Hybrid cache architecture for high-speed

packet processing

Z. Liu, K. Zheng and B. Liu

Abstract: The exposed memory hierarchies employed in many network processors (NPs) are
expensive in terms of meeting the worst-case processing requirement. Moreover, it is difficult to
effectively utilise them because of the explicit data movement between different memory levels.
Also, the effectiveness of traditional cache in NPs needs to be improved. A memory hierarchy com-
ponent, called split control cache, is presented that employs two independent low-latency memory
stores to temporarily hold the flow-based and application-relevant information, exploiting the
different locality behaviours exhibited by these two types of data. Just like conventional cache,
data movement is manipulated by specially designed hardware so as to relieve the programmers
from the details of memory management. Software simulation shows that compared with conven-
tional cache, a performance improvement of up to 90% can be achieved by this scheme for OC-3c

and OC-12c links.

1 Introduction

To meet the demands of high performance and greater flexi-
bility, simultaneously, network processors (NP) typically
employ a bunch of architectural features that are specially
adapted to the characteristics of packet processing. For
example, multiple RISC-based processing elements (PEs)
with instruction sets optimised for protocol handling are
often integrated into one single chip, exploiting the paralle-
lism in packet flows. Instead of the data cache that is exten-
sively used in the modern general purpose processor, most
NPs expose their memory hierarchies to programmers,
expecting explicit allocation of appropriate address
regions to data structures. This design is mainly based on
the deteriorated worst-case performance of the conventional
caching mechanism and the common belief of the lack of
locality in network applications [1].

However, most present-day NP-based systems are
deployed at metropolitan networks where sophisticated
applications like network security are demanded and low
cost is one of the major concerns [2]. Providing enough
resources for a NP with exposed memory hierarchy is
often prohibitively expensive when meeting the worst-case
processing requirement of these applications. On the other
hand, effective utilisation of this memory organisation
adds a lot of software overhead in data management,
which potentially increases the cost of NP deployment.
For example, critical data should reside in a high-speed
on-chip buffer to reduce the access latency. A large data
structure that cannot fit into the on-chip buffer has to be
divided into several pieces and swapped in and out of the
chip, making the program complicated and less efficient.

© The Institution of Engineering and Technology 2007
doi:10.1049/iet-cdt:20060085
Paper first received 8th June and in revised form 5th October 2006

Z. Liu and B. Liu are with the Department of Computer Science and
Technology, Tsinghua University, East Main Building 9-416, Beijing 100084,
People’s Republic of China

K. Zheng is with the System Research Group, IBM China Research Lab,
Building 19 Zhongguancun Software Park, No. 8 Dangbeiwang West Road,
Haidian District, Beijing 100094, People’s Republic of China

E-mail: liuzhen02@mails.tsinghua.edu.cn

IET Comput. Digit. Tech., 2007, 1, (2), pp. 105-112

Recent studies have revealed that appropriate data
caching can effectively speed-up packet processing and
consume less off-chip memory bandwidth [3]. Especially,
when packets of the same flow are forced to be allocated
to the same thread, a such a caching mechanism alleviates
the impact of burstiness in traffic on the utilisation of
threads [4]. We simulate the packet processing procedure
of a four-PE network processor using a traffic trace
collected on an OC-12c¢ link. Fig. 1 compares the packet
loss rates of a different number of cache entries. Here, it
is assumed that each flow has its own control data and
these data are organised as entries. The ratio of total
memory access delay and register instruction operation
time is set as 5:1. The average packet arriving interval of
the tested trace is 31 ws. If the queuing delay of a packet
is twice that, the packet is discarded. In this figure, the
processing time for each packet accounts for only 40% of
the theoretical maximum cycle budget. But the burst
arrival of packets from the same flow makes adding more
threads less attractive. Data caches reduce the suspended
time of threads and releases them for other packets as
soon as possible. Note the logarithmic scale on the Y
axis, the packet loss rate with a cache that holds information
for 1024 flows decreases to less than one-tenth compared
with non-caching schemes in all of the four cases.
Moreover, hardware manipulated data movements
between different levels of memory hierarchy in conven-
tional cache also relieve programmers from the details of
memory allocation.

Although data cache seems appropriate for mid-end NPs,
current cache organisations need to be improved in order to
deliver higher performance [3, 5, 6]. We have observed that
common programs exhibit a high degree of spatial and tem-
poral locality that can be easily exploited by hierarchical
organisations. But in network applications, various types
of data have totally different characteristics. When these
data are treated in the same cache and with the same strat-
egy, their properties cannot be fully utilised and data with
different access patterns may conflict with each other. In
this article, we present a novel memory hierarchy com-
ponent that is specially designed to meet the processing
demand in a NP. The proposed architecture, called split
control cache, employs two independent memory stores

105

10+

Il No Cache [] 1024-entry
[2048-entry [4096-entry

0.1

packet loss rate, %

number of threads per PE

Fig. 1 Packet loss rates in a four-PE network processor under
the workload of 40%

for flow-based and application-relevant data, respectively.
With this component, control data needed by packet
processing can be effectively delivered to the execution
unit of the PE and only minor modifications are required
for the migration of existing tool chains such as the
compiler.

2 NP architecture

Fig. 2 shows a generic NP architecture, which resembles
that of a AMCC nP3700 [7]. Its processor hierarchy
includes a set of fully programmable PEs, a number of
coprocessors (e.g. packet classifier and hash unit), and
some hardware assists (like the traffic manager). On-chip
memories (such as scratch pad memory) are incorporated
to provide access for a small amount of critical data.
Packets are managed by dedicated hardware (i.e. packet
buffer controller) and preprocessed before passing to the
PE. PEs and coprocessors can cooperate in several ways
based on the configurations of the interconnection
network. In one possible approach, the PE may trigger the
coprocessor using special instructions and get the results
through memory mapping. Coprocessors can also work as
stages of a pipeline and send the result to PEs directly
using the interconnection network.

Note that Fig. 2 has almost all the prevailing architectural
characteristics of commercial network processors. For
example, the Intel IXP network processors also have a lot
of processing cores, flexible memory hierarchy and some
hardware functional units; but their packet receive/transmit

External Host CPU Control Memory /O Devices
A) A
i J . Y Y
Host CPU IIF Control Memroy I/F I/O Bus I/F
| x) ” | - J
Sl Y L BN
< Memory-1/O Bus >
R [} i [
; v NP =
\J Y) 1 e
Cache Coprocessors v g
e fl N | 5]
{ Register | Sg::fh | Classifier ||| Traffic | N =
{ Files ! Memory | || Hash | Manager E
PE 4 :] 4 E
t [} i [} <
Y i Y Y .
Interconnect‘ton Metwork . >
Input | | Output
— Interface —> Packet Buffer Controller —} Itorecs e
4

L
Packet Buffer

Fig. 2 Architecture of a NP

106

unit does not have much hardware support and no traffic
manager is provided [8]. As for Hifn’ 5NP4G, the major
difference is that it employs a lot more types of coprocessors
and hardware accelerators [9].

3 Split control cache

NPs deal with three kinds of information: instruction code,
packets and control data. This article only focuses on cache
design for control data, since most NPs have separate
instruction stores that can meet the processing demand
and the storage of packets has already attracted much
research effort [10]. The proposed scheme comes from the
observation that different types of control data usually
exhibit different locality properties. In particular:

e Packet-relevant data structures are generated during the
processing of individual packets. They are typically tempor-
ary variables that will not be used by other packets. Their
memory consumption is relatively small (approximately
several hundreds of bytes) and references to them constitute
a large percentage of the total memory accesses [3].
Therefore, on-chip local memory such as scratch pad is
most appropriate for holding them.

e Flow-relevant data structures maintain information for
packet flows in applications such as quality of service
(QoS), sophisticated billing and monitoring. They are
shared among packets from the same flow. An example of
this is a Transfer Control Protocol (TCP) connection table
recording the connection flags, sequence numbers, window
sizes and acknowledge numbers for each flow transmitted
by a router. Memory references to these data for individual
packet exhibits primarily spatial locality. Temporal reuses
of them occur only when packets belonging to the same
flow are received.

e Application-relevant data structures are used for imple-
menting some specific functions and are typically accessed
by each incoming packet. Tables containing policy, routing,
and QoS information fall into this category. The reference
pattern of them relies on distinct algorithms. For example,
packets with similar destination addresses will access the
same nodes of a prefix trie. Therefore, the temporal locality
of a trie-based route lookup will be higher than a hash table-
based mapping function, which transfers the destination
address to an index number with only one memory refer-
ence. However, the spatial locality of the former function
is much lower than that of a pattern table lookup if linear-
search is employed to find the matching entry.

Information related to each flow occupies up to a few
hundred bytes and simultaneously existing flows on a par-
ticular link can be hundreds of thousand [1]. In addition
to some global variables that only account for several tens
of bytes, most application-relevant data are space consum-
ing. For example, a medium-sized route table may contain
more than 50 000 of prefixes. Therefore, both of them
have to be stored in external large-capacity memories
with long access latency and PEs can get the demanded
data from these devices through cache. The proposed
scheme, split-control cache, consists of two independent
memories (referred as subcaches). One is called
Flow-Cache, which is designed to accommodate flow-
relevant data and the other is App-Cache for application-
relevant data. The separation of this cache architecture
comes from the following considerations:

e Application data typically requires a much larger
memory space than information maintained for one flow.

IET Comput. Digit. Tech., Vol. 1, No. 2, March 2007

If too much flow data are kept in the same cache with appli-
cation data, information of those less frequently encountered
flows will reduce the available space for application data.
Therefore, the chance of conflicts (called cache pollution)
is increased, which is totally avoided in separated caches.

e Since flow-relevant data exhibits a high spatial locality,
we can use a much larger cache-line in a separate cache
to fully exploit it without disturbing the contents of appli-
cation data.

e If we further limit the flow information into a continuous
memory space (sacrificing a little programming flexibility),
the starting address of these areas can be easily acquired
through packet classification. If packet classification takes
place as the very first processing step (in fact, this is the
case for most network systems) by the coprocessor (e.g.
the classifier shown in Fig. 2), flow information can be pre-
fetched into cache before the other processing begins.

The method we use to distinguish flow data from appli-
cation data for PEs is that of assigning non-overlapping
address spaces. In another words, the memory space allo-
cated to the control data is partitioned into two continuous
areas, one for flow-based data and the other for application-
based data. Thus, the type of data can be identified by the
significant bits of their memory addresses.

Fig. 3 shows the architecture of split control cache. The
upper and lower boundaries of each address space are
guarded by a pair of Range Registers in the Address
Recogniser. When PE issues a Control Memory reference,
both pairs of registers are simultaneously checked to deter-
mine into which respective range it falls. Depending on the
result, at most one subcache is selected and used by the PE.
The contents of Range Registers are specified during initia-
lisation and can be reprogrammed by the host processor
through interruption. This arrangement makes the program-
ming model for memory reference no different from
the commonly used high-level language and only minor
modifications of the compiler are needed.

3.1 Flow-Cache

The App-Cache has the same organisation with convention-
al caches whereas the Flow-Cache employs a quite different
architecture. In order to simplify the memory management
strategy and the hardware design, memory space allocated
to flow-based information is divided into blocks of equal

size. A block will be assigned to a flow and the mapping
relationships are recorded as part of the packet classification
results. When a new packet is received, it is classified by the
coprocessor and the starting address (labelled as prefetch
address in Fig. 3) of the block containing its flow infor-
mation is returned. Then this address is looked-up in the
Flow-Cache to determine whether it has already resided in
it. In the case of a cache miss, a burst read of the demanded
block is initiated. Once the new block has been placed into
Flow-Cache, the PE is allowed to start the operation on that
packet. Throughout the course of protocol handling, PE is
not permitted to access the information of other flows.
Therefore, cache miss will only be incurred by
App-Cache during the processing procedure for that
packet. In this way, the uncertainty of processing time
is reduced, which is favourable for the achievement of
wire-speed packet forwarding.

To ensure that flow-based data prefetching does not
disturb the processing of other packets, we employ two
independent banks. At any time, the bank holding flow
information of the packet being processed is used by the
PE for program execution. The other bank can prefetch
demanded block for the next packet in the case of a
Flow-Cache miss. Fig. 4 shows a sample execution pro-
cedure of a NP for a series of packets with equal inter-
arrival time. It can be seen that packet classification, flow
information prefetching and packet processing can be exe-
cuted in a pipelined fashion. If no prefetch is needed for a
certain packet, PE goes on with the bank containing its
flow information. Otherwise, a bank switching occurs at
the end of the processing for the previous packet.

The architecture of Flow-Cache is shown in Fig. 5. Each
bank contains a Data RAM and the associated Tag RAM.
The cache line size is the same as that of the block in
Control Memory so that each cache miss incurs only one
cache line refilling. Note that Tag RAM is only used to
verify whether a block has already been prefetched into
one of the two banks. When a prefetch address arrives, its
lower part is indexed into the two Tag RAMs simul-
taneously. If the corresponding entry is valid (i.e. the ‘V’
bit in Fig. 5 is set), the higher part of the prefetch address
will be compared with the tag. Then the bank number of
the matching entry is recorded in the registers of the bank
switch controller for that packet.

Flow-Cache follows a write-back policy to reduce
off-chip memory accesses. Several dirty-bits (labeled as

Memory Scheduler
Address Recognizer
) i i ’ i Memory
| Range Register A1 | App-Cache Scheduling
) — Finite State
—r— = — |v | tag data) — Machine
——t < | il T o
< » v _ ;:é w
w } I 2 A
o | Range Register A2 2 T | Stote Bufie. 2 a
g . o5 L1 | ™ Read = o
E 2 o] e i kbl = 5 Bypasser a -~ é
87T - Flow-Cache I : 9,“ £
% S P 3 WRFA | |2 =
& — e Ll [T | ——r—] o
5 | Range Register F2 il] bt il | | || |8 E [
= - ; 5 — — WRFF | =
I 2 ~Bank A~ -BankB - T
R)f —) | - ; |
Range Régister F1] Datg M;:Wﬁment WRFA:
} ort ‘ro o Write Request FIFO for App-Cache
e * WRFF:
prefetch address issued by Classifier —\—I Write Request FIFO for Flow-Cache

Fig. 3 Block diagram of split control cache

IET Comput. Digit. Tech., Vol. 1, No. 2, March 2007

107

Packet P1 Packet P2 Packet P3

Packet P4

Packet P5 Packet P& Packet P7

Arrives Arrives Arrives Arrives Arives Arrives Arrives
Flow Data for Flow Data for Flow Data for P3 Flow Data for Flow Data for P5 Flow Data for
P1 Miss P2 Miss Found in Bank B P4 Miss Found in Bank B P& Miss
Time -
Packet [Flow Data Prefetch | Packet Process
P Classification in Bank A Using Bank A
P2 Packet Flow Data Prefetch Packet Process
Classification in Bank B Using Bank B
Pa Packet No Flow Data Packet Process
Classification Prefetch Using Bank B
P4 Packet Flow Data Prefetch Packet Process
Classification in Bank A Using Bank A
P5 Packet No Flow Data Packet Process
Classification Prefetch Using Bank B
BE Packet Flow Data Prefetch
Classification in Bank A
Packet
P7 Classification
Fig. 4 Pipelined execution in NP and the bank utilisation in Flow-Cache
“D” in Fig. 5) are kept for each cache-line within the two 3.2 Memory Scheduler

banks, indicating whether the corresponding part of a cache-
line has been modified. The actual number of dirty-bits is
determined by memory size limitation and some implemen-
tation considerations. For example, one dirty-bit can be set
for a number of bytes equal to the length of a burst write. By
the time a miss happens, the cache-line selected by the
index part of the prefetch address in the bank not used by
PE is chosen as the replaced one.

The architecture of split control cache only establishes
the access fashion of different memory space. For each
packet, the whole memory space designated to App-Cache
and a certain block within the space designated to
Flow-Cache can be accessed by the PE. However, for a
data structure, which area to be located into is determined
by the programmer, based on whether this information
will be shared among all the incoming packets or not.

In practice, some optimisation can be made to take full
advantage of the proposed scheme. For example, operations
such as route lookup and QoS enforcement are identical for
all packets of the same flow. Thus, in addition to flow state
information, execution results of these operations can also be
stored in Flow-Cache. Only when a new flow is encountered
or the result becomes invalid (e.g., the route table is
updated), will they be performed [11]. Operations returning
different results for packets of the same flow such asa TCP con-
nection maintenance procedure cannot be treated in this way.

Memory Scheduler coordinates memory access requests
from the two subcaches. As shown in Fig. 3, read requests
have a higher priority and are sent directly to the
Memory-I1/0 bus. Write requests, however, are queued in
the two subcaches’ respective FIFOs (first-in/first out)
and issued when all the read transactions are completed.
Among the same type of requests, missing data of
App-Cache are needed immediately for program execution,
while the Control Memory accesses issued by Flow-Cache
are making preparations for the next packet. On the other
hand, application data are seldom modified by packet pro-
cessing but flow information may be changed by each
related packet. Therefore, App-Cache read misses take the
highest priority but its write misses have the lowest. The
Memory Scheduling Finite State Machine rearranges
the issuing order of memory access requests according to
these rules.

4 Performance evaluation

4.1 Software simulation
We use a dedicated network processor simulator NePSim

1.0 to study the effect of our scheme [12]. NePSim
employs an event-driven framework to keep track of the

Tag RAM A Bk Data RAM A
V| D | tag an data _E data from PE
-
I |
‘ ! i j »data to PE
3 . > Y
g[8 »(=7 1 o
A — | Bank =3 o8
G : LT Swich H8F| 3%
% & 1 e Controller | ;‘.: 2 % § I » data to Store Buffer
N | : >° | ® 3, data from Store Buffer
A — "
et @ [*] ‘
I -+
VID[g | BankB data {
Tag RAM B Data RAM B

Fig.5 Block diagram of Flow-Cache and its major data path

108

IET Comput. Digit. Tech., Vol. 1, No. 2, March 2007

Table 1: Simulator parameters

PE frequency 696 MHz
Pipeline depth 5
Thread number per PE 4

Data cache direct-mapped, 1-cycle latency,
write through, no refilling,
8-byte cache line

SDR SDRAM

116 MHz x 64 bit

8.62 ns row access

Control memory device

Memory bus bandwidth

SDRAM access latency
8.62 ns column access
17.24 ns precharge

commands issued by threads, as well as the states of
memory devices. In its original design, packet receiving
and transmission are controlled by the user’s program.
Since these operations are nontrivial and consume a large
amount of instructions, we modify the network interface
to provide hardware support for packet loading. We also
extend the simulator to include caching mechanisms. Each
PE has its own data cache. The coherence between different
caches is maintained by software. Table 1 presents the
major simulator parameters.

The application we implemented includes two kernels, an
IP packet forwarder and a simple flow meter. The former
program is ported from the benchmarks provided by
NePSim and is the basic function that should be
implemented by routers. It validates the IP header and
performs a longest prefix match (LPM) algorithm using
multi-bit trie lookup. The latter maintains a record for

each incoming flow, which contains a packet count field
and a byte count field. In this simulation, flows are specified
by the source and destination IP addresses. Supposing each
field of the flow record consumes 4 bytes, then only 16 bytes
are needed in Flow-Cache (two 8-byte banks), which is neg-
ligible compared with the size of App-Cache. To eliminate
the duplicated information in Flow-Cache and simplify the
synchronisation among PEs, we allocate packets of the
same flow to the same thread.

We utilised real-life traffic traces collected by the
National Laboratory for Applied Network Research
(NLANR) from two Internet exchange points [13]. Details
of the two traces, BWY (BroadWaY) and MRA (MeRit
Abilene), are listed in Table 2. The source and destination
IP addresses in the packet traces are renumbered to maintain
anonymity by NLANR. This process retains traffic patterns
and flow information; but the renumbered IP addresses
cannot be found in route table. To solve this problem, for
each unique destination IP address, we randomly generate
a new [P address according to the prefixes of the route table.

Table 3 lists the average miss rate comparisons between
the App-Cache in a split control cache and a conventional
cache with a different number of PEs. It shows that
App-Cache outperforms conventional cache under every
configuration. In both BWY and MRA, the miss rate of
App-Cache is about 5% less than that of a conventional
cache before the miss rate decreases to nearly zero. The
average miss rate increases with the number of PEs where
the cache is divided into several small local caches. This
is caused by duplicated data in the local caches when
packets sharing the same table information are allocated
to different PEs.

Fig. 6 shows the comparisons of packet throughputs (con.
and app. represent conventional cache and App-Cache,

Table 2: Packet trace characteristics
Trace Site location & description Rate Date Packets Unique IPs
BWY Columbia University (BroadWaY) 0OC-3c 2004-3-2 2,598, 848 21351
MRA MichNet Backbone, Southeast Michigan (MeRit Abilene) 0C-12¢ 2004-3-9 8,727,924 189 303
Table 3: Average miss rate comparisons between conventional cache and App-Cache (%)
Total cache size (KB)
4 8 16 32 64 128 256
1-PE BWY conventional cache 30.76 24.57 10.02 8.07 6.03 1.39 0.50
App-Cache 27.30 20.92 5.99 3.97 1.84 1.25 0.33
MRA conventional cache 40.81 32.40 16.35 12.03 9.02 3.01 1.91
App-Cache 35.63 27.10 10.81 6.73 3.79 2.03 0.85
2-PE BWY conventional cache 35.69 28.25 21.75 8.40 6.60 5.15 0.98
App-Cache 31.39 23.95 17.56 4.83 3.00 1.51 0.80
MRA conventional cache 47.05 37.55 29.49 14.63 10.99 8.20 3.02
App-Cache 42.40 32.81 24.63 9.34 6.06 3.41 2.06
4-PE BWY conventional cache 43.88 33.88 26.31 19.93 7.07 5.50 4.43
App-Cache 39.16 29.42 22.25 16.21 3.70 2.11 1.07
MRA conventional cache 56.01 45.12 36.48 28.65 13.20 9.82 7.73
App-Cache 51.28 40.36 31.89 24.21 8.17 5.24 3.34
8-PE BWY conventional cache 60.35 44.08 33.07 25.82 19.92 6.74 5.08
App-Cache 56.67 39.56 28.66 21.22 16.08 3.83 2.08
MRA conventional cache 67.48 50.96 40.84 32.46 25.74 11.08 8.28
App-Cache 63.64 45.57 35.62 27.26 20.99 7.04 5.07
IET Comput. Digit. Tech., Vol. 1, No. 2, March 2007 109

1 Il BWY, con. _1BWY, app.
4'0_. [MRA, con. [CT]MRA, app.

o 25+

acket through
5
P

p
o
T

o
[=]
s

4 8 16 32 64 128 256
total cache size, KB
a

13- | HEE BWY, con.
12| CJBWY, app.
114 | I MRA, con.
11 CJMRA, app.

packet throughput, mpps
[+3]

4 8 16 32 64 128 256
total cache size, KB
c

1 I BWY, con. [__]1BWY, app.
L | [MRA, con. [IMRA, app.

packet throughput, mpps
E-9
1

4 8 16 32 64 128 256
total cache size, KB
b

packet throughput, mpps

4 8 16 32 64 128 256
total cache size, KB
d

Fig. 6 Packet throughput comparisons for network processor with different number of PEs

a 1-PE
b 2-PE
¢ 4-PE
d 8-PE

respectively). For the 1-PE or 2-PE configuration, when the
cache size is relatively small, our scheme is much more
effective than conventional cache. For instance, a 4 kb
split control cache with one PE achieves a performance
improvement of about 20% in BWY and 23% in MRA.
As the miss rate keeps falling with increased cache size,
PEs begin to reach nearly full utilisation rate. Compared
with conventional cache, split control cache only slightly
improves the performance since almost no computation
power can be exploited by hiding the access latency (note
that we have four threads in each PE that can be switched
upon cache misses). Take one PE with a 128 kb cache as
an example: the active state accounts for 98.95 and
99.87% in conventional cache and split control cache,
respectively. Hence, the packet throughput changes from
3.1712 mpps (million packets per second) to 3.2578 mpps,
which is less than a 3% improvement.

If a large number of PEs is used, more contentions on
memory bus are introduced and the access latency
becomes much longer because of the queuing delay.
Together with the increased cache miss rate (as analysed
in Table 3), adding more PEs may not achieve a higher
packet throughput under the same total cache size. This
can be observed in the comparisons of Fig. 6b, 6¢ and 6d
when the cache size is small. However, NP with split
control cache still outperforms conventional cache. In this
case, the decrease of cache miss rate becomes especially
important. When the cache size is sufficiently large, spit
control cache is much more effective in terms of increasing
the PE’s utilisation rate and NP’s performance. For

110

example, in MRA, the packet throughput of an §-PE
network processor with a total cache size of 128 kb
increases from 10.58 mpps using a conventional cache to
20.03 mpps using our scheme, which is an improvement
of nearly 90%.

4.2 Efficiency of Flow-Cache

Although only one cache line is enough for each bank in
Flow-Cache, adding more blocks will reduce the frequency
of the flow information prefetching and save memory band-
width. Fig. 7 shows the prefetch percentage for the two
traces. Since flow records are not shared among different
flows, the prefetch rate varies slightly with a different

80 — . —
704 —a— BWY, flow
—o— BWY, stream
= 604 —a— MRA, flow
[y —&— MRA, stream
& 50- -
<
8 40-
2
i 30+
=2
o 204
o
a 104
O T T T T T T T T 1
16 32 64 128 256 512 1024 2048 4096 8192

total number of blocks
Fig. 7 Prefetch rate in Flow-Cache with one PE

IET Comput. Digit. Tech., Vol. 1, No. 2, March 2007

Table 4: Stratix EP1S40F1508C5 FPGA device
utilisation

Resources Address App-Cache Flow-Cache Memory

recogniser scheduler
LE 50 159 315 543
register 0 43 83 332
RAM bit 0 17 792 17 856 17 408

number of PEs. Hence, we only consider the situation of one
PE. The definition of flow is based on two granularities: (1)
flows are sets of packets with the same source and destina-
tion IP addresses; (2) streams are IP sessions specified by
the 5-tuple of <<source IP address, source port, destination
IP address, destination port, protocol identifier>. Since
the majority of flows contain only one stream, the difference
between their prefetch rates is minor. Although the total
number of flows in the two traces reaches 41 487 and
329 882, a Flow-Cache with 1024 blocks can reduce the
number of flow information prefetching to less than 20%
for BWY and 40% for MRA. This is because most of the
flows sustain just a few seconds and at any time, only a
small subset of flows are being processed by the NP.

Unlike conventional cache, the tag comparison and cache
data access in Flow-Cache do not take place at the same
time. Therefore, the data output delay for the bank currently
being used by the PE is not affected by the comparison
delay of the tag. In fact, the cycle time of Flow-Cache is
equivalent to that of a SRAM instead of a conventional
cache. Since the cache line of Flow-Cache is typically
longer than App-Cache, the access time is further reduced
because of the drop in the address decoder delay (when
the total cache size is the same) [14].

In conventional cache, tag comparisons are performed for
each flow information access. But in Flow-Cache, at most
one tag comparison is required for each incoming packet,
which dissipates less power when more than one memory
access for flow data is issued by each packet. However,
tag and data RAM share the same address decoder in a con-
ventional cache [14]. Thus, the area consumption of
Flow-Cache is slightly larger than conventional cache
with the same total and block size due to the additional
address decoder for tag.

5 Functional prototype

We implemented this system based on a simplified
OpenRISC processor core in an Altera Stratix
EP1S40F1508C5 field-programmable gate array (FPGA)
[15]. EP1S40 contains 41 250 logic elements (LEs) and a
total number of 3 423 744 RAM bits [16]. The App-Cache
is configured with sixty-four, 32-byte direct-mapped cache
lines and Flow-Cache with eight 128-byte ones. We syn-
thesised the design using an Altera Quartus II 5.0. Table 4
lists the resource utilisation of different parts of our
scheme. The control logic of Flow-Cache is more complex
than App-Cache with the result that it consumes more LEs
and registers. But similar to the analysis in Section 4, the
access latency of Flow-Cache is much lower. In particular,
Flow-Cache can work on a frequency of 197 MHz while
App-Cache only achieves 128 MHz after optimisation.

6 Related works

The method of caching recently used route lookup results,
or route cache, has been used for a long time [17].

IET Comput. Digit. Tech., Vol. 1, No. 2, March 2007

Tzi-cker Chiueh and Prashant Pradhan have proposed
several strategies to reduce miss rate in a specially designed
route cache [18]. In a recent work of Kaushik Rajan and
R. Govindarajan, the content of caching has been changed
from route results to the nodes of LC-trie (level compressed
trie) that are used for lookup [19].

Sophisticated caching mechanisms have been designed
for applications other than the IP route lookup. Xu et al.
[20] have extended their work to hardware design and
policy selection for the caching of packet classification
results. Li et al. [21] used caching as an energy saving
mechanism instead of latency hiding. But their applications
still concentrate on holding the results for algorithms like
routing, packet classification and NAT (network address
translation). Patrick Crowley has proposed a segmented
instruction cache for network processors to meet its
real-time requirement [22].

7 Conclusions

Current solutions of NP memory architecture are often
expensive and hard to program. In this article, we have
presented a novel cache design for high-speed packet pro-
cessing based on some key observations of the character-
istics of control data locality. According to their access
patterns, dedicated storage elements are employed for
flow information and application data, respectively. In par-
ticular, flow data is constrained to blocks and prefetched
into a subcache with a large cache line size and a specially
designed data movement controller. This scheme achieves a
lower miss rate than conventional cache and can greatly
improve the packet throughput of network processors. To
reach the same forwarding rate, the resources needed and
the hardware design complexity of the proposed scheme
are significantly reduced compared with previous NP
architectures.

8 Acknowledment

This work if supported by National Natural Science
Foundation of China (No. 60373007, 60573121 and
60625201), the Cultivation Fund of the Key Scientific and
Technical Innovation Project, Ministry of Education of
China (No. 705003), the Specialised Research Fund for
the Doctoral Program of Higher Education of China
(No. 20040003048 and 20060003058), China/Ireland
Science and Technology Collaboration Research Fund
(CI-2003-02), and the Tsinghua Basic Research
Foundation (JCpy2005054).

9 References

1 Peyravian, M., and Calvignac, J.: ‘Fundamental architectural
considerations for network processors’, Comput. netw., 2003, 41,
(5), pp. 587-600

2 Lawton, G.: “Will network processor units live up to their promise?’,
IEEE Computer, 2004, 37, (4), pp. 13—15

3 Mudigonda, J., Vin, HM., and Yavatkar, R.: ‘Managing memory
access latency in packet processing’. Proc. Int. Conf. on
Measurement and Modeling of Computer Systems, (SIGMETRICS
2005), Banff, Canada, June 2005, pp. 396—397

4 Liu, Z., Che, H., Zheng, K., Chen, S., Hu, C., and Liu, B.: ‘A trace
driven comparison of latency hiding techniques for network
processors’. Proc. Int. Conf. on Communications, (ICC 2006),
Istanbul, Turkey, June 2006

5 Venkatachalam, M., Chandra, P., and Yavatkar, R.: ‘A highly flexible,
distributed multiprocessor architecture for network processing’,
Comput Netw., 2003, 41, (5), pp. 563—586

6 Mudigonda, J., Vin, HM., and Yavatkar, R.: ‘Overcoming the
memory wall in packet processing: hammers or ladders?’. Proc.

111

11

12

13

14

15

112

Symp. on Architecture for Networking and Communications Systems,
Princeton, NJ, USA, October 2005, pp. 1-10

AMCC nP3700 product brief: http://www.amcc.com/MyAMCC/
retrieveDocument/SNP/nP3700_060428.pdf, accessed September
2006

Intel IXP2800 Network Processor Hardware Reference Manual Intel
Inc., May 2003

http://www.hifn.com/products/Snp4g.html, accessed September 2006
Pnevmatikatos, D.N., Sourdis, 1., and Vlachos, K.: ‘An efficient,
low-cost 1/O subsystem for network processors’, IEEE Design &
Test of Computers, 2003, 20, (4), pp. 56—63

Decasper, D., Ditta, Z., Parulkar, G., and Plattner, B.: ‘Router Plugin:
a software architecture for next-generation routers’, /[EEE/ACM
Trans. Networking, 2000, 8, (1), pp. 2—15

Luo, Y., Yang, J., Bhuyan, L.N., and Zhao, L.: ‘NePSim: a network
processor simulator with a power evaluation framework’, IEEE
Micro., 2004, 24, (5), pp. 34—44

National Laboratory for Applied Network Research: http://pma.nlanr.
net/PMA/, accessed October 2004

Shivakumar, P., and Jouppi, N.P.: ‘CACTI 3.0’. http://research.
compaq.com/wrl/people/jouppi/CACTLhtml, accessed November
2005

http://www.opencores.org/, accessed September 2004

16

17
18

20

21

22

Altera Corporation: ‘Stratix Device Handbook’, vol. 1, http:/www.
altera.com/literature/hb/stx/stratix_vol_1.pdf, accessed March 2005
http://www.cisco.com, accessed September 2006

Chiueh, T., and Pradhan, P.: ‘Cache memory design for internet
processors’, IEEE Micro., 2000, 20, (1), pp. 28—33

Rajan, K., and Govindarajan, R.: ‘A heterogeneously segmented
cache architecture for a packet forwarding engine’. Proc. Conf.
on Supercomputing, (ICS’05), Boston, MA, USA, June 2005,
pp. 71-80

Xu, J., Singhal, M., and Degroat, J.: ‘A novel cache architecture to
support layer-four packet classification at memory access speeds’.
Proc. IEEE INFOCOM’00, Tel-Aviv, Israel, March 2000, vol. 3,
pp. 1445-1454

Li, B., Venkatesh, G., Calder, B., and Gupta, R.: ‘Exploiting
a computation reuse cache to reduce energy in network
processors’. Proc. Int. Conf. on High Performance Embedded
Architectures and Compilers, Barcelona, Spain, November 2005,
pp. 251-265

Crowley, P.: ‘Supporting mixed real-time workloads in multithreaded
processors with segmented instruction caches in’ in Crowley, P.,
Franklin, M.A. Hadimioglu, H., and Onufryk, P.Z. (Ed.): ‘Network
processor design: issues and practices’ (Morgan-Kaufmann
Publishers, 2005, vol. 3, 1st edn.), pp. 9-31

IET Comput. Digit. Tech., Vol. 1, No. 2, March 2007

