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Performance Improvement of Two-Dimensional
Packet Classification by Filter Rephrasing

Pi-Chung Wang, Member, IEEE, Chun-Liang Lee, Chia-Tai Chan, and Hung-Yi Chang

Abstract—Packet classification categorizes incoming packets
into multiple forwarding classes in a router based on predefined fil-
ters. It is important in fulfilling the requirements of differentiated
services. To achieve fast packet classification, a new approach,
namely “filter rephrasing,” is proposed to encode the original
filters by exploiting the hierarchical property of the filters. Filter
rephrasing could dramatically reduce the search and storage
complexity incurred in packet classification. We incorporate a
well-known scheme–rectangle search–with filter rephrasing to
improve the lookup speed by at least a factor of 2 and decreases
70% of the storage expenses. As compared with other existing
schemes, the proposed scheme exhibits a better balance between
speed, storage, and computation complexity. Consequently, the
scalable effect of filter rephrasing is suitable for backbone routers
with a great number of filters.

Index Terms—Firewalls, forwarding, packet classification,
quality of service (QoS).

I. INTRODUCTION

I N NEXT-GENERATON networks (NGNs), packet classi-
fication is important to fulfill the requirements of differen-

tiated services. Using predefined filters, packet classification
could categorize an incoming packet to a forwarding class (e.g.,
as indicated by the differentiated services codepoint (DSCP
field) in the DiffServ model [1]). Secure filtering and service
differentiation have been extensively employed to reflect the
policies of network operations and resource allocation. The
performance of packet classification is important in the deploy-
ment of NGNs; however, packet classification with a potentially
large number of filters is complex and exhibits poor worst-case
performance [2].

The problem of packet classification lies in multidimensional
range match. To elaborate on the problem, the definition of the
filter must be specified: a filter consists of a set of fields which,
in turn, corresponds to another set of fields in the packet header.
Each field could be a variable-length prefix bit string, a range,
or an explicit value. A -dimensional filter is thus defined
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as . A filter might be any combina-
tion of fields; the most common fields are the source IP address
(SA, 32 b), the destination IP address (DA, 32 b), the protocol
type (8 b) and port numbers (16 b) of source/destination ap-
plications in the packet header. A packet is said to match a
particular filter if for all , the th field of the header satis-
fies . Each filter has an associated action. For example, the
filter specifies a filter that
addresses a flow that belongs to the subnet 140.113 and uses
the progressive networks audio (PNA); the filter may assign the
flow’s packets with high queueing priority. Each action is usu-
ally assigned a cost to define its priority between the actions of
the matching filters. The matching filter with the least-cost ac-
tion will be enacted to process the arriving packets. Overall, the
difficulty in packet classification is to search for this least-cost,
matching filter.

A. Our Contributions

For solving the packet classification problem, we raise the
importance of the scalability issue of which is pertinent to the
potential needs of DiffServ, RSVP, load balancing, microflow
recognition, multicast forwarding, network monitor, and sub-
scriber management [3]–[6]. In this work, we present a scal-
able algorithm for 2-D (source prefix, destination prefix) packet
classification. Our idea is inspired from the observation that the
performance of the tuple-based schemes ties to the length distri-
bution of the prefixes. Hence, we exploit the property of prefix
nesting (or prefix containment [3]) by encoding the prefixes
as well as the filters to revise the length distributions. In fact,
the idea of encoding filters has been adopted in TCAM-based
schemes to cope with the issue of filter replication for converting
arbitrary range into prefixes [7], [8]. Contrarily, our idea ap-
plies to the algorithmic solution and simplifies the disordered
structure of filters to improve speed and storage performance
simultaneously.

The new hybrid scheme “filter rephrasing” can reorganize
the entries in the hash tables to improve both search and storage
complexity of the rectangle search. Although the effectiveness
of the proposed scheme is based on the assumption that prefix
nesting is rare, the convincing evidence based on real-world
filter databases is also presented. In this work, we describe the
idea of the filter rephrasing and combine it with a rectangle
search [6], a well-known solution for packet classification.
The new scheme is evaluated by both real-world and synthetic
filter databases. In our experiments, it requires only 15%
30% storage of the rectangle search, while the lookup speed
is improved by at least a factor of two with the encoding time
included. We further compare the proposed scheme with the
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other existing schemes. The experimental results demonstrate
that the proposed scheme exhibits a better balance between
speed, storage, and computation complexity. Since the perfor-
mance of the proposed scheme is irrelative to prefix length,
the proposed scheme might be able to support IPv6 packet
classification. Moreover, the scalable effect of the proposed
scheme is suitable for applications, which requires numerous
filters. A hybrid solution for supporting frequent filter updates
is presented, and our source codes are publicly available.

The rest of this paper is organized as follows. Section II
presents related work. Sections III and IV describe the
tuple-based algorithms and the filter rephrasing, respectively.
Section V presents the experimental setup and results. Finally,
Section VI states our conclusion.

II. RELATED WORK

Several algorithms for classifying packets have recently ap-
peared in the literature [2], [6], [9]–[13]. They can be grouped
into the following classes: hardware-based, trie-based, deci-
sion-tree, combination-based, and hash-based solutions. The
following briefly describes the important properties of these
algorithms. Assume that is the number of the filters, is
the number of classified fields, and is the length of the IP
address.

A. Hardware-Based Solutions

A high degree of parallelism can be implemented in hardware
to provide a speedup advantage. In particular, ternary content
addressable memories (TCAMs) can be used effectively to look
up filters. However, TCAMs with a particular word width cannot
be used when flexible filter specification is required. Manufac-
turing TCAMs with sufficiently wide words to contain all bits
in a filter is difficult. It also suffers from the problem of power
consumption and scalability [4]. Lakshman and Stidialis pre-
sented another scheme that depends on a very wide memory
bus [10]. The algorithm reads bits from memory, corre-
sponding to the best matching prefixes (BMPs) in each field,
and determines their intersection to find a set of matching filters.
The memory requirement for this scheme is . The hard-
ware-oriented schemes rely on heavy parallelism and involve
considerable hardware cost. In addition, the flexibility and scal-
ability of hardware solutions are very limited. In [3], Baboescu
and Varghese addressed this issue and described an improved
version by merging consecutive bits.

B. Trie-Based Solutions

Specifically for the case of two-field filters, Srinivasan et
al. [9] presented a trie-based algorithm. The algorithm has a
memory requirement of and requires memory
accesses per lookup. Another version to support more than two
dimensions is presented in [14]. In [15], the area-based quad
tree (AQT) was also proposed for two-field filters. While the
search performance of the native scheme is , it
can be further improved to by using fractional
cascading [15]. It is worth noting that AQT supports efficient

update time, where is a tunable integer parameter.
The performance of the trie-based algorithms has been studied
in [16].

C. Decision-Tree Solutions

Work on decision tree algorithms includes papers presented
by Gupta and McKeown [13] and Woo [12]. Both schemes build
a decision tree to categorize the filters into multiple sets. Since
the number of filters in each set is limited by a predefined value,
the linear search is applied to traverse the filters in a set. At each
node, there is a rule for categorizing the filters, and the rule could
specify a field [13] or a bit of any field [12]. In [17], the Hyper-
cuts presented by Singh et al.further extends the single-dimen-
sional rule in [13] into a multidimensional one. A suitable se-
lection of rules would minimize the required storage and search
time. However, due to the duplication of filters with wildcard
fields, the space complexity is .

D. Combination-Based Solutions

A general mechanism, called cross-producting, involves
BMP lookups on individual fields and the use of a precomputed
table to combine the results of individual prefix lookups [9].
However, this scheme suffers from a memory blowup
for -field filters. Gupta et al.presented an algorithm that can
be considered to be a generalization of cross-producting [2].
After BMP lookup is performed, a recursive flow classification
algorithm hierarchically performs cross-producting. Thus,

BMP lookups and additional memory accesses are
required per filter lookup. The algorithm is expected to improve
the average throughput significantly. Nevertheless, it requires

memory in the worst case. In the case of two-field
filters, this scheme is identical to cross-producting.

E. Hash-Based Solutions

The hash-based idea [6] has given rise to 2-D filters in a
previous study [18]. The filters with specific prefix lengths are
grouped into a tuple. Since each tuple has a specific bit length
for each field, these bit lengths can be concatenated to create a
hash key, which can be used to perform the tuple lookup. The
matched filter can be found by probing each tuple alternately
while tracking the least-cost filter. For example, the 2-D filters

and both belong to the tuple
in the third row and fourth column of the tuple space. When

searching for , a hash key is constructed by concatenating
2 b of the source field with 3 b of the destination field. Even
a linear search in the tuple space represents a considerable im-
provement over a linear search of the filters since the number
of tuples is typically much smaller than the number of filters.
In the next section, the tuple-based algorithms are introduced in
detail.

Among the existing algorithms, the ABV scheme [3] and
Hypercuts [17] scheme are proposed to cope with the issues of
performance degradation as the filters increase in number. The
ABV scheme can provide sustainable throughput, but it requires
relatively large storage and a wide memory bus to decrease the
number of memory accesses. The Hypercuts scheme performs
well under practical conditions; however, the computation com-
plexity of the decision-based scheme is high even only a sub-
optimal cut calculation is adopted.

We can conclude two observations from the previous work.
• The existing solutions do not scale well in either speed,

storage or computation complexity, or both. For example,
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Fig. 1. Illustration of markers and precomputation.

the ABV scheme is not scalable in the required storage and
the Hypercuts scheme requires exhausted computation.

• Most of the existing schemes rely on fast 1-D BMP lookups
[2], [3], [9], [10], [13]. This is because the 1-D lookup is
simpler than the search for two or more dimensions. Hence,
it is reasonable to decompose the complex multidimen-
sional search into multiple 1-D lookups.

III. ALGORITHMS FOR TUPLE SPACE SEARCH

The simplest tuple-based algorithm, tuple pruning search,
performs 1-D BMP lookups on individual fields to eliminate
tuples that cannot match the query. To achieve this, the referred
prefixes are collected with their locations in the tuple space to
construct the pruning table for each field, where the lookup pro-
cedure starts. Then, the resulting locations of two dimensions
are intersected. The tuples corresponding to the intersection
will be probed. Since no extra entry is required except the
pruning tables, it features low update cost. According to the
authors’ observation, the intersected tuples are very rare in
the industrial filter database. Hence, the tuple pruning search
performs well in the practical environment [6]. However, the
worst-case performance remains the same as using a
linear search.

A rectangle search was proposed to improve the performance
of tuple pruning search [6]. Let filter with the
length combination belong to tuple . A marker will be
generated for each tuple left to , say , by
eliminating the bits behind the th bits. After inserting the filters
and markers, the entries at each tuple, say , further precom-
pute the least-cost matching filter among the tuples above ,
say .

Fig. 1 shows an example of markers and precomputation
using four filters , , , and . For each filter, a marker
is inserted into each tuple left to the current tuple. Therefore,
seven markers are generated for four filters. Consequently, the
precomputation for each filter and marker is carried out. The
marker thus precomputes the best matching filter, the one
with lower cost between and , among the tuples above
in the same column.

With markers and precomputation, the rectangle search can
eliminate a set of tuples during each probing, as depicted in
Fig. 2. Due to the precomputation of the best matching filter,
tuples above are eliminated if the probe of tuple returns
“match.” Otherwise, tuples to the right of tuple are ignored,

Fig. 2. Rectangle search algorithm.

Fig. 3. Relationship between filters and markers.

since the absence of matching markers also indicates the nonex-
istence of matching filters. The time complexity of the rectangle
search has been demonstrated to be ), given a
tuple space, while the data structure would require a maximal
number of markers.

Because of the complex precomputation, renewing the data
structure of the rectangle search is inefficient. In Section IV-C,
we present a hybrid approach to address this issue. The other
issue of rectangle search is the number of generated markers
caused by uneven filter length distribution. We show an extreme
case with 203 filters, which occupy five tuples, as shown in
Fig. 3. Each filter must generate one marker in each leftside
tuple; hence, 703 markers are generated and result in explo-
sive 906 entries. The size explosion is caused by an unbalanced
distribution of filter lengths, which are the combinations of the
prefix lengths. While the phenomenon has been identified in the
1-D routing prefixes [18]–[21], we believe that it is also held
true for the 2-D filters.

To further clarify the assumption, the filter length distribu-
tion of an industrial filter database with 3028 filters illustrated
in Fig. 4(a) can certify the unbalanced distribution. Our other
databases also reveal the same findings. Fig. 4(b) shows the re-
sulted distribution including the filters and markers. The wide-
spread markers must be generated due to the need of guidance
in the rectangle search and would cause storage explosion.

In [22], Wang et al.presented an algorithm to improve the
required storage and the lookup speed of the rectangle search.
Based on the observation that the performance of the rectangle
search ties to the number of tuples, this scheme adopts a dy-
namic programming scheme to calculate the optimal set of tu-
ples and reorganizes the rules by using rule expansion. However,
the cost of precomputation would increase exponentially as the
classifier expands and makes the scheme unsuitable for large
rule sets.
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Fig. 4. Filter/marker length distribution for real filter database (3028 entries).
(a) Length distribution of the original filters. (b) Length distribution of the orig-
inal filters and the generated markers.

In [23], the authors improved the rectangle search by ex-
ploiting the conflict-free constraint in the 2-D tuple space and in-
troduced a binary search algorithm that exploits the conflict-free
constraint in the 2-D tuple space. The conflict defines that a filter
in a pair of filters is more specific than the other in one field and
less specific in another field. To resolve the conflict, a conflict
resolution filter is generated by concatenating the most specific
fields in both fields [23]. For the filters in Fig. 1, filters and

conflictin, which can be resolved by introducing a new filter
.

The binary search scheme generates two different markers,
one for the binary search within columns and the other for the bi-
nary search within the tuples in one column. Each search would
traverse, at most, columns and tuples for
each matching column; thus, the time complexity is .
Although the binary search algorithm outperforms the rectangle
search, the cost of table construction is high due to the exhaus-
tive conflict detection [24], which is not preferable for large filter
sets.

In summary, the tuple space search exploits an interesting
property of the prefix length combination to improve packet
classification; however, the existing tuple-based schemes are
not without limitations. From what we have observed on
the rectangle search, we are motivated to reorder the length
distribution. We present a new scheme–filter rephrasing–to
revise the length distribution by reducing the number of distinct
prefix lengths as well as prefix length combinations. With filter
rephrasing, both the speed and storage performance of the
rectangle search can be dramatically improved.

IV. TUPLE REORGANIZATION BY FILTER REPHRASING

There are various approaches to reduce the number of dis-
tinct prefix lengths. For instance, a well-known prefix expan-
sion capability based on duplicating entries is described in [19].
Dynamic programming is used to minimize the required storage
resulting from duplication. The other algorithms [20], [21], [25]
are based on a similar mechanism and have additional compres-
sion schemes built in. Briefly, these algorithms depend on ei-
ther large storage or complex compression logic as a tradeoff
for changing the length distribution.

The proposed “filter rephrasing” is inspired from the observa-
tion that the maximum number of prefix nesting is always much
less than that of prefix lengths for each dimension. The nested
prefix is defined as follows. Let and

Fig. 5. Prefix nesting distribution of the routing tables.

be two prefix strings, where .
Assume that the string matching function is
used to find the substring of . is a nested prefix of if

. In [3], Baboescu and Varghese sur-
veyed that no prefix contains more than four matching nested
prefixes in each dimension of the ISP/firewall filter databases.
The characteristic conforms to the nature of the network-layer
address/mask specification described in [26]. This is mainly be-
cause the service boundaries specified by the filters highly relate
to those specified by the network-layer prefixes, for example, the
VPN filters in ISP databases. The major exceptions are the filters
for specifying designated-server or interdomain traffic, where
the former requires full-length network-layer addresses and the
latter use numerous wildcards. Such filters occupy a great por-
tion in intranet firewalls [14], [27], though the property of few
nested prefixes is not affected.

We also illustrate the number of nested prefixes for each
routing prefix in the existing routing tables from some major
network access points in Fig. 5. For most routing prefixes,
there are usually less than three nested prefixes in the routing
tables and six in the worst case. Our observation for industrial
filter databases also presents the same results and is consistent
with the existing literature [3], [11], [28]. In the previous work,
the property of prefix nesting has been applied to improve the
search performance of packet classification [3], [9], [14]. In this
work, we further exploit this hierarchical property to improve
the lookup speed and required storage simultaneously.

Before illustrating the principle of design, the nature of IP
routing prefixes should be clearly stated. The adoption of class-
less interdomain routing (CIDR) [29] allows the network admin-
istrator to specify a subnet within an existing network. For ex-
ample, an ISP network is specified by prefix , whose
next hop is A. An enterprise network, which is specified by an-
other prefix , might exist and its next hop is B.
The new scheme must be able to reflect the hierarchical nature of
the routing prefixes. Likewise, the generated key for
must be a prefix of that for .

A straightforward scheme is to divide the prefixes into several
bitstreams according to the lengths of their nested prefixes. An
example is used to explain the procedure, as shown in Fig. 6.
The prefix has two nested prefixes and

. Thus, is divided as three bitstreams , ,
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Fig. 6. Basic prefix encoding.

Fig. 7. Exclusive prefix encoding.

and that are inserted to the bit-stream groups “Level I,”
“Level II,” and “Level III,” respectively. Clearly, it may derive
the same bitstreams from different prefixes; such as the “Level
II” bit-stream of prefix is identical to that of . In
each group, the duplicate bitstreams must be eliminated, then
each bitstream is assigned to a new identification (ID). By con-
catenating the relevant IDs, the encoded key of each prefix is
generated. In this example, there are three different bitstreams
in “Level I,” five in “Level II,” and four in “Level III.” There-
fore, maximal 7 ( ) bits are required to represent the
original prefixes, but the number of distinct lengths is reduced
from 7 to 3.

The basic scheme is simple, but it might overestimate the
number of the encoded bitstreams without considering the as-
sociated relations between prefixes. For example, the bitstreams

and (i.e., corresponding to and , respec-
tively) in “Level II” only concatenate to (i.e., ). Thus, we
only have to count for the number of bitstreams attached to a
specific “shorter” bitstream. In our example, there are three bit-
streams connected to ( ) and two to both ( ) and

( ). Accordingly, the number of bits for “Level II” IDs
could be reduced to 2 and the maximal length is further reduced
to 6. In Fig. 7, we list the IDs for all bitstreams. The dotted lines
are used to separate the bitstreams based on their concatenated
prefixes at each level.

In Table I, we compare the lengths of the encoded prefixes
in the original, basic, and exclusive schemes. Note that efficient
encoding would not affect the number of distinct lengths, but
could reduce the storage requirements for indices in the tuple
space.

The original prefixes of the filters are replaced by the encoded
ones, and the new filters are used to construct the tuple space.
The length distribution of the new filters and their markers from
Fig. 4(b) is shown in Fig. 8. For the prefixes used in the indus-
trial filter database, the maximal number of prefix nesting is 2.

TABLE I
ENCODED PREFIXES FOR DIFFERENT SCHEMES

Fig. 8. Length distribution of the encoded filters and markers.

Hence, the number of distinct lengths in both dimensions is 3.
The encoded filters only occupy seven tuples, rather than 46 with
the original filters. The markers are inserted into only four tuples
which, in turn, reduce the required storage dramatically. Also,
performing a rectangle search in the encoded filters is enhanced
since the number of rows and columns are lessened.

A. Filter Rephrasing Algorithm

The procedure of filter rephrasing consists of two parts: “ID
assignment” and “prefix encoding.” A simple “ID assignment”
procedure starts from dividing the referred prefixes into mul-
tiple bitstreams according to their nested prefixes. Then, the
number of distinct “Level I” bitstreams is calculated and a
new ID bitstream whose length is is assigned. Next,
the bitstreams in “Level II” are considered. Unlike the “Level I”
bitstreams, the “Level II” bitstreams are grouped according to
their directly engaged bitstreams. The number of the bitstreams
in the largest group is set as , and a new ID with length

is assigned to each “Level II” bitstream. Note that
the bitstreams in different groups might be assigned to the same
ID, but they will not cause ambiguous encoding since their en-
gaged bitstreams are distinct. The procedure is repeated until
all bitstreams are assigned to new IDs. The “prefix encoding”
then rephrases the prefixes by replacing their bitstreams with
new IDs. After that, the new filters are generated by renewing
the prefixes with rephrased ones, and the precomputation of the
rectangle search constructs the searchable data structure based
on the new filters. We present the detailed algorithm based on
the binary tree in Fig. 9. Since each node is traversed exactly
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Fig. 9. ID assignment algorithm.

once, the time complexity for ID assignment is . In ad-
dition, each prefix encoding is performed by traversing the bi-
nary tree from root to the node of the encoded prefix and con-
catenating the IDs along the path. Hence, the time complexity
is also .

B. Search Procedure and Implementation

To search for the encoded filters, the source/destination ad-
dresses of the incoming packet must be encoded by performing
1-D BMP lookups upon the searchable data structure of the orig-
inal prefixes. The result of each lookup is the encoded prefix.
The rectangle search is then performed upon the encoded pre-
fixes. Although the extra lookups are required, its cost is low.
As summarized in Section II, numerous schemes use fast 1-D
lookups to conduct the multidimensional search in packet clas-
sification [2], [3], [9], [10], [13]. Furthermore, the required en-
tries for 1-D lookups are much fewer than filters because each
prefix is usually used by various filters [11]. The fast 1-D lookup
algorithm proposed in the previous schemes can be applied to
provide good performance, such as [18], [19], and [30]. For IPv6
scalability, we adopt the binary search on hash tables, which can
accomplish each lookup within five hash accesses for IPv4 and
seven for IPv6 [18].

The proposed scheme can be implemented with software
or hardware. With software implementation, the number of
memory accesses is defined as

Memory Accesses access

access

encoded filter access (1)

where and are the number of
memory accesses for the BMP lookup and rectangle search,
respectively. Typically, each BMP lookup and rectangle search
need [18] and hash accesses [6], where is
the maximal number of prefix nesting. The throughput of the
packet classification can be further improved by pipelining all

hash accesses. With a proper selection of hash function [31], it
is possible to allow a speed of one lookup per memory access
at the cost of possibly increased complexity.

Note that the generated entries in the rectangle search only
ties to the number of occupied columns in the tuple space.
Therefore, a heuristic can select the field with more distinct
prefix lengths as the horizontal axis in tuple space and perform
prefix encoding only on this field. Since only one field is
encoded, only one BMP lookup is required. The number of
generated markers is the same as our original design; neverthe-
less, the number of tuples would be increased and the speed
improvement is lessened. Another heuristic is to choose the
field of destination prefix as the horizontal axis of the tuple
space and combine the BMP lookup with IP address lookup,
which is performed for each incoming packet, to minimize the
overhead of the BMP lookup.

C. Handling Dynamic Filters

To address the problem of filter updates, we classify the filter
updates into three categories: priority/action change, insertion,
and deletion. Since each priority/action change can be carried
out by filter deletion and filter insertion, we only describe the
procedures for the latter two updates.

We begin with the procedure of filter insertion. There are two
reasons to make the insertion of a filter into the data structure of
the proposed scheme difficult. The first is the complex precom-
putation for both new and existing markers. For each inserted
filter, at most new markers are generated and each marker
must precompute the best-matching filter on the same column
of the tuple space, as depicted in Fig. 1. In addition, the inserted
filter might cover all existing filters in the worst case; thus, the
best-matching filter carried in at most existing markers on
the same column must be revised. Second, the prefixes in the in-
serted filter may not exist in the original filter database; thus, a
new ID must be assigned to the new prefix. In the worst case, the
new prefixes would change the prefix nesting and result in re-en-
coding all prefixes as well as reconstructing the data structure.

Since inserting a filter into the tuple pruning search is simple
[6], we propose a hybrid approach by maintaining two tuple
spaces—one for the encoded filters and the other for the orig-
inal filters. The tuple space of the encoded filters is searched by
rectangle search and the other is searched by the tuple pruning
search.

Initially, the tuple pruning search stores all filters as the rec-
tangle search does; however, the new filter is only inserted into
the data structure of the tuple pruning search without affecting
that of the rectangle search. Each prefix in the pruning table
maintains two location lists, one for all filters and one for the
new filters. The location of the new filter in the tuple space is
inserted into both location lists. For each packet classification,
the rectangle search and tuple pruning search are performed si-
multaneously, whereas the tuple pruning search only considers
the location lists of the new filters. Either of the results with a
lower cost is activated, as depicted in Fig. 10. Once the lookup
performance of tuple pruning search degrades to a predefined
threshold, the new filters are merged into a rectangle search and
trigger reconstruction. During the period of reconstruction, the
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Fig. 10. Combining the rectangle search with the tuple pruning search to sup-
port filter updates.

tuple pruning search looks up all filters by referring to the loca-
tion lists of all filters to achieve continuous packet forwarding.

During reconstruction for the rectangle search, the location
lists of the new filters in tuple pruning search should be emp-
tied out. However, we can avoid this procedure by recording
the timestamp of reconstruction in each location list of new fil-
ters. Once the location list of the new filters is fetched for either
searching or inserting filters, its timestamp is checked and the
list, whose timestamp is older than the timestamp of the most
recent reconstruction, will be dropped.

In the following, we present the procedure of filter dele-
tion. To support deletion, the precomputation of the least-cost
matching filter for each filter and marker is modified to “pre-
compute and record all matching filters.” The matching filters
are listed according to their cost in ascending order. Also,
the deleted filter with its precomputed best matching filter is
inserted into the tuple pruning search as a new filter. For an
incoming address pair, which is matched to the deleted filter,
the tuple pruning search will retrieve the deleted filter and its
best matching filter, which also matches the incoming address
pair. Then, the rectangle search would notify that a possible
match of deleted filter exists. Consequently, whenever the
deleted filter is found as the first precomputed matching filter
in any traversed marker and filter, it is removed and the its
following precomputed filter is fetched. However, if the deleted
filter is not the first precomputed filter, it would be reserved in
the rectangle search.

Consider the example in Fig. 11. The precomputation for
filter and marker is modified by adding filter for pos-
sible matching. Once filter is deleted, filter and its best
matching filter are inserted into the tuple pruning search. For
an address pair , both filters and are retrieved
in the tuple pruning search, and filter is recognized as deleted.
In the rectangle search, the marker will be retrieved, and its
best matching filter is the deleted filter . Therefore, the filter

is removed from the list of to retrieve the next matching
filter . As a result, the rectangle search can guarantee that the
matching filter always exists.

Fig. 11. Example of filter deletion.

In [16], the authors have reported that the tuple pruning search
could handle each filter insertion within 100 s. Therefore, our
hybrid solution could handle 100-K filter insertion/deletion per
second. Also, our source code can reconstruct the data structure
of the proposed scheme for 100-K filters within 2 s by a generic
platform equipped with a 2-GHz CPU. Therefore, it is possible
for the proposed scheme to handle frequent updates without sig-
nificantly decreasing the performance.

V. PERFORMANCE EVALUATION

In this section, we compare the proposed scheme with the
existing schemes. The performance metrics include the required
storage—the numbers of memory accesses in average and in
the worst case. Since the proposed scheme must perform BMP
lookups, the memory accesses and required storage of the 1-D
searches are counted. In the first part, the proposed scheme is
compared with the rectangle search to show the effectiveness
of filter encoding. In the second part, we further demonstrate
the performance of the proposed scheme by comparing it
with other existing schemes. The generated filter databases
and source codes are published in the following web site:
http://www.csie.nctu.edu.tw/~leecl/pclass.

A. Comparison With Rectangle Search

What filter encoding can achieve in performance is best illus-
trated through the comparison with the rectangle search. We use
the industrial and synthetic filter databases to investigate their
performance. The industrial filter databases are downloaded
from the Abilene Observatory Project [32], which supports the
collection and dissemination of network data associated with
the Abilene Network [33]. The observatory serves network
engineers by providing a view of the operational data associated
with a large-scale network. Ten databases are collected, and the
number of filters varies from 331 to 3028. The synthetic filter
databases are adopted to stress the scalability of the proposed
scheme. We repeat how Baboescu and Varghese generated their
databases in [3]. Twelve (source prefix, destination prefix) syn-
thetic filter databases are generated by randomly sampling the
routing prefixes in a routing table downloaded from NLANR
[34]. The minimal filter database contains 1-K filters, and the
sizes of the databases increase to 5 K, 10 K, 20 K, 30 K, and
so on, and up to 100-K filters.

The required tuples and entries based on the industrial filter
databases are listed in Table II. The fields, hash table, and hash
entry present the required storage for 1-D BMP lookups. The oc-
cupied tuples of the proposed scheme are reduced dramatically
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TABLE II
COMPARING STORAGE

Fig. 12. Performance comparisons for the industrial filter databases. (a) Required storage. (b) Number of tuples. (c) Average performance. (d) Worst
performance.

due to the elimination of rows and columns by filter rephrasing.
Also, the rectangle search requires markers as many as five to
seven times that of filters, whereas the proposed scheme only
needs a maximum 17% of the filters. Even when the storage for
BMP lookups is counted, the proposed scheme still outperforms
the rectangle search significantly.

The required storage and tuples are also illustrated in
Fig. 12(a) and (b). In the rectangle search, the number of
required entries is increased along with the number of filters.
The curve of the rectangle search fluctuates due to the charac-
teristics of different filter databases. The number of filters and
markers of the proposed scheme is smaller than that of the rec-
tangle search, mainly because filter rephrasing eliminates the
distinct lengths of filters and leads to fewer entries. Also, the

increasing rate for the proposed scheme is moderate; it reflects
the fact that the number of prefix nesting in each dimension
is less than that of distinct lengths. The findings demonstrate
that filter rephrasing supports large filter databases since the
number of generated markers is proportional to the number of
filters instead of the distinct lengths.

Fig. 12(c) and (d) shows the search performance in av-
erage and in the worst case. For both schemes, Fig. 12(b)
depicts that the tuple distributions highly relate to the
lookup performance. However, the performance of the pro-
posed scheme is relatively stable. The enhancement comes
from the stable distribution of the nested prefixes. Through
encoding filters, the native rectangle search is reformed to
a near-optimal level.
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Fig. 13. Filter length distribution of synthetic filter databases (100-K entries). (a) Original filters. (b) Filters and markers. (c) Encoded filters, markers, and 1-D
hash entries.

TABLE III
COMPARING STORAGE

Next, we evaluate performance with the synthetic filter
databases. Fig. 13 shows the tuple distribution for the
100-K-entry filter databases. Most filters are in the region
from the upper left tuple (16,16) to the bottom right tuple
(24,24) because most routing prefixes have a length of 16–24 b
[18], as shown in Fig. 13(a). In Fig. 13(c), the entry distribution
of the 1-D hash entries is illustrated in the bricks at the leftmost
and upmost margins. Also, due to the volume of prefixes, the
length of the encoded prefixes is longer than 32 b. Hence, we
scale the length of the encoded filters into 32 b to simplify
the representation. While the rectangle search enlarges the
number of occupied tuples due to the large amount of markers
in Fig. 13(b), the proposed scheme avoids such unnecessary
tuples since the length combinations of the encoded filters are
more regular. Also, memory management can be simplified
with fewer tuples.

We present the required storage and entries in Table III.
The proposed scheme effectively reduces the occupied tuples
and generated markers by eliminating the number of rows and
columns. For the synthetic databases, the proposed scheme
generates the number of markers that are only 40% of the
filters, while the rectangle search requires markers that are 14
times the filters. The number of the required markers in the
rectangle search is greatly increased as well as the number of
distinct lengths. Nevertheless, the proposed scheme is only
affected by the number of prefix nesting and requires only less
than one-tenth markers as in the rectangle search.

In Fig. 14, the comprehensive results are presented.
Fig. 14(a) and (b) presents the required storage and tuples.
Since the lengths of the random generated filters are uni-
formly distributed, all of the curves are smooth. For the native
rectangle search, the number of required entries is propor-
tional to both the number of filters and the number of distinct
prefix lengths. The proposed scheme removes the affection
of prefix lengths by the prefix nesting counts and features
low storage requirements. The search performance in average
and the worst cases are illustrated in Fig. 14(c) and (d),
respectively. As the size of databases reaches a certain value,
the memory accesses of the rectangle search and the pro-
posed scheme would enter a steady state, which can be no
longer influenced by the number of filters. This is also a
well-known advantage of the tuple-based algorithms. The
proposed scheme benefits both from the superiority of the
rectangle search and further achieves better performance in
both average and worst cases.

For IPv6 packet classification, the search speed of the
rectangle search could be considerably degraded with an in-
creased number of distinct prefix lengths, which only affects
the performance of 1-D lookups for the proposed scheme.
Therefore, we presume that the proposed scheme is a com-
pelling solution for IPv6 packet classification by making a
reasonable assumption that the prefix nesting property will
continue to hold with IPv6 [21].
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Fig. 14. Performance comparisons for industrial filter databases. (a) Required storage. (b) Number of tuples. (c) Average performance. (d) Worst
performance.

B. Comparison of Other Existing Schemes

In the following experiments, we evaluate the performance
against the notable existing schemes, including Grid of Tries
[9], ABV [3], and HiCuts [13]. The source code of Grid of Tries
is available in our website, and the codes of ABV and HiCuts
are available in authors’ web sites [35], [36]. For 2-D filter
databases, the methodology between HiCuts and HyperCuts
is quite similar [17]; thus, the experimental results of HiCuts
could also reflect the performance of HyperCuts. The tested
filter databases are synthesized by a public tool, ClassBench
[28]. The tool includes 12 seed files derived from real filter sets
to reflect the characteristics of filters for different applications,
including the access control list, firewall, and IP chain. For
each parameter file, we generate a filter set with 50-K distinct
2-D filters. In addition, the filter sets are randomly rearranged
to represent their priority.

As shown in Table IV, the proposed scheme usually features
the least storage. The performance of Grid of Tries ties to
the maximal prefix length of each field. Since the acl and ipc
seeds frequently generate 32-b prefixes in the filters, the search
performance and required storage also degrade for these filters’
databases. The ABV scheme requires the most storage for
databases generated by acl and ipc seeds. This is because the
acl and ipc seeds generate the most distinct prefixes in both
fields and cause a significant increase in the numbers of bit
vectors. The average search performance can be improved by

implementing filter rearrangement [3], which is not provided
in the source code. However, the required storage of ABV
makes it unsuitable for some applications, which might specify
more distinct prefixes. The performance of HiCuts fluctuates
for different types of seeds. For example, HiCuts results in
minimal storage for acl1 and acl5 databases, but it also suffers
from large storage for firewall databases. Therefore, the HiCuts
scheme may require more efforts on adjusting parameters
(e.g., space factor) (spfac) and bucket size (binth) [13]. Com-
pared to existing schemes, the proposed scheme could achieve
good performance in both speed and storage without complex
computation.

VI. CONCLUSION

Packet classification is a highly effective primitive process
that is associated with a policy-defined context to activate dif-
ferentiated services. This study investigates the properties of the
filters and proposes “filter rephrasing” to improve performance
and storage of the rectangle search algorithm. The idea is to re-
duce the length combinations of the filters by encoding their re-
ferred prefixes. By regulating the lengths of the prefixes, the re-
quired tuples and entries for the rectangle search can be reduced
significantly. Despite the requirement of two 1-D BMP lookups,
we have shown that the cost is low with respect to the advan-
tages gained in performance enhancement. A solution for sup-
porting frequent filter updates by combining the tuple pruning



916 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 15, NO. 4, AUGUST 2007

TABLE IV
PERFORMANCE COMPARISON WITH THE EXISTING SCHEMES

search and rectangle search is presented. The experimental re-
sults obtained for industrial and synthetic databases show that
the lookup speed is increased by a factor of two while the re-
quired storage is reduced to only about one-fifth. Comparing
the existing schemes further demonstrates the effectiveness of
the proposed scheme. Since the performance of the proposed
scheme is almost irrelative to prefix length, it might be a feasible
solution for IPv6 packet classification. For all of these reasons,
the proposed scheme based on filter encoding seems to be a scal-
able solution for the large filter databases of the next-generation
applications. The idea of encoding filters might be applied to
other algorithmic schemes. Yet, the tradeoff between the per-
formance improvements and the extra 1-D lookups need to be
further justified in the future.
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