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Abstract—Ternary content-addressable memories (TCAMs)
may be used to obtain a simple and very fast implementation
of a router’s forwarding engine. The applicability of TCAMs
is, however, limited by their size and high power requirement.
Zane et al. [1] proposed a method and associated algorithms to
reduce the power needed to search a forwarding table using a
TCAM. We improve on both the algorithms proposed by them.
Additionally, we show how to couple TCAMs and high bandwidth
SRAMs so as to overcome both the power and size limitations
of a pure TCAM forwarding engine.

I. INTRODUCTION

Each rule of a packet forwarding table comprises a prefix
and a next hop. Packet forwarding is done by determining the
next hop associated with the longest prefix in the forwarding
table that matches the destination address of the packet to
be forwarded. Several solutions for very high-speed longest
prefix matching have been proposed (see [2], [3] for surveys).
Among the many proposed solutions to the packet forwarding
problem, those employing TCAMs are the simplest and fastest.
A TCAM is a fully associative memory in which each bit
may be in one of 3 states–0, 1 and don’t care. By loading the
forwarding table prefixes into the TCAM in decreasing order
of prefix length (ties are broken arbitrarily), the TCAM index
of the longest matching prefix for any destination address may
be determined in one TCAM cycle. Using this index, we can
access the word of SRAM where the next hop associated with
the matching prefix is stored and complete the forwarding task.
So, the simplest TCAM solution to packet forwarding requires
1 TCAM search and 1 SRAM access to forward a packet. Two
drawbacks of this TCAM solution are (a) an IPV4 forwarding
table with n prefixes requires a TCAM that has 32n bits and
(b) since each lookup searches the entire 32n-bit TCAM, the
power consumption is that for a TCAM of this size.

Several strategies - e.g., [4], [1], [5], [6] - have been
proposed to reduce TCAM power significantly by capitalizing
on a feature in contemporary TCAMs that permits one to
select a portion of the entire TCAM for search. The power
consumption now corresponds to that for a TCAM whose size
is that of the portion that is searched. Using the example of [1],
suppose we have a TCAM whose capacity is 512K prefixes
and that the TCAM has a block size of 6K. So, the total
number of blocks is 64. The portion of the total TCAM that
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is to be searched is specified using a 64-bit vector. Each bit of
this vector corresponds to a block. The 1s in this vector define
the portion (subtable) of the TCAM that is to be searched and
the power required to search a TCAM subtable is proportional
to the subtable size. While it is not required that a subtable
be comprised of contiguous TCAM blocks, we assume, in this
paper, that this is the case. We use the term bucket to refer to
a set of contiguous blocks. Although, in the example of [1]
the size of a bucket is a multiple of 8K prefixes, we assume
that bucket sizes are required only to be integer.

Zane et al. [1] partition the forwarding table into smaller
subtables (actually, buckets) so that each lookup requires 2
searches of smaller TCAMs. Their method, however, increases
the total TCAM memory that is required. Lu [6] has pro-
posed an improved table partitioning algorithm for TCAMs.
Akhbarizadeh et al. [7] propose an alternative TCAM archi-
tecture that employs multiple TCAMs and multiple TCAM
selectors. The routing table is distributed over the multiple
TCAMs, the selectors decide which TCAM is to be searched.
The architecture of [7] is able to determine the next-hop
for several packets in parallel and so achieves processing
rates higher than those achievable by using a single pipeline
architecture such as the one proposed by Zane et al. [1]. The
proposal of Zane et al. [1], however, has the advantage that
it can be implemented a commercial network processor board
equipped with a TCAM and an SRAM (for example, Intel’s
IXP 2800 network processor supports a TCAM and up to 4
SRAMs, no customized hardware support is required) whereas
that of Akhbarizadeh et al. [7] cannot.

In this paper, we improve upon the router-table partitioning
algorithms of [1] and [6]. These algorithms may be used to
partition router tables into fixed size blocks as is required
by the architecture of [7] as well. Additionally, we show
how to couple TCAMs and wide SRAMs so as to search
forwarding tables whose size is much larger than the TCAM
size with no loss in time and with power reduction. All
of our algorithms and techniques are implementable using a
commercial network processor board equipped with a TCAM
and multiple SRAMs. We begin in Section II by reviewing
related work. In Section III we develop an algorithm to do
optimal subtree splits and in Section IV we propose a heuristic
for post order split. Methods to efficiently search forwarding
tables whose size is larger than the TCAM size are proposed in
Sections V and VI. An experimental evaluation of the proposed
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methods is done in Section VII.

II. BACKGROUND AND RELATED WORK

Prefixes Next Hop
P1 * H1
P2 0* H2
P3 00* H3
P4 01* H4
P5 11* H5
P6 000* H6
P7 011* H7

Fig. 1. An example 7-prefix forwarding table

Figure 1 gives an example 7-prefix forwarding table. Fig-
ure 2 shows a simple TCAM organization for this forwarding
table. In this organization, the 7 prefixes are stored in the
TCAM in decreasing order of prefix length and the next hops
are stored in corresponding words of an SRAM. We assume
that the TCAM and SRAM words are indexed beginning at
0. Suppose that we have a packet whose destination address
begins with 010. The longest matching prefix is P4. A TCAM
search for the destination address returns the TCAM index
3 for the longest matching prefix. Accessing word 3 of the
SRAM yields H4 as the next hop for the subject packet.

To reduce the power consumed by the TCAM search, Zane
et al. [1] propose partitioning the TCAM into an index TCAM
(ITCAM) and a data TCAM (DTCAM). The DTCAM is
comprised of several buckets of prefixes. Each lookup requires
a search of the ITCAM, a search of 1 bucket of the DTCAM,
and 2 SRAM accesses. Zane et al. [1] propose two methods–
subtree split and postorder split–to partition the forwarding
table prefixes into DTCAM buckets. Both methods start with
the 1-bit trie representation of the prefixes in the forwarding
table. Figure 3 shows the 1-bit trie for the 7-prefix example
of Figure 1.

In subtree split, the prefixes are partitioned into variable-
size buckets. All but one of the buckets contain between �b/2�
and b prefixes, where b > 1 is a specified bound on the bucket

11*

011*

000*

01*

00*

0*

*

H7

H6

H5

H4

H3

H2

H1

TCAM SRAM

Fig. 2. Simple TCAM organization for Figure 1
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Fig. 3. 1-bit trie for 7-prefix example of Figure 1
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Fig. 4. 2-level TCAM organization using subtree split

size. The remaining bucket contains between 1 and b prefixes.
The partitioning is accomplished by performing a postorder
traversal of the 1-bit trie. During the visit operation, the subtree
rooted at the visited node v is carved out if it contains at
least �b/2� prefixes and if the subtree rooted at its parent (if
any) contains more than b prefixes. The prefixes in the carved
out subtree are mapped into a DTCAM bucket in decreasing
order of length. A covering prefix 1 (if needed) is added to
the DTCAM bucket. The covering prefix is the prefix in the
nearest ancestor of v that contains a prefix. The path from
the root to v defines a prefix that is added to the ITCAM.
ITCAM prefixes are stored in the order they are generated by
the postorder traversal. Figure 4 shows the ITCAM, DTCAM
and the 2 SRAMs (ISRAM and DSRAM) for our 7-prefix
example. For each ITCAM prefix, the corresponding ISRAM
entry points to the start of the DTCAM bucket that generated
that prefix and for each DTCAM prefix, the corresponding
DSRAM entry is the next hop for that prefix. Since DTCAM
buckets are of variable size, ISRAM entries will need also
to store the size of the bucket pointed to. To do a lookup,
the ITCAM is searched for the first prefix that matches the
destination address. The corresponding ISRAM entry points to
the DTCAM bucket that is to be searched next. So, by doing
2 TCAM searches and 2 SRAM accesses, we can determine
the next hop for the packet.

For a forwarding table with n prefixes, the number of
ITCAM entries is at most �2n/b� and each bucket has at
most b + 1 prefixes (including the covering prefix). Assuming
that TCAM power consumption is roughly linear in the size
of the TCAM being searched, the TCAM power requirement
is approximately �2n/b� + b + 1, which is minimized when
b =

√
2n. The minimum power required is 2

√
2n + 1. At this

minimum, the total TCAM memory required is that for at most
2
√

2n+n prefixes (including covering prefixes; each DTCAM
bucket has at most 1 covering prefix). This compares with a
power and memory requirement of n for the simple TCAM
solution of Figure 2. When n = 8 ∗ 104, for example, the
minimum power required by the 2-level TCAM solution of

1The covering prefix for v is the longest-length forwarding table prefix
that matches all destination addresses of the form P∗, where P is the prefix
defined by the path from the root of the 1-bit trie to v. Under the assumption
that ∗ is a forwarding table prefix, every v has a well-defined covering prefix.
We say that the DTCAM bucket that results when the subtree rooted at v is
carved out of T needs a covering prefix if there is a destination addresses
d of the form P∗ for which the ITCAM lookup is followed by a lookup in
this DTCAM bucket and this DTCAM bucket has no matching prefix for d
(equivalently, if there is no prefix on at least one downward path from v in
the 1-bit trie).
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Fig. 5. 2-level TCAM organization using postorder split

Figure 4 is 801 and TCAM memory for 80,800 prefixes is
required. In contrast, the simple solution of Figure 2 has a
power and memory requirement of 80,000.

All but at most one of the buckets generated by postorder
split [1], contain b forwarding table prefixes (plus up to W
covering prefixes2, where W is the length of the longest
forwarding-table prefix); the remaining bucket has fewer than
b forwarding-table prefixes (plus up to W covering prefixes).
All buckets may be padded with null prefixes so that, for all
practical purposes, they have the same size. The partitioning
is done using a postorder traversal as in the case of subtree
splitting. However, now, we may pack the prefixes of several
subtrees into the same bucket so as to fill each bucket.
Consequently, the ITCAM may have several prefixes for each
DTCAM bucket; one prefix for each subtree that is packed
into the bucket. Note also that a bucket may contain up to 1
covering prefix for each subtree packed into it. Figure 5 shows
the ITCAM, ISRAM, DTCAM, and DSRAM configurations
for the 7-prefix example of Figure 1.

Zane et al. [1] have shown that the size of the ITCAM
is at most (W + 1) ∗ �n/b� and a bucket may have up
to b + W prefixes (including covering prefixes). Lu [6] has
developed an alternative algorithm to partition into equal-size
buckets. His algorithm, results in an ITCAM that has at most
�n/b log2 b� ITCAM prefixes and each DTCAM bucket has
at most b + �log2 b� prefixes (including covering prefixes);
each bucket except possibly one has exactly b forwarding-
table prefixes (plus up to �log2 b� covering prefixes). Since
log2 b < W , in practice, Lu’s [6] algorithm results in smaller
ITCAMs as well as reduced total space for the DTCAM.
When using the partitioning algorithm of Lu [6], power is
minimized when b ≈ √

n. At this value of b, the total TCAM
memory required is that for at most n+1.5

√
n log2 n prefixes

(including covering prefixes) and the TCAM power required
is

√
n(0.5 log2 n + 1) + 0.5 log2 n.

In a 1-1 2-level TCAM, two levels of TCAM (ITCAM and
DTCAM) are employed and each ITCAM prefix corresponds
to a different DTCAM bucket. In a many-1 2-level TCAM
several ITCAM prefixes may correspond to the same DTCAM
bucket. Subtree splitting results in a 1-1 2-level TCAM while
postorder splitting results in a many-1 2-level TCAM. In
either case, a lookup requires 2 TCAM searches and 2 SRAM
accesses.

2W ≤ 32 for IPv4

b−1

b/2

root node

b/2

b/2

b/2

(a)

b−1

b/2

root node

b/2

b/2

b/2

(b)

Fig. 6. Bad example for subtree split of [1]

III. SUBTREE SPLIT

The subtree split algorithm of [1] is suboptimal; that is it
does not partition a 1-bit trie into the smallest number of
subtrees that have at most b prefixes each. In fact, the algorithm
of [1] may generate almost twice the optimal number of
subtrees and hence buckets and ITCAM prefixes. To see this
consider the 1-bit trie of Figure 6 (a). In this, b is even, the
rightmost subtrie has b−1 prefixes and each of the left subtries
has b/2 prefixes. Let h−1 be the total number of left subtries
(i.e., subtries with b/2 prefixes each). Figure 6 (a) shows the
bucketing obtained by the algorithm of [1]. One bucket has
b − 1 prefixes and the remainder have b/2 prefixes each. The
total number of buckets (and hence ITCAM prefixes) is h.
Figure 6 (b) shows an optimal partitioning into a 1-1 2-level
TCAM. The number of buckets is h/2 + 1. Note that since
each bucket has at least �b/2�, prefixes, 2 is an upper bound
on the ratio of the number of buckets generated by the subtree
split algorithm of [1] and the optimal number of buckets.

Theorem 1: Let m be the number of buckets (and hence
ITCAM prefixes) generated by the subtree split algorithm of
[1]. Let m∗ be the number of buckets in an optimal subtree
split. m/m∗ < 2 and this bound is best possible.

We may construct optimal subtree splits using the visit
algorithm of Figure 7 in conjunction with a postorder traversal
of the 1-bit trie T for the forwarding table. In the visit
algorithm of Figure 7, b is the maximum number of prefixes
(including the covering prefix (if any)) that may be stored in
a DTCAM bucket3, count(x) is the number of prefixes stored
in the subtree4, ST (x), of T that is rooted at node x of T and
split(x) removes ST (x) from T . When ST (x) is removed
(split, carved) from T , the prefixes stored in ST (x) together
with a covering prefix for ST (x) (if needed) are stored in a
bucket of the DTCAM and the prefix corresponding to the
path from the root of T to x is added to the ITCAM. Note
that following the execution of split(x), count(r) decreases
as ST (r) has fewer nodes for every r that is an ancestor of x.
Note also that whenever a subtree is split (removed, carved)

3The algorithm is modified easily to the case when b is the maximum
number of forwarding-table prefixes that may be stored in a bucket. This is
the definition of b used in [1].

4Note that nodes of T store only prefixes that are in the forwarding table.
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Algorithm visit(x)
{

if (count(x)==b){
if (x does not require a covering prefix)
split(x);

else {
// x has two children y and z.
if (count(y)>=count(z)) split(y);
else split(z);

}
return;

}
if (count(x)>b){
// x has two children y and z.
if (count(y)>=count(z)) split(y);
else split(z);
recompute count(x);
if (count(x)==b)

split(x); // x contains a prefix
}

}

Fig. 7. Visit function for optimal subtree splitting

from T , the subtree contains at most b prefixes and that when
the subtree contains b prefixes, no covering prefix is needed in
the DTCAM bucket that results. Hence, no bucket is assigned
more than b prefixes (including the covering prefix (if any)).
Let optSplit denote the subtree split algorithm that results
from using the visit algorithm of Figure 7 in conjunction with
a postorder traversal of the 1-bit trie for a forwarding table.

Theorem 2: Algorithm optSplit minimizes the number of
DTCAM buckets and hence minimizes the number of ITCAM
prefixes.

Proof: See [8]
From Theorems 1 and 2, it follows that algorithm optSplit

results in 1-1 2-level TCAMs with the fewest number of
ITCAM prefixes and up to half as many ITCAM prefixes
as in the ITCAMs resulting from the algorithm of [1]. By
deferring the computation of a node’s count until it is needed,
the complexity of optSplit becomes O(nW ), where n is the
number of prefixes in the forwarding table and W is the length
of the longest prefix.

The buckets created by optSplit enjoy similar properties as
enjoyed by those created by the subtree split algorithm of [1].
The next two theorems are similar to theorems in [1].

Theorem 3: The number of forwarding-table prefixes (this
count excludes the covering prefix (if any)) in each bucket is
in the range [

⌈
b
2

⌉
,b], except for the last bucket, which contains

between 1 and b forwarding-table prefixes. When covering
prefixes are accounted for, no bucket contains more than b
prefixes.

Proof: Follows directly from the visit algorithm of Fig-
ure 7. Note that the buckets created by the algorithm of [1]
may have up to b + 1 prefixes (including the covering prefix).

Theorem 4: For a forwarding table with n prefixes, the
number of DTCAM buckets generated is in the range
[�n

b �, � 2n
b �].

Proof: Follows from Theorem 3.
Theorem 5: For a forwarding table with n prefixes, the

power needed is that for an ITCAM search of at most � 2n
b �

prefixes and a DTCAM search of at most b prefixes.
Proof: To search a 1-1 2-level TCAM, we search an

ITCAM, a DTCAM, and also make 2 SRAM accesses. We
may assume that the SRAM power is negligible. The ITCAM
has as many prefixes as the number of DTCAM buckets, which
by Theorem 4 is at most � 2n

b �. Also, no DTCAM bucket has
more than b prefixes.

IV. POSTORDER SPLIT

As defined in [1], a postorder split is required to pack5

exactly b forwarding-table prefixes into a DTCAM bucket (an
unspecified number of covering prefixes may also be packed);
an exception is made for 1 DTCAM bucket, which may
contain up to b forwarding-table prefixes. This requirement on
the number of forwarding-table prefixes per DTCAM bucket
is met by packing several subtries carved from the original
1-bit trie into a single DTCAM bucket. The result is a many-
1 2-level DTCAM. The algorithm of [1] may pack up to W
covering prefixes into a DTCAM bucket while that of [6] packs
up to �log2 b� covering prefixes into a DTCAM bucket. In
both algorithms, each bucket contributes a number of ITCAM
entries equal to the number of carved subtrees packed into it.
In this section, we propose a new algorithm for postorder split.
While the variation in the number of prefixes in a bucket is the
same as for the algorithm of [6] (from b to b + �log2 b�) and
the worst-case number of ITCAM prefixes is the same for both
our algorithm and that of [6], our algorithm generates much
fewer ITCAM prefixes on real-world data sets. We develop
also a variant of our algorithm that has the property that each
DTCAM bucket other than the last one has exactly b prefixes
(including covering prefixes). The last bucket may be packed
with null prefixes to make it the same size as the others. When
we limit each bucket to b forwarding-table prefixes, the total
number of buckets is increased slightly. We use PS1 to refer
to our postorder split algorithm that strictly adheres to the
definition of [1] and we use PS2 to refer to the stated variant.

The strategy in PS1 is to first seed �n/b� DTCAM buckets
with a feasible subtree6 of the 1-bit trie T . The size of a
feasible subtree is the number of forwarding-table prefixes
contained in the nodes of the subtree (this count does not
include any covering prefix that may be needed by the subtree).
The buckets are seeded sequentially with feasible subtrees of
as large a size as possible but not exceeding b. When a feasible
subtree is used to seed a bucket, the feasible subtree is carved
out of T and not available for further carving7. Following the
seeding step, we go through as many rounds of feasible tree
carving and packing as needed to completely carve out T . In

5By packing a subtree into a DTCAM bucket, we mean that the forwarding-
table prefixes in the subtree are placed into the DTCAM bucket.

6A feasible subtree of T is any subtree of T that is the result of any possible
carving sequence performed on T .

7In general, when a feasible subtree is carved from T , we may be left
with many subtrees. The feasible subtree selection process we use, however,
is limited so that a single subtree remains following carving. So, the rest of
our discussion assumes we have only one subtree after carving.
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each round, we select the bucket B with the fewest forwarding-
table prefixes. Let the number of forwarding-table prefixes in
B be s. We carve from the remaining T a feasible subtree of
as large a size as possible but not exceeding b − s and pack
this feasible subtree into B. A detailed description of PS1 and
PS2 appears in [8].

V. SIMPLE TCAM WITH WIDE SRAM

In the simple TCAM organization of Figure 2, each word of
the SRAM is used to store only a next hop. Since a next hop
requires only a small number of bits (e.g., 10 bits are sufficient
when the number of different next hops is up to 1024) and a
word of SRAM is typically quite large (e.g., using a QDRII
SRAM, we can access 72 bits (dual burst) or 144 bits (quad
burst) at a time), the simple TCAM organization of Figure 2
does not optimize SRAM usage. By using each word of the
SRAM to store a subtree of the 1-bit trie of a forwarding
table, we can reduce the size of the required TCAM and hence
reduce the power required for table lookup. The lookup time
is not significantly affected as a lookup still requires 1 TCAM
search (the TCAM to be searched is smaller and so the search
requires less power but otherwise takes the same amount of
time) and 1 SRAM access and search (the SRAM access takes
the same amount of time regardless of whether a single hop
or a subtree of the 1-bit trie is accessed; although the time to
process the accessed SRAM word increases, the total SRAM
time is dominated by the access time). To store a 1-bit subtree
in an SRAM word, we use the suffix-node structure used by
us in [9] to compactly store small subtrees of a 1-bit trie.
Figure 8 shows this structure.

of  S1Suffix ... len(Sk) Sk of  Sk
next hopnext hop 

S1len(S1)Count unused

Fig. 8. Suffix node format [9]

Consider a subtree of a 1-bit trie T . Let N be the root of
the subtree and let Q(N) be the prefix defined by the path
from the root of T to N . Let P1 · · ·Pk be the prefixes in the
subtree plus the covering prefix for N (if needed). The suffix
node for N will store a suffix count of k and for each prefix
Pi, it will store the suffix Si obtained by removing the first
|Q(N)| bits from Pi, the length |Si| = |Pi| − |Q(N)| of this
suffix (the covering prefix (if any) is an exception, its suffix is
∗ and the suffix length is 0) and the next hop associated with
the suffix (this is the same as the next hop associated with the
prefix Pi).

Let u be the number of bits allocated to the suffix count
field of a suffix node and let v be the sum of the number
of bits allocated to a length field and a next-hop field. Let
len(Si) be the length of the suffix Si. The space needed by
the suffix node fields for S1 · · ·Sk is u + kv +

∑
len(Si)

bits. Typically, we fix the size of a suffix node to equal the
bandwidth (or word size) of the SRAM in use8 and require
that u+kv +

∑
len(Si) be less than or equal to this quantity.

8In some architectures, for example, it is possible to simultaneously access
1 SRAM word from each of q SRAMs. In this case, we may use a suffix
node size that q times that of a single SRAM word.

In a simple TCAM with wide SRAM (referred to as STW),
we carve out subtrees of the 1-bit trie for a forwarding table;
each subtree is mapped into a suffix node as described above
(this of course limits the size of the subtree that may be
carved); and the Q(N)s are placed into a TCAM and the suffix
nodes are placed into an SRAM in decreasing order of Q(N)
length.

As an example, consider the 7-prefix forwarding table of
Figure 1. Suppose that a suffix node is 32 bits long (equiva-
lently, the bandwidth of the SRAM is 32 bits). We may use 2
bits for the suffix count field (this allows up to 4 suffixes in a
node as the count must be more than 0), 2 bits for the suffix
length field (permitting suffixes of length up to 3), and 12 bits
for a next hop (permitting up to 4096 different next hops). With
this bit allocation, a suffix node may store up to 2 suffixes.
Figure 9 (a) shows a carving of the 1-bit trie (Figure 3) for our
7-prefix example. This carving has the property that no subtree
needs a covering prefix and each subtree may be stored in a
suffix node using the stated format. Figure 9 (b) shows the
STW representation for this carving.

10
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1

P1

P2

P6 P7

1

P5P4P3
10 H2 01 1 H400

00 H1 10 11 H510

10 00 01 0 H6H3

32 bits

TCAM

00*

0*

*

H701 00

1−bit Trie SRAM

011*

Fig. 9. Simple TCAM with SRAM (STW) for the prefix set of Figure 1

To search for the longest matching prefix (actually the next
hop associated with this prefix) for the destination address d,
we find first the TCAM index of the longest matching Q(N) in
the TCAM. This index tells us which SRAM word to search.
The SRAM word is then searched for the longest suffix Si
that matches d with the first |Q(N)| bits stripped.

If the average number of prefixes packed into a suffix node
is a1, then the TCAM size is approximately n/a1, where n is
the total number of forwarding-table prefixes. So, the power
needed for a lookup in a forwarding table using an STW is
about 1/a1 that required when the simple TCAM organization
of Figure 2 is used. Equivalently, if we have a TCAM whose
capacity is n prefixes, the STW representation permits us to
handle forwarding tables with up to n ∗ a1 prefixes while
tables with up to only n prefixes may be handled using the
organization of Figure 1; in both cases, the power and lookup
time are about the same.

In the remainder of this section, we propose a heuristic to
carve subtrees from T as well as a dynamic programming
algorithm that does this. The heuristic attempts to minimize
the number of subtrees carved (each subtree must fit in an
SRAM word or suffix node) while the dynamic programming
algorithm guarantees a minimum carving.

A. Carving Heuristic

Let u and v be as above and let w be the size of a suffix
node. For any node x in the 1-bit trie, let ST (x) be the
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subtree rooted at x. Note that ST (x) changes as we carve out
subtrees from T . Let ST (x).numP be the number of prefixes
in ST (x) (the covering prefix (if needed) is excluded) and let
ST (x).numB be the number of bits needed to store the suffix
lengths, suffixes and next hops for these prefixes of ST (x).
Clearly, when x is null, ST (x).numP = ST (x).numB = 0.
When x is not null, let l and r be its two children (either
or both may be null). We obtain the following recurrence for
ST (x).numB.

ST (x).numB = (1)


ST (l).numB + ST (l).numP + ST (r).numB+
ST (r).numP + v x contains a prefix

ST (l).numB + ST (l).numP + ST (r).numB+
ST (r).numP otherwise

To see the correctness of this recurrence, notice that each
prefix in ST (l) and ST (r) has a suffix that is 1 longer in
ST (x) than in ST (l) and ST (r). So, we need ST (l).numB+
ST (l).numP + ST (r).numB + ST (r).numP bits to store
their lengths, suffixes, and next hops. Additionally, when x
contains a prefix, we need v bits to store the length (0) of its
suffix as well as its next hop; no bits are needed for the suffix
itself (as the suffix is ∗ and has length 0).

The size, ST (x).size, of the suffix node needed by ST (x)
is given by

ST (x).size =




ST (x).numB + u no covering prefix
is needed for x

ST (x).numB + u + v otherwise
(2)

The correctness of Equation 2 follows from the observation
that in either case, we need u additional bits for the suffix
count. When a covering prefix is needed, we require also v
bits for the length (which is 0) and next-hop fields for this
covering prefix.

Our carving heuristic performs a postorder traversal of the
1-bit trie T (a detailed development appears in [8]). Whenever
a subtree is split from the 1-bit trie, the prefixes in that subtree
as well as a covering prefix (if needed) are put into a suffix
node and a TCAM entry for this suffix node generated.

The overall complexity of our tree carving heuristic is
O(nW ), where n is the number of prefixes in the forwarding
table and W is the length of the longest prefix.

B. Dynamic Programming Carving Algorithm

Define a partial subtree, PT (N), to be a feasible subtree
of T that is rooted at N . Let opt(N, b, p) be the minimum
number of suffix nodes in any carving of ST (N) under the
following constraints:

1) When all but one of the subtrees represented by the
suffix nodes are carved out of ST (x), we are left with
a partial subtree PT (N). Note that since every suffix
node contains at least 1 forwarding-table prefix, every
carved subtree (other than PT (N)) contains at least 1
forwarding-table prefix.

2) PT (N).numB = b and PT (N).numP = p.

Note that opt(N, b, p) includes the suffix node needed for
PT (N) when p > 0; when p = 0, no suffix node is needed for
PT (n); and opt(N, 0, 0) = ∞ when N contains a forwarding-
table prefix as, in this case, it is not possible to have a
PT (N) that contains no forwarding-table prefixes. We define
opt(N, s, y) = ∞ whenever s < 0 or y < 0.

Let opt(N) be the minimum number of suffix nodes in
any carving of ST (N). We develop recurrence equations from
which opt(root(T )), the minimum number of suffix nodes in
any carving of T , may be computed. In the following, pMax
denotes the maximum number of suffixes that may be packed
into a suffix node (notice that pMax < w/v and is also no
more than the maximum permissible value for suffix count).

Consider an optimal carving of ST (N). If ST (N) needs
no covering prefix, then PT (N) has between 0 and pMax
prefixes. When a covering prefix is needed, PT (N) has
between 1 and pMax − 1 prefixes as we need space in the
corresponding suffix node for the covering prefix. So,

opt(N) =




min0≤b≤w−u,0≤p≤pMax{opt(N, b, p)}
no covering prefix is needed for N

minv≤b≤w−u−v,1≤p≤pMax−1{opt(N, b, p)}
otherwise

(3)
A detailed development of opt(N, b, p) appears in [8].
The time to compute opt(root(T )) is dominated by the time

to compute opt(∗, ∗, ∗), O(w∗pMax). Since O(nWwpMax)
opt(∗, ∗, ∗) are to be computed, the time required to deter-
mine opt(root(T )) is O(nWw2pMax2) = O(nWw4/v2) (as
pMax < w/v).

VI. 2-LEVEL TCAM WITH WIDE SRAM

Using the STW strategy of Section V, the power needed to
search a forwarding table is approximately 1/a1 that required
when the simple TCAM strategy of Figure 2 is used, where a1

is the average number of prefixes packed into a suffix node.
Equivalently, with the same power budget or TCAM capacity,
we can handle forwarding tables that are a1 times as large.
Further gains in power reduction and increase in forwarding-
table size that may be supported can be achieved by adopting
a 2-level TCAM structure (ITCAM and DTCAM). Some of
the possible 2-level TCAM structures that use wide SRAMs
are discussed in the remainder of this section.

A. 1-1 2-Level TCAM

We consider 4 possible organizations for a 1-1 2-level
TCAM with wide SRAM. The first of these (Figure 10) uses
a single wide SRAM. We start with the 1-bit trie for the
forwarding table and create suffix nodes as in Section V. Let
U be the 1-bit trie for the Q(N)s stored in the TCAM for the
corresponding STW organization. We apply our subtree split
algorithm of Section III to carve U into DTCAM buckets of
size b (each bucket has up to b prefixes (including a covering
prefix if needed) of U ). The ITCAM is set up as in Section III.
However, for the DTCAM, we pad DTCAM buckets that have
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fewer than b prefixes with null prefixes. The DTCAM buckets
are placed in the DTCAM in the same order as used for their
corresponding ITCAM indexes; the suffix nodes are placed
into wide SRAM so that the suffix node in the ith SRAM
word corresponds to the prefix in the ith DTCAM position.
The defined 1-1 2-level TCAM organization is referred to as
the 1-12Wa organization. Figure 10 shows the layout for the 7-
prefix forwarding-table example of Figure 1. This layout uses
DTCAM buckets with b = 3.

*

−

−

00*

011*

0*

00 H1 10 11 H510

H2 01 1 H40010

H701 00

00 01 0 H6H310

32 bits

ITCAM

DTCAM DSRAM

0*

*

Fig. 10. 1-12Wa with fixed-size DTCAM buckets

To search for the longest matching prefix of d using the
1-12Wa organization, we first search the ITCAM for the first
ITCAM entry that matches d. From the index of this ITCAM
entry and the DTCAM bucket size b, we compute the location
of the DTCAM bucket that is to be searched. The identified
DTCAM bucket is next searched for the first entry that matches
d. The SRAM word corresponding to this matching entry is
then searched for the longest matching prefix using the search
strategy for a suffix node. In all, 2 TCAM searches and 1
SRAM search are done. The power reduction, relative to the
STW organization, is by a factor equal that provided by the
subtree split scheme of Section III (the reduction factor is
approximately n/(a1b)). Additionally, the number of SRAM
accesses is only 1 vs 2 for the scheme of Section III. However,
1-12Wa may waste up to half of the DTCAM because the
subtree split algorithm of Section III may populate DTCAM
buckets with as few as �b/2� prefixes.

We can overcome the problem of inefficient DTCAM space
utilization by 1-12Wa by introducing an ISRAM (this may
just be a logical partition of the SRAM used for suffix nodes)
as is done in a 2-level TCAM organization that uses subtree
split (Figure 4). Now, following the search of the ITCAM, an
ISRAM access is made to determine the start of the DTCAM
bucket that is to be searched. This variant of 112Wa is referred
to as 1-12Wb. Figure 11 shows the 1-12Wb layout for our 7-
prefix example.

3, 1

011*

0* H2 01 1 H40010

H701 00

32 bits

ISRAM

0, 3

* 00 H1 10 11 H510

00 01 0 H6H310

DTCAM DSRAMITCAM

0*

*

00*

Fig. 11. 1-12Wb with variable-size DTCAM buckets

Two additional organizations, 1-12Wc and 1-12Wd result

from recognizing that the ISRAM could be used to store a
suffix node rather than just a pointer to a DTCAM bucket.
1-12Wc (Figure 12) uses the fixed DTCAM bucket size
organization used by 1-12Wa while 1-12Wd uses the variable
DTCAM bucket organization of 1-12Wb. The suffix nodes
in the ISRAM are constructed from the 1-bit trie V for the
prefixes used in the ITCAM of Figures 10 and 11. This
construction of suffix nodes uses one of the algorithms given
in Section V. The prefixes in the ITCAM for the 1-12Wc
and 1-12Wd organizations correspond to those for its ISRAM
suffix nodes.

To search using 1-12Wc, for example, we first search the
ITCAM for the first entry that matches d, then the correspond-
ing suffix node in the ISRAM is accessed and searched using
the search method for a suffix node. This search yields the
same result as obtained by searching the ITCAM of the 1-
12Wa representation. Since DTCAM buckets are of a fixed
size, using the single pointer stored in the searched ISRAM
suffix node, we can determine which DTCAM bucket to search
next.

...

Suffix
NodesITCAM

DSRAMDTCAM

...

ISRAM

:iS1 ... ptrlen(S1)Suffix Count: k

...

bucket i (for S1)

bucket i+1 (for S2)

(for Sk)

...

...

bucket i+k

S2len(S2)

Fig. 12. 1-12Wc with fixed-size DTCAM buckets

DSRAM

Suffix
Nodes

...

...

ITCAM

...

...

...

bucket j

CountSuffix len(S1) ...

bucket i

S2ptr:i, sizeS1 len(S2) ptr:j, size

ISRAM DTCAM

Fig. 13. 1-2Wd with variable-size DTCAM buckets

B. Many-to-one 2-Level TCAM

The many-1 2-level TCAM with wide memory (M-12W)
uses fixed-size DTCAM buckets that are filled to capacity
with prefixes from U using the postorder split algorithm
of Section IV. Two variants (M-12Wa and M-12Wb, see
Figure 14) are possible depending on whether the ISRAM
simply stores pointers to DTCAM buckets (as in Figure 5) or
it stores suffix nodes formed from V .

The search process for an M-12Wa (b) is the same as that
for a 1-12Wb (d).

VII. EXPERIMENTAL RESULTS

C++ codes for our algorithms were compiled using the
GCC 3.3.5 compiler with optimization level O3 and run on
a 2.80 GHz Pentium 4 PC. We compared the performance
of our algorithms with that of recently published algorithms
[1], [6] to construct low-power 2-level TCAMs for very
large forwarding tables. For our wide SRAM strategies, we
assume a QDRII SRAM (quad burst) that supports the retrieval
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DTCAM

01 00

10 00 01H2 1

00 H1 10 11 H510

10 0100 H3 0 H6

32 bits

0* 1

0 011*

0*

00*

*

H4

*

00* 0

ITCAM ISRAM

DSRAM

H7

(a) M-12Wa

... Suffix
Nodes

SuffixCount len(S1) S1

...

...

ptr
ITCAM

ISRAM DTCAM DSRAM

bucket i

bucket j

...ptrS2len(S2):i :j ptr :j

(b) M-12Wb

Fig. 14. Many-to-one 2-level TCAM with wide SRAM

of 144 bits of data with a single memory access. For all
implementations, we allocate 12 bits for each next hop field.
For the ISRAM in 1-12Wb and 1-12Wd, the size of the pointer
pointing to a DTCAM entry was 16 bits and another 10 bits
were used to specify the actual size of a bucket. For the
ISRAM in 1-12Wc, M-12Wa and M-12Wb, the size of the
pointer pointing to a DTCAM bucket was 10 bits.

A. IPv4 Router Tables

For the IPv4 tests, we used three IPv4 router tables AS1221,
AS3333, and AS4637 that were downloaded from [10]. The
number of prefixes in these router tables is 281516, 211968
and 210119, respectively.

1) 2-level TCAMs Without Wide SRAMs: First, we com-
pared our 1-1 2-level TCAM algorithm optSplit with the
corresponding algorithm subtree-split of [1]. Recall that for
any given DTCAM bucket size, optSplit results in an ITCAM
of minimum size, where size of a TCAM is the number of
TCAM entries. Note also that, for 1-1 2-level TCAMs, the
ITCAM size equals the number of DTCAM buckets. Even
though subtree-split may generate ITCAMs whose size is up to
twice optimal, on our 3 IPv4 test sets, the ITCAMs generated
by subtree-split were only between 1.9% and 3.4% larger than
optimal; the average and standard deviation were 2.9% and
0.1%, respectively.

For many-1 2-level TCAMs, we compared our algo-
rithms PS1 and PS2 with postorder − split of [1] and
triePartition of [6]. Though [6] has established the supe-
riority of triePartition to postorder − split in the worst
case analysis, it didn’t compare them in terms of real-life
router tables. Figure 15 plots the ITCAM size of DTCAM
buckets constructed by these three algorithms for AS1221.
We see that PS2 has the best performance. The ITCAMs
constructed by triePartition are from 80% to 137% larger
than those constructed by PS2 with the average and standard
deviation being 98% and 48%, respectively. The size of the
ITCAMs constructed by PS1 were between 0.94 and 1.22
times that of the ITCAMs constructed by PS2; the average
and standard deviation were 1.08 and 0.16, respectively. Be-
tween triePartition and posorder− split, posorder− split
required 29% to 38% larger ITCAMs with 34% in average

and 3% as the standard deviation. The number of DTCAM
buckets constructed by triePartition was between 4% to
7% more than that constructed by PS2; the average and
standard deviation being 3% and 1%, respectively. PS1 and
triePartion resulted in the same number of DTCAM buckets
as did postorder − split.
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Fig. 15. ITCAM size for many-1 2-level TCAMs for AS1221.

2) 2-level TCAMs With Wide SRAMs: For the benchmark-
ing of 2-level TCAMs with wide SRAMs, we used optSplit
for 1-1 2-level TCAMs and PS2 for many-1 2-level TCAMs.
Our experiments indicated that the carving heuristic and the
dynamic programming carving algorithm of Section V give
similar results. Since the heuristic is considerably faster, we
used the carving heuristic for benchmarking here. Figure 16
plots the total TCAM size (ITCAM plus DTCAM) constructed
by each of our 6 wide-SRAM algorithms (1-12Wa, 1-12Wb,
1-12Wc, 1-12Wd, M-12Wa, and M-12Wb) for AS1221.

The six strategies cluster into two groups 1-12Wa and 1-
12Wc being the first group and the remaining 4 defining
the second group. The TCAM size is about the same for
each strategy in the same group. Strategies in the first group
required between 26% to 35% more TCAM memory than
required by strategies in the second group.
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Fig. 16. Total TCAM size with wide SRAMs for AS1221.

Figure 17 plots the total TCAM power required by our 6
strategies for AS1221. On the power metric, 1-12Wc is the
clear winner.
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Fig. 17. Total TCAM power with wide SRAMs for AS1221.

Figure 18 plots the total SRAM size required by our 6 strate-
gies for AS1221. The strategies cluster into two groups with
strategies in the same group requiring about the same amount
of SRAM. The first group comprises 1-12Wb, 1-12Wd, M-
12Wa, and M-12Wb while the second group comprises 1-
12Wa and 1-12Wc. The SRAM requirement of strategies in
the first group are between 26% to 35% larger than that for
those in the second group; the average being 29%.
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Fig. 18. Total SRAM size with wide SRAMs for AS1221.

3) 2-level TCAMs Without Wide SRAMs Vs. 2-level TCAMs
With Wide SRAMs: Now, we compare the best two algorithms
for 2-level TCAMs without wide SRAMS, optSplit and PS2,
with the two best strategies for 2-level TCAMs with wide
SRAMs, 1-12Wc and M-12Wb. The total TCAM size, total
TCAM power, and total SRAM size for each of 3 data sets
using these four algorithms are reported in [8]. In terms of
total TCAM size and TCAM power, 1-12Wc and M-12Wb
are significantly superior to optSplit and PS2. Both optSplit
and PS2 required more than 5 times the TCAM required
by M-12Wb; optSplit also required more than 6 times as
much TCAM power, and PS2 required about 10 times as
much TCAM power as required by the strategies employing
wide SRAM. optSplit required slightly smaller total TCAM
than PS2, and much less total TCAM power than PS2; both
require about the same amount of SRAM. Both optSplit
and PS2 require about 66% less SRAM than required by
1-12Wc and about 56% less SRAM than required by M-

12Wb. Since TCAM is more expensive than SRAM and also
consumes more power, we recommend 1-12Wc and M-12Wb
over optSplit and PS2.

VIII. CONCLUSION

We have developed an optimal algorithm, optSplit, for
subtree splitting and shown that, in the worst case, this algo-
rithm may generate half as many ITCAM entries (equivalently,
DTCAM buckets) when partitioning a 1-bit trie as generated
by the heuristic, subtree− split of [1]. However, on our test
data, the heuristic of [1] generated near-optimal partitions. For
many-1 partitioning, our heuristic PS2 outperforms the heuris-
tic triePartition of [6]. In fact, on IPv4 data, triePartition
results in 80% to 137% more ITCAM entries than generated
by PS2 on our test data.

Besides improving upon existing trie partitioning algorithms
for TCAMs, we have proposed a novel way to combine
TCAMs and SRAMs so as to achieve a significant reduction
in power and TCAM size. This is done without any increase in
the number of TCAM searches and SRAM accesses required
by a table lookup! Note that regardless of whether we use
the many-1 2-level schemes of [1], [6] or the recommended
wide memory schemes M-12Wb and 1-12Wc developed by us,
a lookup requires 2 TCAM searches and 2 SRAM accesses.
However, on our IPv4 test data, M-12Wb required about 1/5th
the TCAM memory and about 1/10 the TCAM power as
required by our improved versions of the schemes of [1], [6];
however, M-12Wb required 2.5 times as much SRAM mem-
ory. On IPv4 data, 1-12Wc required about 1/4th the TCAM
memory, 1/12th as much TCAM power, and about 3 times as
much SRAM memory as required by our improved versions
of the schemes of [1], [6]. Since TCAM memory and power
are the dominant criteria for optimization, we recommend M-
12Wb when we wish to optimize TCAM memory and 1-12Wc
when we wish to optimize power.
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