

Gear up the Classifier: Scalable Packet Classification
Optimization Framework via Rule Set Pre-Processing

Kai Zheng1,2, Zhiyong Liang
1
, Yi Ge

1

1
IBM China Research Lab; 2Department of Computer Science, Tsinghua University, P.R.China;

{zhengkai, liangzhy, geyi}@cn.ibm.com

Abstract—As one of the critical data path functions for many
emerging networking applications, packet classification is
gaining more and more concerns nowadays. It is commonly
believed that conventional software-based classification
algorithms are much more time-consuming than hardware-based
solutions, i.e., the costly and power consuming TCAM-based
mechanism, and incompetent for future high-end applications. In
this paper, we propose an efficient optimization framework
which can be applied to "gear up" most exiting software-based
packet classification algorithms. Under this framework, the large
rule set is pre-partitioned into several small subsets, according to
some heuristics and dedicated methods. Then the conventional
classification process can be significantly simplified and results
in a distinct performance improvement by converging the
classification power on only a small portion of the rule set.
According to the results of our experiment, in which the
framework is applied to one of the best algorithms EGT-PC [2],
the memory accesses can even be reduced by up to 70%. This
provides a much lower cost and more power-efficient alternative
to TCAM-based solutions. Another advantage is that the
framework requires no change to the hardware environment and
little system cost overhead, making it especially suitable for the
modern network processor based network solutions.

Key words—Packet Classification, System Design, Framework

I. INTRODUCTION

The rapid growth of the Internet and fast emergence of the
new network applications have brought great challenges and
complex issues in deploying high-speed and Qos guaranteed
network. Packet classification is one of the basic critical data
path functions for many networking applications, such as
ACL, Firewall, and Qos Control, etc. It is important,
complicated, yet not well solved.

Conventional software based solutions using binary trie or
decision tree are said to be either time or storage consuming
[1], and can not be easily scaled to support high-speed packet
forwarding. On the contrary, some hardware based solutions,
especially the ones using TCAM, are thought to be much
more promising because of their deterministic and fast
processing speed. The design of such schemes/mechanism is
straightforward and easy to implement. All these phenomena
seem to imply that there may not be alternatives to
TCAM-based hardware solutions for high-end applications,
despite many of their drawbacks, such as high cost to density
ratio and very high power consumption.

However, a currently emerging and popularity-gaining
concept Network Processor (NP) is going to change our
viewpoints step by step. The concept of NP is firstly
developed for the reason that the emergence of new network
applications are much faster than the speed we develop
hardware devices. So there should be a kind of
re-programmable and high speed solution to meet the needs of
today's network rapidly progressing in both functions and
performance. NPs are specialized and programmable engines
that are optimized to perform communication functions.

Equipped with abundant parallel processing resources, they
can deliver hardware-level performance for software
programmable systems. This powerful combination of
performance and flexibility offers a revolutionary approach to
the design of communication systems. It allows system
designers to focus on higher-level services and ensures longer
product lifecycles, rather than the conventional hardware
solutions which simply meet the "speeds and feeds" of the
moment. Since the widely adoption of NP, software based
algorithms have again gained their popularity and become a
hotspot in the literature.

According to our study, we find that by utilizing the
abundant parallel resources of NP and partitioning the original
rule set based on certain principles and heuristics,
conventional software-based solutions can be optimized to be
suitable for high-end applications, achieving much better
performance without distinct cost. In this paper, instead of
proposing new algorithms, we develop a novel concept,
Optimization Framework; we are not seeking a way to discard
old algorithms/solutions, but to inherit the strengths from
them and cooperate with them. Firstly, we analyze and
classify most kinds of rule set cutting methods. Then, by
studying the characteristics of most existing algorithms and
various real-world rule databases, we develop an efficient
optimization framework based on rule set pre-cutting
methods.

II. DEFINITIONS AND TERMS.
A. Definition: Rule, Key, Key Space, and (Hyper) Layer

A rule table, or a policy filtering table, includes a set of
rules. A Rule is composed of a match condition and the
corresponding action. Here we consider the matching
condition as a typical five-tuple including five packet header
fields, which, in sequence, are DIP(1-32), SIP(1-32),

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

DPORT(1-16), SPORT(1-16), and PROT(1-8)i.
A Search Key is a 104-bitii string composed of the five IP

packet header fields.
Accordingly, in a geometrical view, the Key Space is

actually a hyper-space with multi-dimensions; a specific
search key represents one point in the hyper-space, while each
rule represents a hyper-cube in the key space.

In order to introduce the following concepts, we develop a
related term (Hyper) Layer. Note that rules may overlap with
each other on some dimensions. (Hyper) Layer is defined as a
set of rules that does not overlap with each other on specific
dimensions/field, as depicted in Fig.1. Then the key space
can be partitioned into several (hyper) layers.

Fig.1 The concepts and relationships of Key Space, Key, Rules, and
Layers in a 1-D case. 15 rules are included in the example. The figure
shows one of the layer-partition schemes, which includes 6 layers. And
there are 4 rules matching the given key, which are indicated by the solid
points.

B. Definition: Rules Set Cutting and Key Space Partitioning
Let R be a specific rule set. If a set of its subsets { jQ ,

j=1,…,N}, satisfies NjRQj ,...,1, =⊂∀ , and
Nn

n RQ
,...,1=

= ,

then we call{ jQ , j=1,…,N} an N-Cutting of rule set R.

Let S be the key space, Skk ∈, be one of the Keys
within the key space. Given a function of the
keys: },...,2,1{: MSF >− , which map the keys into M subsets,
{ MiKi ,..,1, = }, where })(,|{ ikFSkkKi =∈= , and SK

Mi
i =

= ,...,1
.

Then we call { MiKi ,..,1, = } an M-Partition of the key space,
and F the corresponding M-Partition function. (Note
that jiji ≠∀ ,, , φ=ji KK)

C. Definition: Completeness
1. Completeness of a rule subset to a Key and Key partition

We say a subset jQ of rule set R is complete to a key k,
if jQ contains all of the rules in R that matching k, which is

denoted as
j

R
Qk∈ ; Further, for a given key partition iK ,

if jQ satisfies, j

R

i QkKkk ∈∈∀ ,, , we say jQ is complete to iK
within rule set R, which is denoted as

j

R

i QK ⊂ .

i DIP, SIP, DPORT, SPORT, and PROT represent Destination IP prefix,
Source IP prefix, Destination Port range, Source Port range, and PROTocol
number, respectively.
ii 32+32+16+16+8=104.

The completeness of a subset jQ indicates that to
traverse jQ and find the matching rules of any given
key iKk ∈ is a sufficient condition of finding the matching
rules of k in the whole rule set R.

2. Completeness of Rule cutting
Given an M-Partition function F of the key space S , S is

partitioned into { MiKi ,..,1, = }. For a rule set R, if an
N-Cutting of R, { jQ , j=1,…,N}, satisfies:

NjQMiK ji ,...,1,,,...,1, =∃=∀ ,
j

R

i QK ⊂ , then we call { jQ ,

j=1,…,N} is an complete (completeness-guaranteed) N-Cutting
of R under key partitioning function F.

Completeness of a rule Cutting { jQ , j=1,…,N} ensures that
for any given key, to traverse only one specific rule group is
sufficient and correct.

III. PACKET CLASSIFICATION OPTIMIZATION
FRAMEWORK BASED ON RULE SET CUTTING

A. The Overall Idea of the Optimization Framework
Actually, in a general word, the packet classifier is a kind of

filter. It filtrates the rules from the original rule set and finds
out the ones matching the input key. Most existing
well-known multi-fields classification algorithms, such as
EGT-PC [2] (an extension of [8]), HiCuts [5], HyperCuts [6],
Modular [7], etc., are very similar in their basic ideas. They
usually include 2 steps: First, an efficient filtering algorithm
(e.g., decision tree based algorithms) is adopted in certain
fields to filtrate the rules and the target rules are then
focalized in a reduced subset, called the Interim Set. Secondly,
since the Interim Set is relatively much smaller, still adopting
the complex filtering algorithm may, on the contrary, be less
efficient. So usually a simple algorithm, e.g., linear search, is
employed to match with the key within the Interim Set and
find out the final matching result.

The idea of the proposed optimization framework is as
shown in Fig.2. Since policy rules are usually "stable" and
with much lower modification frequency, which indicates that
it would neither cost much nor do harm to the overall
performance if we employ some pre-processing of the rule set
to optimize the search performance. Based on this observation,
we try to cut the rules into several groups based on certain
principles in advance. And then, according to the key, we may
focalize the filtering algorithm within only one of the subsets
via a simple hashing. Hence the classification workload will
become much lighter and the size of the Interim Set will be
further reduced as well, resulting in a distinctive improvement
of the performance.

However, we also note that to divide the original rule set
into several sub-sets/groups for classification optimization is
NOT a trivial work. Since we should ensure not only the
completeness of the sub-set to any input key, but also that no
rules be duplicated and that the process to find the
corresponding subset of the key be simple.

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

B. Rule Set Cutting methods.
Before presenting the details of the optimization framework,

first let’s begin with the introduction of two kinds of rule set
cutting methods. Fig. 3 depicts the examples of Complete and
Incomplete rule cutting methods.

1. Algorithms of V-Cuts

Fig.3 V-Cuts: A complete cutting

Fig.3 shows a rule cutting scheme based on key
ranges/intervals (the rules on the left side of the cut belong to
one group while the ones on the right side belong to the other.
The ones across the cut would be duplicated and belong to
both groups). It is straightforward that this kind of cutting
ensures completeness, since all rules that matching an
arbitrary key are allocated in the same subset. Visually, we
name such kind of rule cutting methods as Vertical Cuts, or
V-Cuts. This kind of cutting method actually includes two
sub-procedures: first, to cut the original rule set into groups;
second, to provide a mapping function for the input key, so as
to map it to its complete rule group.

V-Cuts based on range intervals
The V-Cuts method that appears in Fig.3 belongs to this

kind. The rules are grouped based on range/prefix intervals on
one specific field (within its matching condition). This
method is easy to implement and can be applied to all kinds of
packet fields (i.e., prefix, range, or exact matching fields).

V-Cuts based on ID
The concept of ID is firstly introduced in one of our

previous work [9]. As far as a rule is concerned, its Rule-ID is
defined as a P-bit ternary ('1','0', or '*') bit-string, each bit of
which is extracted from certain bit position within the rule's
matching condition. Accordingly, the term Key-ID is defined
as the P binary bits (‘1’or ‘0’) extracted from the
corresponding bit positions within a given key. For example,
suppose P=2, and the 2 bit positions are SIP(16) and PROT(8).
Then the Rule-ID of rule <1.1.*.*, 2.*.*.*, *, *, 6> is“*0”and
the Key-ID of search key <1.1.1.1, 2.2.2.2, 1028, 34556, 11>
is“01”.

The rules can then be divided into several groups
according to their Rule-IDs. For instance, the rules with
Rule-ID (suppose P=2) '*0' belong to both Key-ID Group '10'
and Key-ID Group '00'. This method is also complete, since
the rules matching one arbitrary key must match the same
Key-ID, and therefore they must belong to the same Key-ID
group. This method is only suitable for the packet fields
which is in the form of prefix (i.e., DIP/SIP) or exact
matching (i.e., PROT), since a port range may not be
represented by a ternary bit string.

2. Algorithms of H-Cuts

Fig.4 H-Cuts: A complete cutting

Fig.4 shows a rule cutting scheme based on layer-partition
(the rules above the cut belong to one group and the ones
below the cut form the other). And it is straightforward that
this kind of cutting is not complete. Because the rules

Fig. 2 The optimization idea based on rule cutting

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

matching a given key are separated into different groups; to
traverse either of the groups may be insufficient for a given
key. We denote such kind of rule cutting in a visual way as
Horizontal Cuts, or H-Cuts. Compared with V-Cuts, H-Cuts
are not complete, implying that multiple or even all rule
groups generated by the H-Cuts may need to be traversed to
ensure completeness.

H-Cuts based on (hyper-) layers
The H-Cuts method mentioned in Fig.4 belongs to this kind.

Firstly, the hyper-layer hierarchy is formed, and then all the
rules are categorized into layers.

H-Cuts based on prefix level
Firstly, we need to introduce the concept of Prefix Level,

which is originally introduced in one of our previous work
[10]. As the example shown in Fig.5, for a given prefix node n,
there are multi paths from node n to its descendant leaf nodes.
Among these paths, let Pmax be the path containing the most
prefix nodes. The number of prefix nodes (excluding node n
itself) in Pmax is called the Prefix Level of node n. For instance,
node g in Fig.5 is with Level 0, and node d is with Level 2,
etc. And then we can further cut the ten prefixes into 3 groups
according to their prefix Level, which is called Level Set, i.e.,
LevelSet(0)={b, c, g, f, h, i, j}, LevelSet(1)={a, e},
LevelSet(2)={d}. This kind of H-Cuts is efficient, however it
is only suitable for the packet fields in prefix form.

C. The Packet Classification Optimization Framework

Fig 6 An example combining both V-Cuts and H-Cuts to group the rules

According to the introduction of the cutting methods in the
previous sub-section, simple H-Cuts can not ensure

completeness while simple V-Cuts may incur huge storage
redundancy. The only way to achieve the goal is to combine
the two methods, adopting their strength points accordingly.

As the example shown in Fig.6, after forming the (hyper)
layer hierarchy, the cutting approach starts from an H-Cuts, it
divides the rules into 2 groups according to their layers. This
H-Cut eliminates/reduces the possibility of duplications
caused by the V-Cuts. Without the H-Cut (i.e. each V-Cuts
should be performed in all of the 6 layers), the V-Cuts would
always cut through some rules and incur rule duplications in
this example, no matter at which point/interval we launch
them.

Then 2 V-Cuts are performed within the upper sub-set
while three within the lower one, without any rule duplication.
Then the original rule set is divided into seven sub-sets
{ 721 ,...,, PPP }.

On the other hand, the five V-Cuts partition the key space
into six partitions { 621 ,...,, KKK } (as shown in Fig. 6). By a
simple combination, we can get a cutting scheme
{ 411 PPQ = , 512 PPQ = , 523 PPQ = ,

624 PPQ = , 635 PPQ = , 736 PPQ = }, in which
each rule group iQ is complete to the corresponding key
partition iK , 6,...,2,1=i . No rule duplication is required at
all.

The classification for any given key now can be done
within only a group of subsets of the rule database. For
instance, in the example shown in Fig.6, to classify the given
key we only need to search rule group Q3, i.e., subset P2 and
P5, which may be searched independently in serial or in
parallel; namely, 11 rules out of 15 are already excluded for
classification. Note that the cuttings are done in
pre-computation, and the only processing overhead during the
classification is one very simple hashing to map the input key
to the corresponding rule group.

The pseudo-code of the optimization framework is as the
following:

i. Select the appropriate H-Cuts method and packet fields to
perform rule set cutting, according to the target classification
algorithm.

ii. Form the (hyper) layer hierarchy on the selected packet field(s),
according to the selected H-Cuts methods.

iii. Perform H-Cuts and divide the (hyper) layers into several
groupsiii.

iv. Perform V-Cuts at the intervals where would not incur rule
duplication, respectively within each layer group. And then result
in a series of rule sub-sets.

v. Group the partitioned subsets and get the complete rule groups
for each key partition. Then form the hash table.

vi. Apply the target classification algorithm to each rule subset and
construct the corresponding data structures, respectively.

iii The selection of the number of layer-groups depends on the number of
classifiers provided. Although partitioning more layer-groups (i.e.,
performing more H-Cuts) may result in fewer overlaps in each layer-group so
that more V-Cuts may be performed to reduce the size of each subset;
however, more layer-groups may also lead to more subsets be inspected in
serial if the classifier is less than the layer-groups.

Pr ef i x es
a 0*
b 01000*
c 011*
d 10*
e 100*
f 101*
g 1000*
h 1100*
i 1101*
j 1111*

a

b

0

0

0

0

0

1

1 1

1

j

0 1

ih
0 10

d

e
0

g

c
1

f
1

Fig.5 A prefix trie example

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

IV. PERFORMANCE EVALUATION

A. Optimization performance evaluation
According to the analysis in the previous sections, we

notice that the performance of the proposed optimization
framework is dependent on the target algorithm as well as the
characteristics of the rule sets, which may vary largely case by
case. Therefore it would be hard for us to provide very
accurate theoretical analysis on the optimization performance.
In the follows, we estimate the average-case performance of
the optimization framework in term of the time and storage
complexity.

Given that we have h parallel classifiers and h-1 H-Cuts are
performed within the target rule set, which contains N rules.
The H-Cuts result in h H-Cuts groups. Further, v1, v2,…,vh
V-Cuts are performed within the h H-Cuts groups respectively.
Assume that the number of each resulting subsets is similar
with each other, so each subset contains approximately

= hi
ivN

,...,1
/ rules.
Suppose that the time and storage complexity of the target

algorithm are)]([rNTO and)]([rNSO respectively, where
Nr is the number of rules. Tab.1 presents the comparison of
the performance between different schemes.

Scheme Time Storage
Native Algorithm)]([rNTO)]([rNSO

Duplicating Rule Set]/)([hNTO r)]([rNShO ×
+Optimization Framework)]/([

,...,1= hi
ir vNTO)]([rNSO

Tab.1 Performance comparison between three schemes

We see that for the native algorithm, though we have h
classifiers, since the completeness of each classification must
be guaranteed, all rules should still be inspected in sequence,
and no speedup is gained.

For the case that the whole rule set are duplicated to h
memory chips, the rules can, therefore, be accessed by the h
classifiers in parallel, resulting in a speedup of approximately
h; however, remember that this is at a cost of distinct storage
overhead.

In the case of employing the optimization frame work, no
rule is duplicated, and to guarantee the completeness of
classification, only h subsets out of

= hi
iv

,...,1
should be queried,

which can be accessed in parallel by the h classifiers.
Therefore the classification latency is reduced to
approximately that for single subset. Note that all these gains
are contributed by the job done in pre-computation.

B. Experiment results
We use the packet classification algorithm evaluation

tool-set “Class-Bench” (developed by Taylor etc. from
Washington University [3]) and the source code of the
EGT-PC algorithm (presented by the authors) to evaluate the
performance of proposed framework. We focus our energy on
the optimization caused by the framework.

Tab.2 shows the experiment results. For the sake of
checking the universality of the framework, we select all three

kinds of rule sets, i.e., Access Control List (acl), Firewall (fw),
and IP Chain (ipc). In these cases we use the SP and PRTO
fields to perform rule set pre-cutting. Only one H-Cut is
performed in all cases (supposing that only two classifiers are
provided). Since memory access is commonly much slower
than the processor and always the performance bottleneck of
software-based packet classification, we assume that the
overall performance is mainly determined by memory
accesses.

According to the experimental results, as shown in Tab.2,
we find that with the optimization framework, the number of
memory accesses is dramatically reduced. For instance, for
the fw and acl sets, the number of memory accesses is reduced
by more than 70% when C=2. Even without multiple parallel
classifiers (i.e., when C=1), the performance can also be
distinctively improved.

All of the pre-cutting process and EGT-PC trie construction
are done within a few seconds (<10s) using a 1.8GHz Intel
Pentium IV-m laptop. This shows that the pre-computation
work load is trivial, which does not cause substantial impact
on the classifier(s) (e.g., co-processors of the NP).

C. The updating issue
First of all, for rule deletions, employing the framework

will not cause the disability of incremental update so long as
the target algorithm supports incremental update.

For rule insertion, it may possibly introduce new ranges
which cross the intervals where some V-Cuts are performed,
and therefore incurs rules duplication. However, this case
happens only when the new ranges cross V-Cuts in all of the
layer groups. In this case, the V-Cuts which cross the new rule
ranges will be cancelled and the associated subsets will be
combined. And then the corresponding data structure of the
target algorithm should also be re-constructed.

Fortunately, since the rules are commonly modified
infrequently, the update will not be a very critical problem
even if incremental method is infeasible in some extreme
cases.

V. CONCLUSIONS

In this paper, we proposed an optimization framework for
packet classification algorithms, which can be employed in
most NP environments and cooperate with most existing
algorithms. By developing two kinds of rule cutting methods
(i.e. V-Cuts and H-Cuts), pre-partitioning the original rule set
into a series of sub-sets according to some optimization
principles/heuristics, and focalizing each classification within
only a small portion of the rule set, the framework can
dramatically improve the performance of most algorithms
without rule duplication. The optimization framework does
not impact the hardware environment of the classifier and can
be easily implemented.

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

The future work of our team will focus on the detailed
implementation of IPv6 scheme and the framework extension
to support other pattern matching problems, such as IDS/IPS
or other security associated issues.

VI. RELATED WORKS

Due to its high complexity of the search and widely
adoption as the critical data path function in IP packet
forwarding, packet classification is often a performance
bottleneck in network infrastructure and it has received much
attention in the research community. Besides the Decision
Tree based algorithms [2] [5-8] we mentioned in the previous
sections, several other kinds of algorithms or hardware
schemes are proposed, recently.

One category is the ones via Decomposition [11-12]. The
idea is to decompose the multiple field search into instances
of single field searches, and perform independent searches on
each packet field, then combine the results. The latest work on
this category is the DCFL (Distributed Crossproducting of
Field Labels) [11], which presents a combination of new and
existing packet classification techniques that leverages
observations of the structure of real filter sets and takes
advantage of the capabilities of modern hardware technology.
High performance is achieved at the cost of high
implementation complexity. Another category is the hardware
based ones [4] [9], in which TCAM is adopted. High
performance is gained at the cost of high price and low power
efficiency, supposing that the range matching problem of
TCAM can be perfectly solved. However, the major problem
of such algorithms/schemes is not their performance, but their
flexibility for the NP environments, that they can hardly be
transplanted smoothly from one system to the other, and is
with much higher re-developing cost and longer
time-to-market. These are the reasons why we based our work
on the Decision Tree based software algorithms, as far as the
NP environment is concerned.

VII. REFERENCES

[1] P. Gupta and N. McKeown, "Algorithms for Packet
Classification", IEEE Network, March/April, 2001

[2] F. Baboescu, S. Singh, G. Varghese, "Packet Classification for
Core Routers: Is there an alternative to CAMs?", Proc. of IEEE
INFOCOM, San Francisco USA, March 2003.

[3] ClassBench, a classification algorithm evaluation tool set,
available at: http://www.arl.wustl.edu/~det3/ClassBench/

[4] K. Lakshminarayanan, A. Rangarajan, S. Venkatachary,, "
Algorithms for Advanced Packet Classification with Ternary
CAMs ", Proc. of ACM SIGCOMM '05, Philadephia USA, Aug
2005

[5] P. Gupta, and N. McKeown, "Packet Classification using
Hierarchical Intelligent Cuttings", IEEE Micro Magazine, Vol.
20, No. 1, pp 34-41, January- February 2000.

[6] S. Singh, F. Baboescu, G. Varghese, and J. Wang, "Packet
Classification Using Multidimensional Cutting", Proc. of ACM
SIGCOMM 2003.

[7] T.Y.C.Woo, " A Modular Approach to Packet Classification:
Algorithm and Results," Proc. of IEEE INFOCOM, March
2000.

[8] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, "Fast
and Scalable Layer Four Switching", Proc. of ACM SIGCOMM
'98.

[9] K. Zheng, H. Che, Z. Wang, and B. Liu, " TCAM-based
Distributed Parallel Packet Classification Algorithm with
Range-Matching Solution", Proc. of IEEE INFOCOM, Miami,
USA, March 2005.

[10] Z. Liang, K. Xu, J. Wu, “A Scalable Parallel Lookup
Framework Avoiding Longest Prefix”, Lecture Notes in
Computer Science, vol. 3090,2004, pp.616-625.

[11] D. E. Taylor and J. S. Turner, “Scalable Packet Classification
using Distributed Crossproducting of Field Labels”, Proc. of
IEEE INFOCOM’05, Miami, USA, March 2005

[12] F. Baboescu and G. Varghese,"Scalable packet classification",
IEEE/ACM Transactions on Networking, v 13, p2-14, Feb,
2005.

Rule set features Rule Set
R D.R. L S.S. T

Scheme M.H Avg. N.A Avg. R.M Avg.
M.A.C*

M.A.C
Reduced

EGT-PC 0 24.8 24.9 74.5 --
+Framework C=1 4 15.7 5.5 30.7 58.8% acl 6982 227 13 55 209460

+Framework
C=2**

2 10.6 4.6 21.7 70.9%

EGT-PC 0 21.4 96.7 214.8 --
+Framework C=1 4 21.9 23.1 72.2 66.4% fw 7881 43 6 39 236430
+Framework C=2 2 17.1 21.5 62.1 71.1%

EGT-PC 0 15.3 9.6 34.6 --
+Framework C=1 4 17.7 4.7 31.1 10.1% ipc 6753 53 7 37 202590
+Framework C=2 2 12.1 4.6 23.3 32.7%

Tab.2 Experiment results and comparison between adopting the proposed framework and not adopting
R : number of Rules; D.R.: number of Distinct Range in the source port field; L : number of Layers; S.S.: number of Sub-Sets divided. T : number
of packet Trace used. M.H : number of Memory accesses needed for range Hashing; N.A : number of trie Node Accessed; R.M. : number of Rules
Matched with at the leaf nodes; M.A.C : number of Memory Accessed Cycles; C : number of Classifiers.
*: Supposing that each N.A takes one memory access cycle while each R.M takes two, according to typical data structures.
**: Note that for each classification, 2 EGT-PC tries should be accessed. In the case of C=2 (two classifiers work in parallel), the corresponding index
are accumulated according to the classifier performing more memory accesses. While in the case of C=1, the indexes are accumulated by summing up
the numbers of both the two classifiers.

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

