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Abstract

A module has been implemented in Field Pro-
grammable Gate Array (FPGA) hardware that scans
the content of Internet packets at Gigabit/second rates.
All of the packet processing operations are performed
using reconfigurable hardware within a single Xilinx
Virtex XCV2000E FPGA. A set of layered protocol
wrappers is used to parse the headers and payloads of
packets for Internet protocol data. A content match-
ing server automatically generates the Finite State Ma-
chines (FSMs) to search for regular expressions. The
complete system is operated on the Field-programmable
Port Extender (FPX) platform.

1 Introduction

Internet firewalls and intrusion detection systems
have become critical components of the Internet. They
provide protection for Local Area Networks (LANs) by
enforcing Access Control Policies (ACPs) for both in-
coming and outgoing traffic and by alerting a system
administrator if any of these policies is broken. Cur-
rently, the scope of ACPs usually covers packet headers
and exact string matches within the packet payload.
These capabilities can be greatly expanded by adding
regular expression matching within the packet payload.
With regular expressions, a single ACP is capable of
enforcing rules which previously took multiple ACPs
to enforce (just as one IP address/netmask pair can be
used to specify multiple IP addresses). More impor-
tantly, regular expressions can give ACPs the ability
to enforce rules on mutable content such as that found
in many Denial Of Service (DOS) attacks and viruses.

This paper discusses the design and performance of
an FPGA-based content-scanning module for an In-
ternet firewall. The module can be (and has been)

combined with other modules such as a Content-
Addressable Memory (CAM) module to provide the
firewall with a rich set of features. The module has
many compile-time configuration options, including
which regular expressions to scan for, what to do with
a packet that contains the specified regular expression,
and other options that will be discussed later. An
analysis of the required chip resources, frequency, and
throughput is also presented.

2 Background

Below is a review of regular expressions along with
a description of some previous related work. This sec-
tion includes a short description of the implementa-
tion platform, the Field Programmable Port Extender
(FPX) and the layered protocol wrappers, part of the
infrastructure.

2.1 Regular Expressions

A regular expression is a pattern that describes a
set of strings. The basic building blocks for these
patterns consist of individual characters which match
themselves such as “a”, “b”, and “c”. Combining char-
acters with meta-characters (∗, |, ?) allows more com-
plex regular expressions to be created. If r1 and r2 are
regular expressions then r1∗ matches any string com-
posed of zero or more occurrences of r1; r1? matches
any string composed of zero or one occurrences of r1;
r1|r2 matches any string composed of r1 or r2; and
r1r2 matches any string composed of r1 concatenated
with r2. For instance, a is a regular expression that
denotes the singleton set {“a”}, while a|b denotes the
set {“a”, “b”}. The expression a∗ denotes the infinite
set {“”, “a”, “aa”, “aaa”, . . .}.
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2.2 Regular Expressions in FPGAs

There has been some previous work in the area of
string matching on FPGAs. Recent work has been
done by Sidhu and Prasanna [1] and by Franklin,
Carver and Hutchings [2]. The work by Sidhu and
Prasanna was primarily concerned with minimizing the
time and space required to construct Nondeterministic
Finite Automata (NFAs). They run their NFA con-
struction algorithm in hardware as opposed to soft-
ware. Their work yielded an exceptional approach
to string matching in hardware. Franklin, Carver
and Hutchings followed with an analysis of this ap-
proach for the large set of expressions found in a Snort
database [3].

2.3 Creating Deterministic Finite Automata

In previous work, NFAs were chosen due to the
shorter time and smaller space required for construct-
ing the automata. In this work however, the time and
space required for constructing the automata was not
a concern. We were however, concerned with the size
of the completed automata. Theoretically, Determin-
istic Finite Automata (DFAs) can contain up to O(2n)
states, where n is the number of characters in the ex-
pression. However, in practice it was found that the
number of states required is most often less than or
equal to n. In addition to this, DFAs are preferable
in stream-by-stream multi-context searching. With a
DFA, the machine can only have one active state and
thus can be represented compactly if the state of the
search needs to be stored for a context switch.

Many existing tools are available for converting reg-
ular expressions into DFAs. Among these tools, we
chose to use JLex [4], a lexical analyzer generator for
Java. As input, JLex takes a regular expression. It
outputs a Java file that contains state and transition
tables for a minimized DFA that implements the given
expression. For this work, the necessary tables are ex-
tracted from the Java file using GAWK and converted
into a standard VHDL representation of a state ma-
chine.

In practice, DFAs are generally compact. To ver-
ify this with real data, we extracted SPAM-matching
rules from the current version (2.60) of the SpamAs-
sassin program. We generated state machines from
358 regular expressions found in this database. The
JLex tool was run to generate an NFA and a minimal
DFA from each of the regular expressions. It was found
that most of the expressions optimized to contain fewer
states than the NFA. Figure 1 shows the ratio of the
number of states in the JLex-optimized DFA to the

number of states in the NFA. Two-thirds of the DFAs
were smaller than the NFAs. Only 2.5% of the expres-
sions had more than a 10x expansion and only 0.5%
went beyond 40x. A typical SpamAssassin expression
is:

U\.?S\.?(D\.?)?[\ ]*(\$[\ ]*)?([0-9]+,

[0-9]+,[0-9]+|[0-9]+\.[0-9]+\.[0-9]+|[0-9]+

(\.[0-9]+)?[\ ]*milli?on)

The output of JLex was:

Processing first section -- user code.

Processing second section -- JLex

declarations.

Processing third section -- lexical rules.

Creating NFA machine representation.

NFA comprised of 78 states.

Working on character classes.:

::.:.::.::............:::..:::

NFA has 15 distinct character classes.

Creating DFA transition table.

Working on DFA states.............................

Minimizing DFA transition table.

24 states after removal of redundant states.

Outputting lexical analyzer code.

0%

5%

10%

15%

20%

25%

30%

0.3 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 6 7 8 9 10+

Ratio of states in DFA to states in NFA

P
e
rc

e
n

t
o

f
E

x
p

re
s
s
io

n
s

Figure 1. The ratio of the size of the DFA to
the NFA for all regular expressions used by
the SpamAssassin Program. Note that the
majority of the DFAs optimize to be smaller
than the NFAs

2.4 Field Programmable Port Extender

The FPX (Figure 2) is a general purpose, repro-
grammable platform that performs data processing in
FPGA hardware [5, 6, 7]. The FPX extends the op-
eration of the Washington University Gigabit Switch
(WUGS) by adding FPGA hardware at the ingress and
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egress ports [8]. Data packets can be actively processed
in hardware by user-defined, reprogrammable modules
as they pass through the device. The hardware-based
processing allows the FPX to achieve multi-gigabit per
second throughput, even when performing deep pro-
cessing of the packet payload.

The current version of the FPX contains two FP-
GAs. One FPGA on the system is called the Re-
programmable Application Device (RAD). It is imple-
mented with a Xilinx Virtex XCV2000E. The second
FPGA is called the Network Interface Device (NID). It
is implemented with a Xilinx Virtex XCV600E. The
FPX also contains two banks of 36-bit wide Zero-
Bus-Turnaround Static RAM (ZBT SRAM) and two
banks of 64-bit PC-100 Synchronous Dynamic RAM
(SDRAM).

Figure 2. FPX Platform

2.5 Protocol Wrappers

A set of layered protocol wrappers was implemented
to simplify the processing of Internet Protocol (IP)
packets directly in hardware [9]. They use a layered de-
sign and consist of different processing circuits within
each layer. At the lowest level, the Cell Processor pro-
cesses raw cells between network interfaces. At the
higher levels, the Frame Processor reassembles and pro-
cesses variable length frames while the IP Processor
processes IP packets. Figure 3 shows the typical lay-
out of a hardware module using the protocol wrappers.

3 Content Scanning in Hardware

The content scanner was implemented as a module
on the FPX platform. The scanner utilizes the protocol
wrappers to reassemble cells into IP packets and delin-
eate the header and payload fields. When designing

Data written
to networkfrom network

Data read

Hardware

Module

IP Processor

Frame Processor

Cell Processor

Figure 3. Typical Layout of a Hardware Module
Using the Protocol Wrappers

the content scanner, five initial behaviors were desired.
These were: (1) the ability to scan every character of
every packet’s payload for a given set of expressions,
(2) the ability to actively drop packets that match a
given expression, (3) the ability to generate an alert
message identifying which expressions in the given set
match, (4) the ability to send an alert message to a log
server when a match is detected, and (5) the ability to
easily reconfigure the scanner to search for a new set
of expressions.

3.1 Generating the Hardware

As new DOS attacks or viruses arrive on the Inter-
net, administrators may create new scanning circuits.
To make the content scanner easily configurable, and
therefore more useful, a design flow was implemented
to automate the creation of the hardware.

The design flow begins with an input specification
in common regular expression syntax. The specifica-
tion contains a list of regular expressions, each with an
identification number associated with it which is also
programmed into the hardware. The syntax and an
example of a single list entry can be seen below:

syntax:
/expression/prop(id number)/

example:
/V i(R|r)u(S|s)/prop(6)/

Each regular expression in the specification is parsed
and sent through JLex to get a representation of the
DFA required to match the expression. The JLex rep-
resentation is subsequently processed and converted
into a VHDL representation. Next, a top-level entity is
generated to connect all the DFAs with the static com-
ponents of the circuit. Finally, the design flow proceeds
to synthesize, place and route, and program the FPGA.

A web interface was created to simplify designing
new circuits. The interface allows expressions to be
added, edited, or deleted from a list of available ex-
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Figure 4. Web Interface for Creating Circuit

pressions. A screenshot of the interface is shown in Fig-
ure 4. From the web, an administrator can select any
subset of the available expressions to be programmed
into the hardware. The resulting circuit can be used
for several applications, such as copyright protection,
virus protection or security. For network security ap-
plications, the Internet address of a server is specified
to determine where alarm messages should be deliv-
ered. For networks that contain multiple FPX devices,
the FPX IP address specifies which FPX should be re-
programmed.

For example, if the first and second boxes of Figure 4
are checked, then the FPX will be programmed to scan
for two regular expressions. First, it will scan pack-
ets for the hex string 6C744E5076 which appears in a
video stream. Additionally, it will scan packets for the
regular expression Vi(R|r)u(S|s). If a packet contain-
ing the Vi(R|r)u(S|s) signature is found, then an alert
message is sent to the server address 128.252.153.19.
Once the “Build FPX” button is pressed, the design
scripts proceed to synthesize, place and route, and re-
program the FPX over the network.

3.2 Hardware Implementation

This section describes the design of the content scan-
ning circuit. It is broken down into three parts: (1) Re-
ceiving Packets, (2) Processing Packets, and (3) Out-
putting Packets. Each of these three operations is con-
trolled independently of the other two. All three oper-

ations run in parallel. A block diagram of the imple-
mentation can be seen in Figure 5.
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Figure 5. Block diagram of Content Scanner

3.2.1 Receiving Packets

Data enter the circuit in 32-bit chunks after passing
through the protocol wrappers. The protocol wrap-
pers assert control signals to indicate the beginning of
an AAL5 frame, the beginning of an IP packet pay-
load, and the end of an AAL5 frame. There is also a
data enable signal to indicate the presence of a valid
32-bit data word on the incoming bus. Every valid data
word, along with the three control signals, is written
to two parallel 512x35 dual-port memory buffers. By
using two identical buffers, it is possible to read newer
packets for processing while older packets (that are not
being dropped) are read for output. This could be
achieved with a single tri-port memory buffer if avail-
able.

3.2.2 Processing Packets

Once data are available in the input buffer (a packet
has started arriving), the circuit can begin processing
the packet. To process a packet with the content scan-
ner, a counter is used to address one of the 512x35
memory buffers. On each clock tick, one character (8-
bits) is read from the memory buffer and sent to each
of the regular expression DFAs. All of the DFAs search
in parallel. Each DFA maintains a 1-bit match signal
which is asserted high when a match is found within
the packet that is being processed. When the counter
reaches the end of the packet, one or more of the fol-
lowing can occur:

(1) if the match signals from all of the DFAs indicate
no match was found, then a pointer to the packet is

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03) 
1082-3409/03 $17.00 © 2003 IEEE



inserted into a queue for output.
(2) if any of the match signals indicate a match was

found but do not require dropping the packet, then a
pointer to the packet is inserted into a queue for output.

(3) if one or more of the match signals indicates
a match was found that requires dropping the packet,
then a pointer to the packet is not inserted into a queue
for output, hence the packet is dropped.

(4) if one or more of the match signals indicates a
match was found that requires an alert message to be
sent, a special pointer is inserted into a queue which in-
dicates an alert message should be output. The special
pointer contains a bit array that indicates which DFAs
found a match. It should be noted that if a match
is found which requires an alert message but does not
require dropping the packet, two pointers (one for the
original packet and one for the alert message packet)
are inserted into the queue for output.

3.2.3 Outputting Packets

A packet is output from the content scanner when-
ever there is an available pointer in the output queue.
Each pointer that is dequeued can be either for a reg-
ular packet or for an alert packet. In the case of a
regular packet, a counter is assigned the value of the
pointer and used to address the 512x35 output mem-
ory. The packet is then output 32-bits per clock cycle
until the end of the packet is detected. The most signif-
icant 3 bits of the output memory are used to recreate
the necessary control signals for communicating with
the protocol wrappers. When an alert packet pointer
is dequeued, a UDP alert packet has to be generated
since one does not already exist. The alert packet is
addressed to a predetermined log server (specified at
compile time but also runtime reconfigurable). The
payload of the alert packet contains the source and des-
tination IP address of the packet that caused the alert,
along with the identification numbers of all of the reg-
ular expressions that matched in the original packet.
Figure 6 shows the layout of an alert packet.

3.2.4 Increasing Throughput via Parallel Scan
Engines

As mentioned in sections 3.2.1 and 3.2.2, data enter the
content scanner at a rate of 32-bits per clock cycle, and
are processed at 8-bits per clock cycle. As a result, the
content scanner can only process data at one-quarter
of the maximum input rate. In order to process data at
the full input rate, four parallel content scanners are
arranged as shown in Figure 7. Arriving packets are
dispatched to an available content scanner in a round-
robin fashion. With four parallel scanners, the circuit
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Figure 6. Layout of an Alert Packet

is now capable of scanning 32-bits per clock cycle.
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Content Scanner 3

Content Scanner 4

OutgoingIncoming
PacketsPackets

Parallel Content Scanners

Figure 7. Arrangement of parallel scanners

4 Results

Several different versions of the content scanner were
synthesized with the protocol wrappers into the RAD
of the FPX. The regular expression set for each of
the content scanners consisted of 21 regular expres-
sions. The expressions chosen were aimed primarily
at dropping SPAM. For example, “Get Rich Quick”
and “(L|l)imited (T|t)ime (O|o)ffer” were among the
expressions in the set. On average, each regular ex-
pression was 20 characters long. Note that these were
simpler expressions than those found in SpamAssassin.

Each of the circuits was tested in the lab using
NCHARGE [10] for initial testing. NCHARGE al-
lowed single packets to be sent to the content scan-
ner for easier debugging. Later stages of testing were
conducted using real Internet traffic via web browsers,
email clients, and FTP clients. The configuration of
the lab setup is shown in Figure 8. This type of testing
allowed placement of pseudo-viruses and other content
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on the Internet to verify detection and potential drop-
ping by the scanning module.

The following sub-sections describe the device uti-
lization and throughput of the content scanner circuits
on a Xilinx Virtex XCV2000E part.

Figure 8. Laboratory Test Layout

4.1 Device Utilization

Device utilization for three different circuits is shown
in Tables 1, 2, and 3. Table 1 shows the device uti-
lization for a circuit containing only the infrastructure
and the protocol wrappers. These values represent the
overhead of the packet processing done by the protocol
wrappers. Table 2 details the device utilization for a
single content scanner with the protocol wrappers and
all the necessary infrastructure. Table 3 shows the de-
vice utilization for the four parallel content scanners
shown in Figure 7 with the protocol wrappers and nec-
essary infrastructure. The chart in Figure 9 helps to
illustrate the relative sizes of each of the circuits.

As mentioned earlier, the simplified DFAs used on
average of n states for an n length regular expression.
This translated into the hardware as using on average
1 flip-flop per character (minus the overhead associated
with the infrastructure, the protocol wrappers, and the
controller).

Table 1. Device Utilization for Infrastructure
and Protocol Wrappers

Virtex XCV2000E Utilization
Resources Device Utilization Percentage
Logic Slices 3263 out of 19200 16%
Flip Flops 3611 out of 38400 9%

Block RAMs 11 out of 160 6%
External IOBs 142 out of 512 27%

Table 2. Device Utilization for Content Scan-
ning Module with Single Search Engine

Virtex XCV2000E Utilization
Resources Device Utilization Percentage
Logic Slices 4422 out of 19200 23%
Flip Flops 4547 out of 38400 11%

Block RAMs 22 out of 160 13%
External IOBs 142 out of 512 27%

Table 3. Device Utilization for Content Scan-
ning Module with Quad Search Engines

Virtex XCV2000E Utilization
Resources Device Utilization Percentage
Logic Slices 7330 out of 19200 38%
Flip Flops 6628 out of 38400 17%

Block RAMs 55 out of 160 34%
External IOBs 142 out of 512 27%

4.2 Throughput

The single-scanner regular expression circuit with
the protocol wrappers currently places and routes at
37 MHz. The critical path of the circuit was found
to be the fanout of the 8-bit character lines to each
of the DFAs. The quad-scanner circuit has similar
results; it also places and routes at 37 MHz. Given
that each scanner can process 8-bits of data per cycle,
the calculated throughput of the single-scanner circuit
is 8 × 37MHz = 296 Megabits/second. By running
four content scanners in parallel, the circuit can reach
4 × 8 × 37MHz = 1.184 Gigabits/second.

When limiting the scanner to only several DFAs
(thus minimizing the fanout bottleneck), the circuit
was capable of achieving frequencies in the range of
75-80 MHz. At these frequencies, the circuit is capable
of exceeding 2.5 Gigabits/second.

5 Conclusion

This paper has described an implementation of a
content scanning module for an Internet firewall. The
module is capable of passively reviewing packet pay-
loads for a match, actively dropping packets that con-
tain a match, and generating alert packets to notify
administrators of a match. The content scanner was
implemented on the FPX and tested using real Inter-
net traffic on the WUGS. The scanner is capable of op-
erating at speeds of 1.184 Gigabits/second for twenty-
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one ∼20-character regular expressions, and exceeding
speeds of 2.5 Gigabits/second for smaller numbers of
similar regular expressions.

6 Future Work

Currently, the bottleneck in the system is the fanout
associated with sending 8-bits of data to all of the par-
allel DFAs. To improve the timing, a tree structure
(as described and implemented in [2]) can be used to
distribute the data to all of the DFAs to minimize the
propagation delay.

Currently, the content scanner is designed to sup-
port several different behaviors as described in section
3. However, the behaviors such as sending an alert
message are not on an expression-by-expression basis.
For example, if the content scanner is compiled to send
an alert message, it will send that alert message for all
the regular expressions in the circuit. It is more desir-
able to have the action rules based on which expression
matched. Doing this would allow alert packets to be
sent for some regular expressions in the circuit and not
for others. An enhanced version of awk’s pattern-rule
syntax (but with reduced instruction set) has been de-
fined which is suitable for this task. In a related pub-
lication, we report on sed-like processing on the FPX.

Finally, the content scanner currently looks for
matches on a packet-by-packet basis. This means that
if a string that should cause a match spans multiple
packets, it will be missed by the content scanner. We
look to improve this behavior by utilizing the TCP-
Splitter [11] to process data on a stream-by-stream ba-
sis. This entails augmenting the content scanner to a
multi-context design that maintains a match context
for each available flow and switches contexts based on
the stream that is currently being presented by the
TCP-Splitter.
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