arbiter module
manages the priority of the two lookup results and provides
the next-hop information that is used to schedule the packet
to the corresponding output interface. As the length of the
prefix matched in the disjoint prefix set is by design longer

Fig. 4. SRAM-based IP lookup pipeline. (a) -stage IP lookup pipeline.
(b) Single stage of the pipeline.

than that in the overlapping prefix set, the search result of the
TCAM-based lookup engine has a higher priority than that of
the SRAM-based lookup pipeline.

C. Optimizations for Fast Updates

Efforts are made in both lookup engines to optimize the up-
date process. To achieve fast updates, only the large disjoint
prefix set is stored in the TCAM-based IP lookup engine. In
such a disjoint prefix set, a given IP address can only be matched
by at most a single prefix. Hence, the prefixes can be arranged
in the TCAM without any order constraints, and thus prefixes
can be directly inserted in and deleted from the TCAM without
entry movements. Moreover, the leaf prefix set is naturally dis-
joint and no prefix is expanded. Hence, in the worst case, a
single write access is enough for any route update. Note that the
next-hop information associated with a prefix is stored in an as-
sociated SRAM in the TCAM-based lookup engine. The TCAM
and its associated SRAM can be written (i.e., updated) indepen-
dently, which means a prefix and its corresponding next-hop in-
formation can be updated concurrently. Therefore, only the time
for write accesses to the TCAM is considered.
As explained in Section II, write bubbles may lead to disrup-

tion to the IP lookup process in the first generation of SRAM-
based pipelines [15], [16], as write and read operations could
not be performed simultaneously on the same port of an SRAM.
However, current FPGAs, like Xilinx FPGAs, can be configured
into a simple dual port (SDP) mode where the SRAM has sepa-
rate read and write ports [18] that enable simultaneous read and
write. Using this mode, we have designed a pipeline with sepa-
rate lookup and update paths that totally eliminate the disruption
[see Fig. 4(a)] as lookups are performed by only accessing the
read port, while write bubbles are processed by only accessing
the write port.
Update is done by injecting a write bubble into the pipeline.

Before injecting, the data to be written into the SRAM of each
stage are stored in a write bubble first-in–first-out (FIFO) in the
stage [see Fig. 4(b)]. The write bubble visits each stage for one
clock cycle. When the vld (valid) flag in the top entry of the
FIFO is set, it writes the data stored in the FIFO into the SRAM
at the corresponding address. Therefore, the write bubble does
not need to wait for the data, and it can update each stage in a
single clock cycle, achieving the same speed as the lookup.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LUO et al.: HYBRID HARDWARE ARCHITECTURE FOR HIGH-SPEED IP LOOKUPS AND FAST ROUTE UPDATES 5

As a write bubble and an IP lookup can run at the same speed,
and one write bubble is sufficient for a worst-case route update
when using the 1-bit trie-based data structure for pipelining [16],
an IP lookup never traverses the trie in an inconsistent state in
our pipeline. A consistent trie state can be defined as the state
before a route update is injected, or after a route update is com-
pleted. When IP lookups interleave with route updates, if we
can guarantee that the lookup result (i.e., the next-hop infor-
mation) is always identical to one of those results when the IP
lookup is performed on any consistent state, the consistency is
said to be maintained, and correct longest-prefix matching can
be guaranteed.
We ensure that an IP lookup always traverses the trie in a

consistent state in our pipeline as follows.
First, when a lookup is accessing a stage preceding the stage

a write bubble is accessing (i.e., the lookup is accessing a stage
that is nearer to the entrance of the pipeline), the lookup will
be always preceding the write bubble since they go through the
pipeline at the same speed, and thus the lookup will always ob-
serve the modified nodes caused by the write bubble. Therefore,
the lookup result is identical to that of the lookup after the route
update is completed.
Second, when a write bubble is accessing a stage preceding

the stage a lookup is accessing (i.e., the write bubble is accessing
a stage that is nearer to the entrance of the pipeline), the write
bubble will never catch up with the lookup, and thus the lookup
will always observe the old nodes before modification. There-
fore, the lookup result is identical to that of the lookup before
the write bubble is injected.
Third, even when a lookup and a write bubble are ac-

cessing the same node of the same stage simultaneously, the
lookup reads the old node before modification (thanks to the
READ FIRST feature of the SDP SRAM in Xilinx FPGA [18]),
and this read–write order is kept when they both move to the
next stage. It makes the lookup result always identical to that
of the lookup before the write bubble is injected.
We take an IP lookup with IP 011 and the write bubble of

inserting in Fig. 5(c) to illustrate the consistency. If at
some point the IP lookup is visiting node 0, and the write bubble
is visiting node A1, the IP lookup result will be A7, which is the
same as that after the write bubble is completed. If at some point
the IP lookup is visiting node A1, and the write bubble is visiting
node 0, the IP lookup result will be A1, which is the same as that
before the write bubble is performed. Even if the IP lookup and
the write bubble are visiting the same node 0 at some point, the
IP lookup always reads the old data in each node, so that the
lookup result will be A1, which is the same as that before the
write bubble is performed.
In summary, in our proposed architecture, a single write ac-

cess is sufficient for a worst-case route update in the TCAM-
based lookup engine, and route updates have zero impact on the
lookup performance in the SRAM-based lookup pipeline.

D. Fast Incremental Updating Algorithms

Fast incremental updating algorithms are desirable in the con-
trol plane of the router to translate a route update into updates in
the TCAM-based lookup engine and the SRAM-based lookup
pipeline. A route update can be classified into three main cat-
egories [14]: (1) insertion of a new prefix, (2) deletion of an

Fig. 5. (a) Insertion of a non-leaf prefix, (b) its corresponding disjoint prefix
set, and (c) the overlapping trie.

Fig. 6. (a) One example of the insertion of a leaf prefix, (b) its corresponding
disjoint prefix set, and (c) the overlapping trie.

Fig. 7. (a) Another example of the insertion of a leaf prefix, (b) its corre-
sponding disjoint prefix set, and (c) the overlapping trie.

existing prefix, and (3) modification of an existing prefix (i.e.,
modifying its next-hop information). The third type of update
can easily be performed since it does not change the shape of
the trie. However, the first two types are more complex. Inser-
tion of a new prefix or deletion of an existing prefix may affect
the partitioning results and lead to prefix changes in the disjoint
prefix set and the overlapping trie.
To deal with this, in the control plane of the router, we main-

tain an auxiliary 1-bit trie built from the FIB. An update opera-
tion consists of two phases: in the first phase, the route update
is performed on the auxiliary 1-bit trie and changes in the dis-
joint prefix set and the overlapping trie are found; in the second
phase, optimized write accesses are applied to the hybrid hard-
ware lookup architecture.
Insertion of a new prefix in our architecture can be classified

into three and only three categories: 1) insertion of a non-leaf
prefix; 2) insertion of a leaf prefix, whose nearest ancestor prefix
is always a non-leaf prefix before and after the insertion; 3) in-
sertion of a leaf prefix, whose nearest ancestor prefix is turned
from a leaf prefix into a non-leaf prefix. The three categories are
illustrated in Figs. 5–7, respectively. Without special explana-
tions, the original trie shown in Fig. 1(b) is used as the base of
all the update processes in this section.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 8. (a) Deletion of a non-leaf prefix, (b) its corresponding disjoint prefix
set, and (c) the overlapping trie.

Fig. 9. (a) One example of the deletion of a leaf prefix, (b) its corresponding
disjoint prefix set, and (c) the overlapping trie.

Fig. 5 shows an example of the insertion of a non-leaf prefix
01*. The insertion of a non-leaf prefix has no impact on the
leaf prefixes. Thus, only the new prefix 01* should be inserted
into the overlapping trie, and the disjoint prefix set is kept
unchanged.
Fig. 6 demonstrates an example of the insertion of a new leaf

prefix 011*, whose nearest ancestor prefix (i.e., prefix 0*) is al-
ways a non-leaf prefix before and after the insertion. Therefore,
this insertion only results in an insertion of prefix 011* in the
disjoint prefix set, and the overlapping trie is kept unchanged.
Fig. 7 depicts another example of the insertion of a new leaf

prefix 000*, whose nearest ancestor prefix (i.e., prefix 00*) is
turned from a leaf prefix (before the insertion) into a non-leaf
prefix (after the insertion). This results in three changes in the
corresponding disjoint prefix set and overlapping trie: 1) prefix
00* should be inserted into the overlapping trie; 2) prefix 00*
should be deleted from the disjoint prefix set; and 3) prefix 000*
should be inserted into the disjoint prefix set.
Similar to the insertion, the deletion of an existing prefix in

our architecture can also be classified into three and only three
categories: 1) deletion of a non-leaf prefix; 2) deletion of a leaf
prefix, whose nearest ancestor prefix is always a non-leaf prefix
before and after the deletion; 3) deletion of a leaf prefix, whose
nearest ancestor prefix is turned from a non-leaf prefix into a
leaf prefix. The three categories are illustrated in Figs. 8–10,
respectively.
Fig. 8 shows an example of the deletion of an existing non-

leaf prefix 1*. The deletion of a non-leaf prefix has no impact
on the leaf prefixes, and thus the disjoint leaf prefix set is kept
unchanged. Only the deletion of prefix 1* is needed in the over-
lapping trie.
Fig. 9 demonstrates an example of the deletion of an existing

leaf prefix 00*, whose nearest ancestor prefix (i.e., prefix 0*)

Fig. 10. (a) Another example of the deletion of a leaf prefix, (b) its corre-
sponding disjoint prefix set, and (c) the overlapping trie.

Fig. 11. Algorithm: Insertion of a prefix.

is always a non-leaf prefix before and after the deletion. There-
fore, the deletion of prefix 00* in the original trie only results in
a deletion of prefix 00* in the disjoint prefix set, and the over-
lapping trie is kept unchanged.
Fig. 10 depicts another example of the deletion of an ex-

isting leaf prefix 111*, whose nearest ancestor prefix (i.e., 11*)
is turned from a non-leaf prefix (before the deletion) into a leaf
prefix (after the deletion). It leads to three changes in the cor-
responding disjoint prefix set and overlapping trie: 1) prefix
111* should be deleted from the disjoint prefix set; 2) prefix 11*
should be inserted into the disjoint prefix set; and 3) prefix 11*
should be deleted from the overlapping trie.
Note that all scenarios of insertion and deletion are illus-

trated above, and all of them are easy and fast to be performed.
The complete insertion and deletion algorithms are described in
Figs. 11 and 12, respectively. Both of these algorithms are per-
formed in software with a time complexity , where is the
length of prefix P to be updated. In both algorithms, one route
update generates at most one write operation to each lookup en-
gine. Although it seems that twowrite operations may be needed
in the TCAM in some case, they can actually be combined into
just a single write operation. For example, deleting prefix Q
and inserting prefix P in the TCAM (see line 10 in Fig. 11)
can be combined into one write operation by just overwriting
prefix Q with P. Additionally, for one route update, the write
order between the two lookup engines should be kept to avoid
incorrect longest-prefix matching. For example, the execution
of lines 9 and 10 should be kept in the order shown in Fig. 11.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LUO et al.: HYBRID HARDWARE ARCHITECTURE FOR HIGH-SPEED IP LOOKUPS AND FAST ROUTE UPDATES 7

Fig. 12. Algorithm: Deletion of a prefix.

Fig. 13. Node data structure of the auxiliary trie.

Otherwise, prefix Q will disappear in both lookup engines tem-
porarily, which may lead to incorrect longest-prefix matching
during updating.

E. Memory Management

Memory management is closely related to the route update
process, and the ability to apply an incremental route update
makes memory management schemes necessary [16]. Simple
and efficient memory management schemes are desirable in
order to decrease memory management overhead while up-
dating. The properties of our hybrid architecture make memory
management trivial.
In our TCAM-based lookup engine, only the disjoint prefix

set is accommodated, and thus entries in the TCAM can be ar-
ranged without any order constraints. Management problems in
this part are how to keep track of prefix locations and how to
manage the allocation and deallocation of the TCAM space.
For the modification or deletion of an existing prefix in the

TCAM, the location (i.e., address) of that prefix should be ob-
tained first, and then a write operation can be performed ex-
actly at that location. A search instruction can be issued to the
TCAM in order to get the corresponding location. However, the
search is an extra TCAM operation, which would add a dis-
ruption cycle to the IP lookup process and increase the update
overhead. In order to avoid the extra search operation on the
TCAM, we keep track of prefix locations in the auxiliary trie
in the control plane. The node data structure of the auxiliary
trie is shown in Fig. 13. Each node contains five fields, which
are the following: left child pointer (lchild), right child pointer
(rchild), next-hop pointer (nhop), memory type (mtype), and
memory address (maddr). Here, mtype indicates the memory
type, with 0 denoting the TCAM, and denoting the
SRAM in the th stage of the SRAM-based pipeline (note that
the auxiliary trie is also used to keep track of node locations

in the SRAM-based pipeline). maddr denotes the memory ad-
dress. From the above section, we know that an update operation
should first be performed on the auxiliary trie. In this phase, we
can get the location of the prefix to be updated in the trie node in
the control plane, without the need of an extra search operation
on the TCAM.
The insertion of a new prefix requires the allocation of a new

entry in the TCAM, and the deletion of an existing prefix in-
curs the deallocation. In our approach, the unused entries in the
TCAM are managed by an auxiliary queue in the control plane,
in which a single element stores the address of an unused entry
in the TCAM. The allocation of a new entry simply corresponds
to a “dequeue” operation of the queue and the deallocation cor-
responds to an “enqueue” operation. Such a simple and efficient
management scheme can work well since the prefixes can be
stored in the TCAM with arbitrary orders in our architecture.
In our SRAM-based lookup pipeline, a very small overlap-

ping trie is accommodated. Node locations in the pipeline are
also stored in the auxiliary trie. As there are multiple stages and
each has its own SRAM, a node location in the pipeline can be
represented by a stage ID and a memory address in that stage
(i.e., the mtype and maddr fields in the node data structure of
the auxiliary trie). Additionally, the scheme used to allocate and
deallocate the SRAM space is similar to that in the TCAM part,
but with the difference that each stage of the pipeline is associ-
ated with an auxiliary queue in the control plane.
Additionally, specific memory management problems in the

SRAM-based pipeline are how to balance the memory across
pipeline stages and how it affects the update process.
Many memory balance approaches [9]–[11] have been pro-

posed to date. The OLP approach in [11] achieves an almost
perfect balanced distribution, and thus the memory space of
on-chip SRAMs can be well utilized. Therefore, the OLP ap-
proach in [11] can be used in our SRAM-based pipeline to bal-
ance the memory distribution across stages. However, OLP is a
static mapping approach, which means that a balanced memory
distribution can be achieved only for a given static trie. The ef-
fects of incremental updates are not considered in OLP.
The deletion and modification of an existing prefix can be

easily performed in the balanced pipeline, as they can be im-
plemented by just rewriting at most one node in each stage,
which can be done via a single write bubble. The insertion of
a new prefix may trigger the remapping of several new nodes.
Mapping new nodes incrementally across pipeline stages affects
the memory distribution and a balanced distribution is desirable
after incremental mapping. We use the same scheme as in [8] to
support incremental mapping. If nodes caused by an incre-
mental insertion are to be remapped, stages with the lowest
memory utilization are selected (this can be done by comparing
the size of each auxiliary queue associated to each stage of the
pipeline) to store those nodes. After those stages are selected, an
unused entry in each of those stages can be allocated by using
the “dequeue” operation on its corresponding auxiliary queue.
Note that we use a 1-bit trie with a same node size in the pipeline,
hence the allocation and deallocation can not incur any frag-
mentation. After the entries are allocated, a single write bubble
is injected into the pipeline to complete the incremental map-
ping. Therefore, even if the memory balance approach [11] and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 14. Another sample trie.

Fig. 15. Merged trie using the virtual prefix technology.

incremental mapping [8] are applied, incremental updates can
still be easily performed, and one write bubble is still enough
for one route update in our SRAM-based lookup pipeline. Note
that OLP and the incremental mapping can cooperate well with
each other, and the details are shown in [8].

IV. LOOKUP FOR VIRTUAL ROUTERS

We have described the hybrid IP lookup architecture for a
single router in previous sections. Nonetheless, our lookup ar-
chitecture can scale well to support virtual routers naturally.
A virtual router platform contains multiple FIBs. Two

common approaches have been proposed so far to merge mul-
tiple FIBs together, i.e., virtual prefix technique [14] and trie
overlap approach [19]. We will show how these two approaches
can be applied respectively in our hybrid architecture to support
virtual routers.

A. Virtual Prefix Technique

In this scheme, by appending a unique virtual router ID (VID)
before the prefix, we form a virtual prefix. This ensures that the
virtual prefix sets belonging to different virtual routers are not
overlapping. Hence, the virtual prefix sets of all FIBs can be
directly put together to form a large merged FIB. Taking two
simple tries as an example, if we assign a VID 0 to the trie shown
in Fig. 1(b) and a VID 1 to the trie shown in Fig. 14, they can
be combined into a large trie, as shown in Fig. 15.
Using this scheme, themerged trie has the same feature as that

in a single router since leaf prefixes in each individual trie are
still leaf prefixes in the merged trie, and that is also true for the
overlapping trie. Therefore, the trie partitioning scheme applied
before is still suitable for the merged trie, and a large disjoint
leaf prefix set and a relatively small overlapping trie are gener-
ated. Then, the merged disjoint prefix set can be mapped into the

Fig. 16. Merged trie using trie overlap without leaf pushing.

external TCAM-based IP lookup engine, and the merged over-
lapping trie can be mapped into the on-chip SRAM-based IP
lookup pipeline. This makes the architecture depicted in Fig. 3
still suitable for virtual routers with a slight modification. The IP
address used to search both lookup engines should be changed
to a virtual IP address (VIP) by appending a VID to an IP ad-
dress. This is performed in the header parser module shown in
Fig. 3.
From this point, the update process in virtual routers is similar

to that in a single router. When a route update is to be performed
on one FIB of virtual routers, the same fast incremental updating
algorithm described before is applied on the auxiliary 1-bit trie
to find the changes in its disjoint prefix set and overlapping trie,
with the difference that now the new prefix to be updated must
be constructed by concatenating the prefix with the VID. Taking
the insertion in Fig. 7 as an example, and assuming that it is
performed in a virtual router instance with a VID 0, the changes
in the final merged sets are as follows: 1) virtual prefix 000*
should be inserted into the overlapping trie; 2) virtual prefix
000* should be deleted from the disjoint prefix set; and 3) virtual
prefix 0000* should be inserted into the disjoint prefix set.
As mentioned before, one route update causes at most one

write operation on each lookup engine for a single router. This
remains valid for virtual routers; any route update in an FIB of
virtual routers needs at most one write operation on each lookup
engine.

B. Trie Overlap Approach

Using the virtual prefix technique, the size of the combined
trie is equal to the sum of that of individual tries, and it increases
linearly as the number of tries increases. In order to reduce
the memory consumption and improve the scalability of virtual
routers, Jing Fu et al. [19] proposed an efficient trie merging
approach by sharing nodes among different tries. A common
prefix set is built from all the tries to be merged, and then the
nodes corresponding to the same prefix in different tries can be
merged into one node. Using this scheme, the number of nodes
in the merged trie is significantly smaller than the sum of that
of individual tries. The trie shown in Fig. 16 is the merged trie
after merging the trie shown in Fig. 1(b) and the trie shown in
Fig. 14. Note that leaf pushing is not performed after merging.
Whether our hybrid architecture is still suitable for this

merging approach depends on the properties of the merged trie.
To validate the properties, we have merged fourteen real IPv4

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LUO et al.: HYBRID HARDWARE ARCHITECTURE FOR HIGH-SPEED IP LOOKUPS AND FAST ROUTE UPDATES 9

TABLE II
ANALYSIS OF THE MERGED TRIE

routing tables (see Table I) using this approach, and then the
trie partitioning scheme is applied. Fortunately, we observe that
the merged trie still has the same properties as that in a single
router, i.e., about 90% of prefixes are leaf prefixes, and the
node of the trimmed trie is about 12% of that of the original trie
(see Table II for more details). These properties form the base
of our hybrid architecture. Therefore, after merging multiple
FIBs using trie overlap without leaf pushing, our approach can
still be used for achieving fast lookups and fast updates. The
proposed update algorithms and hybrid architecture can also be
changed slightly to suit this merging approach.

V. PERFORMANCE EVALUATION

A. Analysis of Real Routing Tables

Fourteen real IPv4 core routing tables have been collected
from RIPE RIS Project [20] on May 20, 2011. Analysis is per-
formed on these real routing tables to validate the advantage of
the trie partitioning scheme. The analysis results of each indi-
vidual routing table are shown in Table I.
The number of IPv4 prefixes and leaf prefixes in each FIB

are shown respectively in column # of IPv4 prefixes and # of
leaf prefixes. We can see that for all the 14 FIBs, more than 90%
of the prefixes are leaf prefixes. This is expected since most of
IP address prefixes are around 24 bits long, and most of them
are disjoint leaf prefixes. The number of nodes in the original
trie is represented in column # of nodes in the trie. We apply the
trie partitioning scheme on these 14 FIBs, respectively. After
moving the leaf prefixes into a disjoint leaf prefix set and trim-
ming the trie further, the number of nodes remaining in the final
trimmed trie is shown in column # of nodes in the trimmed trie.
The results show that after trimming, the number of remaining
nodes is about 12% of that of the original trie. These observa-
tions confirm the initial empirical finding that is the base of the
trie partitioning scheme.
Based on the above analysis, the following conclusions can

be drawn.
1) Using the partitioning scheme, most of the prefixes are
moved to external TCAMs.Meanwhile, all of them are nat-
urally disjoint, and they can be stored without any order

constraints. This feature can be used to guarantee fast up-
dates in a TCAM.

2) After removing the leaf nodes, the amount of memory
needed in the SRAM-based pipeline is reduced signifi-
cantly. Hence, the memory size issue of on-chip SRAM-
based pipelines in the FPGA can be well addressed.

The above conclusions still hold for virtual routers as each
router will have an FIB that will validate the above proper-
ties. When using the virtual prefix technology for merging (e.g.,
Fig. 15), the leaf prefixes of each individual trie are still the
leaf prefixes in the merged trie, and that is also true for the
overlapping tries. Therefore, the properties of the merged trie
are kept exactly as that in each individual trie. When using the
trie overlap approach without leaf pushing for merging (e.g.,
Fig. 16), the leaf prefix set and the overlapping trie in themerged
trie are not exactly as that in individual tries, as some leaf pre-
fixes in individual tries turn into non-leaf prefixes in the merged
trie. In order to validate whether the trie partitioning scheme is
still valid for the merged trie when using trie overlap, we merge
a number of tries and then partition the merged trie. The anal-
ysis results are shown in Table II. The results show that, as we
increase the number of tries, the number of leaf prefixes in the
merged trie is always about 90% of that of the total prefixes (see
column # of leaf prefixes in Table II). Meanwhile, the number
of nodes of the trimmed trie is always about 12% of that of the
original merged trie (see column # of nodes in the trimmed trie
in Table II). From Table II, we can observe that, with the in-
crease of the number of tries, the properties of the merged trie
are always kept the same as those in a single trie when using the
trie overlap approach for scalable virtual routers. Therefore, our
hybrid architecture is also a promising candidate for building
scalable virtual routers.

B. Throughput Evaluation

We have implemented the proposed hybrid architecture on
the PEARL [2] hardware platform we have built previously.
PEARL is equipped with a Xilinx Virtex-5 XC5VLX110T-1
FPGA and an IDT IDT75K72100 TCAM. After post place
and route, the FPGA achieves a maximum clock frequency
of 297 MHz resulting into 297 MLPS for the SRAM-based
lookup pipeline. The TCAM has a theoretical maximum
throughput of 250 MLPS. Hence, the current PEARL hardware
implementation enables a maximum IP lookup throughput of
250 MLPS, or a throughput of 128 Gb/s with 64-B packets,
that exceeds largely the throughput requirement of 100G
Ethernet. Obviously, if newer and faster FPGAs and TCAMs
are used, the performance may be even higher. However, the
PEARL platform we used has only 4 Gigabit Ethernet (GbE)
interfaces, which allow a maximum input traffic rate of 4 Gb/s.
We generated 4 Gb/s traffic of 64–1518-B packets by Spirent
TestCenter [21] and connected it directly to our PEARL plat-
form via 4 GbE links. We show in Fig. 17 the measured and
theoretical throughput obtained over the PEARL platform with
the proposed hybrid IP lookup architecture. The measured max-
imum throughput is 5.95 million packets per second (MPPS)
for 64-B packets, which equals the theoretical maximum packet
rate of 4 GbE links.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 17. Throughput of the hybrid architecture.

Note that it is hard to make a fair comparison to throughput
measured in other work since the device types and optimization
parameters of implementation tools are very different. However,
the throughput of our implementation is clearly adequate for
practical virtual routers.

C. Update Overhead

The number of TCAMwrite accesses per update is used as the
metric to estimate the update overhead of TCAM-based engines.
For the SRAM-based pipeline, we use the number of disrupted
lookup cycles per write bubble as the metric of comparison.
We have chosen PLO OPT/CAO OPT [4], MIPS [5], and write
bubbles in [15] and [16] as a comparison basis.
Theoretical Comparison: In the best case, only one TCAM

write access is required for each route update in both PLO OPT
and CAO OPT, and zero TCAM write access is required for
each update in both MIPS and our architecture. However, the
results in the worst case are quite different. In PLO OPT, the
prefix-length order should be kept, and the empty space is ar-
ranged in the center of a TCAM. Therefore, a route update re-
quires at most write accesses to the TCAM, where is
the maximum length of the prefixes (32 for IPv4). In CAO OPT,
the chain-ancestor order should be kept and the empty space is
still arranged in the center. Therefore, a route update requires
at most write accesses to the TCAM, where is the max-
imum length of the chain. Theoretically, may be up to .
MIPS utilizes leaf pushing to convert the prefix set into an in-
dependent (disjoint) prefix set. However, leaf pushing may ex-
pand a prefix many times. In the theoretical worst case, a prefix
could be expanded to 2 prefixes. Therefore, the maximum
number of TCAM accesses for one route update is 2 . In our
hybrid architecture, the prefix set stored in the TCAM is natu-
rally disjoint, and prefix expansion can be totally avoided, and
thus one route update leads to at most one write access to the
TCAM in any case. The theoretical comparison of the number
of TCAM write accesses per update between different schemes
is summarized in Table III.
Empirical Comparison: We get from the RIPE RIS

project [20] one of the publicly available routing tables rrc00
(see Table I) and 1-h update traces on it. The update traces

Fig. 18. Running average of the number of TCAMaccesses per update on rrc00
routing table.

TABLE III
THEORETICAL COMPARISON OF THE NUMBER OF TCAM WRITE ACCESSES

PER UPDATE

TABLE IV
COMPARISON RESULTS ON rcc00 ROUTING TABLE

contain 165 721 updates. Fig. 18 shows the running average
of the number of TCAM accesses per update required for all
the four compared TCAM update schemes as a function of the
number of updates. The average in our proposed hybrid archi-
tecture remains persistently under one TCAM access (about
0.91) per update. This is expected since only one TCAM access
is required for a leaf prefix update, and zero TCAM access for
a non-leaf prefix update. It can be seen that the average number
of TCAM accesses in the hybrid scheme is much lower than
that of all other three competing solutions. More importantly,
the maximum number of TCAM accesses per update, which
directly affects the size of the packet buffer required in a lookup
engine to avoid packet drops during updating, is precisely equal
to one and significantly lower than that of competitor schemes
(see Table IV).
Obviously, the number of TCAM accesses per update in our

proposed architecture can be proved to be optimal as at most
a single write access per update to the TCAM is mandatory.
This means that we can guarantee a minimumworst-case update
overhead in the TCAM-based lookup engine. The summary of
comparison results on routing table rrc00 is shown in Table IV.
Last but not least, even if MIPS is able to achieve a performance
relative to an average number of write accesses per update that

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LUO et al.: HYBRID HARDWARE ARCHITECTURE FOR HIGH-SPEED IP LOOKUPS AND FAST ROUTE UPDATES 11

TABLE V
PACKET DROPS ON rcc00 ROUTING TABLE IN 1 h

is close to 1, the worst-case overhead for a single update is very
high (see Tables III and IV).
In [15] and [16], write bubbles are used for route updates in

SRAM-based pipelines. Each write bubble may disrupt the IP
lookup process for one cycle in the worst case, and minimizing
the number of write bubbles reduces the update overhead. In
our approach, we have addressed this challenge by devising a
pipeline with separate lookup and update paths in order to totally
eliminate the disruption to IP lookup process caused by write
bubbles.
Note that the whole update process also includes the update

time in the auxiliary 1-bit trie in software. This part does not
affect the lookup performance in hardware and thus is less im-
portant. We have mentioned in Section III-D that the time com-
plexity of updates in software is , where is the length
of prefix to be updated. Let us consider the worst case, i.e.,
each IPv4 update will visit 33 trie nodes in software, and each
node access needs a memory reference consuming about 60 ns
if cache misses. In this case, each update takes at most 1980 ns
in the trie, and thus more than 505 051 updates can be prepro-
cessed per second in software, which exceeds largely the peak
update frequency of real routers [17].
In summary, each route update leads to at most one write ac-

cess in the TCAM-based IP lookup engine and has zero impact
on the SRAM-based pipeline. Therefore, the update overhead is
significantly lower than that of previous work [4]–[16].

D. Packet Drops

Route updates may lead to disruption to IP lookup process
and result in packet drops. In this section, we will evaluate this
adverse impact. However, it is difficult to evaluate exactly the
number of packet drops caused by route updates, as packet drops
are also affected by several other factors (e.g., the burst features
of network traffic and the size of packet buffers in the router).
Nonetheless, we can approximately evaluate it based on some
ideal assumptions similar to that in [3]. Let us consider a link
rate of 10 Gb/s (i.e., 51.2 ns per packet time for 64-B packets)
and a TCAM running at a clock rate of 100 MHz (i.e., 10 ns per
clock cycle). A write access to the TCAM actually requires two
accesses: loading the rule and loading its corresponding mask,
which translates into packet drops in the the-
oretical worst case (no packet buffer). Note that the write access
to the next-hop information in the associated SRAM is ignored
since it can be performed in parallel with the write access of the
TCAM.
Based on the above assumptions, the number of packet

drops caused by route updates can be evaluated approximately.
Table V shows the number of packet drops caused by route

updates on the rrc00 routing table in 1 h (we use the 1-h update
traces mentioned in Section V-C).
The number of packet drops per update is shown in column

Per Update, and the total number of packet drops in 1 h is shown
in column Total. When compared to the other three solutions,
our architecture achieves a smallest number of packet drops per
update. This is expected, as we can achieve the lowest update
overhead. Moreover, as the number of updates increases, we
can achieve a more significant reduction in packet drops (see
column Total in Table V).
Although the above evaluation is based on some ideal as-

sumptions and the number of packet drops in real routers will
be much smaller due to packet buffering, the comparison in
Table V is still meaningful. It means that the adverse impact of
route updates on packet forwarding can be significantly reduced
when using our architecture, which makes it a more promising
candidate to reduce packet drops or even to avoid packet drops
during updating for real routers.

E. Memory Requirements

The 14 routing tables shown in Table I are collected from core
routers, and each has about 360 K prefixes. To show the amount
of memory needed in our architecture for storing such a large
core routing table, we take the routing table rrc00 (see Table I)
as an example.
In the TCAM-based lookup engine, 332 409 leaf prefixes in

this routing table should be stored, and thus at least 332 409 en-
tries with a 32-bit size are needed for the TCAM. Therefore, the
size of the TCAM should be larger than 10.6 Mb, which is not a
big problem for current TCAM devices. The memory capacity
of a modern TCAM device with 512 K 40 b entries [22] is suf-
ficient for such a large routing table in our architecture.
In the SRAM-based lookup pipeline, the overlapping trie with

110 109 nodes should be accommodated. To calculate the node
size, we use 17 bits to represent the left or right child pointer
(a 17-bit pointer can represent at most 131 072 nodes, which
exceeds largely the number of nodes of the trimmed overlapping
trie), and 8 bits to represent the next-hop pointer. Thus, the node
size is 42 bits. Then, the size of on-chip SRAMs needed is only
about 4.6 Mb. Nowadays, the capacity of on-chip SRAMs in
Xilinx Virtex-6 series FPGA varies from 5.6 to 38.3 Mb [18],
and thus all devices in this series are sufficient for the memory
requirement of this small overlapping trie.
Note that during memory evaluation, we do not do any

memory compaction, and the amount of memory required is
a maximum value. Even so, modern devices can still easily
satisfy the maximum requirements. Therefore, the memory
consumption in our hybrid architecture is reasonable.

F. Memory Utilization

Due to the limited number of available I/O pins in the FPGA
or other processing chips (e.g., CPU, Network Processor), only a
few external memories can be used in a practical router system.
Therefore, the utilization ratio of external memories becomes
very important.
In previous solutions [4], because of order constraints, a few

empty memory locations (i.e., memory holes) may be kept at all

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

(i.e., the number of unique prefix lengths) nonempty memory
locations in the TCAM in order to further reducememorymove-
ments, which leads to waste of precious TCAM space. In our
proposed architecture, the disjoint prefix set can be stored in
external TCAMs without any order constraints. As a result, a
disjoint prefix set can be mapped into a TCAM until it becomes
full. Moreover, multiple external TCAMs can be cascaded to
store more prefixes. This means that all TCAMs except the last
one, where we should spare some empty space for further up-
dating, can attain amemory utilization ratio of 100%. Therefore,
memory waste can be avoided.
Additionally, the memory utilization among on-chip SRAMs

in the FPGA can also be well balanced using the scheme pro-
posed in [11].

VI. DISCUSSIONS

A. IPv6 Case

In the previous sections, we use IPv4 FIBs to describe the
proposed approach. In fact, our approach can scale well to
support IPv6. We extracted an IPv6 FIB from router rrc00 in
Table I and performed the trie partitioning scheme on its corre-
sponding trie. In this IPv6 trie, about 92% of the prefixes are
leaf prefixes, and only 9% of nodes are left in the trimming trie.
These results are consistent with the observations in the case of
IPv4, which are the basis of the proposed hybrid architecture.
Therefore, if the hybrid architecture is used in IPv6, the same
benefits can be achieved as that in IPv4. However, the length of
the IPv6 address is much longer. We need a TCAM with larger
entry size for IPv6 prefixes, and an FPGA containing more
than 129 separate on-chip SRAMs to implement the IPv6 trie
pipeline. Current NetLogic TCAMs can be configured to have
160-bit entries [22], and many Xilinx FPGAs contain more
than 200 on-chip SRAMs inside [18]. Both of these chips can
be used in the hybrid architecture to support IPv6.

B. Memory Footprint

Although external TCAMs can be fully utilized and only 90%
of the prefixes of the FIBs are stored in TCAMs, achieving a
smaller memory footprint in a TCAM is desirable. For example,
an existing large TCAM can accommodate up to 1024 K 40-bit
entries [22]. However, there are more than 300 K leaf prefixes in
a single FIB (see Table I), which means that only leaf prefixes of
three virtual router FIBs can be accommodated in this TCAM.
Indeed this memory scalability issue exists for all TCAM-based
solutions, as well as for all SRAM-based pipelines.
In our approach, before partitioning the trie, the pruning [23]

and the compression [5] schemes can be used to remove the
redundancies in the trie, and thus the size of both prefix sets
and the memory requirement in both the TCAM engine and
the SRAM pipeline can be reduced. On the other hand, after
partitioning, merging can be performed in each part to reduce
the memory requirement for multiple FIBs. The common leaf
prefixes among different FIBs can be shared [24] to reduce the
TCAM memory requirement for multiple disjoint leaf prefix
sets, and node sharing among different tries [19], [25] can
be performed to reduce the memory requirement of on-chip

SRAMs for multiple overlapping tries. However, it is note-
worthy that there is a tradeoff between memory footprint and
update overhead, i.e., compressing too much the data structure
may drastically increases the update overhead. This tradeoff
should be considered during compacting in practice.

VII. CONCLUDING REMARKS

In this paper, we mainly focus on the route update challenge
for high-speed routers. An efficient trie partitioning scheme
motivated by the observation that more than 90% of prefixes
in the 1-bit trie are naturally disjoint leaf prefixes is applied
to convert a 1-bit trie into a large disjoint leaf prefix set and a
small overlapping trie. The leaf prefix set is naturally disjoint
and can be easily mapped into an external TCAM-based lookup
engine, thus avoiding entry movements and prefix expansion,
and enabling a single write access for each update of a leaf
prefix. Additionally, the simplified memory management of
TCAMs results in a utilization ratio of TCAMs close to 100%.
After removing the leaf nodes, the remaining trie can be further
trimmed, resulting in an overlapping trie that contains only
about 12% of the nodes of the original trie. The overlapping trie
is thereafter implemented in an SRAM-based lookup pipeline
with significantly lower memory requirement. In the context of
virtual routers, multiple such overlapping tries can be accom-
modated in the on-chip SRAMs of existing FPGAs. Moreover,
by exploiting the dual-port SRAMs in Xilinx FPGA, we design
an SRAM-based pipeline with separate lookup and update
paths. The pipeline enables simultaneous update and lookup
operations without any collision. Therefore, route updates have
zero impact on our dual-path SRAM-based pipeline.
The fast incremental updating algorithms we implemented

guarantee that, in any case, any route update leads to at most
one write access in our TCAM-based lookup engine, and at most
one write bubble in our SRAM-based lookup pipeline (we can
ignore the update overhead in our SRAM-based lookup pipeline
since updates have zero impact on lookups). Therefore, we only
need to lock the TCAMs for the time of at most one write access
during each update. This update overhead is significantly lower
than that of previous work.
In the context of virtual routers, two common FIB merging

approaches can be applied in conjunction with our hybrid ar-
chitecture in order to build scalable virtual routers.
The performance evaluation shows that the throughput is suf-

ficient for 100G Ethernet routers, the update overhead is sig-
nificantly lower than that of previous work, and the utiliza-
tion ratio of most external high-capacity memories can be up to
100%.While the memory consumption of our proposed scheme
is reasonable, we will study, as future work, compact data struc-
tures that can be applied to reduce memory consumption in
both engines, while retaining the fast update property of the
architecture.

REFERENCES
[1] W. Jiang, Q. Wang, and V. K. Prasanna, “Beyond TCAMs: An

SRAM-based parallel multi-pipeline architecture for terabit IP
lookup,” in Proc. IEEE INFOCOM, 2008, pp. 2458–2466.

[2] G. Xie, P. He, H. Guan, Z. Li, Y. Xie, L. Luo, J. Zhang, Y.Wang, and K.
Salamatian, “PEARL: A programmable virtual router platform,” IEEE
Commun. Mag., vol. 49, no. 7, pp. 71–77, 2011.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LUO et al.: HYBRID HARDWARE ARCHITECTURE FOR HIGH-SPEED IP LOOKUPS AND FAST ROUTE UPDATES 13

[3] Z. J. Wang, H. Che, M. Kumar, and S. K. Das, “CoPTUA: Consis-
tent policy table update algorithm for TCAM without locking,” IEEE
Trans. Comput., vol. 53, no. 12, pp. 1602–1614, Dec. 2004.

[4] D. Shah and P. Gupta, “Fast updating algorithms for TCAM,” IEEE
Micro, vol. 21, no. 1, pp. 36–47, Jan.–Feb. 2001.

[5] G. Wang and N. F. Tzeng, “TCAM-based forwarding engine with min-
imum independent prefix set (MIPS) for fast updating,” in Proc. IEEE
ICC, 2006, pp. 103–109.

[6] V. Srinivasan and G. Varghese, “Fast address lookups using controlled
prefix expansion,” Trans. Comput. Syst., vol. 17, no. 1, pp. 1–40, Feb.
1999.

[7] S. Sikka and G. Varghese, “Memory-efficient state lookups with fast
updates,” Comput. Commun. Rev., vol. 30, no. 4, pp. 335–347, 2000.

[8] W. Jiang and V. K. Prasanna, “Towards practical architectures for
SRAM-based pipelined lookup engines,” in Proc. IEEE INFOCOM
Work-in-Progress Track, 2010, pp. 1–5.

[9] F. Baboescu, D.M. Tullsen, G. Rosu, and S. Singh, “A tree based router
search engine architecture with single port memories,” in Proc. ICSA,
2005, pp. 123–133.

[10] S. Kumar, M. Becchi, P. Crowley, and J. Turner, “CAMP: Fast and
efficient IP lookup architecture,” in Proc. ACM/IEEE ANCS, 2006, pp.
51–60.

[11] W. Jiang and V. K. Prasanna, “A memory-balanced linear pipeline ar-
chitecture for trie-based IP lookup,” in Proc. IEEE HOTI, 2007, pp.
83–90.

[12] N. Futamura, R. Sangireddy, S. Aluru, and A. K. Somani, “Scalable,
memory efficient, high-speed lookup and update algorithms for IP
routing,” in Proc. ICCCN, 2003, pp. 257–263.

[13] R. Sangireddy, N. Futamura, S. Aluru, and A. Somani, “Scalable,
memory efficient, high-speed IP lookup algorithms,” IEEE/ACM
Trans. Netw., vol. 13, no. 4, pp. 802–812, Aug. 2005.

[14] H. Le, T. Ganegedara, and V. K. Prasanna, “Memory-efficient and scal-
able virtual routers using FPGA,” in Proc. ACM/SIGDA FPGA, 2011,
pp. 257–266.

[15] A. Basu and G. Narlikar, “Fast incremental updates for pipelined
forwarding engines,” IEEE/ACM Trans. Netw., vol. 13, no. 3, pp.
690–703, Jun. 2005.

[16] J. Hasan and T. N. Vijaykumar, “Dynamic pipelining: Making
IP-lookup truly scalable,” in Proc. ACM SIGCOMM, 2005, pp.
205–216.

[17] “The BGP instability report,” [Online]. Available: http://bgpupdates.
potaroo.net/instability/bgpupd.html

[18] Xilinx, San Jose, CA, USA, “Xilinx FPGA,” [Online]. Available:
http://www.xilinx.com/

[19] J. Fu and J. Rexford, “Efficient IP-address lookup with a shared for-
warding table for multiple virtual routers,” in Proc. ACM CoNEXT,
2008, pp. 21:1–21:12.

[20] RIPE NCC, Amsterdam, The Netherlands, “RIPE RIS raw data,” 2011
[Online]. Available: http://www.ripe.net/data-tools/stats/ris/ris-raw-
data

[21] Spirent, Crawley, U.K., “Spirent TestCenter,” [Online]. Available:
http://www.spirent.com/Solutions-Directory/Spirent-TestCenter/

[22] NetLogic, New York, NY, USA, “NL9000 RA knowledge-based pro-
cessors,” 2009.

[23] H. Liu, “Routing table compaction in ternary CAM,” IEEE Micro, vol.
22, no. 1, pp. 58–64, Jan.–Feb. 2002.

[24] L. Luo, G. Xie, S. Uhlig, L. Mathy, K. Salamatian, and Y. Xie, “To-
wards TCAM-based scalable virtual routers,” in Proc. ACM CoNEXT,
2012, pp. 73–84.

[25] H. Y. Song, M. Kodialam, F. Hao, and T. V. Lakshman, “Building
scalable virtual routers with trie braiding,” in Proc. IEEE INFOCOM,
2010, pp. 1–9.

Layong Luo received the B.S. degree in electronic
science and technology from the University of Sci-
ence and Technology of China, Hefei, China, in 2004,
and is currently pursuing the Ph.D. degree at the Chi-
nese Academy of Sciences (CAS), Beijing, China.
His research interests include programmable

virtual routers and high-performance packet lookup
algorithms.

Gaogang Xie (M’12) received the Ph.D. degree in
computer science from Hunan University, Changsha,
China, in 2002.
He is currently a Professor and Director of Net-

work Technology Research Center with the Institute
of Computing Technology (ICT), Chinese Academy
of Sciences (CAS), Beijing, China. His research in-
terests include programmable virtual routers, future
Internet architecture, and Internet measurement.

Yingke Xie received the Ph.D. degree in computer
science from the Chinese Academy of Sciences
(CAS), Beijing, China, in 2000.
He is an Associate Professor with the Institute of

Computing Technology (ICT), CAS. His research
interests include programmable virtual routers,
reconfigurable computing, and network system
architecture.

Laurent Mathy (M’93) received the Ph.D. degree
in computer science from Lancaster University, Lan-
caster, England, in 2000.
He is a Professor with the Electrical Engineering

and Computer Science Department, University of
Liège, Liège, Belgium. He is also a Visiting Pro-
fessor with the Institute of Computing Technology
(ICT), Chinese Academy of Sciences (CAS), Bei-
jing, China. Prior to joining the University of Liège,
he was a Professor with Lancaster University. His
research interests include protocol design, Internet

architecture, and design and optimization of networked systems.

Kavé Salamatian received the M.B.A. degree from
Isfahan University of Technology, Isfahan, Iran, in
1993, and the Ph.D. degree in computer science from
Paris SUD-Orsay University, Orsay, France, in 1998.
He is a Full Professor with the University of

Savoie, Annecy-le-Vieux, France. He was previ-
ously a Reader with Lancaster University, Lancaster,
U.K., and an Associate Professor with the University
Pierre et Marie Curie, Paris, France. He also worked
on the market floor as a Risk Analyst and enjoyed
being an Uurban Traffic Modeler for some years.

During his Ph.D. studies, he worked on joint source channel coding applied to
multimedia transmission over Internet. His main areas of research are Internet
measurement and modeling and networking information theory. He is working
these days on figuring out if networking is a science or just a hobby, and if it
is a science, what are its fundamentals.

