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Abstract—Continuing growth in optical link speeds places
increasing demands on the performance of Internet routers,
while deployment of embedded and distributed network ser-
vices imposes new demands for flexibility and programma-
bility. IP address lookup has become a significant perfor-
mance bottleneck for the highest performance routers. New
commercial products utilize dedicated Content Addressable
Memory (CAM) devices to achieve high lookup speeds. This
paper describes an efficient, scalable lookup engine design,
able to achieve high-performance with the use of a small
portion of a reconfigurable logic device and a commodity
Random Access Memory (RAM) device. Based on Eather-
ton’s Tree Bitmap algorithm [1], the Fast Internet Protocol
Lookup (FIPL) engine can be scaled to achieve over 9 mil-
lion lookups per second at the fairly modest clock speed of
100 MHz. FIPL’s scalability, efficiency, and favorable up-
date performance make it an ideal candidate for System-
On-a-Chip (SOC) solutions for programmable router port
processors.

Keywords— Internet Protocol (IP) lookup, router, re-
configurable hardware, Field-Programmable Gate Array
(FPGA), Random Access Memory (RAM).

I. I NTRODUCTION

R
OUTING of Internet Protocol (IP) packets is the pri-
mary purpose of Internet routers. Simply stated, rout-

ing an IP packet involves forwarding each packet along
a multi-hop path from source to destination. The speed
at which forwarding decisions are made at each router or
“hop” places a fundamental limit on the performance of
the router. For Internet Protocol Version 4 (IPv4), the for-
warding decision is based on a 32-bit destination address
carried in each packet’s header. A lookup engine at each
port of the router uses a suitable routing data structure to
determine the appropriate outgoing link for the packet’s
destination address.

The use of Classless Inter-Domain Routing (CIDR)
complicates the lookup process, requiring a lookup en-
gine to search variable-length address prefixes in order to
find the longest matching prefix of the destination address
and retrieve the corresponding forwarding information [2].
As physical link speeds grow and the number of ports in
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high-performance routers continues to increase, there is a
growing need for efficient lookup algorithms and effec-
tive implementations of those algorithms. Next generation
routers must be able to support thousands of optical links
each operating at 10 Gb/s (OC-192) or more. Lookup tech-
niques that can scale efficiently to high speeds and large
lookup table sizes are essential for meeting the growing
performance demands while maintaining acceptable per-
port costs.

Many techniques are available to perform IP address
lookups. Perhaps the most common approach in high-
performance systems is to use Content Addressable Mem-
ory (CAM) devices and custom Application Specific In-
tegrated Circuits (ASICs). While this approach can pro-
vide excellent performance, the performance comes at a
fairly high price, due to the relatively high cost per bit
of CAMs, relative to commodity memory devices. CAM-
based lookup tables are expensive to update, since the in-
sertion of a new routing prefix may require moving an un-
bounded number of existing entries. The CAM approach
also offers little or no flexibility for adapting to new ad-
dressing and routing protocols.

The Fast Internet Protocol Lookup (FIPL) engine, de-
veloped at Washington University in St. Louis, is a high-
performance, solution to the lookup problem, that uses
Eatherton’s Tree Bitmap algorithm [1], reconfigurable
hardware and Random Access Memory (RAM). Imple-
mented in a Xilinx Virtex-E Field Programmable Gate Ar-
ray (FPGA) running at 100 MHz and using a Micron 1 MB
Zero Bus Turnaround (ZBT) Synchronous Random Ac-
cess Memory (SRAM), a single FIPL lookup engine has a
guaranteed worst case performance of 1,134,363 lookups
per second. Time-Division Multiplexing (TDM) of eight
FIPL engines over a single 36 bit wide SRAM interface,
yields a guaranteed worst case performance of 9,090,909
lookups per second. Still higher performance is possible
with higher memory bandwidths. In addition, the data
structure used by FIPL is straightforward to update, and
can support up to 10,000 updates per second with less
than a 9% degradation in lookup throughput. Targeted to
an open-platform research router, implementations utilized
standard FPGA design flows. Ongoing research seeks to
exploit new FPGA devices and more advanced CAD tools
in order to double the clock frequency and, therefore, dou-
ble the lookup performance.
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II. RELATED WORK

Numerous research and commercial IP lookup tech-
niques exist. On the commercial front, several compa-
nies have developed high speed lookup techniques using
CAMs and ASICs. Some current products, targeting OC-
768 (40 Gb/s) and quad OC-192 (10 Gb/s) link configura-
tions, claim throughputs of up to 100 million lookups per
second and storage for 100 million entries [3]. However,
these products requiring 16 cascaded ASICs with embed-
ded CAMs in order to achieve the advertised performance
levels as well and to support even a more realistic one mil-
lion table entries. Such exorbitant hardware resource re-
quirements make these solutions prohibitively expensive
for implementation in large routers.

The most efficient lookup algorithm known, from a
theoretical perspective is the “binary search over prefix
lengths” algorithm described in [4]. The number of steps
required by this algorithm grows logarithmically in the
length of the address, making it particularly attractive for
IPv6, where address lengths increase to 128 bits. However,
the algorithm is relatively complex to implement, making
it more suitable for software implementation than hard-
ware implementation. It also does not readily support in-
cremental updates.

The Lulea algorithm is the most similar of published al-
gorithms to the Tree Bitmap algorithm used in our FIPL
engine [5]. Like Tree Bitmap, the Lulea algorithm uses
a type of compressed trie to enable high speed lookup,
while maintaining the essential simplicity and easy updata-
bility of elementary binary tries. While similar at a high
level, the two algorithms differ in a variety of specifics,
that make Tree Bitmap somewhat better suited to efficient
hardware implementation.

The remaining sections focus on the design and im-
plementation details of a fast and scalable lookup engine
based on the Tree Bitmap algorithm. The FIPL engine of-
fers an efficient and flexible alternative geared to System-
On-a-Chip (SOC) router port processor implementations.
With tightly bounded worst-case performance and mini-
mal update overhead, FIPL is well-suited for use in high-
performance programmable routers, which must be capa-
ble of switching even minimum length packets at wire
speeds [6].

III. T REE BITMAP ALGORITHM

Eatherton’s Tree Bitmap algorithm is a hardware based
algorithm that employs a multibit trie data structure to per-
form IP forwarding lookups with efficient use of mem-
ory [1]. Due to the use of CIDR, a lookup consists of find-
ing the longest matching prefix stored in the forwarding

table for a given 32-bit IPv4 destination address and re-
trieving the associated forwarding information. As shown
in Figure 1, the unicast IP address is compared to the stored
prefixes starting with the most significant bit. In this exam-
ple, a packet is bound for a workstation at Washington Uni-
versity in St. Louis. A linear search through the table re-
sults in three matching prefixes: *, 10*, and 1000000011*.
The third prefix is the longest match, hence its associated
forwarding information, denoted by Next Hop 7 in the ex-
ample, is retrieved. Using this forwarding information, the
packet is forwarded to the specified next hop by modifying
the packet header.
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Fig. 1. IP prefix lookup table of next hops. Next hops for IP
packets are found using the longest matching prefix in the
table for the unicast destination address of the IP packet.

To efficiently perform this lookup function in hardware,
the Tree Bitmap algorithm starts by storing prefixes in a
binary trie as shown in 2. Shaded nodes denote a stored
prefix. A search is conducted by using the IP address bits
to traverse the trie, starting with the most significant bit
of the address. To speed up this searching process, mul-
tiple bits of the destination address are compared simulta-
neously. In order to do this, subtrees of the binary trie are
combined into single nodes producing a multibit trie; this
reduces the number of memory accesses needed to perform
a lookup. The depth of the subtrees combined to form a
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single multibit trie node is called the stride. An example
of a multibit trie using 4-bit strides is shown in Figure 3.
In this case, 4-bit nibbles of the destination address are
used to traverse the multibit trie. Address Nibble(0) of the
address, 10002 in the example, is used for the root node;
Address Nibble(1) of the address, 00002 in the example,
is used for the next node; etc.
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32−bit destination address: 128.252.153.160
1000 0000 1111 1100 ... 1010 0000

Fig. 2. IP lookup table represented as a binary trie. Stored
prefixes are denoted by shaded nodes. Next hops are found
by traversing the trie.

The Tree Bitmap algorithm codes information associ-
ated with each node of the multibit trie using bitmaps.
The Internal Prefix Bitmap identifies the stored prefixes in
the the binary sub-tree of the multi-bit node. The Extend-
ing Paths Bitmap identifies the “exit points” of the multi-
bit node that correspond to child nodes. Figure 4 shows
how the root node of the example data structure is coded
into bitmaps. The 4-bit stride example is shown as a Tree
Bitmap data structure in 5. Note that a pointer to the head
of the array of child nodes and a pointer to the set of next
hop values corresponding to the set of prefixes in the node
are stored along with the bitmaps for each node. By requir-
ing that all child nodes of a single parent node be stored
contiguously in memory, the address of a child node can
be calculated using a single Child Node Array Pointer and
an index into that array computed from the extending paths
bitmap. The same technique is used to find the associated
next hop information for a stored prefix in the node. The
Next Hop Table Pointer points to the beginning of the con-
tiguous set of next hop values corresponding to the set of
stored prefixes in the node. Next hop information for a
specific prefix may be fetched by indexing from the pointer
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32−bit destination address: 128.252.153.160
1000 0000 1111 1100 ... 1010 0000

Fig. 3. IP lookup table represented as a multibit trie. A stride,
4-bits, of the unicast destination address of the IP packet are
compared at once, speeding up the lookup process.

location.

Internal Prefix Bitmap: 1 00 0110 00000010
Extending Paths Bitmap: 0101 0100 1001 0000
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Fig. 4. Bitmap coding of a multibit trie node. The internal
bitmap represents the stored prefixes in the node while the
extending paths bitmap represents the child nodes of the cur-
rent node.

The index for the Child Node Array Pointer leverages a
convenient property of the data structure. Note that the nu-
meric value of the nibble of the the IP address is also the
bit position of the extending path in the Extending Paths
Bitmap. For example, Address Nibble(0) = 10002 = 8.
Note that the eighth bit position, counting from the most
significant bit, of the Extending Paths Bitmap shown in
Figure 4 is the extending path bit corresponding to Ad-
dress Nibble(0) = 10002 . The index of the child node is
computed by counting the number of ones in the Extending
Paths Bitmap to the left of this bit position. In the exam-
ple, the index would be three. This operation of computing
the number of ones to the left of a bit position in a bitmap
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1000 0000 0000 0000
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0000 0000 0000 0000
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Fig. 5. IP lookup table represented as a Tree Bitmap. Child nodes are stored contiguously so that a single pointer and an index
may be used to locate any child node in the the data structure.

will be referred to as CountOnes and will be used in later
discussions.

When there are no valid extending paths, Extending
Paths Bitmap is all zeros, the terminal node has been
reached and the Internal Prefix Bitmap of the node is
fetched. A logic operation called Tree Search returns the
bit position of the longest matching prefix in the Internal
Prefix Bitmap. CountOnes is then used to compute an in-
dex for the Next Hop Table Pointer., and the next hop infor-
mation is fetched. If there are no matching prefixes in the
Internal Prefix Bitmap of the terminal node, then the In-
ternal Prefix Bitmap of the most recently visited node that
contains a matching prefix is fetched. This node is iden-
tified using a data structure optimization called the Prefix
Bit.

The Prefix Bit of a node is set if its parent has any stored
prefixes along the path to itself. When searching the data
structure, the address of the last node visited is remem-
bered. If the current node’s Prefix Bit is set, then the ad-
dress of the last node visited is stored as the best matching
node. Setting of the Prefix Bit in the example data structure
of Figure 3 and Figure 5 is denoted by a “P” .

IV. HARDWARE DESIGN AND IMPLEMENTATION

Modular design techniques are employed throughout the
FIPL hardware design to provide scalability for various

system configurations. Figure 6 details the components
required to implement FIPL in the Port Processor (PP)
of a router. Other components of the router include the
Transmission Interfaces (TI), Switch Fabric, and Control
Processor (CP). Providing the foundation of the FIPL de-
sign, the FIPL engine implements a single instance of a
Tree Bitmap search. The FIPL Engine Controller may be
configured to instantiate multiple FIPL engines in order to
scale the lookup throughput with system demands. The
FIPL Wrapper extracts the IP addresses from incoming
packets and writes them to an address FIFO read by the
FIPL Engine Controller. Lookup results are written to a
FIFO read by the FIPL Wrapper which accordingly mod-
ifies the packet header. The FIPL Wrapper also handles
standard IP processing functions such as checksums and
header field updates. Specifics of the FIPL Wrapper will
vary depending upon the type of switching core and trans-
mission format. An on-chip Control Processor receives
and processes memory update commands on a dedicated
control channel. Memory updates are the result of route
add, delete, or modify commands and are sent from the
System Management and Control components. Note that
the off-chip memory is assumed to be a single port device;
hence, an SRAM Interface arbitrates access between the
FIPL Engine Controller and Control Processor.
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Fig. 6. Block diagram of router with multi-engine FIPL config-
uration; detail of FIPL system components in the Port Pro-
cessor (PP).

A. FIPL Engine

Consisting of a few address registers, a simple Finite-
State Machine (FSM), and combinational logic, the FIPL
Engine is a compact, efficient Tree Bitmap search en-
gine. A dataflow diagram of the FIPL Engine is shown
in Figure 7. Data arriving from memory is latched into
the DATA IN REG register n clock cycles after issuing a
memory read. The value of n is determined by the read la-
tency of the memory device plus 2 clock cycles for latch-
ing the address out of and the data into the implementa-
tion device. The next address issued to memory is latched
into the ADDR OUT REG k clock cycles after data ar-
rives from memory. The value of k is determined by the
speed at which the implementation device can compute the
next hop addr which is the critical path in the logic. Two
counters, mem count and search count, are used to count
the number of clock cycles for memory access and address
calculation, respectively. Use of multicycle paths allows
the FIPL engine to scale with implementation device and
memory device speeds by simply changing compare val-
ues in the finite-state machine logic.

In order to generate next hop addr:
� TREE SEARCH generates prefix index which is the bit
position of the best-matching prefix stored in the Internal
Prefixes Bitmap
� PREFIX COUNTONES generates next hop index which
is the number of 1’s to the left of prefix index in the Inter-
nal Prefixes Bitmap
� next hop index is added to the lower four bits of the Next
Hop Table Pointer
� The carryout of the previous addition is used to select
the upper bits of the Next Hop Table Pointer or the pre-
computed value of the upper bits plus 1
The NODE COUNTONES and identical fast addition
blocks generate the child node addr, but require less
time as the TREE SEARCH block is not in the

path. The ADDR OUT MUX selects the next ad-
dress issued to memory among the addresses for the
next root node’s Extending Paths Bitmap and Child
Node Array Pointer (root node ptr), the next child
node’s Extending Paths Bitmap and Child Node Ar-
ray Pointer (child node addr), the current node’s In-
ternal Prefix Bitmap and Next Hop Table Pointer
(curr node prefixes addr), the forwarding information for
the best-matching prefix (next hop addr), and the best-
matching previous node’s Internal Prefix Bitmap and Next
Hop Table Pointer (bestmatch prefixes addr). Selection is
made based upon the current state.

VALID CHILD examines the Extending Paths Bitmap
and determines if a child node exists for the cur-
rent node based on the current nibble of the IP ad-
dress. The output of VALID CHILD, prefix index,
mem count, and search count determine state transitions
as shown in Figure 8. The current state and the value
of the P BIT determine the register enables for the
BESTMATCH PREFIXES ADDR REG and the BEST-
MATCH STRIDE REG which store the address of the In-
ternal Prefixes Bitmap and Next Hop Table Pointer of the
node containing best-matching prefixes and the associated
stride of the IP address, respectively.

FETCH_ROOT

LATCH_ROOT

FETCH_CURR_NODE_PREFIXESFETCH_NEXT_NODE

LATCH_PREFIXES

FETCH_NXT_HOP_INFO

FETCH_BEST_PREV_NODE_PREFIXES

LATCH_NXT_HOP_INFO

IDLE
else

else
WAIT_ROOT

CHILD_SEARCH
else

mem_count = n

ip_add_valid_l=0

valid_child = 0 & search_count = kvalid_child = 1 & search_count = k

WAIT_NEXT_NODE
WAIT_PREFIXES

else

mem_count = n

else

LATCH_NEXT_NODE
mem_count = n

PREFIX_SEARCH
else

prefix_index /= 15 & search_count = k
prefix_index = 15 & search_count = k

WAIT_NEXT_HOP_INFO

mem_count = n

else

Fig. 8. FIPL engine finite-state-machine bubble diagram.

B. FIPL Engine Controller

Leveraging the uniform memory access period of the
FIPL Engine, the FIPL Engine Controller employs a sim-
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[0]
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prev_node_prefixes_addr[17:0]
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TREE_SEARCH

Fig. 7. FIPL engine dataflow; multi-cycle path from DATA IN FLOPS to ADDR OUT FLOPS can be scaled according to target
device speed; all multiplexor select lines and flip-flop enables implicitly driven by finite-state machine outputs.

ple Time Division Multiplexing (TDM) design to scale
lookup throughput in order to meet system demands. The
scheme centers around a timing wheel with a number of
slots equal to the FIPL Engine memory access period.
When an address is read from the input FIFO, the next
available FIPL Engine is started at the next available time
slot. The next available time slot is determined by index-
ing the current slot time by the known startup latency of a
FIPL Engine. For example, assume an access period of 8
clock cycles; hence, the timing wheel has 8 slots numbered
0 through 7. Assume three FIPL Engines are currently per-
forming lookups occupying slots 1, 3, and 4. Furthermore,
assume that from the time the IP address is issued to the
FIPL Engine to the time the FIPL Engine issues its first
memory read is 2 clock cycles; hence, the startup latency
is 2 slots. When a new IP address arrives, the next lookup
may not be started at slot times 7, 1, or 2 because the first
memory read would be issued at slot time 1, 3, or 4, re-
spectively which would interfere with ongoing lookups.
Assume the current slot time is 3; therefore, the next FIPL

engine is started and slot 5 is marked as occupied.
As previously mentioned, input IP addresses and output

forwarding information are passed between the FIPL En-
gine Controller and the FIPL Wrapper via FIFO interfaces.
This design simplifies the design of the FIPL Wrapper by
placing the burden of in-order delivery of results on the
FIPL Engine Controller. While individual input and output
FIFOs could be used for each engine to prevent head-of-
the-line blocking, network designers will usually choose to
configure the FIPL Engine Controller assuming worst-case
lookups. Also, the performance numbers reported in a sub-
sequent section show that average lookup latency per FIPL
Engine increases by less than 6% for an 8-engine configu-
ration; therefore, lookup engine “dead-time” is negligible.

C. Implementation Platform

FIPL is implemented on open-platform research sys-
tems designed and built at Washington University in Saint
Louis [7]. The WUGS 20, an 8-port ATM switch pro-
viding 20 Gb/s of aggregate throughput, provides a high-
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performance switching fabric [8]. This switching core is
based upon a multi-stage Benes topology, supports up to
2.4 Gb/s link rates, and scales up to 4096 ports for an ag-
gregate throughput of 9.8 Tb/s [9]. Each port of the WUGS
20 can be fitted with a Field Programmable Port Extender
(FPX), a port card of the same form factor as the WUGS
transmission interface cards [10]. Each FPX contains two
FPGAs, one acting as the Network Interface Device (NID)
and the other as the Reprogrammable Application Device
(RAD). The RAD FPGA has access to two 1MB Zero Bus
Turnaround (ZBT) SRAMs and two 64MB SDRAM mod-
ules providing a flexible platform for implementing high-
performance networking applications [11].

To allow for packet reassembly and other processing
functions requiring memory resources, the FIPL has ac-
cess to one of the 8 Mbit ZBT (Zero Bus Turnaround)
SRAMs which require 18-bit addresses and provide a 36-
bit data path with a 2-clock cycle latency. Since this mem-
ory is ”off-chip” both the address and data lines must be
latched at the pads of the FPGA, providing for a total la-
tency to memory of n = 4 clock cycles. Utilizing a 4-bit
stride the Extending Paths Bitmap is 16-bits long, occu-
pying less than a half-word of memory. The remaining
20-bits of the word are used for the Prefix Bit and Child
Node Array Pointer; hence, only one memory access is
required per node when searching for the terminal node.
Likewise, the Internal Prefix Bitmap and Next Hop Table
Pointer may be stored in a single 36-bit word; hence, a sin-
gle node of the Tree Bitmap requires two words of memory
space. 131,072 nodes may be stored in one of the 8Mbit
SRAMs providing a maximum of 1,966,080 stored routes.

In this configuration, the pathological lookup requires
11 memory accesses: 8 memory accesses to reach the ter-
minal node, 1 memory access to search the sub-tree of the
terminal node, 1 memory access to search the sub-tree of
the most recent node containing a match, and 1 memory
access to fetch the forwarding information associated with
the best-matching prefix. Since the FPGAs and SRAMs
run on a synchronous 100MHz clock, all single cycle cal-
culations must be completed in less than 10ns. The critical
path in the FIPL design, resolving the next hop addr, re-
quires more than 20 ns when targeted to the RAD FPGA
of the FPX, a Xilinx XCV1000E-7; hence, k is set to 3.
This provides a total memory access period of 80 ns and
requires 8 FIPL engines in order to fully utilize the avail-
able memory bandwidth. Theoretical worst-case perfor-
mance, all lookups requiring 11 memory accesses, ranges
from 1,136,363 lookups per second for a single FIPL en-
gine to 9,090,909 lookups per second for eight FIPL en-
gines in this implementation environment.

As the WUGS 20 supports a maximum line speed of 2.4

Gb/s, a 4-engine configuration is used in the Washington
University system. Due to the ATM switching core, the
FIPL Wrapper supports AAL5 encapsulation of IP pack-
ets inside of ATM cells [12]. Relative to the Xilinx Vir-
tex 1000E FPGA used in the FPX, each FIPL Engine uti-
lizes less than 1% of the available logic resources. Con-
figured with 4 FIPL Engines, FIPL Engine Controller uti-
lizes approximately 6% of the logic resources while the
FIPL Wrapper utilizes another 2% of the logic resources
and 12.5% of the on-chip memory resources. This results
in an 8% total logic resource consumption by FIPL. The
SRAM Interface and Control Processor which parses con-
trol cells and executes memory commands for route up-
dates utilize another 8% of the available logic resources
and 2% of the on-chip memory resources. Therefore, all
input IP forwarding functions occupy 16% of the logic re-
sources leaving the remaining 74% of the device available
for other packet processing functionality.

V. SYSTEM MANAGEMENT AND CONTROL

COMPONENTS

System management and control of FIPL in the Wash-
ington University system is performed by several dis-
tributed components. All components were developed to
facilitate further research using the open-platform system.

A. NCHARGE

NCHARGE is the software component that controls re-
programmable hardware on a switch. Figure 9 shows the
role of NCHARGE in conjunction with multiple FPX de-
vices within a switch. The software provides connectivity
between each FPX and multiple remote software processes
via TCP sockets that listen on a well-defined port. Through
this port, other software components are able to commu-
nicate to the FPX using its specified API. Because each
FPX is controlled by an independent NCHARGE software
process, distributed management of entire systems can be
performed by collecting data from multiple NCHARGE
elements. [13].

B. FIPL Memory Manager

The FIPL Memory Manager is a stand alone C++ appli-
cation that accepts commands to add, delete, and update
routing entries for a hardware-based Internet router. The
program maintains the previously discussed Tree Bitmap
data structure in a shared memory between hardware
and software . When a user enters route updates, the
FIPL Memory Manager Software returns the correspond-
ing memory updates needed to perform that operation in
the FPX hardware.
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Fig. 9. Detail of the hardware and software components that
comprise the FPX system. Each FPX is controlled by an
NCHARGE software process. The contents of the memories
on the FPX modules can be modified by remote processes
via the software API to NCHARGE.

Command options:
[A]dd
[D]elete
[C]hange
[P]rint
[M]emoryDump
[Q]uit

Enter command (h for help): A
You entered add

Enter prefix x.x.x.x/s
(x = 0-255, s is significant bits 0-32) :
192.128.1.1/8

Enter Next Hop value: 4
******
Memory Update Commands:

w36 0 4 2 000000000 100000006
w36 0 2 2 200000004 000000000
w36 0 0 2 000200002 000000000

In the example shown here a single add route command
requires three 36-bit memory write commands, each con-
sisting of 2 consecutive locations in memory at addresses
4, 2, and 0, respectively.

C. Sockets Interfaces

In order to access the FIPL Memory Manager as a dae-
mon process, support software needs to be in place to han-
dle standard input and output. Socket software was devel-
oped to handle incoming route updates to pass along to the
FIPL Memory Manager. A socket interface was also de-
veloped to send the resulting output of a memory update to
the NCHARGE software. These software processes han-
dling input and output are called Write Fip and Read Fip,
respectively. Write Fip is constantly listening on a well
known port for incoming route update commands. Once
a connection is established the update command is sent
as an ASCII character string to Write Fip. This software
prints the string as standard output which is redirected to
the standard input of FIPL Memory Manager. The mem-
ory update commands needed by NCHARGE software to
perform the route update are issued at the output of FIPL
Memory Manager. Read Fip receives these commands as
standard input and sends all of the memory updates as-
sociated with one route update over a TCP socket to the
NCHARGE software.

D. Remote User Interface

The current interface for performing route updates is via
a web page that provides a simple interface for user inter-
action. The user is able to submit single route updates or a
batch job of multiple routes in a file. Another option avail-
able to users is the ability to define unique control cells.
This is done through the use of software modules that are
loaded into the NCHARGE system.

In the current FIPL Module, a web page has been de-
signed to provide a simple interface for issuing FIPL con-
trol commands, such as changing the Root Node Pointer.
The web page also provides access to a vast database of
sample route table entries taken from the Internet Perfor-
mance Measurement and Analysis project’s website [14].
This website provides daily snapshots of Internet back-
bone routing tables including traditional Class A, B, and
C addresses. Selecting the download option from the FIPL
web page executes a Perl script to fetch the router snap-
shots from the database. The Perl script then parses the
files and generates an output file that is readable by the
Fast IP Lookup Memory Manager.

E. Command Flow

The overall flow of data with FIPL and NCHARGE is
shown in Figure 10. Suppose a user wishes to add a route
to the database. The user first submits either a single com-
mand or submits a file containing multiple route updates.
Data submitted from the web page, Figure 11, is passed
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FAST IP LOOKUP 

Port Number:  Stack Level:  

 

0 0

�  Route Add nmlkji IP Address: 192.168.1.1 Net Mask: 16 Next Hop:  53

�  Route Delete nmlkj IP Address: Net Mask:  

�  Route Modify nmlkj IP Address:  Net Mask:  Next Hop:  

�  Submit Routes nmlkj Filename:

Execute Command

Fig. 11. FPX Web Interface for FIPL route updates.

to the Web Server as a form. Local scripts process the
form and generate an Add Route command that the soft-
ware understands. These commands are ASCII strings in
the form ”Add route A1.A2.A3.A4/netmask nexthop. The
script then sets up a TCP Socket and transmits each com-
mand to the Write Fip software process. As mentioned be-
fore Write fip listens on a TCP port and relays messages
to standard output in order to communicate with the FIPL
Memory Manager. FIPL Memory Manager takes the stan-
dard input and processes the route command in order to
generate memory updates for an FPX board. Each memory
update is then passed as standard output to the Read Fip
process.

After this process collects memory updates it establishes
a TCP connection with NCHARGE to transmit the com-
mands. Read Fip is able to detect individual route com-
mands and issues the set of memory updates associated
with each. This prevents Read Fip from creating a socket
for every memory update. From here memory updates are
sent to NCHARGE software process to be packed into con-
trol cells to send to the FPX. NCHARGE packs as many
memory commands as it can fit into a 53 byte ATM cell
while preserving order between commands. NCHARGE
sends these control cells using a stop-and-wait protocol to
ensure correctness, then issues a response message to the
user.

VI. PERFORMANCE

While the worst-case performance of FIPL is determin-
istic, an evaluation environment was developed in order
to benchmark average FIPL performance on actual router
databases. As shown in Figure 12, the evaluation environ-
ment includes a modified FIPL Engine Controller, 8 FIPL
Engines, and a FIPL Evaluation Wrapper. The FIPL Eval-
uation Wrapper includes an IP Address Generator which
uses 16 of the available on-chip BlockRAMs in the Xilinx
Virtex 1000E to implement storage for 2048 IPv4 desti-
nation addresses. The IP Address Generator interfaces to
the FIPL Engine controller like a FIFO. When a test run is
initiated, an empty flag is driven to FALSE until all 2048
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Fig. 12. Block diagram of FIPL evaluation environment.

addresses are read.

Control cells sent to the FIPL Evaluation Wrapper initi-
ate test runs of 2048 lookups and specify how many FIPL
Engines should be used during the test run. The FIPL
Engine Controller contains a latency timer for each FIPL
Engine and a throughput timer that measures the time re-
quired to complete the test run. Latency timer values are
written to a FIFO upon completion of each lookup. The
FIPL Evaluation Wrapper packs latency timer values into
control cells which are sent back to the system control soft-
ware where the contents are dumped to a file. The through-
put timer value is included in the final control cell.

Using a portion of the Mae-West snapshot from July 12,
2001, a Tree Bitmap data structure consisting of 16,564
routes was loaded into the off-chip SRAM. The on-chip
memory read by the IP Address Generator was initialized
with 2048 destination addresses randomly selected from
the route table snapshot. Test runs were initiated using 1
through 8 engines. Figure 13 shows the results of test runs
without intervening update traffic. Plots of the theoretical
performance for all worst-case lookups is shown for refer-
ence. Figure 14 shows the results of test runs with various
intervening update frequency. An update consisted of a
route addition requiring 12 memory writes packed into 3
control cells.

With no intervening update traffic, lookup throughput
ranged from 1,526,404 lookups per second for a single
FIPL engine to 10,105,148 lookups per second for 8 FIPL
engines. Average lookup latency ranged from 624 ns for a
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Fig. 10. Data flow with FIPL and NCHARGE
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Fig. 13. FIPL performance: measurements used a sample
database from Mae West on July 12, 2001 consisting of
16,564 routes. Input test vectors consisted of random se-
lections of 2048 IPv4 destination addresses.

single FIPL engine to 660 ns for 8 FIPL engines. This is
less than a 6% increase in average lookup latency over the
range of FIPL Engine Controller configurations.

Note that update frequencies up to 1,000 updates per
second have little to no effect on lookup throughput per-
formance. An update frequency of 10,000 updates per
second exhibited a maximum performance degradation of
9%. Using the near maximum update frequency supported
by the Control Processor of 100,000 updates per second,
lookup throughput performance is degraded by a maxi-
mum of 62%. Note that this is a highly unrealistic situ-
ation, as lookup frequencies rarely exceed 1,000 updates
per second.
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Fig. 14. FIPL performance under update load: measurements
used a sample database from Mae West on July 12, 2001
consisting of 16,564 routes. Input test vectors consisted
of random selections of 2048 IPv4 destination addresses.
A single update consisted of a route addition requiring 12
memory writes packed into 3 control cells.

VII. ONGOING RESEARCH

Coupled with advances in FPGA device technology, im-
plementation optimizations of critical paths in the FIPL
engine circuit hold promise of doubling the system clock
frequency to 200 MHz in order to take full advantage of
the memory bandwidth offered by the ZBT SRAMs. Dou-
bling of the clock frequency directly translates to a dou-
bling of the lookup performance to a guaranteed worst case
throughput of over 18 million lookups per second.

The CountOnes operation can be accelerated by replac-
ing the current multi-level logic implementation with a ta-
ble lookup tailored to the specific resources available on
the FPGA. The Virtex FPGA provides columns of dual-
ported 4096 bit BlockRAMs, which can be configured to
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various sizes. Two BlockRAMs in a 2048 x 2 organization,
whose contents are initialized by the FPGA’s configuration
bitstream, can be combined to act as a dual-ported 2048
x 4 Read Only Memory (ROM). In addition, the Block-
RAMs feature a registered output with synchronous reset
which facilitates pipelining. A single ROM can perform
the CountOnes table lookup on the lower 8 bits and upper
8 bits of a 16-bit bitmap simultaneously, since each address
port has 11 bits (8 bits for the bitmap value and 3 bits for
selecting the number of bit positions to be counted). The
lower and upper count values must then be added to the
base pointer, either the Next Hop Table Pointer or the Child
Array Pointer, to determine the address of the next mem-
ory location to be read. A single level of logic is required
at the ROM address inputs to force all 8 lower bits to be
counted for 4-bit stride values of 8 or more. The output
register resets are used to force all outputs to zero when
the stride value is zero and the upper count value to zero
when the stride value is 8 or less.

Experiments with this FPGA-specific implementation
of the Countones operation have shown that, with appro-
priate pipelining at the BlockRAM address inputs as well
as the output additions, operation in excess of 100 MHz
with no multicycle paths is feasible. This means that two
engines built in this fashion could fully utilize the available
bandwidth of a ZBT SRAM running at 200 MHz.

VIII. CONCLUSIONS

As optical link speeds continue to increase demands for
performance and embedded network services impose flex-
ibility demands, Internet routers must become more effi-
cient and programmable. IP address lookup is one of the
primary functions of the router and often is a significant
performance bottleneck. Fast Internet Protocol Lookup
(FIPL) utilizes Eatherton’s Tree Bitmap algorithm, recon-
figurable hardware, and Random Access Memory (RAM)
to implement a scalable, high-performance IP lookup en-
gine capable of at least 9 million lookups per second. Uti-
lizing only a fraction of a reconfigurable logic device and a
single RAM device, FIPL offers an attractive alternative to
expensive commercial solutions employing multiple Con-
tent Addressable Memory (CAM) devices and Application
Specific Integrated Circuits (ASICs). By providing high-
performance at low per-port costs, FIPL is a prime candi-
date for System-On-a-Chip (SOC) solutions for next gen-
eration programmable router port processors.
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