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Abstract— In this paper we present a new memory-efficient
scheme for address lookup that exploits the caching support
provided by general-purpose processors. We propose Compact
Prefix Tries, in which prefixes occurring at multiple levels of a
subtrie are compressed into a single node that fits in a single
cache line. The scheme performs well in compressing dense as
well as sparse tries. For an IP core router (Mae-West) database
with 93354 prefixes, the simulation results for Compact Prefix
Tries show up to 70% improvement in lookup performance and
up to 33% reduction in memory when compared with LC-Tries.
In fact, the entire forwarding table for Mae-West required only
829 KB space. Measurements for Compact Prefix Tries, when
compared with most existing schemes, show better results in
terms of memory usage as well as lookup speeds. Moreover, as
the memory usage is significantly less and sparse tries with long
paths can be compressed into only a few nodes, this scheme is
particularly attractive for IPv6.

I. IP ADDRESS LOOKUP PROBLEM

The primary role of a router is to route the packet to its
destination. In order to do so, for each packet it receives, the
router must determine the address of the next hop where it
should be forwarded. Router maintains a table called forward-
ing table that stores the forwarding information. Each entry in
the routing table has a network address, length and an output
port identifier or next hop address. The pair of address and
its length is called as a prefix. When a packet is received, the
router extracts the destination address from the packet header.
It is then matched with the prefixes in the routing table using
some lookup algorithm to find the next hop address. This
operation is called as address lookup. Since the prefixes are of
different lengths in the router tables, multiple prefixes match
a given address. So, in order to find the next hop address for
the destination address, the router has to find the most specific
prefix or the longest matching prefix. The router then forwards
the packet from incoming port to corresponding outgoing port.
This is called as switching.

II. PREVIOUS WORK

Several algorithms for efficient prefix matching lookups
have been presented in technical literature in recent years. The
classical solution for IP address lookup is using tries. A trie [5]
is a tree-based data structure in which prefixes are organized
on digital basis using the bits of prefixes to decide the
branching. Another method used for compressing the height
of trie is Level Compression [10][11]. In this technique, for
any given prefix length, dense areas with common ancestor are

aggregated into a single 2k-ary branching node. This scheme
maintains a good balance of memory usage, search speed and
update times. Another trie compression scheme in hardware is
presented in [4]. Multibit tries are also used for compressing
levels in a trie. Multibit tries [2] [14] [1] speedup the lookup
speed of tries by inspecting many bits simultaneously. A
technique for expanding and compressing multibit tries is
presented in [2]. The Lulea scheme [3] compresses multibit
trie nodes to reduce storage to fit in the cache. In the worst-
case, O(W) memory accesses are required, but these accesses
are to fast cache memory. Controlled Prefix Expansion [14]
optimizes the multibit trie using dynamic programming. The
scheme reduces memory, improves performance and the au-
thors claim it to be very tunable.

III. COMPACT PREFIX TRIES

This section will present the new scheme designed for
compressing tries for address lookups. While designing the
data structure for this scheme, the primary goals were to
reduce the memory required and memory accesses. Both these
goals go hand in hand. Reducing the number of memory
accesses is important because they are relatively slow as
compared to processor speeds and are usually the bottleneck
of lookup procedures. Reducing the size of data structure
allows the data structure to fit entirely in the cache memory.
This means that accessing the data will be extremely fast as
compared to accessing it from relatively slow main memory
(DRAM/SDRAM).

Even if the entire forwarding table dose not fit into cache, it
is beneficial to group correlated information together, so that a
large fraction of it will reside in cache. Other important factor
is locality of reference. Locality observed in traffic patterns
will keep the most frequently used pieces of the data structure
in cache, so that most lookups will be fast.

A. Basic Idea

Path compression reduces the height of trie by compressing
single child nodes. This only works if the trie structure is
sparse. Level Compression reduces the height by a significant
factor, but is more effective in the denser areas of the trie.
Multibit tries work in a similar way as Level Compressed
tries, but prefixes of intermediate length have to be expanded
and they require exponential memory 2k, where k is the length
by which the prefix is expanded.
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The basic idea of Compact Prefix Tries is to group the
prefixes occurring at multiple levels into a single compressed
node that can fit into a cache line. Instead of using the
prefix expansion like in multibit tries, they are expanded using
Boundary Prefix Expansion [13]. Only the boundary ranges
of a prefix are stored. The advantage of doing this is that if a
prefix has to be expanded by length, only 2 entries are required
instead of 2k, as in case of multibit tries. This scheme was
originally proposed in [7]. For matching a prefix inside the
compressed node, a binary search is performed on the set of
Boundary Expanded prefixes.

The Figure 1 (a) shows a Trie as a large triangle. The
maximum height of the trie is equal to maximum levels it
has, usually the size of destination address. This trie is then
partitioned into smaller subtries of different heights, such that
each subtrie fits into a node equal to the size of cache line.
These nodes shall be called as Compressed SubTrie Nodes or
CSTnodes. The number of levels a subtrie covers is called
as stride. A subtrie contains prefixes as well as links. A link
points to a subtrie at the next level. All prefixes in a subtrie are
expanded and then compressed along with links into a single
CSTnode. The Compact Prefix Trie can be viewed as a tree of
n-ary CSTnodes which are nothing but compressed subtries.
After all the levels are compressed the Trie structure looks as
shown in the Figure 1 (b).
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Fig. 1. Compressed Trie after Partitioning
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Fig. 2. CSTnode Structure

B. Node Structure

A CSTnode is used to store a subtrie. Each CSTnode has 3
parts as shown in Figure 2. The first part is called Metadata
part, where the information like, type of node, number of
entries, stride of the subtrie is stored. m bytes are required
to store Metadata. Second and third parts are arrays of length
E, where E is the maximum entries that can be stored in a
CSTnode. In the second part expanded entries are stored. Each
entry is of size s bytes. The maximum length of the expanded
entry that can be stored in this CSTnode is equal to number
of bits in s. If s = 1 byte, prefix of maximum length 8 can be

stored as an expanded entry. A key is searched in these entries
by performing binary search. The third part stores the pointers
to next hop table and nodes at the next level. Size required to
store pointers is p bytes. The elements in second and third part
are mapped 1:1. For every expanded entry in second part, the
corresponding pointer information is stored in the third part.
Once the binary search on entries stops, the corresponding
pointers in third part are used to find the next hop and node
at next level. Total size of the CSTnode is denoted by P .

C. Compressing a Trie into Compact Prefix Trie

Like path, level compressed or multibit tries, Compact
Prefix Tries can be created by first building a binary trie and
then compressing it. The four steps involved in compressing
the trie are described below.

1) Start from the root node and find level l, such that the
subtrie up to level l will fit into a CSTnode.

2) Expand the prefixes in the subtrie using Boundary Prefix
Expansion.

3) Fill the node after compacting boundary expanded pre-
fixes.

4) For each subtrie below level l repeat step 1.
Algorithms used at each step are explained below.

Prefixes
0* A
0000* B
01011* C
1* D
1000* E
1001* F
1010* G
1011* H
11* I
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Fig. 3. Sample Trie
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1) Algorithm to Find Exact Levels: We present an algorithm
that finds the exact number of levels that can be compressed.
Five variables are maintained as the search proceeds in Breadth
first manner. The variables rp and lp count the number of right
paths (high endpoint of a range) and left paths (low endpoint
of a range) originating from prefixes at previous levels. For
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example, in Figure 4 all the nodes from level 2, for path 0000,
belong to the prefix A’s (0*) left path. nrp and lrp count the
right and left paths for the next level. Links or prefixes that
do not belong to any right or left path are counted by np. Let
ENT be the number of entries found at each level that can
be stored into a CSTnode. Flag r or l is used to indicate if
the node is part of right path or left path for a prefix. In the
above example, nodes at paths 00, 000 and 0000 are marked
as l indicating that they belong to left path for prefix A. The
algorithm is for finding exact number of levels is given below.

procedure FindingExactLevels()

1: unmark all the nodes in the trie and start breadth first search from the
root node

2: lvl← 0, rp← 0, lp← 0, nrp← 0, nlp← 0 and ENT ← 0
3: while ENT ≤ max do
4: np← 0
5: for each node v in the subtrie at level l do
6: if v is a prefix then
7: if v is unmarked then
8: nrp← nrp + 1
9: nlp← nlp + 1

10: np← np + 1
11: else
12: if mark(v) = r then
13: nlp← nlp + 1
14: else if mark(v) = l then
15: nrp← nrp + 1
16: end if
17: end if
18: if v has children then
19: mark left child as l and right child as r
20: end if
21: else
22: if v is unmarked then
23: np← np + 1
24: else
25: if mark(v) = r then
26: mark right child as r
27: else if mark(v) = l then
28: mark left child as l
29: end if
30: end if
31: end if
32: end for
33: ENT ← rp + lp + np
34: lvl← lvl + 1
35: rp← nrp
36: lp← nlp
37: end while
38: return lvl − 1

The value rp + lp + np calculates the exact number of
entries that will be stored in the CSTnode for level lvl. This
is done by adding all the right and left paths originating from
previous levels (rp and lp) and the links (np) that point the
subtries below level lvl. Since this algorithm keeps track of
the extended paths of all the prefixes at intermediate levels, it
finds the exact number of entries at each level that can fit into
one node. Also, as Breadth First search is used, each node in
the subtrie is accessed only once. Hence the complexity for a
subtrie with N nodes is O(N).

2) Extracting Entries: Once the number of levels that can
be compressed is known, the next step is to extract and expand
the prefixes occurring at intermediate levels. Figure 5 shows
the spans for prefixes in the sample trie from Figure 3. Span
for prefix A is from 0000 to 0111. Prefix D spans from 1000

to 1111 and I from 1100 to 1111. But since prefix I is of larger
length than D, the destination address falling into the range
1100 and 1111 will find ‘I’ as the longest matching prefix.
While extracting the entries, care has to be taken to preserve
the spans of each prefix, as well as mark the Start and End
for each span. Depth first search can be used for finding and
expanding the prefixes. The algorithm is as follows:

1) Start from the root node. Follow Depth first search towards
left.

2) If a node is not marked, mark the node as ‘visited’ and do
a) If the length of the prefix is equal to the stride length,

store its bit string and mark it as ‘Point Range’ (Prefixes
B, E, F, G and H).

b) Else, if the node is a valid prefix, expand its prefix by
appending 0’s, store and mark the bit string as ‘Low
range’ (Prefix A, D and I).

3) If the node is already marked as ‘visited’
a) If the node’s height is equal to the stride length and it is

not a valid prefix, then store the bit string for that node
and mark it as a ‘Link’ (Node at path 0101).

b) If it is a valid prefix, expand it by appending 1’s and
mark the string as ‘High Range’ (Prefixes A, I and D).

After all the nodes in the subtrie are traversed, a sorted array
of bit strings is obtained with the each bit string marked as
either Low Range, High Range, Point Range or Link. The bit
strings extracted from the sample trie are shown in Figure 5.
The markers High Range (Hi) and Low Range (Lo) are used
to determine the span of a prefix.

Since Depth First Search is used, again the time complexity
is O(N ).

3) Filling Nodes: Now, the expanded set of bit strings
in Figure 5 should be compacted by removing the duplicate
strings. The strings are processed one by one, from lowest
value to the highest, in a similar way as described in [7].
Finally the compacted entries look like in Figure 6.

The Type indicates the maximum stride length allowed
for this CSTnode. As we process at most 2N entries, the
complexity for this operation is also O(N ). The size of the
CSTnode is dependent on number of entries after compacting,
and is never greater than the maximum allowed size. The node
manager, which manages the creation, alignment, assignment
and maintenance of the nodes, is requested for a CSTnode
of the particular size. When a free CSTnode is assigned, the
metadata, prefix strings and the information about next hop
and next node pointers are filled into it.

D. Extensions and Optimizations

Some extensions and optimizations can be applied the
scheme to increase the lookup speed and to make it more
suitable for IPv6. These are explained below.

1) Initial array for 16 bits: It is possible to reduce the
number of memory accessing by having a table for first 16
bits. The size of this table will be 216, i.e. 65535 entries. The
16 bits can be used to index into the array. Each entry in the
array stores the corresponding longest matching prefix and a
link to the nodes of Compact Prefix Tries is also stored. Since
indexing into the initial array requires just one memory access,
the total number of accesses required for lookup is reduced.
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2) Increasing the size of CSTnodes: Increasing the size
CSTnodes reduces the depth of the tree. But cache line
accesses required for lookup are also increased. It is possible
to reduce the maximum number of cache line accesses by
intelligently arranging the data inside the node. The bit strings
require less space and hence requires less cache lines for
storing. The accesses for binary search will be within cache
lines containing the bit strings only. If all the bit string cache
lines are available in cache, only one memory access per node
is required for retrieving pointer information. Thus, even if
the size of the complete data structure is larger than the size
of total cache available, the scheme will perform better if a
small part of the structure (Metadata and bit string entries) is
in cache.

E. Larger stride lengths

In some cases when the tries are very sparse, it might
happen that even though the maximum allowed length is
reached, the node might be not be completely filled. In these
cases, it is possible to store more levels in same CSTNode by
decreasing the total entries that can be stored. The advantage of
using larger stride length is that more number of levels can fit
into a node. If the trie is sparse, this reduces the average length
of the trie, thus reducing average number of memory accesses
required. This is especially useful for IPv6 where the length

of destination address is 128 bits and tries are sparse. The
disadvantage is that the branching inside the lookup function
increases.

F. Searching

The Search procedure for finding the best matching prefix
is described below. The same procedure can be used for both
IPv4 and IPv6 prefixes.

1) If the Initial array is present, index into the it using the
first 16 bits of the destination address.

2) If the pointer to CSTnode at next level is null, return
the next hop pointer stored at that index. Else go to the
next node.

3) Read the metadata from the node and get the stride
length and number of entries. Extract bits to be matched
from the destination address. Search for a match within
the prefix entries using binary search. If an exact match
is found, use the (=) next hop and assign it to current
next hop. If the key falls in any range, use the (>) next
hop pointer and return it. If the next node pointer is not
null, repeat the same step, else return the current next
hop.

Since that size of the data structure is designed to be equal
or in multiples of cache line width, most parts of the node will
be in cache after the first bytes are accessed. Also the locality
in traffic patterns will keep most frequently used nodes in
cache, so most lookups will be fast.

IV. SIMULATION RESULTS AND DISCUSSION

A. Environment

The lookup operations were simulated on two Pentium
based platforms running Windows 2000. Pentium II, 450 Mhz
and Pentium 4, 2.4 Ghz system with 512 KB cache were
used. The programs were written in C and compiled using
‘Maximum Speed’ optimization in Visual Studio 6. The code
for Level Compressed tries was obtained from the authors and
was compiled on the same platform with same settings.

B. Prefix Databases

The prefix databases used for simulations were obtained
from [6]. The largest database was MaeWest with 93354
prefixes, while the smallest was MaeEast with 18360 prefixes.
MaeWest database was very large in size on 27th April 2001,
but its size reduced afterwards. It was used for simulations
to study the behavior of Compact Prefix Tries for very large
databases. While prefix databases are publicly available, it
is not the case with traffic traces. The traffic was simulated
assuming that every prefix has the same probability of being
accessed. This assumption allows us to measure of the worst-
case lookup time. In order to reduce the effects of cache
locality, random permutations of all the entries in the forward-
ing table were used. The entries were extended to 32 bits by
adding zeros.
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C. Comparison with Other Schemes

1) Memory usage comparison: The memory requirements
of Compact Prefix Tries are compared with various other
schemes in the Table I. Since the databases used by other
schemes were of different sizes, the comparison is not without
flaws. The number of prefixes is not exactly same but, roughly
40000 prefixes in all the measurements.

Table I describes a comparison of the various schemes in
terms of memory usage. The first 8 schemes in the table used
the prefix size of approximately 40000 prefixes. The memory
usage values reported in the literature are used for comparison.
As can be seen from the table, Extended Compact Prefix Tries
are second best in terms of memory requirements. The last row
shows the memory required by Extended Compact Prefix Trie
for MaeWest database with 93354 entries. Only 829 KB of
space was required.

2) Lookup Performance Comparison: Ruiz-Sanchez et. al
[12] have compared some schemes and there lookup times
on a 200 MHz, Pentium-Pro based computer with 512 KB
cache. They ran the simulations using MaeEast database with
47113 prefixes. As it was not possible to get the exact prefix
database, a database of similar size from PacBell (48578
entries) was used for our simulations. The lookup performance
was measured in same way as measured by Ruiz-Sanchez
et. al. In our simulations, the time required for accessing
the prefixes at each level of the Compact Prefix Tries was
measured on Pentium II, 450 MHz system and scaled to 450
MHz clock. This comparison is also not without flaws because
scaling up the clock dose not necessarily speed up lookup
times by the same factor because memory access times do not
speed up with faster clock.

Table II shows the lookup time variability for six different
schemes. The lookup times for first five schemes are borrowed
from [12]. Full expansion/compression scheme was the fastest
scheme as it required just 3 memory accesses in the worst
case. Extended Compact Prefix Trie performed much better
than other trie compression schemes LC Trie and Multibit Trie.

3) Experimental comparison with LC-Tries: As the source
code for LC-Tries was available, an experimental comparison
was performed with them. Since the sources of other state of
art software implementations [14] are not publicly available,
a direct comparison with them could not made.

The lookup performance of LC Tries and Extended Compact
Prefix Tries (ECP Tries) is compared in Table III. Results
are shown only for Pentium 4, 2.4 GHz system. The fill
factor for LC Tries was 0.5. ECP Tries are Compact Prefix
Tries after using the extensions (initial array and large sized
CSTNodes) discussed in Section III-D applied. The lookup
performance was measured by randomly searching the prefixes
in the database.

It can be seen from the table, that the Extended Compact
Prefix Tries can perform lookup operations almost twice fast,
and also require up to 33% less memory then LC-Tries.
Note: For brevity we are unable to provide detailed results
of our analysis of this new scheme. Such details can be found
in [13].

Scheme Entries Size (KB)
Patricia Trie 38816 3262
6-way search on prefixes 38816 950
Binary search on hash tables 38816 1600
Full expansion/compression 43524 1057
Lulea scheme 32732 160
Controlled Prefix Expansion 38816 640
LC Trie 44168 708
Extended Compact Prefix Trie 44168 533
Extended Compact Prefix Trie 93354 829

TABLE I

MEMORY REQUIREMENT COMPARISON WITH OTHER SCHEMES

Scheme 10th 50th (median) 99th
percentile precentile percentile

BSD Trie 2050 2640 3964
Full expansion/compression 115 213 373
Binary Search on pref. len. 484 702 3146
Multibit trie 364 591 1328
LC Trie 422 569 880
ECP Trie 177 422 635

TABLE II

PERCENTILES OF LOOKUP TIMES (ns)

Database Prefixes LC Tries CP Tries ECP Tries
Size Mlps Size Mlps Size Mlps

Mae-east 18360 444 11.77 406 9.82 373 11.76
Aads 31283 585 5.41 541 8.02 456 10.00
PacBell 44168 708 4.22 606 6.73 533 8.83
Mae-west 93354 1259 3.13 1025 3.85 829 5.43

TABLE III

MEMORY AND LOOKUP PERFORMANCE COMPARISON WITH LC TRIES

(Size is in KB and Mlps is million lookups per second)
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