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Abstract. In this paper we address the minimum-energy broadcast problem in multi-hop wireless networks, so that all broadcast requests
initiated by different source nodes take place on the same broadcast tree. Our approach differs from the most commonly used one where
the determination of the broadcast tree depends on the source node, thus resulting in different tree construction processes for different
source nodes. Using a single broadcast tree simplifies considerably the tree maintenance problem and allows scaling to larger networks.
We first show that, using the same broadcast tree, the total power consumed for broadcasting from a given source node is at most twice the
total power consumed for broadcasting from any other source node. We next develop a polynomial-time approximation algorithm for the
construction of a single broadcast tree. The performance analysis of the algorithm indicates that the total power consumed for broadcasting
from any source node is within 2H(n−1) from the optimal, where n is the number of nodes in the network and H(n) is the harmonic
function. This approximation ratio is close to the best achievable bound in polynomial time. We also provide a useful relation between the
minimum-energy broadcast problem and the minimum spanning tree, which shows that a minimum spanning tree may be a good candidate
in sparsely connected networks. The performance of our algorithm is also evaluated numerically with simulations.

Keywords: wireless networks, minimum-energy broadcast, spanning trees, approximation algorithms, performance analysis

1. Introduction

The field of infrastructureless wireless multi-hop networks
has attracted significant attention by many researchers in the
recent years because of its large number of new and ex-
citing applications. However, the technical challenges that
arise pose many new problems and issues that have to be
addressed when designing a network in this field [1,2]. Such
an issue is the efficient management of the available energy
resources. One important distinction as to how energy con-
sumption must be taken into account is whether energy is
viewed as an expensive (but renewable) commodity or as a
finite (and nonrenewable) resource [3].

In this paper we focus on the problem of energy-efficient
broadcasting in wireless networks where omnidirectional an-
tennas are used and there is flexibility of power adjustment.
As indicated in one of the pioneer works by Wieselthier et al.
in [4], broadcasting in a wireless environment where omni-
directional antennas are used, must take into account the fact
that a node’s transmission can reach multiple neighbors at
the same time. Hence, the power needed to reach a node’s set
of neighbors is the maximum of the powers needed to reach
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each of the neighbors separately. Given a specific source node
that initiates a broadcast request, the problem of determining
a set of retransmitting nodes and their corresponding trans-
mission powers, such that the sum of consumed node powers
is minimized, is known as the minimum-energy broadcast
problem.

Although the problem of minimum-energy broadcasting
has been studied extensively in the literature (see section 2
for references to prior work), most of previous approaches
provide a solution for it which depends on the source node
that initiates the broadcast request. That is, every time a node
needs to broadcast some information to all other nodes in
the network, the algorithm for the broadcast tree construction
is executed for the specific source node. In general, for dif-
ferent source nodes, the trees that minimize the total power
consumption are different (see section 3.2 for an example).
Hence, in general, each node in the network has to keep
track of n broadcast trees, one for each of the possible source
nodes (n is the number of nodes in the network). This requires
large memory space and/or processing capabilities on behalf
of the nodes in the network, a demand that cannot always
be met.

The above situation will be greatly simplified if one can
define a single broadcast tree, on which broadcasting initiated
by any source node will take place in a predetermined manner.
Hence, in our setup we are interested in selecting a unique
broadcast tree that keeps the total power consumption as
small as possible for any broadcast request. In this manner,
a node needs to store only a small set of links that belong in
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the selected tree and the processing of broadcast information
is minimal. More specifically, whenever a node receives a
broadcast message for the first time in one of its tree links,
it forwards it with appropriate power to all its neighbors in
the tree except the one from which the message was received.
Note that this is exactly how a Connected Dominating Set
(CDS) would work in case we did not have the flexibility
of power adjustment (see for example [5–7]). In this case,
a single CDS is determined for the network and each node
needs only to know whether it belongs to this set or not.

When nodes initiate broadcast requests at the same time,
it may seem that the use of a single tree results in more col-
lisions compared to the approach of using different trees for
different source nodes. However, this is not necessarily the
case. Indeed, the use of omnidirectional antennas implies that
independently of the approach used (single or multiple broad-
cast trees) a node’s transmission will interfere with its neigh-
bors’ transmissions or receptions. Hence, whether the node
retransmission is always intended to particular destinations
(in case of single broadcast tree) or to different destinations
(according to the source node in case of multiple broadcast
trees), all nodes in the neighborhood will be affected and
the lower level issue of collision resolution does not create
a bias towards one of the methodologies. Network instances
and particular broadcast scenarios can be created where one
approach is better or worse than the other.

There are two open issues with our approach that have to
be answered. First, if all broadcast requests take place on the
same tree, then this may result in widely varying total powers
for different source nodes. Second, even if a tree is found
without having the drawback of resulting in widely varying
total powers for different source nodes, then, for a specific
source node the resulting total power consumption may be
far away from the optimal. We address both issues in section
3.2 and provide satisfactory answers to them in section 4.
More precisely, we first show that if the same tree is used for
broadcasting by all nodes, then the total power consumed for
broadcasting from a given source node is at most twice the
total power consumed for broadcasting from any other source
node. Next, we develop a polynomial-time approximation
algorithm for the construction of a single broadcast tree. The
performance analysis of the algorithm indicates that the total
power consumed for broadcasting initiated by any source
node is at most 2H(n − 1) times the optimal (H(n) is the
harmonic function), which is close to the best achievable
approximation factor in polynomial time. This bound is better
than any other we are aware of, even for the case of different
broadcast trees for every possible source node. Moreover,
it is valid for general networks, with arbitrary weights on
links between nodes, which do not rely on unit disk graphs
and geometric properties of the Euclidean space. This is a
more realistic model since, for example, the power needed
for communication between two pairs of nodes with equal
distances between the nodes of each pair, may not be the same
due to noise or other signal propagation phenomena. We also
show that the performance of the minimum spanning tree [8]

is within � times the optimal, where � is the maximum node
degree in the network. Hence, a minimum spanning tree can
also be used for broadcasting by all nodes in sparse networks.

Numerical results for various networks with different sizes
are presented in section 5. The main performance metric of
interest is the total broadcast power consumption for differ-
ent source nodes. It is shown that our algorithm provides
fairly satisfactory performance for networks represented by
unit disk graphs. However, we note that our algorithm out-
performs significantly other algorithms for some interesting
instances of general networks and, therefore, it presents a
good compromise between simplicity and achieved perfor-
mance.

The rest of the paper is organized as follows. In sec-
tion 2 we give some references to prior work related to the
minimum-energy broadcast problem. Section 3 provides for-
mal definitions and formulation of the problem. In section
4 we develop a polynomial-time approximation algorithm
and prove that it achieves a satisfactory approximation ra-
tio regarding the metric of total power consumption. We
also provide a useful for sparse networks relation between
the minimum-energy broadcast problem and the minimum
spanning tree. Numerical results are presented in section 5.
Finally, section 6 summarizes the conclusions of our work
and presents some interesting issues for further study. All
proofs of the lemmas provided in the paper are given in the
Appendix.

2. Related work

The minimum-energy broadcast problem in wireless net-
works has received significant attention over the last few
years. The work by Wieselthier et al. [4] exploits the “node-
based” nature of wireless communications and introduces the
notion of “wireless multicast advantage”. One of the most
notable contributions of the work in [4] is the Broadcast In-
cremental Power (BIP) algorithm. BIP constructs a broadcast
tree starting from the source node and adding to the tree
one node at every iteration. The selection of which uncov-
ered node will be added to the tree is based on the minimum
additional cost criterion. Numerical results demonstrate the
advantages of BIP over conventional link-based schemes, but
a performance analysis of the algorithm is not provided. In [9]
the general combinatorial optimization problem, called Min-
imum Energy Consumption Broadcast Subgraph (MECBS),
is considered. It is proved that MECBS is not approx-
imable within a sub-logarithmic factor (unless NP has slightly
superpolynomial time algorithms) and a polynomial-time
approximation algorithm is provided for special cases in the
Euclidean space.

The NP-completeness of the minimum-energy broadcast
problem is also proved in [10–13]. In [10,11,13] various
heuristic algorithms are proposed and their performance is
compared numerically to that of BIP. Analytical performance
results are not presented. The approximation algorithm de-
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veloped in [12] and the analytical results that are provided
depend on the number of adjustable power levels at each
node. By exploring geometric structures of Euclidean MSTs,
analytical results are also provided in [14] for BIP and other
algorithms. Three different integer programming (IP) models
that can be solved by any standard IP technique are pro-
posed in [15] for the minimum-energy broadcast problem.
The problem of minimum-energy broadcasting is also ad-
dressed in [16], a survey where an overview is presented
of the recent progress in applying computational geometry
techniques to solve some questions in wireless networks.

The first logarithmic approximation algorithm for the
MECBS problem is presented in [17], where an interesting
reduction to the Node-Weighted Connected Dominating Set
problem is used. The proposed algorithm achieves a 10.8 ln
n approximation ratio for symmetric instances of MECBS,
which is worse than ours. Moreover, the approach followed
in [17] depends on the specific source node. An improved
approximation ratio, which is closer to ours (but still, slightly
worse), has been independently announced recently in [18].
The proposed algorithm improves the approximation ratio
from 10.8ln n of [17] to 2 + 2 ln (n − 1). However, this
is also an approach for the broadcast problem in wireless
networks which depends on the source node; on the other
hand, the algorithm in [18] is applicable to networks with
asymmetric power requirements.

The problem of constructing energy-efficient broadcast
and multicast trees in an energy-, bandwidth-, and transceiver-
limited wireless network is addressed in [19]. Similarities
and differences between energy-limited and energy-efficient
communications are described and the impact of these over-
lapping (and sometimes conflicting) considerations on net-
work operation is illustrated. An approach to the problem
of energy-aware broadcasting with emphasis on individual
node power consumption is proposed in [20]. The lexico-
graphic optimization criterion is introduced and the objective
is to minimize lexicographically the consumed node powers
or maximize lexicographically the residual node energies. We
leave the issue of addressing our model in an energy-, and
resource-limited environment as a subject for further study.

3. Definitions and problem description

Consider a connected undirected graph G = (N, L), where N
is the set of nodes and L is the set of undirected links. For
a node i ∈ N we denote by LG(i) the set of links adjacent
to i. A node j such that link (i, j) belongs to L is called a
one-hop neighbor of i or simply a neighbor of i. We denote
by NG(i) the set of neighbors of node i. An undirected tree T
= (N, LT ) spanning G (spanning tree for short) is a connected
acyclic subgraph that spans all the nodes. It follows from the
definition of spanning tree that the number of links in T is
|LT | = |N| − 1 .

3.1. Model for wireless broadcasting

We model the wireless network as a connected undirected
graph G = (N, L). N is the set of nodes in the network. If node
j can successfully receive information transmitted by node i,
and vice versa, then link (i, j) belongs to the set L of links
in G. The power needed for a successful transmission over
link l = (i, j) is denoted by cl > 0 and is also referred to as
the link cost. Each node is equipped with an omnidirectional
antenna. Hence:

Property 1: If node i transmits with power pi, it can reach
any neighbor node j for which c(i,j) ≤ pi.

Note that in addition to the above power requirement,
energy is also expended for transmission (encoding, modu-
lation, etc.) and reception (demodulation,decoding, etc.) pro-
cessing operations as indicated in [19]. For the analysis in
the next sections, we assume that the energy consumption
quantities for transmission and reception processing oper-
ations are small and thus can be neglected, an approach
followed by many previous works referenced in section 2.
However, we note that the incorporation of the aforemen-
tioned quantities into our model is not a major concern if
the network nodes consume similar power for transmission
(as well as reception) processing. More specifically, the fact
that all nodes in the network (except the source node) receive
the information in a broadcast process, results in adding a
fixed quantity in the overall energy consumption. This does
not affect the minimum-energy broadcast problem, since the
total energy consumed for reception is always the same. Re-
garding the energy requirement for transmission processing
operations, this quantity can be incorporated into the cost
of each link without affecting our approach in the following
sections.

Suppose that a source node s needs to broadcast some in-
formation to all other network nodes. In this case, we have to
determine a set of retransmitting nodes and their correspond-
ing transmission powers, so that eventually all nodes receive
the information. A way to achieve this, which will be useful
in the sequel, is as follows. Let T be a spanning tree of G.
We define an s-rooted directed spanning tree Ts = (N, LTs )
induced by T, with the following interpretation:

(1) Node s uses all links in LT (s) as its outgoing links. We
define L

Ts

out(s) = LT (s) and node s transmits with power
pTs

s = maxl∈L
Ts
out(s){cl}. Note that there is no link incoming

to node s in the set LTs , that is, LTs
in (s) = ∅.

(2) Any node i of T receiving the information in one of its
tree links in LT (i), say link l, uses the set LT (i) − {l} as its
outgoing links. Therefore, we define LTs

in (i) = {l}, L
Ts

out(i)
= LT (i) − {l}, and node i retransmits with power p

Ts

i =
maxl∈L

Ts
out(i)

{cl}. We refer to pi
Ts as the power induced on

node i by tree Ts. If L
Ts

out(i) = ∅, then i is called a leaf node
of Ts and p

Ts

i = 0.
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Figure 1. Example of wireless broadcasting.

Figure 1 shows an example of the above definition. The
directed spanning trees TA, TD, rooted at nodes A and D
respectively, are induced by the (undirected) spanning tree
T with links {(A,B),(A,C),(B,D)}. Consider for example the
tree TA. The outgoing links of source node A in this case
are {(A,B),(A,C)} and the outgoing link of node B is (B,D).
Hence, the powers induced on nodes A and B by tree TA are
p

TA

A = 4 and p
TA

B = 3, respectively. Note that nodes C and D
have no outgoing links in TA and, therefore, p

TA

C = p
TA

D = 0.
In a similar way, we have for tree TD that p

TD

A = 4, p
TD

B = 2,
p

TD

C = 0, and p
TD

D = 3.

3.2. The minimum-energy broadcast problem

Given an s-rooted directed spanning tree Ts, the total power
consumed for broadcasting from source node s is P(Ts) =∑

i∈N pi
Ts . As discussed earlier, in general, for different

source nodes the trees that minimize the sum of consumed
node powers are different. Hence, each network node has
to keep track of |N | broadcast trees, one for every possible
source node.

Consider for example the network in Figure 2. The optimal
(minimum-energy) broadcast trees for source nodes A and
D are the trees TA and TD, respectively. The total power
consumption for these trees is

P (TA) = p
TA

A + p
TA

B = 2 + 6 = 8,

P (TD) = p
TD

D + p
TD

B + p
TD

A + p
TD

C = 5 + 2 + 2 + 3 = 12.

Note that the underlying (undirected) spanning trees of TA

and TD are different. If, for example, the source node D uses
the underlying tree of TA for broadcasting, then the sum of
consumed node powers will be 13, larger than the optimal
value 12 obtained from tree TD.

The situation will be greatly simplified if one can define
a single spanning tree T, on which broadcasting initiated by
any source node will take place in a manner similar to the
one described above. In this manner, a node i needs to store
only the set LT (i) and processing of broadcast information is

A
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3

TA : {(A,B),(A,C),(B,D),(B,E)}, source node A

TD : {(D,B),(B,A),(A,C),(C,E)}, source node D

Figure 2. Different minimum-energy broadcast trees for different source
nodes.

minimal. Hence, in our setup we are interested in selecting a
unique spanning tree that keeps the total power consumption
as small as possible for any source node.

There are two open issues with our approach that have to
be answered; if all broadcasts (initiated by any source node)
take place on the same tree, then:

Issue 1: Certain broadcasts may need much more total power
than others, depending on the source node.

Issue 2: If one attempts to find a tree for which the total
powers consumed for broadcasting initiated by different
source nodes are approximately the same, then, given a
certain source node, the resulting total power may be far
away from the optimal.

In the section that follows we will first show that the first
concern (widely varying total powers) is not a major problem.
More precisely, we will prove that, given a spanning tree T,
the total power consumed for broadcasting based on T from
a source node s is at most twice the total power consumed
for broadcasting from any other source node. Next, we will
propose an algorithm for the construction of a spanning tree
T, which has the desirable property that the resulting total
power consumption for any source node is close to the com-
putationally feasible factor from the optimal.

For the development and analysis of the algorithm pre-
sented below, we need the following general definition of
tree cost. This is a purely technical definition and it has no
physical interpretation.

Definition 1. Let T be a spanning tree of G. We define A
to be a link assignment to nodes in G, which associates with
each node i a set of links A(i) ⊆ LT (i), such that A(i) ∩
A(j ) = ∅, whenever i �= j, and ∪i∈NA(i) = LT . Under link
assignmentA, we define the “power” of node i ∈ N as pA

i =
maxl∈A(i){cl} and the cost of tree T as PA(T ) = ∑

i∈N pA
i .

Note that the broadcasting initiated by a given source node
s using tree T corresponds to a particular link assignment As ,
such that As(s) = LT (s) and for each node i ∈ N, i �= s,
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Figure 3. Various link assignments for a given spanning tree T.

As(i) = LT (i) − {l}, where l is the link of T over which the
broadcast information arrives at node i. That is, the s-rooted
directed spanning tree Ts (see section 3.1 for the original
definition) can also be defined by tree T and link assignment
As . Hence, we have that P (Ts) = PAs (T ).

Figure 3 shows an example of various link assignments for
a given spanning tree T. Link assignments AA and AD cor-
respond to broadcasting from source nodes A and D, respec-
tively, using tree T. Therefore, it holds PAA (T ) = P (TA) = 7
and PAD (T ) = P (TD) = 9. In contrast to link assignments
AA and AD , A is an example of link assignment which does
not correspond to any broadcasting process. However, ac-
cording to Definition 1, the cost of tree T under assignment
A is defined as PA(T ) = pA

B + pA
C = 3 + 4 = 7.

4. Broadcasting using a single broadcast tree

4.1. Addressing issue 1

In order to show that using the same tree for all broadcasts
does not result in widely varying total powers for different
source nodes, we first provide a useful lemma. The lemma
that follows indicates that, given a spanning tree T, the cost
of T under a link assignment that corresponds to broadcasting
from a certain source node is at most twice the cost of T under
any other link assignment.

Lemma 1. Let T be a spanning tree of G. If As is a link
assignment that corresponds to broadcasting from a given
source node s using tree T andA is any other link assignment,
then PAs (T ) ≤ 2PA(T ).

Consider now a source node s′ �= s. Since the cost of T
under assignment As , PA

s (T ), is at most twice the cost of T
under any other link assignment, it follows that PAs(T ) is
also at most twice the cost of T under assignment As ′ , which
corresponds to broadcasting from source node s′ using tree
T. Hence, we have the following corollary:

(A)=Ø, (B)={(B,A),(B,D)}, (C)={(C,A),(C,E)}, (D)= (E)=Ø

E(A)={(A,B)}, E(B)={(B,D)}, E(C)={(C,A)}, E(D)=Ø, E(E)={(E,C)}

T is an undirected spanning tree

P   (T)   = 4

P     (T) = 8 = 2 P   (T)E

A

B

C

D

E

2

2

2

6

2
.

.

.

Figure 4. A tight example for the result proven in Lemma 1.

Corollary 1. If the same spanning tree T is used for broad-
casting by all nodes, then the total power consumed for broad-
casting from source node s is at most twice the total power
consumed for broadcasting from any other source node. That
is, for any two nodes s, s′, P (Ts) = PAs (T ) ≤ 2PAs′ (T ) =
2P (Ts ′ ).

Note that Lemma 1 is stronger than Corollary 1; it states
that the right part of the inequality may concern any link
assignment, not only assignments that correspond to broad-
casting from a given source node.

A tight example for the result proven in Lemma 1 is pro-
vided in Figure 4. Link assignment AE corresponds to broad-
casting from source node E using tree T, while A is a link
assignment which does not correspond to any broadcasting
process. For these two assignments, it holds

PA(T ) = pA
B + pA

C = 2 + 2 = 4,

PAE (T ) = p
AE

E + p
AE

C + p
AE

A + p
AE

B = 2 + 2 + 2 + 2 = 8.

Therefore, PAE (T ) = 2PA(T ) and this example shows that
the upper bound in Lemma 1 is a tight one. A similar ex-
ample can also be constructed in case where the link assign-
ment A corresponds to broadcasting from a particular source
node. Consider three nodes A, B, C in tandem with link costs
c(A,B) = c(B,C) = 1. Broadcasting from source node A
needs power 2 (A to B and B to C), while broadcast-
ing from source node B directly to nodes A and C needs
power 1.

4.2. Addressing issue 2

We now address the second issue, that is, the problem of
selecting a tree such that the resulting total power con-
sumed for broadcasting is not far away from the optimal
for any source node. A problem closely related to the one of
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Figure 5. Approximation algorithm for the construction of a single broadcast tree.

interest (see below for an explanation of this relation) is the
following:

Problem 1. Find a spanning tree T∗ and a link assignment
A∗ such that, for any spanning tree T of G and any link
assignment A, it holds

PA∗
(T ∗) ≤ PA(T ). (1)

Note that if we use the tree T∗ for broadcasting from source
node s, we have according to Lemma 1 and inequality (1) that

P (T ∗
s ) = PA∗

s (T ∗) ≤ 2PA∗
(T ∗) ≤ 2PA(T ). (2)

Consider now an optimal (minimum-energy) s-rooted di-
rected spanning tree. As mentioned earlier (right after Defi-
nition 1), this tree can be defined by an undirected spanning
tree and a particular link assignment. Since the total power
consumed for broadcasting from source node s using tree T∗,
P(Ts

∗), is at most twice the cost of T under assignment A (as
indicated in (2)), where T is any spanning tree and A is any
link assignment, it follows that P(Ts

∗) is also at most twice
the optimal value. Therefore, T∗ has the desirable property
that the resulting total power consumption is not far away
from the optimal for any source node.

Hence, we are led to the problem of determining T∗ and
A∗. Unfortunately, this problem is NP-complete. The proof
is based on a modification of the argument used to prove the
NP-completeness of the Minimum Broadcast Cover (MBC)

problem presented in [13] and is omitted due to lack of space1.
The main idea is to reduce the weighted version of the Set
Cover (SC) problem [21] to an instance of Problem 1 and
show that the SC decision problem is satisfiable if and only
if the decision problem of Problem 1 is satisfiable. The argu-
ment in the proof also shows that the reduction from SC to an
instance of Problem 1 preserves approximation ratios. Hence,
based on the corresponding result for Set Cover [22], Problem
1 is not approximable within (1 − ∈ )log(n − 1), for any 0
< ∈ < 1, unless NP⊆DTIME(nO(log log n)), where DTIME(t)
is the class of problems for which there is a deterministic
algorithm running in time O(t).

The discussion above suggests that instead of finding a tree
and an assignment that solve Problem 1, we should attempt
to find a good approximation. We present in Figure 5 an
approximation algorithm to construct a single spanning tree
T which, as will be shown, has the desirable property in a
worst case sense. At each iteration, the algorithm maintains
a forest of trees in the network, such that each node i in G
belongs to a forest tree TF = (NTF , LTF )with link assignment
AF . The node “power” and the cost of a forest tree are defined
as described in Definition 1. Initially, each node constitutes
a forest tree with no links assigned to it. At each iteration of
the algorithm, the forest is expanded by joining trees through
nodes so that the “incremental power consumed per joined
tree”, as defined in the algorithm, is minimal. This is achieved

1The complete proof is available upon request for anyone who is interested
in a more detailed explanation.
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Figure 6. Example of constructing a single broadcast tree using
Algorithm 1.

as follows. For every node i in the network, we examine its
adjacent links that terminate outside the tree to which node
i belongs. For such a link l, we define Ti(l) to be the set
of distinct trees that can be reached by node i when power
cl is used (a tree is “reached” by node i, if i can reach at
least one of its nodes). We also define ai(l) to be the ratio of
the“additional power” required by node i to reach the trees
in Ti(l) to the number of these trees. We select a node and
a link for which the quantity ai(l) is minimal. If imin is the
selected node, then we join imin with the appropriate trees.
The set of links used for this union are assigned to node imin.
The algorithm terminates when the forest consists of a single
spanning tree T.

Note 1: When the set of links Bi(l) is determined at step
1 of Algorithm 1, if node i can reach a forest tree through
multiple links, then only one link is chosen to avoid the
creation of cycles. Consider for example the network shown
in Figure 6. Node imin is selected to be joined with forest trees
TF1 and TF2. Since imin can be joined with TF2 through links
(imin, m) and (imin, n), only one of these links must be chosen
to avoid the creation of cycle with links already selected at
previous iterations of the algorithm. Various selection criteria
(e.g., choosing a link of minimal cost) can be used. In any
case, we note that the worst case performance analysis of
the algorithm is not affected by the criterion used to select
a link. Moreover, the simulations that we performed showed
only slight differences on the total power consumption for
different selection criteria.

Note 2: Algorithm 1 can also be applied in the general case,
where the graph G is not connected. In this case, the algorithm
constructs a spanning tree for every component of the graph,
which can be used for energy-efficient broadcasting inside
the component. However, the condition for the termination of
the algorithm at step 4 must be different. In the general case,
the algorithm stops when there is no node i having at least

one adjacent link that terminates outside the tree to which
node i belongs, that is, when L′(i) = ∅ for every node i ∈ N.

Our algorithm uses the notion of “minimal incremental
power consumed per joined tree”. A similar notion has been
used before for related problems. For example, finding the
subset of “minimum weight per uncovered element” is the
main idea of the well-known approximation algorithm for
the weighted version of Set Cover problem [21]. A cost func-
tion similar to ours is also defined in [11], where the proposed
algorithm constructs a clustering on the nodes using a func-
tion which represents the average cost induced per unmarked
node. The node that (globally) has the most cost efficient
range increase becomes a clusterhead and the nodes reached
by the clusterhead, after its range increase, are marked. Af-
ter a clustering has been found, they proceed in a second
phase where they use a well-known algorithm for construct-
ing directed minimum spanning trees [23] to join the clusters
together. The algorithm in [11] computes a different broad-
cast tree for every possible source node and its worst case
performance has not been established.

4.2.1. Performance analysis of Algorithm 1
Let T , A be the tree and the corresponding link assignment
returned by Algorithm 1. The next lemma shows that the
cost of T under assignment A has an approximation ratio
H(n − 1) with respect to the cost of tree T∗ under assignment
A∗ that solve Problem 1, where n = |N| is the number of nodes
in the network and H(n) is the harmonic function H (n) =∑n

k=1
1
k
.

Lemma 2. It holds PA(T ) ≤ H (n − 1)PA∗
(T ∗).

Combining Lemmas 1, 2, and inequality (1), it follows
that if we use the tree T for broadcasting from a given source
node s, then we have for the total power consumption that

P (T s) = PAs (T ) ≤ 2PA(T ) ≤ 2H (n − 1)PA∗
(T ∗)

≤ 2H (n − 1)PA(T ), (3)

where T is any spanning tree and A is any link assignment
of T. Since the optimal (minimum-energy) s-rooted directed
spanning tree can be defined by an undirected spanning
tree and a particular link assignment, and P (T s) is at most
2H(n − 1) times the cost of T under assignment A (as
indicated in (3)), it follows that P (T s) is also at most
2H(n − 1) times the optimal value. Hence, we have the fol-
lowing corollary:

Corollary 2. For any source node s, the total power con-
sumed for broadcasting using tree T has an approximation
ratio 2H(n − 1) with respect to the optimal power.

4.2.2. Complexity analysis of Algorithm 1
For the complexity analysis that follows, we assume that the
links adjacent to a node i ∈ N are sorted in non-decreasing
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order of their costs. This can be made during initialization in
O(|L|log|L|) = O(|L|log|N|) time for all nodes in G.

Let us now provide the complexity for one iteration of the
algorithm. For every node i ∈ N, such that L′(i) �= ∅, step
1 requires the determination of the sets Ti(l), Bi(l), and the
computation of the quantities ai(l) for each l ∈ L′(i). Step 2
requires the identification of node imin and link lmin. Since the
adjacent links of a node i ∈ N are sorted, we examine them in
non-decreasing order of their costs. By defining appropriate
variables, we can achieve an efficient implementation for
steps 1 and 2, which requires the examination of the adjacent
links of each node only once. Hence, steps 1–2 take time
O(

∑
i∈N |LG(i)|) = O(|L|). In step 3, node imin is joined with

the trees in the set Timin (lmin) using the set of links Bimin (lmin).
Recall that T = {TFmin} ∪ Timin(lmin), where TFmin is the tree
to which node imin belongs, and that the trees in T are merged
to a new tree TF

′. We need O(|N|) time to inform each node
in the trees in T that it now belongs to the new tree TF

′, and
O(|L|) time to assign the links of the set Bimin (lmin) to node
imin. Therefore, step 3 takes time O(|N|) + O(|L|) = O(|L|).

Hence, one iteration of steps 1–4 of the algorithm requires
O(|L|) time and, since at most |N| such iterations may occur,
the worst case running time of Algorithm 1 is O(|L||N|). Note
that, in practice, the running time of the algorithm may be
much smaller than that of the worst case, since more than two
forest trees may be merged to a new tree at every iteration.
Moreover, code optimization can also be made, so that only
relevant links are checked in steps 1–2.

4.3. Broadcasting using a minimum spanning tree

A minimum spanning tree of G is a spanning tree whose sum
of link costs is minimal. The problem of finding an MST
has been studied extensively in the literature and polynomial-
time centralized and distributed algorithms exist for its solu-
tion (see for example [8,24]). In this subsection, we provide
a simple relation between the minimum-energy broadcast
problem and the minimum spanning tree, which shows that
an MST can also be used for broadcasting by all nodes in
sparse networks.

Let T̂ be an MST, that is, a spanning tree that minimizes
the cost C(T) = ∑

l∈LT cl. Given a source node s, T̂s is the
s-rooted directed spanning tree induced by T̂ . Let also Ts be
any s-rooted directed spanning tree. The following lemma
shows that if we use the tree T̂s for broadcasting from source
node s, then the total power consumption is at most � times
the total power consumed when the tree Ts is used, where �

is the maximum node degree in the network.

Lemma 3. It holdsP (T̂s) ≤ �P (Ts).

Since P (T̂s) is at most � times the power P(Ts), where Ts

is any s-rooted directed spanning tree, it follows that P (T̂s)
is also at most � times the total power consumed when an
optimal (minimum-energy) s-rooted directed spanning tree is
used. Hence, we have the following corollary:

Corollary 3. For any source node s, the total power con-
sumed for broadcasting using a minimum spanning tree, is
at most � times the optimal power, where � is the maximum
node degree in the network.

We note that the proof of Lemma 3 can be used to show that
the above relation between the minimum-energy broadcast
problem and the minimum spanning tree is also valid when G
is a strongly connected directed graph. In this case, � is the
maximum node outdegree in the network and the minimum
spanning tree depends on the source node.

4.4. Issues of distributed implementation

Algorithm 1 assumes knowledge of network topology. Hence,
it can be used in networks with infrequent topological changes
and low mobility [3]. In general, Algorithm 1 can be applied
in network environments where at least partial information
of network topology is proactively maintained at each node,
as in Optimized Link State Routing (OLSR) protocol [25].
Regarding its distributed implementation, we note that our
algorithm has similarities with Kruskal’s algorithm for deter-
mining a minimum spanning tree in a connected undirected
graph [8], which can also be implemented in a distributed
fashion [24]. Kruskal’s algorithm builds a minimum span-
ning tree by adding one link at a time. At every iteration of
the algorithm, a forest of trees is maintained, as in Algorithm
1, and a link of minimal cost is selected to join two forest trees,
so that no cycle is created with previously selected links. The
main difference between our algorithm and the distributed
algorithm for MSTs in [24] is the manner by which the forest
trees are joined, which in our case is more complicated. The
issue of detailed distributed implementation and analysis of
our algorithm is beyond the scope of the current work and it
is a subject for further study.

5. Numerical results

In this section we compare numerically the performance of
the following three algorithms for various networks with dif-
ferent sizes: 1) Broadcast Incremental Power algorithm [4]
(“BIP” algorithm for short), 2) our Algorithm 1 which con-
structs a single broadcast tree (“SBT” algorithm), and 3) the
algorithm for determining a minimum spanning tree (“MST”
algorithm). We choose BIP as the main algorithm for com-
parison, because it was one of the first algorithms that exploit
the node-based nature of wireless networks and it was used
by many researchers to evaluate numerically the performance
of other heuristic algorithms for the minimum-energy broad-
cast problem. We note again that BIP determines a different
broadcast tree for every possible source node, while SBT
algorithm constructs a single tree used by all nodes for
broadcasting. Moreover, BIP improves its performance by
using what is called the “sweep” operation, which detects
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Figure 7. Average tree power (over all possible source nodes) for various network sizes; a = 2, complete networks.

redundant transmissions as well as transmissions whose
power can be reduced.

The figures that follow represent the averages of the results
obtained from 100 randomly generated network instances for
each network size considered. We generate random networks
with a specified number of nodes (20, 40, · · ·, 100) as follows.
We fix a rectangular grid of 100 × 100 points. A number of
these points is randomly selected with uniform probability to
represent the network nodes. The power needed for successful
transmission over link (i, j ) depends on the distance d(i,j)

between the two nodes and it is given by c(i,j) = da
(i,j ), where

a is the propagation loss exponent.
The main performance metric of interest is the total power

consumed for broadcasting initiated by different source
nodes. In order to quantify this metric, we introduce a closely
related measure which provides the average total power con-
sumption for broadcasting initiated by any source node. That
is, for a given network size, |N|, and for each individual net-
work instance, we define the average tree power of algorithm
X as

P X =
∑

s∈N P
(
T X

s

)

|N | ,

where T X
s is the s-rooted directed spanning tree returned

by algorithm X and P(T X
s ) is the total power consumed for

broadcasting from source node s. BIP algorithm constructs
a different tree T BIP

s for every possible source node s ∈ N,
while the trees T SBT

s are induced by the unique broadcast
tree returned by algorithm SBT as described in Section 3.1;
a single tree is also returned by algorithm MST.

Figure 7 shows the average tree power of the algorithms for
various network sizes, when the propagation loss exponent a
is 2 and there is no constraint on the maximum transmission
power; that is, we assume that each node can successfully
transmit information to all other network nodes. The sym-
bols ⊥ on top of each bar represent the standard deviation
of tree powers {P(Ts

X)}s∈N . We observe that SBT algorithm

provides fairly satisfactory performance, comparable to that
of BIP, for all network sizes considered. The average tree
power of SBT is 10.9% higher than that of BIP for |N| =
20, while this percentage falls to 9.1% for |N| = 100. The
corresponding percentages for MST algorithm are 16.4% and
14%. The decrease in standard deviations for all algorithms as
the network size increases, is due to the fact that the trees re-
turned by the algorithms use shorter links (links with smaller
costs) as the number of nodes increases, since the density
of the nodes within the same geographical area increases as
well; hence, the variations in tree powers for different source
nodes are smaller for larger networks. Figure 8 provides sim-
ilar results for a = 4. In this case, the average tree power of
SBT is 5.2% higher than that of BIP for |N| = 20, and 6.2%
for |N| = 100. The corresponding percentages for MST algo-
rithm are 6.2% and 5.9%. We observe that the difference in
performance of the algorithms decreases as the propagation
loss exponent increases. This observation conforms to results
of previous works [13]. The main reason for this behavior is
that the “penalty” of using longer links increases for larger
values of a. Hence, the use of such links is avoided by all
algorithms and the trees returned by BIP and SBT converge
to MST when a increases.

The results presented thus far, show that our SBT algo-
rithm performs fairly well for networks represented by unit
disk graphs. We will now provide some interesting instances
of general networks for which SBT outperforms significantly
the other two algorithms. The simulations that follow attempt
to model the following physical environment. Assume that
the nodes are deployed on a terrain where there are various
obstacles that may prohibit direct communication of certain
nodes. Assume also that some of the nodes are located high
up (on top of hills, buildings, etc.) so that the communication
channel between these nodes and the rest of network nodes
is less hostile, having smaller attenuation factor. We would
like to evaluate the performance of the algorithms in such an
environment.



370 PAPADIMITRIOU AND GEORGIADIS

Figure 8. Average tree power (over all possible source nodes) for various network sizes; a = 4, complete networks.

The experiments performed in this case are the following.
We set a = 2 and assume that the grid of 100 × 100 points is
on the xy-plane of the 3 -dimensional space. Nodes are placed
on the grid as before but, for each network instance, we in-
clude only links whose power is less than cmax, defined as the
smallest value that guarantees network connectivity. Hence,
a link l between two nodes on the grid belongs to the set L of
network links if cl ≤ cmax. This constraint results in sparsely
connected networks on the grid (however, we note that the
results presented below are not sensitive to the choice of cmax;
similar behavior is observed even if cmax is chosen infinite,
i.e., when the grid network is densely connected). After the
network on the grid is constructed, we add a “special” node
in the middle of the grid and in height h = 50, that is, the
coordinates of this node are (50, 50, 50). We assume that the
constraint on the maximum transmission power does not hold
for this additional node; hence, there is a link between this

node and every other node on the grid. The power of such a
link is f·d2, where f is a factor such that 0 < f ≤ 1, and d is
the distance in the 3-dimensional space between the“special”
node and a node on the grid. An alternative network exam-
ple is to split the grid to four quarters and add 4 “special”
nodes with coordinates (25, 25, 50), (25, 75, 50), (75, 25,
50), (75, 75, 50). Each one of these nodes is able to commu-
nicate only with nodes on the corresponding quarter of the
grid.

Figures 9 and 10 present the ratio r of average tree power
of SBT to that of BIP for different values of factor f, when
1 or 4 “special” nodes, respectively, are added to the 100-
node sparsely connected networks. We observe that in both
cases there is a range of values of f for which SBT signif-
icantly outperforms BIP. In Figure 9, the best performance
of SBT is achieved for f = 0.07 (ratio r = 0.225), while in
Figure 10 the corresponding values are f = 0.06 and r = 0.517.
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Figure 9. Ratio of avg. tree power of SBT to that of BIP for different values of factor f; a = 2, 100-node sparse networks + 1 “special” node.
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Figure 10. Ratio of avg. tree power of SBT to that of BIP for different values of factor f; a = 2, 100-node sparse networks + 4 “special” nodes.

Figure 11. Average tree power (over all possible source nodes) for various network sizes; a = 2, 1 “special” node added to the sparse networks, factor
f = 0.1.

The behavior of the curves in these figures is explained as fol-
lows. When f is very small (0.001 to 0.02) the costs of links
between the “special” nodes and nodes on the grid are also
very small, compared to the costs of links between nodes
on the grid only; hence, both algorithms select the former
links and construct almost identical trees (r is close to 1). The
algorithms also behave almost identically (r is also close to
1) when f is large (larger than 0.25 in Figure 9 and 0.15 in
Figure 10); in this case, both algorithms avoid using links of
the “special” nodes, since their costs are larger than the costs
of links between nodes on the grid. Among these two cases
(very small or large values of f ) there is a range of values for
which, although it is more cost efficient to use links of the
“special” nodes, BIP algorithm does not succeed in selecting
these links. On the other hand, SBT algorithm exploits the cost
function “incremental power consumed per joined tree” and

succeeds in selecting the links of “special” nodes. Although
SBT outperforms significantly BIP for a range of values of
f in both figures, the difference in performance is greater in
Figure 9. This is due to the fact that in this case there is only
1 “special” node which communicates with all nodes on the
grid, while in Figure 10 there are 4 additional nodes and each
one of them communicates only with nodes in its correspond-
ing quarter. Hence, the gain that SBT achieves is higher in
the first case, since the cost of the constructed trees is much
smaller.

The fact that SBT achieves higher gain when there is 1
rather than 4 “special” nodes can also be observed in Fig-
ures 11 and 12, which both provide the average tree power
of the algorithms for various network sizes when the factor
f is 0.1. Figure 11 corresponds to network instances with 1
“special” node added, while Figure 12 presents the results
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Figure 12. Average tree power (over all possible source nodes) for various network sizes; a = 2, 4 “special” nodes added to the sparse networks, factor
f = 0.1.

when there are 4 additional nodes. We can see for example
that when there are 40 nodes on the grid, the average tree
power of BIP is 35.3% higher than that of SBT in Figure
11, while this percentage falls to 12.8% in Figure 12. The
corresponding percentages when there are 80 nodes on the
grid are 270.7% and 41.4%. Hence, it is concluded again, for
the reason explained earlier, that the gain achieved by SBT
is higher when there is 1 rather than 4 “special” nodes added
to the network. Regarding the MST algorithm, it performs
considerably worse in both figures for all the network sizes
considered.

6. Conclusions – issues for further study

In this paper we addressed the minimum-energy broadcast
problem in wireless networks, so that all broadcast requests
initiated by different source nodes take place on the same
broadcast tree. The main contribution is that we do not have
to determine a different broadcast tree every time a source
node initiates a broadcast request. Moreover, the provided
results are valid for general networks and do not rely on unit
disk graph models and geometric properties of the Euclidean
space. We first showed that using the same broadcast tree does
not result in widely varying total powers for different sources.
We next developed a polynomial-time approximation algo-
rithm to construct a single broadcast tree and analyzed its
performance. We also provided a useful relation between the
minimum-energy broadcast problem and the minimum span-
ning tree, and evaluated numerically with simulations the
performance of our algorithm.

There are some interesting issues for further study that
arise from our work. In this paper, we considered general
undirected graphs to model the wireless network; however,
the development of an appropriate algorithm in case of di-

rected networks with asymmetric power requirements (dif-
ferent costs between two opposite directed links) remains
an open problem. The distributed implementation of our al-
gorithm could also be desirable in network environments
with high mobility and frequent topological changes. Another
important issue is the construction of a unique multicast tree,
in case where only a subset of the nodes in the network need
to communicate in an energy-efficient way. A trivial solution
in this case would be to employ the broadcasting algorithm
presented in this paper and then prune the resulting tree, so
that only the multicast group nodes are located at the leaves
of the tree. However, it might be possible to provide bet-
ter solutions by looking directly at the multicast problem. In
any case, we note that the adaptation of the proof of Lemma
1 for the multicast problem is straightforward and, hence,
Corollary 1 also holds for the multicasting case. Finally, ad-
dressing our model in an energy-, and resource-limited en-
vironment where the maximization of network lifetime is
the primary objective, is also an interesting subject which
requires additional parameters, such as the initial battery en-
ergy of each node, to be considered and incorporated into the
model.

Appendix

Proof of Lemma 1

Consider a node i ∈ N. Note that due to Definition 1 of node
“power”, if all links in As(i) are included in A(i), then p

As

i ≤
pA

i . The latter statement and the fact that
⋃

i∈N A(i) = LT

imply that if p
As

i > pA
i , then there is at least one link l′

in the set As(i) with cost cl′ = p
As

i , which is assigned to a
neighbor node j ∈ NT (i) under link assignment A. Since l′

may not be the only link assigned to node j under assignment
A, using again the definition of node “power”, we conclude
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that in this case it holds p
As

i = cl′ ≤ pA
j . Hence, in general

we can write p
As

i ≤ pA
i + pA

ji
, where pA

ji
= 0 for a node i for

which As(i) = ∅, while for a node i for which As(i) �= ∅,
(i, ji) ∈ As(i) and ji is the neighbor of i in T whose “power”
is maximal under link assignment A among any other node j
such that (i, j ) ∈ As(i). Therefore,

∑

i∈N

p
As

i ≤
∑

i∈N

pA
i +

∑

i∈N

pA
ji
. (4)

Recall now that As corresponds to broadcasting from a given
source node s using tree T. Since (i, ji) ∈ As(i) for a node
i for which As(i) �= ∅ the set of links LT (ji) − {(i, ji)} is
assigned to node ji under link assignment As . That is, there
can be no other node i′ such that (i ′, ji) ∈ As(i ′). Therefore,
it holds ji �= ji′ for any two nodes i �= i′ for which As(i) �= ∅

and As(i ′) �= ∅. From the latter statement and the fact that
pA

ji
= 0 for a node i for which As(i) = ∅, it is concluded

that all terms in
∑

i∈N pA
ji

are also included in
∑

i∈N pA
i

(zero terms do not contribute to a sum in any case). Hence,∑
i∈N pA

ji
≤ ∑

i∈N pA
i and inequality (4) gives

∑

i∈N

p
As

i ≤ 2
∑

i∈N

pA
i ⇒ PAs (T ) ≤ 2PA(T ).

Proof of Lemma 2

Let bk be the number of forest trees at the beginning of kth

iteration. Therefore, we have b1 = n. If the algorithm takes
K iterations to complete, then we define bK+1 = 1. It follows
that at kth iteration, the number of links that join node imin

with the trees in the set Timin (lmin) at step 3 of Algorithm 1 is
bk − bk+1 (note that bk − bk+1 is equal to the cardinality of
set Timin (lmin)). Let qk be the extra power needed by node imin

to reach the bk − bk+1 forest trees at the kth iteration. We will
show that

qk ≤ bk − bk+1

bk − 1
PA∗

(T ∗). (5)

The above inequality implies the lemma. To see this, sum
(5) over all K iterations to obtain

K∑

k=1

qk ≤
K∑

k=1

bk − bk+1

bk − 1
· PA∗

(T ∗). (6)

Note that for a certain node i ∈ N, the “power” of i under
assignment A (see Definition 1), pA

i , is equal to the sum over
all K iterations of the powers qk that correspond to that node
i. That is,

pA
i =

K∑

k=1

(qk · 1(power qk corresponds to node i)), (7)

where the indicator function is included to denote whether
each one of the powers qk, 1≤ k ≤ K, corresponds to node i.
From the definition of the cost of tree T under assignment A

(see Definition 1) and equality (7), it follows that

PA(T ) =
∑

i∈N

K∑

k=1

(qk · 1(power qk corresponds to node i))

=
K∑

k=1

qk. (8)

Observe also that

bk − bk+1 terms

bk − bk+1

bk − 1
=

︷ ︸︸ ︷
1

bk − 1
+ 1

bk − 1
+ · · · + 1

bk − 1

≤ 1

bk − 1
+ 1

bk − 2
+ · · · + 1

bk+1
.

Since b1 = n and bK+1 = 1, we have from the above inequality
that

K∑

k=1

bk − bk+1

bk − 1
≤

n−1∑

k=1

1

k
= H (n − 1). (9)

From (6), (8), and (9), the lemma is concluded. Let us now
prove (5). The tree T∗ is a spanning tree and, hence, it spans all
nodes in G. This implies that it also joins the bk forest trees
at the beginning of kth iteration with at least bk − 1 links.
Each of these links is assigned according to A∗ to exactly
one node. Let U be the set of nodes in T∗ to which these
links are assigned. For a node i ∈ U, let l′ be the link with
largest cost among the aforementioned links that have been
assigned to it. Let also ni(l′) be the number of distinct forest
trees (other than the tree to which node i belongs) that can
be reached by i when power cl′ is used. Since T∗ joins the bk

forest trees with at least bk − 1 links, it holds
∑

i∈U

ni(l
′) ≥ bk − 1. (10)

By the definition of the quantities ai(l) at the kth iteration of
Algorithm 1, we have

min
l∈L′(i)

{ai(l)} ≤ cl′ − p
AF

i

ni(l′)
≤ pA∗

i

ni(l′)
, (11)

where the second inequality in (11) is due to the fact that
p
AF

i ≥ 0 and that the link l′ may not have the largest cost
among all links that are eventually assigned to node i accord-
ing to A∗. From (10) and (11) it follows that

∑

i∈U

pA∗
i

min{ai(l)} ≥ bk − 1. (12)

l∈L′(i)

Since PA∗
(T ∗) is the sum of “powers” pA∗

i , i ∈ N, and U ⊆ N,
it holds

PA∗
(T ∗) ≥

∑

i∈U

pA∗
i ⇒ PA∗

(T ∗)

amin
≥

∑

i∈U

pA∗
i

amin
. (13)
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Since amin is the minimum of quantities ai(l), i ∈ N such that
L′(i) �= ∅, l ∈ L′(i), it follows from (12) and (13) that

PA∗
(T ∗)

amin
≥ bk − 1. (14)

By the definition of amin at the kth iteration, we have

amin = qk

bk − bk+1
. (15)

Combining (14) and (15), inequality (5) is concluded.

Proof of Lemma 3

Note that for a node i in the tree Ts, it holds

max
l∈L

Ts
out (i)

{cl} ≤
∑

l∈L
Ts
out (i)

cl ≤ � max
l∈L

Ts
out (i)

{cl}. (16)

Using the first of the above inequalities, we have

P (T̂s) =
∑

i∈N

p
T̂s

i =
∑

i∈N

max
l∈L

T̂s
out (i)

{cl} ≤
∑

i∈N

∑

l∈L
T̂s
out (i)

cl

=
∑

l∈LT̂s

cl = C(T̂s). (17)

Since T̂s is induced by T̂ , which is an MST, it follows from
(17) and the second inequality in (16) that

P (T̂s) ≤ C(Ts) =
∑

l∈LTs

cl =
∑

i∈N

∑

l∈L
Ts
out (i)

cl

≤
∑

i∈N

(

� max
l∈L

Ts
out (i)

{cl}
)

= �
∑

i∈N

p
Ts

i = �P (Ts).
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[18] G. Călinescu et al., Network lifetime and power assignment in ad hoc
wireless networks, in: Proc. European Symp. on Algorithms (Sept.
2003) 114–126.

[19] J. E. Wieselthier, G. D. Nguyen and A. Ephremides, Resource manage-
ment in energy-limited, bandwidth-limited, transceiver-limited wire-
less networks for session-based multicasting, Computer Networks
39(2) (June 2002) 113–131.

[20] I. Papadimitriou and L. Georgiadis, Energy-aware broadcast-
ing in wireless networks, in: Proc. WiOpt (March 2003)
267–277.

[21] V.V. Vazirani, Approximation Algorithms, Springer-Verlag (2001).
[22] U. Feige, A threshold of ln n for approximating set cover, J. of ACM

45(4) (July 1998) 634–652.
[23] P. A. Humblet, A distributed algorithm for minimum weight di-

rected spanning trees, IEEE Trans. Commun., 31(6) (June 1983)
756–762.

[24] R. G. Gallager, P. A. Humblet and P. M. Spira, A distributed algorithm
for minimum-weight spanning trees, ACM Trans. on Progr. Lang. and
Systems 5(1) (Jan. 1983) 66–77.

[25] T. Clausen and P. Jacquet, Optimized link state routing protocol,
IETF Internet Draft, draft-ietf-manet-olsr-11.txt, (July 2003) (Work
in progress).

Ioannis Papadimitriou was born in Veria, Greece,
in 1976. He received his five year Diploma from
the Department of Electronic and Computer En-
gineering, Technical University of Crete (Chania),
Greece, in 1999 (graduating 2nd in class). He is
currently a postgraduate student - Ph.D. candidate
at the Telecommunications division, Department
of Electrical and Computer Engineering, Aristo-
tle University of Thessaloniki, Greece. His doc-
toral thesis deals with the design of wireless ad

hoc networks. His research interests include broadcast and multicast com-
munication, energy conservation, routing and topology control protocols,
MAC layer and QoS issues. During his studies he has been honored with
awards and scholarships by the Technical University of Crete, the Hellenic
Telecommunications Organization S.A.(OTE S.A.) and Ericsson Hellas S.A.
Mr. Papadimitriou has been a member of the Technical Chamber of Greece
(TEE) since March 2000, and he has been supported by the Public Benefit
Foundation ALEXANDER S. ONASSIS, Athens, Greece, with a scholarship
for his doctoral studies from October 2001 to March 2005.
E-mail: ipapad@egnatia.ee.auth.gr



MINIMUM-ENERGY BROADCASTING IN MULTI-HOP WIRELESS NETWORKS 375

Leonidas Georgiadis received the Diploma degree
in electrical engineering from Aristotle University,
Thessaloniki, Greece, in 1979, and his M.S. and
Ph.D. degrees both in electrical engineering from
the University of Connecticut, in 1981 and 1986,
respectively. From 1981 to 1983 he was with the
Greek army. From 1986 to 1987 he was Research
Assistant Professor at the University of Virginia,
Charlottesville. In 1987 he joined IBM T.J. Watson
Research Center, Yorktown Heights, as a Research

Staff Member. Since October 1995, he has been with the Telecommunications

Department of Aristotle University, Thessaloniki, Greece. His interests are
in the area of wireless networks, high speed networks, distributed systems,
routing,scheduling, congestion control, modeling and performance analysis.
Prof. Georgiadis is a senior member of IEEE Communications Society. In
1992 he received the IBM Outstanding Innovation Award for his work on
goal-oriented workload management for multi-class systems.x
E-mail: leonid@auth.gr


