intgl.

Intel® IXP2400/1XP2800 Network
Processors

Microengine C Language Support Reference Manual

November 2003

Order Number: 278734-009

Revision History

Date Revision Description
January 2002 001 Pre-Release 2 (PR2)
May 2002 002 Release for IXA SDK 3.0
August 2002 003 Release for IXA SDK 3.0 Pre-Release 4
November 2002 004 Release for IXA SDK 3.0 Pre-Release 5
January 2003 005 Release for IXA SDK 3.0 Pre-Release 6
May 2003 006 Release for IXA SDK 3.1 for VmWorks
June 2003 007 Release for IXA SDK 3.1 Pre-Release 2
September 2003 008 Release for IXA SDK 3.5
November 2003 009 Release for IXA SDK 3.5

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/
OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The software described in this User’s Guide may contain software defects which may cause the product to deviate from published specifications.
Current characterized software defects are available on request.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo, Intel386, Intel486, Intel740, InteIDX2, IntelDX4,
IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium, Pentium Il
Xeon, Pentium Ill Xeon, Pentium M, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

* Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 2002—-2003.

2 Microengine C Language Support Reference Manual

Contents

i nu Intel® IXP2400/IXP2800 Network Processors
®

Contents

1 LY e Yo 11 T2 £ o) o TSRS 11
1.1 Uo7 USSR 11
T T (0 = SRS 11
G T Vo Tg = (1 =Y SR 11
1.4 Conventions Used in this Manual ... 12

1.4.1 Version-Specific REFEreNCEeS ... 12

2 L0 1= - SRS 13

2.1 Network Processor ArchiteCture OVEIVIEWc..eeeiiiiiiiiieiiiiiiie e 13
D220 I T B T = T =T 4 .21 o (o Yo | 13

2.1.2 RegiSter MO L......coooi it 13

2.1.3 Next Neighbor ReQISTErsS.........ueiiiiiiiiiiie e 14

214 LOCAl MEMOIY ..ottt e e ettt e e e e e e e e e e e e eee e 16

2.1.5 EXIErNal MEMOIY ... oottt e e e e e aaaa e 16

218 FIFO QUEBUES ...ttt ettt e e ettt e e e ettt e e e e st e e e e e astaeeeesastaeaeeeannraeaaeans 16

Dt I A o T | RSP RSPTR 17

218 REMIBCION ...ttt e e e e e aeaa s 17

2.1.9 INAIreCt REGISIEr ACCESSuueeiiiiiieii ettt e e e e e e 17
2110 Threading MOEL 17
2.1.11 Features NOt SUPPOIEAoooiiiiiiiiiiieeee e 18

2.2 Compilation MOELoooiiiiiiiiieee e 18
221 NUMDET Of CONEXIS ...ciiviiiiie ittt e et e e e st e e e e st e e e s anreeeaeaans 18

2.2.2 INHNING oo —————————————————————— 19

2.3 RuUNNINg the C COMPIIEE ... e 19
2.3.1 The CommaNd LINEc.uuiiiiiiiiiiee ettt e ettt e e et e e e s sntae e e e e senteeeaeeans 19

2.3.2 Supported Compilationscooiiiiiiiiiiiiiieee e 20

2.3.3 Supported Compiler Option SWItChESeceviiiiiiiiiiiiiiieeee e 20
2.3.3.1 Environment Variables ... 24

2.3.4 Input and OUIPUL File TYPES ...ccooiiiieeeee e 25

2.3.5 Linking a Microenging .UOF fil€..........ccooiiiiiiiiiiiiiie e 25

D N L U 1| X o SRS PRRRURPR 26
2.3.6.1 Utility FUNCtions (ULIL.C)....eveiiiiiiiie e 26

2.3.6.2 Multi-threading restrictionS ..o, 27

2.3.7 Example—Using the C ComPpiler.............cooiiiiiiiiiiiee e 27
2371 ThE C FUlE i 27

2.3.7.2 Compiling the Fileocueeiiii e 28

2.3.7.3 Linking the File........cccoiiiiiiieiee e 28

2.3.7.4 RUNNINGhE File.....ooiiiiiii e 28

2.3.7.5 Initialization File ... 28

2.3.8 C Compiler Graphical User Interface from Developer Workbench 29
2.3.8.1 BUIld FEAUIES....cooiiiiiii e 29

2.3.8.2 DebUG FEAUIEooeeeieeee e 29

2.4 Running and Debugging Under the Developer Workbench..............ccccoooiiiiiiiiiiiiinnn, 30

3 O3 - T [T To LR TN o] Yo L P U U TSR PPP 33
3.1 StaNdard Data TYPESoueeiiee ittt e e e e e eae e 33

3.1.1 BaSiC Data TYPES..cooi i 33

Microengine C Language Support Reference Manual 3

Contents

Intel® IXP2400/IXP2800 Network Processors u t9I
®

3.2

3.3
3.4
3.5
3.6
3.7

3.8
3.9

3.10

3.1

3.12

3.13
3.14

3.1.2 Pointer Representation ... 33
K R T =11 111 L £SO 33
3.1.4 Floating POINt TYPES ..ot 34
315 SHANG LILEIalS...ceeeieeiiee e 34
3.1.6 Size Of DAta TYPES ..eeiiiiiiiiiie it 34
3.1.7 Alignment Of Data TYPES ...coiiiiiiiiie i 35
3.1.8 Packed AQregatesoc.ueeiiiiiiiiiie e 36
3.1.9 Pointer Alignment Assumptions and Unaligned Pointersccccccoviiieiinninnenn. 37
K 20t 0T =Yg o = T TR 0o o T o SRR 38

3.1.10.1 Compiler Limitations of Endian Support............ccccoiiiiiiiiie e 38
= 1= I | oY= o o S 40
3.2.1 REgIStEr REGIONSeeiiiiiiiiiee ettt 41

3.2.1.1 General Purpose Registers...... ..o 41

3.2.1.2 Transfer REGISIErScoouuiiiiiiii e 41

3.2.1.3 Next Neighbor Registers....... ... 42

3.2.1.4 Volatile REQISErSuuueiiiiei i e e e 43
3.2.2 MEMOIY REGIONS....coiiiiiiiiiiiiiei it et e et e e e e ettt s e as e e e e eeaeaaaaaaeeeeeeeessesnnnnes 43
3.2.3 Shared Data.......cccoiueiiiiiiiiiee e e 44
K 1] oY= o =1 - PRSP 45
3.2.5 Load Time CoNSIANTS.........eiiiiiiiiiiie et e e e e 45
K G T 1o | o - | = PP PPRPPPR 45

3.2.6.1 Signal Variable Restrictionscccccouviiiiiiiieiii e 46
3.2.7 Local Memory AlIOCAION........ue e e e e e e e e e e e e 47

B.2.7. 1 OVEIVIEW ...ttt e e ettt e e e st e e e e s sateeee e s aneeeeeeeanes 47

3.2.7.2 Placement of Variablesccccoeiiiiiiiiii i 47

3.2.7.3 Thread Local vs. Shared Storageoocoeeeeiiiiiiiii e 48

3.2.7.4 Viewing Local Memory USagecc.eeveiiiiiiiiiiiiiiiee e 48

3.2.7.5 Alignment Information for Local Memory Pointers..............ccocoeeennnne. 50

3.2.7.6 Suggestions for Improving Local Memory Usecccccveeeiiiieneeenee 50
Reflector INPUES/OULPULSoooi e 51
Summary of Allowed Data Attribute Combinations............ccccccoeiiiiiiiiiiiiiie, 52
EXPIESSIONS ...ttt e e e e e e e e e e e e ettt e e et — e a e e e aaaaaaaaaaaaaaaes 52
ST =1 (Y 0 0 1Y o] (=PRSS 52
FUNCHIONS ..ot e et e e e e e e e et e et e e e e e e e e e e saneneeees 52
T A B W] o] o o] 1 (=[BT OO P PUURRRRRRROIN 52
3.7.2 NOt SUPPOIEA......ouiiiiiiiiiiee et e e e e e e e e e e e e eanans 52
3.7.3 Extended Function AHIHDULES.........cooiiii e 53
3.7.4 Optimizing Pointer ArQUMENTScooiiiiiiiiii i 53

3.7.4.1 The “restrict” QUAlIfIErcoeiiiiiiiiee e 54
User Assisted Live Range ANalySiScoooiiiiiiiiiiiiiiiei e 55
ViIEWING LIVE RANGES ...vvvieiiiiii et e e e e e e e e e e e as 57
3.9.1 Limitations and Restrictions on Viewing Live Rangescccccceveiiiiiviiieiieininn, 58
Critical Path Annotation and Code Layout..............ccoooiiiiiiiiiiiiiiee e 59
3.10.1 Multiple Critical Pathsuuiiiiiii e 61
User-Guided switch() Statement Optimization..............coooiiiiiiii e 62
3.11.1 Default Case REMOVAL..........cooiiiiiiiii it e 63
3.11.2 Switch BIOCK PacCKiNg.........cccuuiiiiiiiiiieee et e e e e e e 63
Creating Context Swap-Free Regions of Codecccuviiiiiiiiiiiiiiiiiiceeeeee e, 64
[oTo] o UL oYy} {1 TaTe M eTo] 1 o] PP PUURP 64
Mixing C and Microcode in One MiICrOENGINEeuviiiiiiiieeeeeeeee e e 66
3.14.1 Command Line Options and Usage model.............ccccceeeeeiiiiiiiiiiiiiiieeee e 66

Microengine C Language Support Reference Manual

In

Contents

U Intel® IXP2400/IXP2800 Network Processors
®

3.14.2 Naming and Calling CONVENLIONScoiiuiiiiiiiiiiiie e 67
3.14.2.1 Register Variable Naming Conventionsccccccciviiiiiiiiiieneniiiee, 67
3.14.2.2 Sharing Variables Between C and Assemblycccccciniiieiiiniiineen, 68
3.14.2.3 Calling CoNVENLIONSueiiiiiiiiiiie et e e e e 68
3.14.3 Mixed C and Microcode EXamplesccceeeeiieiiiiiiiiiiiiiiieeeeeee e 69
3.14.3.1 Function Parameter Passing..........ccccuuiiiiiiiiiiiiiiiieeeeee e 69
3.14.3.2 Register USAgecoooiiiiiiie et 70
3.14.4 Restrictions on Mixing C and MIiCroCOdE.ccooviiiiiiiiiiiiiieeee e 70
3.15 Unsupported ANSI CO9 FEATUIES ..ot a e 71
INtHNSIC FUNCLIONS ...t e e e e e 73
4.1 INtrinsic Syntax CONVENLIONSiiiiiiiie e 74
4.2 Unaligned Dat@ ACCESSouueiiiieiiiiiee ettt et 75
4.21 Unaligned Get FUNCHONSoouiiiiiic e 75
4.2.2 Unaligned Set FUNCHONS........oouuiiiiie et 78
4.2.3 Unaligned Memory Copy FUNCLONS.........ocuiiiiiiiiiiiie e 80
4.3 Memory /O FUNCLONSooiiiiiiiiieiiie et s e b e e e e e e e e e 82
4.3.1 Transfer Register Modifiers......... oo 82
4.3.2 Memory [/O Data tyPeSceeiiiiiiiee et 83
4.3.2.1 SYNC i e e e 85
4.3.2.2 bytes_SPeCIfier t. ... 86
4.3.2.3 reflect_signal_t........ooiii 87
4.3.2.4 pci_read_write_ind_t, sram_read_write_ind_t.............ccooiiiiiiiiii 88
4.3.2.5 scratch_read_write_ind_t, scratch_ring_ind_t, sram_read_qdesc_ind_t,
sram_ring_ind_t, sram_journal_ind_t, cap_read_write_ind_t,
msf_read_write_ind_t, reflect_read_write_ind_t89
4326 dram_read_write ind ... 91
4.3.2.7 sram_atomic_ind_ ... 92
4.3.2.8 scratch_atomic_ind_t, sram_csr_read_write_ind_t,
cap_csr_read_write_ind_t93
4.3.2.9 dram_rbuf tbuf ind t.......ooiii 94
4.3.2.10 sram_enqueue_iNd_t ... 95
4.3.2.11 sram_dequeue ind_t.........oo e 96
4.3.2.12 hash_iNd_t ..o 97
4.3.2.13 generiC_iNd_t ..o 98
4.3.3 Memory /O FUNCHONScooiiiite et e e e e e e 99
4.3.3.1 Scratch Operationscoccciiiiiiiiiiee e 100
4.3.3.2 SRAM OPEratioNSccceieiiiiiiiiiiiiee et 138
4.3.3.3 DRAM OPEratioNS......cccccciiiiiiiiiiiiiiiteee e e e e e e e e e e 204
4.3.3.4 MSF OPerationScccoiiiuiiiiiiiiiiiiee ettt et ee e 211
4.3.3.5 PClOPErationscoiiiiiiiiiiiiiiiiie et 222
4.3.3.6 Reflector Operationsoooiuiiiiiiiiiiee e 227
4.3.4 Limitations on Some /O FUNCHONS ... 232
4.4 Synchronization FUNCHONS..........oooiiiiiiii e 234
441 Synchronization Data TYPEScouiiiiiiiieiiiie e 234
A4 SIGNAI_ e 234
4.4.1.2 SIGNAL_MASKot e e et e e e e sraeeeeeene 234
4.4.1.3 NP_State b ————————— 234
4.4.2 Synchronization FUNCLONS..........cccuuiiiiiiiiiccc e 235
4421 SIGNAIS() covveeeeeiiiiie e e e rare e 236
4.4.2.2 SIgNAl_tESH() .ooooeeeieiiiiii e 237
G o v =117 o SR PPRPPRPPRR 238
4.4.2.4 CEXC_WAIL()eeeiioeieeee e s e e 239

Microengine C Language Support Reference Manual 5

Contents

Intel® IXP2400/IXP2800 Network Processors u t9I
®

4.5

4.6

4.7

4.8

4425 wait _for_any(), _wait_for_all().......cccooommrrmirr 240
4426 signal_same _ME ... 241
4427 signal_same_ME_next CtX......cccooiiiiiiiiiii e 242
4.4.2.8 signal_prev_ME ... s 243
4429 signal_prev_ME_thiS_ CIX.......uuiiiiiiiiiiiiiei e 244
4.4.2.10 signal_next_ME ... 245
4.4.211 signal_next ME_thiS_ CX ... 246
Control and Status Register (CSR) Access FUNCHONS ..o, 247
S T B O e = = R Y/ oYY PSR 247
38 Tt Ot B o7 o T o~ s SRR 247
38 Tt R (o Yoz | I o7 SRR 248
4.51.3 cap_read_write_iNd_f.....cccociiiiiiiiiii 249
I OF - o STV [o To (o 1= 250
4521 cap_csr_read(), cap_csr_read_D()....ccccccorreiiiiiiineiiniieee e 252
4522 cap_csr_read_ind(), cap_csr_read D _ind() ..ccccccveeeeeiiiiiiiiiiiiiiieeeeeeen, 253
4.52.3 cap_csr_write(), cap_csr_ write D()cccovririiiiiiiee e 254
4524 cap_csr_write_ind(), cap_csr_write_D_ind()......ccccceeriiiiiiiiiieieee 255
4525 cap_read(), cap_read_D()...ccceeremiririieieee e 256
4526 cap_read_ind(), cap_read_D_ind().....ccccooommmmmiieieeiieeeeeeee e, 257
4527 cap_write(), Cap_WItE_D()..uuuereeiiiiiiieiiiiiir e 258
4528 cap_write_ind(), cap_write D _ind()cccccerriieeiiiiiiiie e 259
4529 cap_fast WHE()coooeiieee e 260
2 o2 [B To o= | o1~ o ==L [PSP 261
4.5.2.11 10CaI_CSI_WIIE() ..eeeeiieeeieieiiiitee ettt 262
Hash AcCess FUNCLIONS ..o e 263
Tt B B T = T I/ o 7= SRR 263
4.6.2 FUNCLONS ..ot 264
4.6.2.1 hash_48(), hash_48 D()...cccccveiiiuiiiieieiiiie e 265
4.6.2.2 hash_48 ind(), hash_48 D _ind() .cc..cooovmreriiiiiiiee e 266
4.6.2.3 hash_64(), hash_64_D()...cccccceeeiiuiiiieeeiiiie e 267
4.6.2.4 hash_64_ind(), hash_64 D_ind() ..c...cccovereriiiiiiiee e 268
4.6.2.5 hash_128(), hash_128 D()....cccciuiurereeiiiiiiee e 269
4.6.2.6 hash_128 ind(), hash_128 D ind()cccooereeerirrireeieiiieee e 270
4.6.3 Limitations on Hash FUNCHONS..........ccuiiiiii e 271
CAM (Content Addressable Memory) Access FUNCLIONS...........ccoooiieieiiiiiiee e 272
O B DT = T Y o= T PSPPI 272
S A T o 1 T 0T (U o T SO PSPPSR 272
4.7.2 FUNCHONS ...ttt e e e e e e e s e et e e e e e aaeee e e e e nnnenneeeeeeens 273
S g T o o ¢ [o1 =T T () SRR 274
VS 2 o7 | o ¢ [(Yo | (U o LSRR 275
VS 70 R o= o ¢ R =Y- To [= Vo T () TSR 276
4724 cam_read_sState()......ccccoeiiiiiiie e 277
4725 cam_Write_State()ccocveeeiiiiiie e 278
4.7.2.6 CAM_WIIE() verreiieeee e i i e e e e e e s et reeaaaaeeas 279
CRC ACCESS FUNCHIONS ...ttt e e e e e 280
T I B - = T 5/ 01 280
4.8.1.1 bytes _SPECIfier t......ccccociiiiiieiiiiee e 280
4.8.2 FUNCHONS ...ttt e et e e e e e e e e e e e eeas 280
N Tt B o (o3 T o 1Y (TS UPERRRR 284
4.8.2.2 Crc_5_be Dit_SWaP()...eeeeeeiiiieieiiiiiee e 285
R I o { R > T [PRSPPI 286
4.82.4 Crc_5 1€ bit SWAP()-uueuremmmiiiiiiaaaie e 287
I S T o7 (o O o 1Y SRR 288

Microengine C Language Support Reference Manual

u Intel® IXP2400/IXP2800 Network Processors
o Contents

4826 crc_10_be bit SWaP()....ceeieiiiiiee e 289
4.8.2.7 CIC_T0_1E() courreeeeeieiiiee e ettt ettt e e e st e e e e et e e e e e nnb e e e e snraeeeeen 290
4.8.2.8 crc_10_le_bit_ SWaP()..ccouerreeiiiiiieee e 291
4.8.2.9 CIC_16 DE().ceeiieiiiiieiieiie e 292
4.8.2.10 crc_16_be bit SWap()........eooeieiririiiiie e 293
4.8.2.11 CrC_ 16 _1E() cvrreeeeeiiiiiee e ettt e e e et e e e earae e e 294
4.82.12 crc_16_le_bit SWaP()..eeeeeiaeoeeeeiiie e 295
4.8.2.13 CrC_CCItt D e 296
4.8.2.14 crc_ccCitt_be _bit SWaP......ccieiiiie i 297
4.8.2.15 CIC_CCIL B coeieiiiieiiice e 298
4.8.2.16 crc_cCitt_le_bit SWaDuuuiiiiiiiiee e 299
4.8.2.17 CIC_32 DO() curreeeeeiiiiiee e ittt ettt e e e et e e e e e e e e e 300
4.8.2.18 crc_32 be bit SWaP()...eeeeieiieieieeie e 301
4.8.2.19 CIC_32_1E8() s ouvrreeeeiiieiee e et ettt e e e ettt e e e et e e e et e e e e et e e e e anraaeaeen 302
4.8.2.20 crc_32_le_bit_SWaP()..covrrreeiiiiiieee e 303
4.8.2.21 CIC_iSCSI_DE().uuurririiiiiiieeee et 304
4.8.2.22 crc_iscsi_be bit SWap().....cccociiiiiiiiii e 305
4.8.2.23 CrC_iSCSI_IE() vveeeeimrrreeee ittt 306
4.8.2.24 crc_iscsi_le bit SWaP()....ooeoiooemieieieie e 307
4.8.2.25 CrC_rEAA() .. vveeeeeiuteeee ettt e e 308
R I s o (o]) (=Y () ISP 309
4.9 Miscellaneous FUNCLONSoooiiii e 310
4.9.1 FUNCHONS ..ot e e e e e e e e e et eeeaaaaeeeaaan 310
e B O o o 1o T PSPPI 313
4.9.1.2 dADI_ShI() weeeeiiiiiie e 314
e By I T o1 o () I SRR 315
49.1.4 IVE() weeeeiteee ettt e et e et e et e e e et e e e s arraeeaeaaaes 316
e Bt RS T o W v PSSP PP PP 317
4.91.6 _ NCIX_MOTE() .ot 318
e By B A = T o SRR UPRRURTRRR 319
N By T T 1] USSP 320
4,919 LoadTimeConstant()ccccvvrriiirieeeeee e 321
4.9.1.10 _ global _1abel()vveeeeiiiieiee e 322
4.9.1.11 MUIIPIY_24X8().ceevvveeeeeiieiieee e et ete e e ettt e st e e e e st e e e e e snraeeeeeanes 323
4.9.1.12 MUIRIPIY_TBXTB()..vveeeeeiiiiiieee et et e s et e st e e e e srree e e e e snreeeeeeanes 324
4.9.1.13 MUIIPIY_32X32_10() ..eeeieeeeieeeeiiiiiee ettt 325
4.9.1.14 MUIIPIY_32X32_Ni().eeeeiiiiieeeiiiiiee e 326
4.9.1.15 MURIPIY_32X32()...eeeeeeeiiiieiee et 327
4.91.16 __set_timestamp() . .cooee e 328
4.91.17 __ timestamp_start(), _ timestamp_stop........cccccoviiiiiiiiiniie 329
4.9.1.18 _ set profile_count()coooeiie e 330
4.9.1.19 _ profile_count_start(), __profile_count_stop............ccccceeeriiirreeennnen. 331
4.9.1.20 __signal_NUMDBEI() ...ccciioviiiieeiiiiiiie e 332
49121 _ xfer_ reg_ NUMDEI()cooeeiiiiiee e 333
4.9.1.22 _ assign_relative_register().......ccccuuiiiiiiiie e 334
4.91.23 _ imPlICIE_read() «veeeeeeiieeeeee e 335
4.9.1.24 imMPlCE_WIIE() eeeeeeeeeeee e 336
4.9.1.25 _ free_write_BUffer()......cccveiiiiiiie e 337
4.9.1.26 iNp_state_teSt() ...ccvvrreeiiiiiie e 338
4.9.1.27 DIt_EEST() eeeeeieeeee e e e 339
4.9.1.28 nN_ring_deqUEUE_INCI()....ccuiuriiieiiiieee ettt 340
4.9.1.29 NN_riNG_deQUEUE() .. .eeieeeeeeeiiiieiee ettt 341
4.9.1.30 NN_riNg_ENQUEUE_INCI() . uuuureieriiieiaaaeeeeaaeiieee et e e e e e e e e e e eeeeeeeaaaaeas 342
4.9.1.31 byte_align_bIOCK_IE() ...uuueieeiiiiiiei e 343

Microengine C Language Support Reference Manual 7

Contents I n

Intel® IXP2400/IXP2800 Network Processors u t9I
®

4.9.1.32 byte_align_bIOCK_De()....cciouuriiiiiiiiiiie e 344

4.9.1.33 __ NO_SPIll_DEGIN(). ..o 345

4.9.1.34 _ NO_SPIll_€NA() weriiiiiiiieeiiie e 346

4.9.1.35 @SSEIM().eurrrrrreiiiiieeeiie it e e e e e raaaaaaaa e 347

4.9.1.36 __ critical_path()cccouiiiiiiiieieee e 348

e T R Y A o o] o oo 11 oL { () F PRSPPI 349

4.9.1.38 _ SWItCh_PACK «.eeeeiiiiee e 350

4.91.39 _ _impossible_path ... 351

4.91.40 _ NO_SWAP_DEGIN ... 352

e I g o T Y=LV o T =Y o o O 353

4.10 Restrictions ON INTHNSICSeeeieiiiiiiiie et e et e e e st ee e e e e nnneeeas 354
4.10.1 Intrinsic Function Arguments that Map to Transfer Registers in Microcode 354

5 Inline Assembly LANQUAQGEcooooiiiiiiiii e a e e e e 357
5.1 Single _ asm INSITUCHIONoiiiiiiiii e 358
5.2 Block of __asm ASSEMDIY COUEcccoiiiiiiiiiiiiie e 359
CTRC TN [0 TS £ (U o £ oo T o T4 4 - | SO PPRRE 360
I N O T =T =T g o IR} o | = GO PR PRPR 361
5.4.1 RegiSter OPEranads........ooouuiiiiiiiiiiiiee ettt 361

5.4.2 Immediate OPErandsccooiiiiiiiiiiiiiie e 362

5.4.3 USage EXAMPIES.......ooiiiiiiiiiiiiiie e 362

5.5 Restrictions on Use Of Assembly Languagecoocceviiiiiiiiiie i 365
6 Compiler OptimizatioNS ... 367
6.1 Machine Independent Optimizations ... 367
6.2 Network Processor Specific Optimizationsooooiiiiii e 367
6.2.1 RegISrationscoiiiiiieiie e 367

6.2.2 Read/Write ComMBINING........viiiiiiiiiiie e 367

6.2.3 Peephole Optimization............ooo i 368

6.2.4 Defer SIOt Fillingc.oeeiieieee e 368

6.2.5 Local MemOry GrOUPINGccceiitiiiieiiiiiiiee ettt e e e 368

6.2.6 Local Memory Autoincrement/Autodecrement Conversionccccocceeeeennne. 369

6.2.7 SCREAUING ..ot e e 370

6.2.8 /O Parallelization.......... ..o 370

7 Tips for Optimization, Troubleshooting, and Debugging...............cccccccoiiiiiiiiiiiiie 373
7.1 OptiMIZING YOUE COOE.....coiiiiiiiiie ettt e e et ee e e e ettt e e e s stee e e e e s sntbeeeaesantaeeaeeanes 373
7.2 Things to Remember When Writing Microengine C Code..........ccccveeiiiiiiieeieiciieee e, 374
7.3 TroubleShOOtINGcoi it eaes 378
7.3.1 Program Does NOt Fit...........iiiiiiiii e 378

7.3.2 Program Does Not RUN COITECHYccoeiiiiiiiiiiiiieeeee e 378

7.4 Debugging INliNe FUNCLONScooiiiii e e e 378
8 Mutual EXCIUSION LiDraryooo e e e e e 379
8.1 10T [T o) o PSS 379
8.2 MUTEXLY USGQE ..eieieeieie ittt ettt et e aaennnseneneneaaaeeeeeenn 379
G TR T |V LU I = C T U 7= o = SRR 380
. 2 U o o o 1= PSR 380
8.4.1 MUTEXLV_iNit (MUTEXLV) ..eiiiiiiiiiiee ettt e et a e anes 380

8.4.2 MUTEXLV_destroy(MUTEXLV,MUTEXID)cccccoiiiiiiiiieeee e e e 380

8.4.3 MUTEXLV_Iock(MUTEXLV, MUTEXID).......cciiiietieeieeeeee e e e e e 381

8 Microengine C Language Support Reference Manual

u Intel® IXP2400/IXP2800 Network Processors
o Contents

8.4.4 MUTEXLV_unlock(MUTEXLV, MUTEXID)ccccuiiieiiiiiiiee e cieeee e eeeee e 381
8.4.5 MUTEXLV_trylock(MUTEXLV, MUTEXID, ERRCODE)......cccccccceviiiieeeiiiiiieeens 381
8.4.6 MUTEXLV_testlock(MUTEXLV, MUTEXID, ERRCODE)........c..ccccvvveieiiiiieeenns 381
8.4.7 MUTEXG _init (MUTEXG)uiiiiiiiiiiieeeiiiiiee e s etieie e e s stee e e e s staee e e s s snteeeeesennsaneaesanes 382
8.4.8 MUTEXG_destroy (MUTEXG)......ccuuiiiiiiiiiiieeiciiiee et s st e et e e snaeeea e 382
8.4.9 MUTEXG _I0CK (MUTEXG) ...uviiiiiiiiiieeeiiiiiiee e eeiitee e e e et ee e s sttaeee e e snraeeaeesnnaeeaeens 382
8.4.10 MUTEXG_UnIoCK (MUTEXG) ...cciiuiiiieeiiiiiiee et s ettt e et e e esatee e e e s ennrnneeeeanes 383
8.4.11 MUTEXG_trylock (MUTEXG, ERRCODE)c..coeiiiiiiiiieeeiciiiiee e eieeee e 383
8.4.12 MUTEXG_testlock (MUTEXG, ERRCODE).........cccciiiiiiiiiiiiiiiiee e 383
9 SeMAPROre LiDIrary ... e 385
9.1 SeMAPNOre Dat@ TYPES ..ceeii ittt e ettt e e e s et e e e s et e e e e e snteeeeeeesnnaneeeeanns 385
9.2 Semaphore FUNCHONS..........c...uiiiiieiiiece e e 385
9.2.1 SEML_INIt(SEML, SEMVALUE).......coiiiiiiiiie et 385
9.2.2 SEML_AESIOY(SEML) ...ccoiiiiieee ettt e e e e e s entee e e e s eneeeeaeeane 385
9.2.3 SEML_post(SEML)
SEML_dec(SEML)386
9.24 SEML_WAIt(SEML) ..ottt 386
9.2.5 SEML_trywait(SEML, ERRCODE)........coiitiiiiiiiiiiiee e 386
9.2.6 SEML_barrier(SEML,N) ...ooeiiiiie ettt 387
9.2.7 SEML_trybarrier(SEML, ERRCODE).........cccciiiiiiiiiiiiiiie e esieeee e 387
9.2.8 SEML_QEtvalUE(SEML)uueiiiiiiiiiee et e e e neaee e 387
9.2.9 SEML_set barrier_at(SEML,n) SEML_clr_barrier_at(SEML,n)..........covvvveeeeee.n. 387
A -Qperfinfo Output INformation...............ccooi i 397
N B O T o 1= o 0 (o i ST OTPEPRP 397
A2 —QPEMINTOT2 .o e e 398
A3 —QPEMINTOTA ... enras 400
A4 —QPEIMINTOTS ... e enras 401
E N I O T o =T o 0 (o iy SO P PRSP PPTP 402
A8 —QPEMINTOTB2. .. e e e e 404
AT —QPEMINTOTBAo e e 405
A8 —QPEMINTOTA28 ... 406
A9 —QPEIINFOT25B ... e e aa e e 407
A0 —QPEMINTOTET2 ..ot 408
AT —QPErINTOTT024 ...t e et e e e e e e 409
A 12 —QPEMINFOT2048........c et a e e aa e e 410
A 13 —QPEMINFOTA096 ... et a e e e e e eras 411
A 14 —QPEMINTOTBIO02...ccc et e e a e 412
Figures
1 Microenging BIOCK Diagram........coo oottt et e e e e e e e e e e eeeeas 15
2 LoCal MEMOIY LAYOUL ..ottt e e e et e e e e e e e e e e s e e e e e eeaaeeeas 48
3 Local Memory Layout for Program 1ooiiiiiiiie i eeieee et e e st e e e st e e e e s ennee e e e e e 49
Tables
S I O 17T o 11 LSS 12
2 Supported CLI Option SWItChES.........ei it e e e e e aaee s 20
S | T o TU L 1 L= Y/ 0T PR 25

Microengine C Language Support Reference Manual 9

Contents I n

Intel® IXP2400/IXP2800 Network Processors u t9I
®

10

L@ U1 UL 1 F= T Y/ o= SR 25
Supported ucld CLI Option SWItChESooiiiiii e 26
SUMMArY Of DAta TYPES .. .eeeiiiiiiiiiie et e s e e e s s 34
Summary of Allowed Combinations of Attributes on Data..............cccoviiiiii, 52
Unaligned Get FUNCLIONS ...t e e e b ee e 75
Unaligned Set FUNCONS SUMMAIYccooiiiiiiiiiiiiiie ettt e s ee e 78
Unaligned memcepy FUNCHONS ...t 80
MEMOTY 1/O DAta TYPES ...eeeiiiiiieiee ittt ettt e et e e s rab e e e e sb b e e e e e e sabeeeeeaas 83
Scratch Operation SUMMEAIYcooiiiiiii e e e e 100
SRAM Operations SUMMEAIYooiiiiiiiiie ittt e b e b e e e e e anneeas 138
DRAM Operations SUMIMAIYccoiiiuiiiiiiiiieee ettt e e ab e e s e b e e e s e aneeas 204
MSF Operations SUMMAIYeeiiiiiiiiiie ettt et e s e e e s rab e e e e e aneaeeas 211
PCl Operations SUMMEAIY.........uuuiiiiiiiiiii et e e e eanne e e e e s aaneeeas 222
Reflector Operations SUMMAIYooiiiiiiiiii e 227
Synchronization FUNCLONS SUMMAIYcoiiiiiiiiiii e 235
CSR Access FUNCLONS SUMMANYuiiiiiiiiiiiie ettt e 250
Hash FUNCLONS SUMMAIYuiiiiiiiiiiii ettt e e 264
CAM Access FUNCLIONS SUMMANYuiiiiiiiiiie ittt 273
CRC Access FUNCHONS SUMMATYo.uiiiiiiiiiiiie ettt nnbeeas 281
Miscellaneous FUNCHIONS SUMMAIYcoooiiiiiiiii e 310

Microengine C Language Support Reference Manual

" intgl.

Intel® Microengine C Compiler Language Support
Introduction

Introduction 1

1.1

Note:

1.2

1.3

Purpose

This document specifies the subset of the C language supported by the Intel® Microengine C
Compiler and the extensions to the language to support the unique features of the Intel™ IXP2XXX
network processor line.

For simplicity throughout this document, the Microengine C Compiler will be referred to as the C
compiler, or in some cases simply the compiler. Also, the IXP2XXX Network Processor may be
referred to as the NPU.

Features

* The C compiler provides a high-level language programming environment for the network

processor to reduce application development time and reduce the need for specialized
knowledge.

The compiler supports programming for the network processor microengines by supporting a
combination of the standard C language, language extensions, and intrinsic functions. It
supports unique features of the processor through language extensions, intrinsic functions, and
inline assembly.

All existing reference designs currently written in assembly language can be converted to C
for the compiler to handle.

The compiler works with existing tools, including the microcode linker loader and the
Developer Workbench.

Nonfeatures

The C compiler is not a complete ANSI C implementation.

There are many features of ANSI C, for example floating point operations, that are outside the
realm of applications on the network processor architecture. The compiler omits these
features.

The compiler may not compile existing general purpose C code.
The compiler does not support the full standard C runtime library.

It implements useful or necessary functions according to the C runtime library specification,
but it does not fully implement the library.

The compiler does not implement automatic parallelization of code.
It expects explicitly multithreaded code as input.

The compiler does not support separate compilation and linking of C code with assembler
code.

| Language Support Reference Manual 11

Introduction I n

Intel® Microengine C Compiler Language Support u t9I
®

The compiler does not support C++.
* The compiler does not support floating point data types (float and double).

* The compiler does not support function pointers and recursion.

The compiler does not support functions with a variable number of arguments (varargs).

| 1.4 Conventions Used in this Manual

| The following conventions are used in this manual.

| Table 1. Conventions

Ellipsis indicates that an item may be repeated

[Option] Items in square brackets are optional

[Optionl...] Optional items can have multiples.
The equivalent of [Option1 [Option2]...]

Option=1..5 Range of allowable values.
Equivalent to Option=1, 2, 3, 4, or 5

(For Windows*) Selecting cascading options.

Indicates that you should follow these steps:

Click on Command1, which offers options including Command2
Command1|/Command2|Command3 8::2:2 82 ggmnggg which offers options including Command3
For example:
Start|Programs|Accessories|Command Prompt

SDK x.y The x represents the current version, and y the latest point release of
SDK that is installed on your system. This could be 3.5, for example

IXP2800 file Keyboard input, keywords and code items are shown in
monospaced font.

IXP2400/1XP2800 PRM [3] Pointer to another document. In this example, the
INTEL® IXP2400 /IXP2800 Programmer’s Reference Manual,
Chapter 3

IXP2XXX The family of Intel® IXP2XXX network processors, where 2XXX=the
four-digit designator of the target chip.

1.4.1 Version-Specific References

Wherever version-specific files or commands are shown in this book, versions are shown as x and
point release numbers are shown as y, as in the following example:

Example: A typical compile command could take this form:
| uccl -Qnctx=1 -I\IXA SDK x.y\MicroengineC\include

Where x.y = the current software release that is installed on your system.

| 12 Language Support Reference Manual

intel.

Intel® Microengine C Compiler Language Support
Overview

Overview 2

2.1

211

Note:

2.1.2

Network Processor Architecture Overview

The Intel® IXP2XXX Network Processor contains an Intel XScale® core processor and multiple
microengines (8 or 16). This manual is concerned only with compilation of application programs
for microengines. Each microengine has hardware support for up to 8 contexts with zero latency
task-switches. The microengine can be set up to run 4 contexts instead of 8 by setting a bit in the
CTX _ENABLE CSR. In this mode, the 4 contexts that are enabled are context 0, 2, 4, and 6.

For more information on the IXP2XXX Network Processor and the Intel XScale® core processor,
refer to the IXP2400/IXP2800 Programmer s Reference Manual.

Data Terminology

The following data terminology appears in this document and in the IXP2XXX Network Processor
documentation, but not in the Microengine C data types:

Term Words Bytes Bits
Byte 1/2 1 8
Word 1 2 16
Longword 2 4 32
Quadword 4 8 64

Section 3.1, “Standard Data Types” on page 33 details the data types and their naming conventions
supported by the C compiler.

Register Model

Each Microengine supports 256 General Purpose Registers (GPR) split into two banks (A and B),
and 512 Transfer Registers (XFR) that are used to communicate with memory and I/O devices. The
transfer registers are designated as follows:

* 128 SRAM (Scratch) Read XFR registers for I/O
* 128 SRAM (Scratch) Write XFR registers for I/O
* 128 DRAM Read registers
* 128 DRAM Write registers

In addition to these registers, there are also 128 Next Neighbor registers for communication
between neighboring microengines. Refer to Figure 1 on page 15 for more information.

The microengines (MEs) support two modes for accessing registers: relative and absolute.

Language Support Reference Manual 13

Overview

| Intel® Microengine C Compiler Language Support int6I
®

21.3

Caution:

| 14

In relative mode, the registers are divided equally between the eight contexts so that each context
effectively has its own set of registers. Each context may refer to relative general purpose registers
in banks A and B and relative transfer registers without conflicting with the registers of another
context.

In absolute mode a context may refer to any of the 256 GPRs. In this mode, some of the registers
may be shared among contexts, and others may be context specific.

By setting up a microengine to run in 4-context mode, each context can access twice as many
context relative registers. In this mode, odd contexts 1,3, 5, and 7 are disabled and the even
contexts 0, 2, 4, and 6 have full access to their registers.

GPRs are located in two separate registers banks (A/B). Only one register from each bank may be
read or written in any one clock cycle. Therefore, a typical binary instruction (w=r0+r1) may only
reference alternating banks for their read operands. The compiler enforces this restriction by
potentially adding register moves.

Absolute (ME shared) registers may require extra assembler move instructions as the instruction
set is asymmetric (i.e. many instructions do not take absolute registers as operands).

Next Neighbor Registers

Each microengine has 128 next neighbor registers that can be written in one of two ways as
selected by the NN_MODE bit in the CTX ENABLE CSR. When the NN MODE bit is 0, a write
to a next neighbor register goes out of the ME to the corresponding next neighbor register of the
next neighbor ME. In this mode, the next neighbor registers of an ME are read-only. When
NN _ MODE bit is 1, and a next neighbor register is specified as a destination in an instruction, the
selected next neighbor register in the same ME is written. When an ME writes to its own Neighbor
register, it must wait 5 cycles (or instructions) before it executes the instruction that reads the same
register in order to get the newly written value.

Changing the NN_MODE bit at runtime is not allowed for a Microengine C program and the
behavior is undefined.

The next neighbor register can be specified directly as a context-relative register or indirectly
through an index register. In the direct access mode the 128 registers are partitioned between the 8
contexts (or 4 contexts in 4-context mode) each addressing its own set (0-15 or 0-31) of context
relative registers. In the indirect mode, one of the 128 next neighbor registers is selected through
either a local CSR NN_Put (*n$index++ used as destination) or NN_Get (*n$index or *n$index++
used as source). The compiler supports the indirect access mode through intrinsic functions.

Language Support Reference Manual

Intel® Microengine C Compiler Language Support

I n Overview
®
Figure 1. Microengine Block Diagram
D_Push
(from DRAM)
NNData_In gr—oFr’T‘]JSSf‘R AM
(from previous ME) Intel® XScale®
______ Architecture,
640" Scratchpad, MSF,
_ Local | Y Hash, CAP)
BRLVCTN I e | |y e | It |
------ e |--128 _ | __128 | __128 | __128 _ | __128 _ || Control
------ ¢ |- GPRs_ | _ GPRs_ | _ Next_ | __D _] -S| store
e o |{A Bank). (B Bank)_ Neighbor. - XEER_ _ XEER_
______ In In
dlF----41 F----41 |F--—--4} }F-In_d} [--In_]
______ e l------]]] -
A Al A A A A A A A
1 1 1 1 1 1
1 1 1 [JS——— [G Y
Lm_addr_1 ! !
Lm_addr_0 : : ;ﬁ
A LEEE EE BRI R P EEEE - =@ =-=---4 A Src
P R P [:_0_____.B_Src
1
T_Ir.1de><
NN_Get
| CRC_Reminder|
A
Y
| CRC Unit | I T Immed
) f N\ / '\
* A_Operand * B_Operand
Execution
Datapath
(Shift, Add, Subtract, Multiply Logicals,
Find First Bit, CAM)
ALU_Out
S Push — jmm——-- s 2ttt Dest
1 1
* . . > NN_Data_Out
Y Y ¥ 7 Y (to next ME)
_ 12| [[-i28_]
__D__] |--= S__]
Local _ XEER_ | _ XEER_ |
CSRs _ _Out _ | _ _Qut_ |
____________ - = = = Control
¢ ¢ Data
D_Pull S_Pull
A9351-01
Language Support Reference Manual 15

Overview

Intel® Microengine C Compiler Language Support int6I
®

21.4

2.1.5

2.1.6

16

Notes:

Local Memory

Each microengine has a local memory area that is private to it. This memory holds 640 longwords
and can be addressed through one of two local memory address CSRs. These CSRs can be
configured as either being local to each context or shared among contexts. The local memory can
be accessed as operands in microcode instructions (with some restrictions) by setting up one of the
two local memory pointers. Hence, it serves as a register set that can be addressed indirectly. There
is a 3 cycle latency that must be observed between the setup of the local memory address CSR and
its use in dereferencing local memory.

See Section 3.2.7, “Local Memory Allocation” on page 47 for details on local memory layout and
allocation.

External Memory

External memory accesses are asynchronous. When memory is read, the thread must do one of the
following:

¢ Swap itself out, allowing other threads to run

¢ Wait until the operation signals completion before using the data read.

Similarly, when memory is written, care must be taken not to read it or write a new value before the
write has completed.

Memory is also divided into three separate regions, each with its own address space. These are:

'\RASS?&:V Speed Size Description

DRAM slowest largest ?éfﬂlé)&lgglﬁssable on quadword boundaries
SRAM to to ((jil3r2e-(t:)t||t)é)a(c)irc]ilry%ssable on longword boundaries
Scratch fastest smallest ?é;%ﬁ%)agglryeﬁssable on longword boundaries

1. The memory is only accessed on a 32-bit (SRAM Scratch) or 64-bit (DRAM) boundary.
However, the address specified is a byte address, with the lower 2 bits (3 bits for DRAM) ignored
by the memory subsystem.

2. You always read and write memory through transfer registers (XFRs). The transfer registers are
divided into read transfer and write transfer registers. The read XFRs are written by external units
then used as source, while the write XFRs are read by external units after they are used as a
destination. (See Figure 1 on page 15.)

FIFO Queues

In addition to memory, there are two FIFO queues for sending and receiving data. These operate
similar to the memory. R_FIFO and T FIFO refer to RBUF and TBUF respectively. Both can be
accessed by either dram[rbuf rd,...], dram[tbuf wr,...], or msf[read,...], msf[read64,...],

Language Support Reference Manual

2.1.7

2.1.8

21.9

2.1.10

Intel® Microengine C Compiler Language Support
Overview

msf[write,...], msfwrite64,...]. Users access them using the above mentioned inline-assembly or
intrinsics, or declare variables with __declspec(tbuf, rbuf, r_fifo, t fifo) and use them like C
variables.

Signals

The IXP2XXX Network Processor architecture provides a set of 15 signals per context that can be
associated with certain hardware events. These signals might be used to notify the execution
context that a certain request has been completed. The choice of hardware signal to use is specified
in the microcode. Hence these signals are like hardware registers that can be allocated and used by
software. Certain events such as DRAM access, or accesses that involve a pull and a push from
transfer registers require specification of two signal registers (an even-odd pair) on which the event
completion is signaled.

Reflector

The IXP2XXX Network Processor architecture supports an operation called Reflector, which
provides the ability for one microengine thread to read its SRAM or DRAM transfer register from
the SRAM transfer register or local CSR of another microengine context or write its SRAM
transfer register to the SRAM or DRAM transfer register or local CSR of another microengine
context. Access completion signals can optionally be requested for one or both of the sending and
receiving threads.

Indirect Register Access

The MEv2 architecture supports indirect register access, using the T INDEX, NN _PUT, and
NN_GET registers. Because the value of these registers generally cannot be determined at compile
time, the use of indirect register access in inline assembly is not recommended. The compiler will
perform register allocation and live range analysis without taking the indirect register access into
account, and, as a result, the values read or written using indirect access may be incorrect. For
access to the next-neighbor registers in ring mode, you can use the intrinsic functions designed for
this purpose. See Section 4.9, “Miscellaneous Functions” on page 310 for additional information.

Threading Model

The programming model for the IXP2XXX Network Processor architecture involves programs
running on multiple microengines, each running multiple threads. Each microengine can be
configured to run either in 4-context mode or 8-context mode by setting a bit in the

CTX _ENABLE CSR. In the 4-context mode, twice as many context relative registers are available
to each of the 4 threads. The multithreading is explicit; that is, you must partition the tasks across
threads. You also need to partition the program across microengines and manage all interthread and
interprocess communication.

The IXP2XXX Network Processor is designed to handle a very large number of packets of data in
communications routing applications. The threading model contributes to this bandwidth by
allowing useful work to be done by another thread while one thread is waiting for completion of a
memory or I/O transfer. Thus, the usual case is, when you read or write memory, your thread is
swapped out, allowing other tasks to run.

| Language Support Reference Manual 17

Overview

In

Intel® Microengine C Compiler Language Support u t9I
®

2.1.11

2.2

2.21

18

Features Not Supported

Several features generally found on all general-purpose processors are not supported on the
IXP2XXX Network Processor microengines. There is:

* No support for either a data stack or a subroutine call stack.
* No data or instruction cache

* No traps or exception support.

¢ No misalignment support

¢ No direct support for byte aligned access (direct access must be aligned on longword (SRAM
or Scratch) and quadword (DRAM).

A stack could be implemented in SRAM with software, but due to the long memory latency and
multiple instructions required for stack manipulation it would be prohibitively slow. Local memory
is not well suited for implementing the stack either, because of its limited size (80 longwords per
context). Hence this architecture is not amenable to function recursion and standard caller/callee
register partitioning. Consequently, the compiler does not support recursion, and resorts to whole
program register allocation to avoid or reduce the overhead of spilling/filling registers.

Function calls are implemented by loading a register with the return address and jumping to the
function. The load of the return address is placed in the delay slot of the jump instruction to
minimize the overhead.

Compilation Model

Since microengine programs are necessarily very small, the C compiler always compiles the entire
program for a microengine. This is done through the Inter-Procedural Optimization (IPO) feature
of the compiler. In this model, you can separately compile C source code, but instead of generating
code, the compiler writes the intermediate language to an object file. Then when you link the
program, the driver calls the compiler for all of the precompiled objects. The compiler performs a
global analysis and calls the code generator for each function in the complete program. At this
point, the entire call graph and global usage of all variables is known, allowing for much better
code generation than would be possible compiling one function or even one source module at a
time.

This compilation model allows the compiler to optimize the linkage between functions based on its
knowledge of both the caller and called function. The compiler can allocate static variables to
registers, fine tune calling sequences, and avoid the stacking of return addressing and the saving
and restoring of registers across calls except when absolutely necessary.

Number of Contexts

When 4 or fewer contexts are needed in the microengine program, it is beneficial to set the
microengine to run in 4-context mode. This is done using the compiler switch -Qnctx_mode=4. In
this mode each context has twice as many context relative registers available, potentially leading to
fewer spills and better performance. The exact number of contexts also needs to be specified
through a command line option. It is important to remember that in 4 context mode, the contexts
are numbered 0, 2, 4, 6. This impacts any code that checks the context number. For example, in 4-
context mode the following line of code never evaluates to true:

if (__ctx() == 1)

Language Support Reference Manual

In

2.2.2

2.3

2.31

®

Note:

Intel® Microengine C Compiler Language Support
Overview

Inlining

The compiler performs inlining of functions. This feature of the compiler is controllable through
compiler options as well as through the use of directives in the C source code. The keywords
__inlineand _ forceinline appearing in the function definition (as shown in the example below),
indicate to the compiler that the function is to be inlined in all the places it is called from. The
__forceinline keyword forces the compiler to inline the function regardless of the size of the
function as long as inlining has not been turned off via the -Ob compiler switch or in debug code
via the -Od switch. The __inline keyword allows the compiler to decide whether or not to inline the
function based on cost/benefit analysis performed by the compiler.

Example:

_forceinline int foo() {...}

__inline int bar() {...}

The function to be force inlined with a __ forceinline keyword should normally be in the same file
as the caller to the function. If however the caller and callee are in different files, either a prototype
for the function with the "extern" keyword should be present (or included) in the file containing the

callee, or the function definition should specify the "extern" keyword in addition to the
__forceinline keyword.

Example:
__forceinline extern int foo() {...}

Without this, the force inlined function is treated as if it were a static function and hence is not
externally visible or inlined in other files.

The keyword __noinline can be used to prevent the compiler from inlining a function. This can be
used to control code size.

Use the -Obn compiler option switch to control the amount of automatic inlining the compiler will
perform. See Table 2, “Supported CLI Option Switches” on page 20 for more information on the -
Obn compiler switch.

Running the C Compiler

You can compile your C source code in one of two ways, by using one of the following:
* Compiler command line interface (CLI)

* Developer Workbench

The Command Line
You can use the compiler command line interface from a command prompt window on your
system. Do the following:

1. Open a command prompt window.

2. Go to the folder containing the C source files, typically:

Language Support Reference Manual 19

Overview

In

Intel® Microengine C Compiler Language Support u t9I
®

2.3.2

Note:

C:\IXA SDK 3.y\me tools\bins

3. Invoke the C compiler using this command:
uccl [options] filename...

C:IXA SDK 3.y\me_tools\bin should be on your PATH. On a system with IXA SDK 2.y and IXA
SDK 3.y installed, the Micro C compiler runs on either the V2.y or V3.y DevWorkbench. If you
want to run the V3.y C compiler from the command line, the system path needs to be set up
accordingly.

Supported Compilations

Two kinds of compilations are supported:
* Compile one or more source files (*.c, *.1) into separate object (*.obj) files.
¢ Compile any combinations of source file (*.c, *.i) and/or object file (*.obj) into one list file
(*.list).

In the first case, you must use the -c switch in the command line in order to compile .c files into
separate .obj files. You might want to use this method to compile .c files that don’t change very
often, for example, rtl.c, so that you don’t have to recompile them every time you make a .list file.

Example: uccl -c filel.c file2.i
In the second case, do not use the -c switch. In the following example, two source files (.c and .i)
and an object file (*.obj) are compiled to produce a .list file.
Example: uccl filel.c file2.i rtl.obj
2.3.3 Supported Compiler Option Switches
Table 2 lists and defines all the supported C compiler command line switches. The Command Line
Interface (CLI) warns and ignores unknown options. The CLI honors the last option if it conflicts
with a previous one, for example,
uccl -c -01 -02 file.c
this generates the following warnings and proceeds:
uccl: Command line warning: overriding '-0O1' with '-02'
If you enter other conflicting switches such as -E and -EP, the last switch entered always prevails.
Options that do not take a value argument, such as -E, -c, etc., are off by default and are enabled
only if specified on the command line.
Table 2. Supported CLI Option Switches (Sheet 1 of 5)
Switch Definition
-2
) Lists all the available options.

-help

-C Compiles each .c or .i file to a .obj file (rather than compile and link).

-Dname[=value] Specifies a #define symbol. The value, if omitted is 1.

20

Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Overview

intel.

Table 2. Supported CLI Option Switches (Continued) (Sheet 2 of 5)

Switch

Definition

-DSDK_3_y_COMPATIBLE

Uses the IXA SDK 3.y version of the hash intrinsics (with the read and
write parameters swapped) and removes error checking for generic
(“void *”) typecasts in intrinsics library parameters. If possible, SDK 3.y
code should be changed to work with the new versions of the hash
intrinsics and any generic typecasts should be changed to the correct
types.

-E
-EP
-P

Preprocess to stdout.
Preprocess to stdout, omitting #line directives.
Preprocess to file.

-Fa<filename>

Produces a .uc file containing the generated microcode intermixed with
the source program lines. The resulting assembly file is for reference
only; the compiler does not guarantee that the file will pass through the
assembiler. If an assembler-compatible file is required, the -uc option
should be used instead. This may have a negative impact on
performance, however; certain optimizations cannot be performed
when compiling for the assembler.

-Fo<file> -Fo<Dir\>

Name of object file or directory for multiple files.

Base name of executable (.list, .ind) file. Defaults to the base name of

-Fe<file> the first file (source or object) specified on the command line followed
by the extension (.list).

-Fi<file> Overrides the base name of the .ind file.

-Fi<file> Forces inclusion of file.

-Gx2XXX

(where 2XXX=the target NPU
model)

Specifies the target processor. IXP2800 is the default.
The compiler adds -DIXP2XXX as appropriate.

-l path[;path2...]

Path(s) to include files, prepended before path(s) specified in
environment variable UCC_INCLUDE.

-link[linker options]

Calls the microengine image linker (ucld) after successful compilation,
passing any specified linker options. The default linker options are:

-u0

-sc 0x00000004:0x00003ff4
-dr 0x00000010:0x07fffffe8
-sr0 0x00000004:0x03fffffc
-sr1 0x00000004:0x03fffffc
-sr2 0x00000004:0x03fffffc
-sr3 0x00000004:0x03fffffc”

Inlining control: n=0, none; n=1, explicit (inline functions declared with

-Obn __inline or __forceinline (default)); n=2, any (inline functions based on
compiler heuristics, and those declared with __inline or __forceinline)
-on Optimize for: n=1, size (default); n=2, speed; n=d, debug (turns off
optimizations and inlining, overriding -Obn below).
Compile big-endian byte order (default). Compiler adds -DBIGENDIAN,
-Qbigendian -ULITTELENDIAN. All other command line BIGENDIAN/

LITTLEENDIAN symbol definitions and undefinitions are ignored.

-Qdefault_sr_channel=<0...3>

Specify the SRAM channel that should be used when allocating
compiler-generated SRAM variables and variables that are specified as
__declspec(sram). The default is channel 0.

-Qerrata

Report when the compiler-generated code triggers a known processor
erratum.

Language Support Reference Manual

21

Overview

In

Intel® Microengine C Compiler Language Support u t9I
®

22

Table 2. Supported CLI Option Switches (Continued) (Sheet 3 of 5)

Switch Definition
-Qip_no_inlining Turns off all inter-procedural inlining. Inter-procedural inlining is on by
default.
Compiles little endian byte order. Compiler adds -DLITTLEENDIAN -
-Qlittleendian UGIBIGENDIAN. All other command line LITTLEENDIAN/BIGENDIAN

symbol definitions and undefinitions are ignored.

-Qliveinfo

Equivalent to -Qliveinfo=all

-Qliveinfo=gr,sr,...

Print detailed liveness information for a given set of register classes:
gr: general purpose registers
sr: SRAM read registers
sw: SRAM write registers
srw: SRAM read/write registers
dr: DRAM read registers
dw: DRAM write registers
drw: DRAM read/write registers
nn: neighbor registers (only when -Qnn_mode=1)
sig: signals
all: all of the above

-Qlm_start=<n>

Provides a means for user to reserve local memory address [0, n-1] (in
longwords) for direct use in inline assembly. Compiler does not allocate
any variables to this address range.

-Qlm_unsafe_addr

Disables the compiler's use of local memory auto increment
addressing. Used when user code writes local memory pointers with
invalid values. See Section 6.2.6 for more information.

-Qlmpt_reserve

Reserve local memory base pointer I$index1 for user inline assembly
code.

-Qmapvr

Prints out pseudo-assembly code with annotations that map physical
registers to user variables and compiler-generated temporary variables.

-Qnctx=<1, 2, 3,4, 5,6, 7, 8>

Specifies the number of contexts that will be made active in your
program. Unused contexts will be made to execute the ctx_arb[kill]
instruction and terminate. Compiler-allocated resources such as
memory will not be allocated to unused threads. The underlying number
of contexts supported by the hardware will not be changed, so
hardware-managed resources such as registers will still be allocated to
all threads. Defaults to the value of —Qnctx_mode (which defaults to 4).
If —Qnctx is set greater than the value of —Qnctx_mode, -Qnctx_mode
will be changed to the higher value.

-Qnctx_mode=<4, 8>

Specifies the number of contexts that the hardware will support.
Changing this value from 4 to 8 halves the number of available context-
specific registers. Defaults to 4.

-Qnn_mode=<0, 1>

Sets NN_MODE in CTX_ENABLE for setting up next neighbor access
mode. (See Next Neighbor Register section in Chapter 3). 0=neighbor
(default), 1 = self).

-Qnolur=<func_name>

Turns off loop unrolling on specified functions. You can supply one or
more function names to the option. For example:

-Qnolur="_main"; turn off loop unrolling for main().
-Qnolur="_main,_foo"; turn off loop unrolling for main() and foo().

The supplied function name must have the preceding underscore ('_").

-Qold_revision_scheme

Generates hardware revision numbers that are compatible with IXA
SDK 3.0 and below.

Language Support Reference Manual

intel.

Intel® Microengine C Compiler Language Support
Overview

Table 2. Supported CLI Option Switches (Continued) (Sheet 4 of 5)

Switch

Definition

-Qperfinfo=n

Prints performance information.

n=0 - No information (similar to not specifying)

n=1 - Register candidates spilled (not allocated to registers) and the
spill type

n=2 - Instruction-level symbol liveness and register allocation

n=4 - <deprecated>

n=8 - Function sizes

n=16 - Local memory allocation

n=32 - Live range conflicts causing SRAM spills

n=64 - Instruction scheduling statistics

n=128 - Warn if the compiler cannot determine the size of a memory 1/0
transfer

n=256 - Display information for "restrict" pointer violations

n=512 - Print offsets of potential jump[] targets

n=1024 - Information about the Boolean propagation optimization
n=2048 - Register requirements report

n=4096 - Information on switch statement optimizations

n=8192 - Print information on 1/O parallelization

-Qrevision_min=n
-Qrevision_max=m

The version arguments allow the compiler to generate code that works
on a range of processor versions (steppings).

0x00=A0 (default for -Qrevision_min)
0x01=A1
0x10=B0
0x11=B1

The default revision range is 0x00 to Oxff (all possible processor
versions). The default for -Qrevision_max is Oxff. The compiler adds
-D__REVISION_MIN=n and -D__REVISION_MAX=m. Note: The IXP
program loader reports an error if a program compiled for a specific set
of processors is loaded onto the wrong processor.

-Qspill=<n>

Selects the alternative storage areas ("spill regions") chosen when
variables cannot be allocated to general-purpose or transfer registers:

(LM=local memory, NN=next neighbor registers)

: LM (most preferred) -> NN -> SRAM (least preferred)
: NN->LM->SRAM

: NN only; halt if not enough NN

: LM only; halt if not enough LM

: NN->LM; halt if not enough LM or NN

: LM->NN; halt if not enough LM or NN

: SRAM only

: No spill; halt if any spilling required

: LM->SRAM

5333333353
TR SR
ONONRWN 2O

Default is n=0. You must set -Qnn_mode=1 to use the NN registers as a
spill region. If the NN registers are used by program code, NN spilling
will be automatically disabled.

Changes the behavior of -uc by not calling uca to assemble the
compiler produced assembly code. Only valid when combined with -uc
option.

Language Support Reference Manual

23

Overview

In

Intel® Microengine C Compiler Language Support u t9I
®

Table 2.

2.3.3.1

24

Supported CLI Option Switches (Continued) (Sheet 5 of 5)

Switch

Definition

Mixing C and microcode programming. Under this option, you can
compile one or more C files as well as one or more microcode files into
one application. The compiler compiles all C files into one microcode
file, then sends this microcode file as well as other microcode files to
UCA to produce a list file.

-Wn n=<0, 1, 2, 3, 4>

Warning level.

O=print only errors

1, 2, 3=print only errors and warnings
4=print errors, warnings, and remarks.
Defaults to 1.

Produces debug information. The compiler generates a file with a .dbg
extension for each source.

Environment Variables

The following environment variable is recognized by the compiler:

UCC_INCLUDE:

A list of directories to be added to the include path. The list is
separated by semicolons: dirl;dir2;dir3..., and is appended after the
directories supplied on the command line using -I.

Language Support Reference Manual

Overview

| i nu Intel® Microengine C Compiler Language Support
®

234 Input and Output File Types

Table 3. Input File Types

Extension File type
.C source file
.h header file

i source file after preprocessing

object generated by the compiler invoked by the

-obj -c switch

Table 4. Output File Types

Extension File type Command switch
list output file from compiler used by linker -Fe<file>
obi object generated by the compiler invoked by the
-00) -c switch
UG assembler input generated by the compiler
) invoked by the -Fa switch
.uof linker output file
ind a Transactor script to assemble and run the -Fe<file> or
' program -Fi<file>

2.3.5 Linking a Microengine .UOF file

Before running a program you must link using the ucld linker. The linker can combine multiple
files into a single executable .uof file. The executable file can contain microcode and data for one
or more microengines.

Example: To link a single microengine program to run on microengine 0 use:

ucld -u 0 -dr 0x00000010:0x07fffffe8 file.list

Example: Using the -link switch:

uccl file.c -link
You can override linker options after -link. The default supplied by uccl is:

-u 0 -sc 4:0x00003ff4 -dr 0x10:0x07fffffe8 -sr0 4:0x03fffffc -srl 4:0x03fffffc
-sr2 4:0x03fffffc -sr3 4:0x03fffffc

| Language Support Reference Manual 25

Overview

Intel® Microengine C Compiler Language Support int6I
®

2.3.6

2.3.6.1

26

Table 5 lists and defines all the supported C linker command line switches. The CLI ignores and
issues a warning for unknown options.

Table 5. Supported ucld CLI Option Switches

Switch Definition

u Specifies the Microengine the program is meant
for.

-sr0, -sr1, Specifies location in SRAM memory (channel 0,

-sr2, -sr3, 1, 2, 3) to allocate variables.

sc Specifies location in Scratch memory to allocate
variables.

-dr Specifies location in DRAM memory to allocate
variables.

You may want the .list file to contain special linker directives that are not directly supported by the
compiler. For example, the “.%image name” directive is used by the linker to tag the .uof file with
a text label. In this case, you can use the #pragma comment(linker...) directive as follows:

#pragma comment (linker ".%$linkerdirective argl arg2")

This directive will emit “.%linkerdirective argl arg2” directly at the top of the .list file.

Util.c

The util.c file provides functions that can be used to display characters, strings, and numbers in
various formats. These functions use the put() intrinsic to simulate output of a single character. The
put function makes use of Scratch memory 0x3ff8-0x3fff. Output is simulated by setting a watch
point in the simulation script file (.ind) on Scratch memory 0x3ff8 and printing data in longword
Ox3ffc.

Utility Functions (util.c)

The util.c resides in the MicroengineC\Samples\util underneath the IXA SDK installation
directory. It contains a collection of functions that can be used to display characters, strings, and
numbers in various formats. The functions available are:

void put (int c¢) Puts a single character.

void puts(char *a) Puts a string of characters in SRAM. A quoted
string can be used as the argument, for
example, puts("Hello world\n");

void putui (unsigned int x) Formats and puts an unsigned int in decimal.

void putsi (int x) Formats and puts out a signed int in decimal.

void putull (unsigned long long x) Formats and puts out an unsigned long long in
decimal.

void putsll(long long x) Formats and puts out a signed long long in
decimal.

void puthi (int x) Formats and puts out an unsigned int in hex.

Language Support Reference Manual

Note:

2.3.6.2

2.3.7

2.3.71

Intel® Microengine C Compiler Language Support
Overview

void puthll (unsigned long long x) Formats and puts out an unsigned long long in
hex.

If you run a program through the Transactor from the command line, use the .ind file generated by
the compiler to run the program. The output will appear in your Command Line window.

If you run from the Workbench, the util.ind script file in the util directory needs to be included in
your project in order to have the output appear in the Command Line window.

This script should be included as an additional initialization script in the project.

Multi-threading restrictions

All of these functions are thread-safe at the character level (that is, multiple threads can be writing
characters without interfering with each other). But if you have multiple threads writing, for
instance a number, the digits will get intermixed as thread swaps occur. To avoid this, use a thread
lock mechanism to control how output from multiple threads are intermixed. Refer to Chapter 8,
“Mutual Exclusion Library”, for information on appropriate locking mechanisms.

The following facilitates multiple I/O data types in a Microengine thread-safe manner, similar to
printf. In these examples, the IO macros are defined in util.h. The pm_printf() function is define in
util.c.

io_item io[2];

IO _ADD STRING(io[0],"This is a test");
I0 ADD INT(io[1], 123);
pm_printf (2, io dlmtr nl, io);

IO ADD CHAR(x,v)// add char to print
IO ADD UINT(x,v) // add unsigned int
I0 ADD INT(x,v) // add int

IO ADD ULL(x,v) // unsigned long long

IO ADD LL(x,V) // long long

IO _ADD ULLH(x,V) // unsigned long long in hex
I0 ADD INTH(x,v) // int in hex

I0_ADD_STRING (x,v)// string

IO ADD PTR(x,V) // generic pointer

Example-Using the C Compiler

A simple C program, hello.c, displays “Hello World” on the screen.

The C File

Hello.c looks like this:
#include <util.h>
void main ()

{
}

puts ("Hello world\n") ;

Language Support Reference Manual 27

Overview

Intel® Microengine C Compiler Language Support int6I
®

2.3.7.2

Note:

2.3.7.3

Note:

23.74

2.3.7.5

28

Compiling the File

To compile, the command line looks like this:

uccl -Qnctx=1 -I\IXA SDK 3.y\MicroengineC\include \
-I\IXA SDK_3.y\MicroengineC\samples\util hello.c \
\IXA SDK 3.y\MicroengineC\samples\util\util.c \
\IXA SDK 3.y\MicroengineC\src\rtl.c \

\IXA SDK 3.y\MicroengineC\src\intrinsic.c

or if util and rtl are pre-compiled:

uccl -Qnctx=1 -I\IXA SDK 3.y\MicroengineC\include \
-I\IXA SDK 3.y\MicroengineC\samples\util hello.c \
\IXA SDK 3.y\MicroengineC\lib\util.obj \
\IXA SDK 3.y\MicroengineC\lib\rtl.obj \

\IXA SDK 3.y\MicroengineC\lib\intrinsic.obj

Use the slash character (/) in place of the backslash character (\) as the directory delimiter under the
Linux operating system.

Linking the File

To link, enter the following command on the command line:
ucld -u 0 -dr 0x00000000:0x8000000 hello.list

You can skip this step by specifying the -1ink switch during compilation.

Running the File

The hello.ind file is generated during linking. To run the hello world program, type the following
command:

IXP2800 < hello.ind
or

IXP2400 < hello.ind

The system displays a screenful of text from the Transactor initialization, followed by the text
“Hello world” and a count of the cycles it took to execute.

For more extensive example code, refer to rtl.c and util.c.

Initialization File

The initialization (script) file util. ind resides in \MicroengineC\samples\util and is used
with the Developer Workbench for simulating output to stdout.

Language Support Reference Manual

In

2.3.8

2.3.8.1

2.3.8.2

®

Intel® Microengine C Compiler Language Support
Overview

C Compiler Graphical User Interface from Developer
Workbench

The Developer Workbench supports an integrated microengine C compiler for creating, compiling,
testing, and debugging Microengine C applications.

Build Features

The Developer Workbench supports the following Microengine C build features:

* Support for creating, editing, and managing C source files.
— Inserting C sources into project.
— Dependency checking for .c and .h files.
— Syntax coloring for .c and .h files.
— FileView for .c files.

* Support for setting up projects to include producing microstore images from C source files and
Assembler .uc files.

— Build setting/compiler dialog.
— GUI control for specifying compile options.
— Support for include paths for C sources separate from Assembler include paths.
— Support for setting target paths for images.
— GUI for preprocessor symbol definition to support #ifdef.
— GUI controls for specifying link options.
* Support for building microstore images from C source files and Assembler .uc files.
— Running compiler and providing parameters.
— Displaying and interpreting output messages.
— Relating errors and warnings to source lines.
* Support for persisting project and option files.
— Persist new project data in dwp file.

— Persist new option data in dwo file.

Debug Feature

The compiler supports source level debugging. However, when compiling for debug, optimizations
are generally turned off.

* Support for source-level debugging.
— Display of register and variable values based on scope and live-range.
— Display of memory variables.
— Display of values as C structures.

— Optional expanded display of assembly instructions generated by each C source
statement.

Language Support Reference Manual 29

Overview

| Intel® Microengine C Compiler Language Support int6I
®

24

— Single-stepping based on C source statements or expanded assembly instructions.
— Setting breakpoints.

— Run to cursor.

— Current instruction markers.

— Execution coverage.

— Thread history.

— Data watches.

— Go to source.

Running and Debugging Under the Developer
Workbench

To create and run a project under the Developer Workbench, perform the following steps:

1.

o ® =N W

15.

16.
17.

Start the Developer Workbench.

Depending on how you installed it, you can usually click Start on the Task bar and then select
Programs-> Intel IXA_SDK_3.y->Developer Workbench.

On the File menu, click New Project.

. Enter the location and project name, select chip type IXP2400 or IXP2800, then click OK.

On the Project menu, click Insert compiler source file. Normally, you need to insert rtl.c and
intrinsics.c if want to use intrinsic functions, util.c if you include rtl.c or want to use character
/O, and libc.c if you want to use string operations. These files are included from the
MicroengineC\src and MicroengineC\samples\util directories.

Select the .c file(s) needed for your project and click Insert.

On the Build menu, select Settings.

Click the C Compiler tab.

Click New to specify the path and name of the output (.list) file.

Click Choose source files.

. Select the needed source files for this program.
11.
12.
13.
14.

Click the Linker tab.
Click the browse D button to the left of the Output to target .uof file box.
Enter the name of the .uof file you wish to create.

From the list under Select files for microengine 0 and select the file you specified in Step 8
and then click OK.

Click the General tab and add the compiler include directories. Normally, you need to include
the C:\IXA SDK 3.y\MicroengineC\include and the
C:A\IXA_SDK 3.y\MicroengineC\samples\util directories.

On the Build menu, click Build.

If you get no errors, you can start debugging by selecting Start Debugging on the Debug
menu.

Language Support Reference Manual

Overview

i nu Intel® Microengine C Compiler Language Support
®

Note: The compiler I/O functions provided in MicroengineC\samples\util\util.c such as puts(), etc.
operate by writing to Scratch memory 0x3ffc-0x3fff. This register is also used to signal exit from
function main(). To see this generated output in a simulation session, or to halt simulation on exit
from the main() program, a watch on Scratch memory needs to be included (an example is
provided in MicroengineC\samples\util\util.ind). Note that when used in Workbench the register
name in the .ind file must be prepended with the name of the chip (or nothing if no chip name is
specified).

Language Support Reference Manual 31

Intel® Microengine C Compiler Language Support
Overview

32

Language Support Reference Manual

" intgl.

Intel® Microengine C Compiler Language Support
C Language Support

C Language Support 3

3.1

3.1.1

3.1.2

3.1.3

Standard Data Types

Basic Data Types

The compiler supports the following standard scalar data types:
e char 8-bit signed and unsigned
* short 16-bit signed and unsigned
* int 32-bit signed and unsigned
* long 32-bit signed and unsigned
* long long 64-bit signed and unsigned
* enum 32-bit signed and unsigned

* pointers 32-bit pointers typed by memory type

As per the C standard, chars are the smallest addressable units, and pointers to successive chars
differ by one. The compiler supports chars and shorts and pointers to them, although at some
potential performance cost. Users are recommended to avoid usage of char and short when
possible, because access of quantities less than 32 bits (64 bits in DRAM) generally involves
additional operations to extract the appropriate bytes from the longword or quadword. Access
through pointers to 8-bit and 16-bit types may also require runtime alignment of data, which is
even more inefficient.

Pointer Representation

All pointers are represented as byte addresses irrespective of the memory region pointed to. The
compiler keeps track of the memory region that a pointer can point to and issues error messages on
inconsistent use. For example, assignment of a pointer to SRAM to a pointer to DRAM will be
flagged as a user error. Pointers with no specified memory region are assumed to point to SRAM.
Further, when performing pointer arithmetic, the compiler will modify the byte value by the
appropriate value. For example, when incrementing a pointer to a long long by one, the compiler
will add 8 to the pointer value. If the pointer is pointing to a user defined data type, the compiler
will also do the right thing. See Section 3.1.9 for more information on how the compiler handles
alignment issues.

Bitfields

The compiler implements arrays and structs. Since the Intel® IXP2XXX processors handle packets
of communication data that are often defined in terms of bit fields, the compiler supports efficient
manipulation of structs with bit fields. Bit fields are supported using standard C syntax. The
compiler also supports packed bit-fields through declspec(packed bits) as described in

Section 3.1.7. With this declspec, structures containing bitfields are laid out such that there is never

Language Support Reference Manual 33

C Language Support I n

Intel® Microengine C Compiler Language Support u t9I
®

314

3.1.5

3.1.6

34

any padding inserted between a bit-field and its previous member in the structure.
__declspec(packed_bits) is helpful in mapping packet header structures accurately onto C
structures. See Section 3.1.7 for more information on packing bit fields within a structure.

Floating Point Types

The compiler does not support floating point types. The lack of hardware support and limited code
space make it virtually impossible to provide any floating point support-nor is any needed for the
type of applications envisioned.

String Literals

String literals are placed into SRAM and accessed through a pointer to SRAM. It is an error to use
a string literal in a position which expects a pointer to a non-SRAM memory region, unless a static
initialization of a character array is being performed. Example:

void foo(_ declspec (dram) char *str_in dram) { ... }
foo("string"); // ERROR: "string" is in SRAM and cannot be passed to foo()
foo((_ declspec(dram) char *)'"string"); // RUNTIME ERROR: address of "string" is

not a valid DRAM address

{

__declspec(dram) char *ptr = "string"; // ERROR: "ptr" must be a character
array
__declspec(dram) char arr([7] = "string"; // CORRECT: static initialization of

character array

foo (arr) ;
type of argument

}

// CORRECT: type of parameter matches

Size of Data Types
The size of data types, as reported by the sizeof() built-in function, are in bytes, thus:

sizeof (int) ==
sizeof (long long) == 8

Table 6 lists the standard C built-in data types and indicates which are supported by the
Microengine C compiler.

Table 6. Summary of Data Types (Sheet 1 of 2)

Data Type Supported Size (in bits)
char Yes 8
short Yes 16
int Yes 32
long Yes 32

Language Support Reference Manual

3.1.7

Intel® Microengine C Compiler Language Support
C Language Support

Table 6. Summary of Data Types (Continued) (Sheet 2 of 2)

Data Type Supported Size (in bits)

long long yes 64

enum Yes 32

pointers Yes 32

float No N/A

double No N/A

struct Yes Variable

union Yes Variable

array Yes Variable

Alignment of Data Types

The compiler aligns all chars on 1 byte boundaries, shorts on 2 byte boundaries, int, enum, long,
and pointer data types on a 4 byte boundary, and all long long data types on an 8 byte boundary. In
general, pointer values can be assumed to be aligned based on the type of the data pointed to. The
compiler inserts padding between elements of structures to ensure that each element is aligned
based on its type unless the structure has been declared with the _ declspec(packed) qualifier. (See
Section 3.1.8, “Packed Aggregates” on page 36 for more information.)

Bit fields are stored within longwords. The next bit field starts at the next bit position within the
current longword if, and only if, the entire bit-field element fits within the current longword (4
bytes). If the bitfield is too wide to fit, then the remaining bits in the current longword are padded
and the bit-field begins at the next longword. This bitfield padding is avoided, however, if the
structure is declared with a __declspec(packed_bits). In this case, the overflow bits of the bitfield
wrap to the next longword and the bitfield is split between two longwords.

An aggregate (array, union, structure) assumes the strictest alignment of any of its members. Hence
it is aligned on a 8 byte boundary if the aggregate contains a long long member; otherwise, it is
aligned on a 4 byte boundary if it contains an int or long member, etc. A final tail padding is added
to each structure to make its size a multiple of its required alignment. This guarantees that when
you have an array of structs no additional padding is needed between array elements to align all the
element structs. Aggregates (structures/unions/arrays) allocated explicitly in SRAM/Scratch/local
memory are additionally aligned at least on a 4 byte boundary. Similarly, aggregates allocated
explicitly in DRAM are aligned at least on an 8 byte boundary.

The alignment of a given structure can be changed with the __ declspec(aligned(n)) directive,
where “n” is a power of two, up to 2048 for memory and 64 for local memory. If the structure's
natural alignment is less than the word size of the structure's storage region (16 for DRAM, 4 for
other types of storage), the performance of whole structure copies can be improved by increasing
the alignment value (padding) to the word size. In the following example the natural alignment is 1,

but it can be changed to 4 by using the align directive.

typedef declspec(sram, aligned(4)) struct // overrides natural alignment

char ¢; // natural alignment is "1" because of this element

char s;

Language Support Reference Manual 35

C Language Support

Intel® Microengine C Compiler Language Support int6I
®

3.1.8

36

Note:

Note:

} str;
str x,y;

x =vy; // co erformance improved by manually setting alignment
Y by P P Y Yy <) g

__declspec(...) qualifiers must be placed to the left of the “struct” keyword, as in the example
above.

Structure alignment is not optimized automatically because of the possibility that the structure may
be embedded inside an array or another structure, which calls for the use of the structure's natural
alignment.

If a structure is allocated in NPU local memory, setting the alignment to the closest power of two
greater than the size of the structure (see Section 3.2.7.5, “Alignment Information for Local
Memory Pointers” on page 50) will allow the compiler to generate faster, offset-based addressing
for the structure members. The disadvantage of doing this is an increase in the amount of wasted
space needed to pad such objects.

SRAM and DRAM support access on longword or quadword granularity respectively. Extraction
or modification of bytes within a longword or quadword involves generation of additional
instructions, and consequently results in some performance degradation.

Packed Aggregates

Aggregates (structures, unions, and arrays) are normally aligned on byte boundaries. Padding (up
to 64 bytes) of aggregates is an automatic compiler function to improve performance. (This is
discussed in Section 3.1.7.) Under some conditions you may wish to block padding. A
__declspec(packed) qualifier can be used to avoid the padding between members of the aggregate
and to avoid tail padding.

Note that _ declspec(packed) implies __declspec(packed bits).

The naturally aligned data for an NPU for Scratch and SRAM is 4 bytes; for DRAM on IXP2400 it
is 4 bytes, for IXP2800 it is 8 bytes. SRAM and Scratch rings require alignment to 512 bytes.

Local memory natural alignment is 4 bytes, but when referencing big structures, the performance
will improve with bigger alignment (up to 64 bytes). The reason is the hardware uses an "OR" to
calculate the local memory address. For example, when you use *(p+16), assuming that p is your
base pointer; if p is aligned to 16, then p|16 (p OR 16) is the same as p+16. If p's alignment is
smaller than 16, we have to perform an ADD and reset the local mem base pointer, which is very
time consuming.

Language Support Reference Manual

In

3.1.9

®

Intel® Microengine C Compiler Language Support
C Language Support

Pointer Alignment Assumptions and Unaligned Pointers

Normally declared pointers will be assumed to point to data with correct alignment based on the
natural alignment of the type they point to. The compiler generates code that correctly dereferences
these pointers only in the case that they are correctly aligned. If they are not correctly aligned, the
behavior is undefined.

Example:
char *pc; // pc can have any byte address
int *pi; // pi must be zero mod 4.
short *ps; // ps must be zero mod 2.

Additional alignment assumptions are made on values of variables declared as pointers to
aggregates in memory. By default variables declared as pointers to aggregates allocated to SRAM,
Scratch, or local memory are assumed to point to objects with a 4-byte minimum alignment.
Variables declared as pointers to aggregates allocated to DRAM are assumed to point to objects
with an 8-byte minimum alignment.

By using _ declspec(unaligned) all alignment assumptions on the value of the pointer is avoided
and the compiler will generate correct code to dereference the pointer. This code is considerably
larger / slower than the code for aligned pointers.

Any pointer to a component of a packed aggregate is an unaligned pointer. An unaligned pointer
cannot be assigned to an aligned pointer of the same type. Hence pointers to packed variables can
be assigned only to unaligned pointer variables but not to regular pointer variables. An aligned
pointer can be assigned to an unaligned pointer of the same type, since it is less restrictive.

Example:

int *pi;
__declspec(unaligned) int *pui;
__declspec(packed) struct {char x; int y} z;

pi &Z.Y; // Error since &z.y is an unaligned pointer

pui = &z.y; // Ok since pui is an unaligned pointer

In this example, “pui” can point to any byte address, whereas “pi” can only point to 4-byte-aligned
addresses.

The _ declspec(aligned(n)) attribute can be used to declare the alignment of the objects that a
given pointer will reference. “n” must be a byte value and a power of two. If you know that a
pointer that is normally unaligned (a pointer to char, for instance) will only reference objects that
are aligned on word boundaries, declaring the pointer with a higher alignment
(__declspec(aligned(4)) for SRAM, _ declspec(aligned(8)) for DRAM) will allow the compiler to

generate faster code when dereferencing such pointers.

Language Support Reference Manual 37

C Language Support

| Intel® Microengine C Compiler Language Support int6I
®

3.1.10

3.1.101

For example:

__declspec (packed) struct // structure is 4 bytes long but 1-byte aligned

{

char a, b;
short c;

} *ptr;
ptr x, yi

*x = *y; // unaligned copy

Since the natural alignment of this struct is 1 (single-byte aligned), the compiler will make no
assumptions about the position of the structure in memory, and will generate code for the copy
operation that will take into account the fact that the structure might span across two memory
words, taking up only part of each word. If __ declspec(aligned(4)) is added to the structure
definition:

__declspec (packed, aligned(4)) struct

{
char a, b;
short c¢;

} *ptr;

ptr x, yi

*x = *y; // optimized copy

The compiler now assumes that the structure fits entirely into a single word in memory, and
generates code that reads and writes only a single word.

Endian Support

Since the processor supports both big-endian and little-endian applications, and since internet data
structures are typically laid out big-endian, the compiler supports both big-endian and little-endian
layout of aggregates. A compiler switch selects the endian mode. (Refer to Table 2, “Supported
CLI Option Switches” on page 20 for more information.)

Compiler Limitations of Endian Support.

There are several cases in which the compiler cannot compensate for inherent little-endian bias in
the IXP2XXX microengine hardware. These are:
¢ -Section 3.1.10.1.1, “Hash Instructions and Related Intrinsics” on page 39.

* -Section 3.1.10.1.2, “DRAM Partial Writes” on page 39.

Language Support Reference Manual

intel.

3.1.10.1.1

Example:

3.1.10.1.2

Example:

Example:

Intel® Microengine C Compiler Language Support
C Language Support

The following sections have more information on these issues.

Hash Instructions and Related Intrinsics

The hash instructions compute a polynomial of input data and hash multipliers on 48, 64, or 128 bit
quantities. The hardware treats the input data and output data as little-endian, that is, if a 48 bit
quantity is used, and the data is in xfer register $0 and $1, the low 32 bits are in $0 and the high 16
bits are in $1. If you use a long long to represent this data, it is correct only in little-endian mode. In
big-endian mode, you have to swap the two longwords of data before the hash and after the hash to
get equivalent results.

The compiler cannot do this swapping automatically, because the hash operation are always
asynchronous (i.e. sig_done is required), and the compiler does not always know when the
operation is finished. For information on hash operations, refer to the IXP2400/IXP2800
Programmer s Reference Manual.

To do a hash of a 48 bit number in big-endian mode, where bit 0 is the low order bit, do the
following:

typedef union
struct

int lo, hi;

}osi

long long 11;
} 1w;

lw in, out, xfer in, xfer out;
SIGNAL_ PAIR sp;

/* swap the long long into the xfer register buffer */
xfer_in.s.lo = in.s.hi;
xfer in.s.hi = in.s.lo;

/* hash it into the xfer register out buffer */
hash 48 (&xfer_in, &xfer out, 1, ctx swap, &sp);

/* swap back into the out */
out.s.hi = xfer out.s.lo;
out.s.lo = xfer out.s.hi;

DRAM Partial Writes

The DRAM instruction allows you to write any set of the 8 bytes in a quadword. The bytes to be
written are specified by a byte mask.

To write the low byte only, you specify binary 00000001. However, this only writes the lowest
order 8 bits of a long long in little-endian mode. In big-endian mode this writes bits 39:32. To write
bits 7:0 in big-endian mode, you have to use the mask 00010000. Essentially, the byte positions
within a longword are correct in either mode, but the two longwords are reversed in big-endian
mode.

This example sets the lowest 8 bits in DRAM to the value in BIGENDIAN mode. It sets the
variable “mem” to be the hex value 0x00000000 000000ef.

#include <ixp.h>
void main () {
__declspec(dram_write reg) long long data;

Language Support Reference Manual 39

C Language Support I n

Intel® Microengine C Compiler Language Support u t9I
®

3.2

40

__declspec(dram) long long mem;

SIGNAL PAIR sigpr;

dram_read write_ind_t ind;

ind.value = 0;

ind.ov_byte mask = 1;

ind.byte mask = 0x10; //00010000b;// set up to write lowest order byte.
mem = 0;

data = 0x0123456789abcdef;

dram_write_ind(&data, &mem, 1, ind, sig_done, &sigpr);
__wait for all(&sigpr) ;

Data Allocation

You can declare data with or without allocation attributes. Allocation attributes can describe where
the variable is allocated (allocation region) or the scope of the variable. These allocation attributes
are provided as __ declspecs. The allocation region attributes indicate a choice of register or
specific memory types where the data needs to be allocated.

For pointers, allocation attributes can be specified both for the pointer itself as well as for the object
it points to. This implies that pointers are only compatible if they point to the same allocation
region. Pointers declared to types without any allocation region attribute point to SRAM by
default.

In the absence of a region allocation attribute variables are allocated to registers in the following
circumstances:

* They are 64 bytes (128 bytes in 4-context mode) or less in size, and

* Their address is not taken, or if taken, the address reference is optimized away, (note: array
references with non-constant indices implicitly take the address of the array beginning), and

* There are enough registers to accommodate the variables

In the absence of a region allocation attribute, variables are allocated to local memory or SRAM in
the following circumstances:

* If there are not enough registers to accommodate all user variables, some are spilled to local
memory or SRAM. This includes global variables as well as those local to a function, function
arguments, and return values.

* Variables larger than 64 bytes (128 bytes in 4-context mode) are generally allocated to local
memory or SRAM.

* An array is allocated in local memory or SRAM, if it uses an index that is computed at run-
time. There is no way to index variables in a GPR. The compiler can not use T INDEX to
index into xfer registers for various reasons (T_INDEX is not per-context, availability,
performance, etc.). Similarly addressed variables are allocated to SRAM or local memory if
the address reference cannot be optimized away.

The command line option, -Qperfinfo=2, provides user-defined variables to register/memory
mapping. (See Table 2, “Supported CLI Option Switches” on page 20.”)

Language Support Reference Manual

| = Intel® Microengine C Compiler Language Support
I n ® C Language Support

3.2.1 Register Regions

The following _ declspec() modifiers can be used to specify allocation to registers:
* declspec(gp_reg) to allocate to a general purpose register
* declspec(sram_read reg) to allocate to an SRAM read transfer register
* declspec(sram_write_reg) to allocate to an SRAM write transfer register

* declspec(sram_read write_reg) to allocate to an SRAM read transfer register and to an
SRAM write transfer register with the same register number.

* declspec(dram _read reg) to allocate to a DRAM read transfer register
* declspec(dram_write reg) to allocate to a DRAM write transfer register
* declspec(nn_local reg) to allocate to a next neighbor register local to this ME

* declspec(nn_remote reg) to declare the name of a next neighbor register in the next
neighbor Microengine (this is to be used in -Qnn_mode=0, i.e., NEIGHBOR mode). The
linker patches the physical register number for each reference.

The IXP2XXX NPU cannot allocate a variable to a register under certain situations in which case
an error message is produced and compilation aborts. Example reasons for error are:

¢ -If your program takes the address of such a variable
* -If the variable is too large (greater than 64 bytes, or 128 bytes in 4-context mode)

* -If there are too many variables requiring allocation to registers

In such cases the compiler in addition to reporting this as a user error, reports an indication why it
was not able to allocate the variable to a register.

In general, pointers to register objects are not guaranteed to compile successfully, because the
compiler needs to be aware of exactly which registers are being accessed at any given time. If the
compiler cannot resolve a register pointer access into a “fixed” register access, an error will be

generated. The exception is indexed transfer register arrays, described in the “Transfer Registers”
section below.

3.211 General Purpose Registers

The qualifier gp_reg, if used in a variable declaration, causes the compiler to allocate general
purpose register(s) for that variable.

3.2.1.2 Transfer Registers

The qualifiers for read/write transfer registers, if used in a variable declaration, indicate that you
want to associate the variable with specific class of transfer register.

Note: In instructions that normally take a read transfer register, the IXP2XXX has been enhanced to
allow both SRAM and DRAM read registers, but only when -Qnctx_mode=8.

This enhancement is disallowed when there are only 4 contexts because there are not enough bits in
4 context mode to encode these additional registers.

| Language Support Reference Manual 41

C Language Support

Intel® Microengine C Compiler Language Support int6I
®

3.21.3

42

For example, SRAM memory read operations, which normally take only SRAM read transfer
registers when -Qnctx_mode=4, can additionally take DRAM read transfer registers when
-Qnctx_mode=8

This is realized in the compiler with additional intrinsics that contain a D or _S suffix. Several
examples are shown here.

¢ sram read D() - read SRAM using DRAM transfer registers.
¢ scratch_read D() - read Scratch using DRAM transfer registers.
¢ reflect read D() - read reflector using DRAM transfer registers.

* dram read S() - read DRAM using SRAM transfer registers.
For detailed information on these functions, refer to Chapter 4, “Intrinsic Functions”.

No data can be read from a write transfer register. This implies char, short, and bit field data types
with less than 32 bits in length are illegal to be written into these registers. Note that a write with
less than 32 bits requires reading the missing bits from the write register and packing it to a new 32
bits entity before the write.

A variable declared as __declspec(sram_read write reg) takes both SRAM read transfer register
and SRAM write transfer register with the same register number. It is mainly used for inline
assembly code where the operand is required to be both an SRAM read and write transfer register.
You should be careful to ensure that the value written into that variable goes to the SRAM write
transfer register while the value received from that comes from an SRAM read transfer register.

Arrays of transfer registers can be indexed by a variable, as in the following example:

__declspec(sram write reg) int al[5];
int 1i;

for (i = 0; 1 < 5; i++)

This type of access will be compiled into code that uses the T INDEX register to access the
transfer register banks.

Next Neighbor Registers

The nn_local reg qualifier causes allocation of the variable to a next neighbor register in this ME.
If the NN_MODE (see option -Qnn_mode in Table 2, “Supported CLI Option Switches” on

page 20) is 0 (NEIGHBOR), this variable is read-only within this ME program. In this mode, the
previous neighbor ME program may declare the same variable with an nn_remote reg qualifier
and can only write into it.

When -Qnn_mode is 1 (SELF) a variable with the nn_local reg qualifier cannot be modified from
another ME. (NOTE: there is a 5-cycle latency between a write instruction and a subsequent read
instruction from the same NN register with a new value). It can be both read and written within this
ME program. In this mode one cannot use the nn_remote_reg qualifier.

In the SELF mode all next neighbor registers should be declared with __declspec(nn_local reg).
Given this, the following is to be followed. In SELF _mode, a nn_local reg variable can be read or
written, and a nn_remote reg variable should not be used. In NEIGHBOR mode, a nn_remote reg
variable can only be written, and a nn_local_reg can only be read.

Language Support Reference Manual

Note:

3.21.4

3.2.2

Intel® Microengine C Compiler Language Support
C Language Support

If -Qnn_mode=0 (neighbor mode) variables declared as nn_local or nn_remote must be declared in
global scope (i.c., they cannot be declared as local variables within a function) because they are
referred to from a neighbor microengine.

Volatile Registers

The volatile attribute can be applied to variables in transfer registers or to signal variables. This
attribute indicates that the register can be read or written by instructions not explicitly referencing
the register. An example of this is the status and signal written by the MSF hardware when an
incoming packet is sent to a thread. Another example is transfer registers that are read or written by
reflect operations from another microengine.

When a register or signal variable is declared volatile, the register or signal that the compiler
assigns to that variable will not be used for any other purpose within the scope of that variable. If
the variable is global, then its register or signal will be assigned to that variable for the entire
program. If it is local to a function, then the register or signal will be assigned to that variable for
the scope of that function. This insures that external MEs or hardware will be able to access the
variable even though that variable may not be "live," or actively in use, within the currently
executing segment of code. If the volatile variable is local to a function, the user will need to
provide a synchronization mechanism to insure that the function does not return until the data is no
longer needed by the external MEs or hardware. Function-local volatiles may allow the compiler to
allocate registers more efficiently than global volatiles, since the register can be reused for other
variables once the function returns. In general, volatile variables limit the efficiency of register
allocation, and should only be used when necessary. If you wish to indicate that a register or signal
variable can be accessed by an external entity only within a certain region of the program, the
__implicit read() and __ implicit_write() intrinsics can be used instead of the volatile attribute.

Memory Regions

The IXP2XXX NPU has six memory regions:
* Local Memory

* SRAM

* DRAM

* Scratch

* R FIFO

* T FIFO

* MSF CTRL

The compiler allows the following _ declspec modifiers to specify memory to allocate in:
* declspec(local_mem) to allocate to LOCAL MEMORY.
* declspec(sram) to allocate to SRAM
* declspec(sramN) where n is 0,1,2 or 3 to specify allocation to a particular SRAM bank
* declspec(dram) or __ declspec(sdram) to allocate to DRAM
* declspec(scratch) to allocate to Scratch

* declspec(rbuf) or _ declspec(r_fifo) when declaring a pointer to the RBUF/R_FIFO MSF
area

Language Support Reference Manual 43

C Language Support

| Intel® Microengine C Compiler Language Support int6I
®

Note:

Note:

3.2.3

| 44

* declspec(tbuf) or _ declspec(t_fifo) when declaring a pointer to the TBUF/T_FIFO MSF
area

* declspec(msf ctrl) when declaring a pointer to the MSF control area

Examples:

__declspec(local_mem) struct msg header header;

declares a variable of type struct msg_header which resides in Local Memory

__declspec(dram) buffer * buf ptr;

declares a pointer to a buffer data type in DRAM. buf ptr is assigned to a register.

__declspec(dram) buffer * _ declspec(scratch) buf ptr 1;

declares a pointer to a buffer data type in DRAM. The pointer resides in Scratch.

The memory type modifier applies to the type to its right, thus the first one indicates that the buffer
is in DRAM, while the second indicates that the pointer to it is in Scratch. Variables declared in
memory using the above syntax can be used with standard C syntax. When the C code reads or
writes a variable, the compiler automatically guarantees synchronization. Typically, if the compiler
reads a variable, it issues a context swap and waits until the data is available. This swap may be
delayed until after other computations that do not depend on the read value to complete. Writes
also generate context swaps to prevent read-after-write or write-after-write interference. The
compiler may issue multiple writes and reads before a context swap in cases where it can
disambiguate the references and guarantee that no conflicts occur.

The msf ctrl, rbuf/r_fifo, and tbuf/t fifo regions can only be used to declare pointers; the compiler
cannot allocate memory in those regions since the IXP MSF hardware performs this function.

Shared Data

Because the processor supports multiple contexts, you can declare data to be shared between
contexts or to be local to each context on a microengine. By default, all variables (both within and
outside of a function) are local to a context, thus they are physically duplicated for each of the eight
contexts on the ME. In other words, each context has a separate copy of the variable to work with
no matter where the variable is allocated (i.e., registers or memory). In addition to this, you
sometimes need variables that are shared by all eight contexts on a processor.

The compiler supports this with another __declspec modifier:

__declspec (shared)

The shared attribute can be combined with a memory region attribute in a single __ declspec,
example: _ declspec(shared sram) int x;

Without a memory region, the shared attribute declares a potential register candidate that is shared
by all contexts and is subject to the normal register restrictions.

Language Support Reference Manual

INlal.

3.2.4

3.2.5

3.2.6

Intel® Microengine C Compiler Language Support
C Language Support

Global data

You can declare data in SRAM, DRAM, or Scratch memory that is shared by all the microengines
on an NPU. One microengine program will "export" (and optionally initialize) the variable with:

__declspec(export sram) int 1 = 42; // initialization is optional

The other microengine programs will "import" the variable with:

__declspec (import sram) int i; // no initialization possible

Although the variable is not "attached" to the microengine that exports it, the export/import
qualifiers are needed to prevent multiple initializations of the variable.

Load Time Constants

Load-time constants (i.e. constants that are bound to fixed values at load time and used at run time)
are supported through an intrinsic _ LoadTimeConstant(string). This is provided as a mechanism
for sharing data with the Intel XScale® core. For example:

C = a + _ LoadTimeConstant ("LTC") ;

For each call to _LoadTimeConstant(“LTC”), the compiler generates a pair of immed wO[t, 0]
and immed_w 1[t, 0] instructions, each with a linker directive on source bits, and uses the
temporary variable “t” in the expression (see above example) for the constant “LTC”. The linker
uses a 32-bit constant for “LTC” to patch those bits (upper 16-bit for immed w1 and lower 16-bit
for immed wO0) when the program is loaded.

This intrinsic is described further in Chapter 4, “Intrinsic Functions”.

Signals

The compiler exposes hardware signal and signal pair registers as special predefined data types,
SIGNAL and SIGNAL_PAIR respectively. Alternatively, you can apply a __ declspec(signal) or
__declspec(signal_pair) to a variable of type int or a struct comprised of two ints respectively. You
can declare signal variables and pass them by reference to various intrinsic function calls.

The IXP2XXX NPU microengine provides 15 signals for each execution context. You may have
more than 15 signal variables so long as no more than 15 are in use simultaneously in the program.
This restriction is imposed because there is no efficient mechanism to temporarily store signals in
memory or other registers.

The following example illustrates the use of signal variables.

SIGNAL sig;
SIGNAL_PAIR sp;

dram read(dstl, srcl, 1, sig_done, &sp);
sram read(dst, src, 4, sig _done, &sig);
while (! signal test (&sig))

{

Language Support Reference Manual 45

C Language Support

Intel® Microengine C Compiler Language Support int6I
®

3.2.6.1

46

/* do something*/

}

..= dst;

__wait for all(&sp);Section 4.9.1
..= dstl;

Signals can be shared across functions or across microengines in a limited way using the support
provided to determine the signal number allocated to a signal variable or by creating a signal mask.
This support is provided through intrinsic functions (__signal number(), and __ signals()
respectively). To associate a signal variable with a specific number, you need to call the
__assign_relative_register intrinsic. When you use these functions you need to convey additional
information to the compiler by using the intrinsics __implicit read() and _ implicit write() to
indicate the lifetimes of the signals involved. See the description of these intrinsics (Section 4.9.1)
for further details.

Signal Variable Restrictions

Signal variables have special properties that make them unlike normal variables. The read access of
a signal variable if the signal has been delivered has the potential side effect of clearing this signal.
Consequently, there are certain restrictions imposed on the usage of signal variables. These
restrictions are listed below.

* These variables cannot be assigned to or used in any way other than as addressed arguments to
specialized intrinsic functions or through inline assembly.

* You cannot take the address of a signal variable, except when passing it as an argument to an
intrinsic function. However, you can get a signal's address as an int through the
__signal number() intrinsic or as a mask through the _ signals() intrinsic. This can then be
passed to a function as an int type parameter. You may also have to insert calls to
__implicit read()/ implicit write() to convey the live ranges of indirectly accessed signal
variables, normally in the caller around the call site if there are no other reference to the signal
variable. This is because __implicit_read() and implict write() accept signal variable, and
callee function taking such int type parameter usually doesn't know what signal variables that
int contains.

* You cannot create an array of signals or __declspec any aggregate variable to be a signal. A
signal variable if declared explicitly using declspec(signal), must be declared as a 4 byte
quantity such as an int or long. Similarly _ declspec(signal pair) can only be applied to an 8
byte data type.

* You cannot read/write, copy, or pass signals as arguments or return values across user function
boundaries. Furthermore, as hardware signal registers are context specific, one cannot declare
a signal that is shared across contexts. Signal variables can, however, be used for cross-thread
communication by declaring them as __declspec(remote) or __declspec(visible), or by explicit
user allocation using the assign relative register() intrinsic.

¢ A IXP2XXX microengine, when executing the ctx_arb instruction with the OR token
(__wait_for_any() intrinsic), does not clear any of the signals that are asserted. After the use of
signal variables ina __ wait for any() intrinsic, you must clear them with calls to
__wait_for_all() or signal_test() intrinsics, prior to reusing the signals.

Language Support Reference Manual

INlal.

3.2.7

3.2.71

3.2.7.2

Intel® Microengine C Compiler Language Support
C Language Support

Local Memory Allocation

Overview

You can allocate variables to local memory by applying the declspec(local mem) type qualifier.
These variables may be used in all situations where variables declared in other memory regions
may be used, with a few restrictions. First, data in local memory cannot be exported to other
microengines. Also, local memory is limited in size: each ME only contains 640 32-bit words of
local memory, which must be shared among the running contexts (specified with the -Qnctx= or
Qnthreads= command line options) on that microengine.

In addition to allocating user-qualified variables to local memory, the compiler may also spill
(copy) some variables that normally reside in registers to local memory when not enough registers
are available for computation. The -Qperfinfo=1 command-line option will indicate which
variables, if any, are being spilled.

Placement of Variables

The compiler will make decisions on the allocation and layout of variables declared to be in local
memory. The programmer is also allowed to perform manual allocation and access local memory
through addresses hard-coded in the program provided this space has been reserved using the
"-Qlm_start=<n>" command-line option. No assumptions can be made about the layout or relative
ordering of individual variables allocated in local memory by the compiler. For example, with the
following declaration:

__declspec(local_mem) int x, y;

You cannot assume that y is allocated at the next word following x. Any such assumptions should
be confined to be between data members of an aggregate (struct/union/array), where the layout of
the aggregate is defined by the C language definition.

If one or more instructions reference two variables allocated in local memory, then both those
variables can be addressed using the same local memory base register value, provided that the local
memory pointer is aligned on a 16-word (i.e. 64 byte) boundary, and the two variables are within
the same 16-word aligned block. Therefore, to minimize the cost of instructions involved in setting
up a local memory base register, decisions on the placement of variables in local memory relative
to one another are optimized based on the usage pattern of the variables. Variables are grouped into
"buckets," where all the variables in a bucket are indexed with the same base pointer, to minimize
the number of times when a local memory base register has to be reassigned through the

local csr_write[] instruction. However, the IXP architecture's OR-based offsetting forces buckets
to be aligned on an appropriate word boundary, which can create unused "gaps" between the
buckets.

Language Support Reference Manual 47

C Language Support I n

Intel® Microengine C Compiler Language Support u t9I
®

3.2.7.3

Thread Local vs. Shared Storage

Figure 2. Local Memory Layout

3.2.7.4

48

User Shared Context 0 Context N
Reserved Segment cees
Segment Local Local
Storage Storage

B0198-01

The preceding figure illustrates local memory layout. Each "segment" contains "buckets," which
are addressed, in the case of thread-local storage, using one base pointer value for each context, and
in the case of shared storage, one base pointer value for all contexts. The first segment is optional -
you might request that a portion of local memory be excluded from compiler allocation by using
the "-Qlm_start=<n>" command-line option. This tells the compiler not to allocate variables to
local memory addresses in the range [0, n]. If you do not specify this option, the compiler will start
allocating local memory at address 0. The next segment, which the compiler allocates, is the shared
segment, which holds all the local memory objects shared by multiple contexts, i.e. the variables
specified with the "shared" qualifier. The remaining segments contain the thread-local variables for
each context running on the microengine.

Viewing Local Memory Usage
The allocation of local memory can be examined with the following compiler option:
-Qperfinfo=16

For example, for this program, which allocates an array of 10 integers in thread-local storage and a
single integer in shared memory:

__declspec(local_mem, shared) int x;

void main() {
__declspec(local mem) int a[10];

al9l . X;

The allocation information from "-Qperfinfo=16"will be output as follows:

=> User reserved: 0 bytes, Shared segment: 64 bytes, Local page (including gap): 64 bytes
=> Gap between context pages is 24 bytes The data on the page is 40 bytes

Direct access local mem group 0x180d900

Maximum offset used: 36 Alignment: 4

Num members: 1 Total size: 40

[This group contains thread local symbols]

Language Support Reference Manual

Figure 3.

Intel® Microengine C Compiler Language Support
C Language Support

Imem.c(8): a allocated at offset 0
Direct access local mem group 0x180d9cc
Maximum offset used: 0 Alignment: 4
Num members: 1 Total size: 4
[This group contains shared symbols]

Imem.c(15): x allocated at offset 0
This information corresponds to the following memory layout:

Local Memory Layout for Program 1

Byte address
0 64 104 128 168 196

all all
(Thread 0) (Thread 1)

I:' Gap between groups

B0246-01

The first part of the allocation information describes the size and placement of each segment in
local memory. Assuming that you have not reserved any local memory for manual allocation, the
shared segment starts at address 0, and is 64 bytes long. Since there are only four bytes of shared
storage (corresponding to the variable x) that are actually allocated, the other 60 bytes of the shared
segment remain unused. Each thread-local storage segment (called a "local page") is also 64 bytes
long. 40 of these bytes are data (the 10-word array) and 24 bytes are the "gap," or unused space.

The next sections of the allocation information describe the object groups (buckets) contained in
each segment. As described above, a group contains either shared data, or thread-local data, but not
both. If a group contains shared data, all the objects in the group are accessed by all threads using
one base pointer, OR’ed with the same offset. If a group contains thread-local data, all the objects
in that group are accessed using a different base pointer on each thread, OR’ed with the same
offset. So if "group 0" was assigned to thread-local data and contained two objects, a and b, each
thread would contain a base pointer that would point to the beginning of that thread's "group 0,"
each a would be accessed using the same offset for each thread, and each b would be accessed
using the same offset for each thread (but a different offset than a).

The first group in this example contains one thread-local object, the array, a[], declared at source
line 8 in the Imem.c file. The maximum constant offset used in the group is 36 bytes
(corresponding to a[9] in the above code). This affects the spacing between groups, as each group
must be aligned so that all its indexed elements are addressable with OR-based indexing. The
alignment value specified is the C-language-specified alignment of the group's objects; it is 8 bytes
for groups containing 64-bit primitive types and 4 bytes for groups containing 32-bit or smaller
primitive types. The group is 40 bytes long. The given offset (“0” in this case) of the object a is the
object's byte offset from the beginning of the entire local page for a given thread, therefore the
offset of the first object in a group identifies the alignment of the group.

Language Support Reference Manual 49

C Language Support

| Intel® Microengine C Compiler Language Support int6I
®

3.2.7.5

3.2.7.6

The next group described is the group containing the shared variable, x. The information for this
group reads similarly to the other group—the maximum offset used is 0 (since there is only one
word of storage used), the alignment is 4 bytes, there is one object in the group, and the group is 4
bytes long. The object "x" is allocated at offset 0 from the beginning of the shared data segment.

Alignment Information for Local Memory Pointers

In certain cases multiple accesses to local memory objects might be driven by a single local_csr_wr
instruction. The compiler will initialize base register once and then use different offsets to access
different data items allocated in close proximity of that base. To do that, however, the compiler
must know the alignment properties of the base address. Without this knowledge, the compiler will
not be able to drive multiple pointer accesses through the same base value. Legal values for local
memory alignment are 8, 16, 32 and 64. All these values will be interpreted by the compiler as byte
addresses. For example:

typedef struct

int a;
int b;
int c¢;
int 4d;
} MyStruct;

void foo(MyStruct _ declspec(local mem aligned(16)) * P)

P->a
P->b
P->c
P->d

}

main ()

{

MyStruct _ declspec(local_mem aligned(16)) X;
foo (&X);

}

In the example given above the compiler might be able to generate just one local csr wr
instruction initializing the base with the value of pointer and then use that base for four different
accesses to the fields of the structure. Without having alignment information on pointer P, the
compiler will have no choice but to drive each single access to a field of the structure through
separate base. Therefore, it will generate four local csr wr instructions and this might result in
poor performance. Whenever the same local memory pointer might be used as a base for multiple
different accesses, you should declare the pointer with some alignment information.

Suggestions for Improving Local Memory Use

To assist the compiler with optimizing local memory usage, you can apply several techniques:

1. Place large objects in the shared segment. Reducing the alignment restrictions on thread-local
data will provide space savings for each thread, because all threads have the same layout in
their thread-local storage segments.

2. Use _ declspec(align(n)) judiciously as described in Section 3.2.7.5. Larger alignments may
cause fragmentation in local memory but it may help the compiler to group several accesses
with constant offset (e.g. p->x, or p[3]) using a single local_csr_wr[] to base pointer. Variable
addressing (e.g. p->[i], where i is a variable) will cause the compiler to do an index calculation

Language Support Reference Manual

3.3

Notes:

Intel® Microengine C Compiler Language Support
C Language Support

and generate a local csr_write[] instruction plus three nops, which trades off runtime
performance for space savings.

Reflector Inputs/Outputs

A reflector operation involves read/write of transfer registers across MEs and hence across
Microengine C programs. Such variables are SRAM/DRAM transfer register variables that are
visible across MEs. Hence they are declared with the following declspecs:

__declspec(visible sram read reg/sram write reg/dram read reg) ;
__declspec (remote sram read reg/sram write reg/dram_read_reg) ;

A Microengine C variable that hasa __declspec(remote sram_read reg) refers to a context relative
read transfer register in another ME. Note that unlike normal exported variables, which are by
definition shared across the contexts of an ME, remote/visible transfer register variables are
context relative. Also, remote or visible variables must be declared outside function to avoid name
mangling which may confuse the ucld linker when linking.

Signals used for signaling the remote or both MEs are also declared similarly.

__declspec(visible) SIGNAL/SIGNAL PAIR;
__declspec (remote) SIGNAL/SIGNAL PAIR;

When you use sig_both to signal both MEs, you must ensure that the same signal number is used
for both signals involved. This is done by manually allocating the same signal number to both
signal variables involved, using the _ assign_relative register() intrinsic as described in Chapter 4:

MEO Program ME1 Program

__declspec(visible sram_read_reg) int me1_x;
__declspec(visible) SIGNAL me1_sig;

__implicit_write(&me1_sig);
__implicit_write(&me1_x);

__declspec(sram_write_reg) me0_x;
__declspec(remote sram_read_reg) int me1_x;
__declspec(remote) SIGNAL me1_sig;

reflect_write(&me0_x, ME1, me1_x, CTX, 1,
sig_remote, sig_done, &me1_sig);

__free_write_buffer(&me0_x); —wait_for_all(@me1_sig);

... =me1_x; //luse me1_x

A remote read transfer register can only be written in the micro-engine declaring it as remote, and a
remote write transfer register can only be read in the micro-engine declaring it as remote.

Calls to __implicit_write() need to be inserted in the ME1 program to indicate the earliest point in
the ME1 program execution, where MEO might write the registers associated with visible variables
mel x and mel_sig.

The receiver ME for a Reflector instruction (the remote ME for Reflector write or the local ME for
Reflector read) can use DRAM/SRAM transfer register as reflector operand under 8 context mode,
and only SRAM transfer register under 4 context mode; the sender ME always uses SRAM transfer
register for reflector instructions.

Language Support Reference Manual 51

Intel® Microengine C Compiler Language Support
C Language Support

3.4

Table 7.

3.5

Note:

3.6

3.7

3.71

3.7.2

52

intel.
Summary of Allowed Data Attribute Combinations

Summary of Allowed Combinations of Attributes on Data

Thread Local Shared Export Remote/Visible
GP Register Yes Yes No No
Transfer Register | Yes No No Yes
Signal Register Yes No No Yes
Next Neighbor Yes No No Yes
Local Memory Yes Yes No No
SRAM Yes Yes Yes No
DRAM Yes Yes Yes No
Scratch Yes Yes Yes No
RBUF Yes No No No
TBUF Yes No No No

Expressions

In general, all C expression syntax involving the supported data types is supported. Remote XFR
register variables can only be used in reflect inline asm and reflect intrinsics. Signal variables can
only be used as intrinsic arguments or in inline asm. Function pointers are not supported.

A special note for the implementation of integer divide-by-zero. Because microengines do not
support signals nor exceptions, evaluating an expression such as x/0 or x%0 for any integer X,
signed or unsigned, returns Oxfffffftf for 32-bit integers or OX Tt for 64-bit integers.

Statements

The compiler supports all C statements involving supported expressions.

Functions

Supported

The compiler supports C functions including:

* Local variables with memory regions (equivalent to static locals)

Not Supported

* Recursion

Language Support Reference Manual

3.7.3

3.74

Intel® Microengine C Compiler Language Support
C Language Support

* Variable length argument lists
* Pointers to function

* Passing aggregates larger than 64 bytes (or 128 bytes in 4-context mode) as function
arguments or return value

The implementation on recursion and variable length argument lists on the IXP2XXX NPU
impacts performance and is therefore not supported. The restriction on function pointers allows the
compiler to determine the call-graph exactly and optimize every function call. The use of function
pointers requires that all functions that might be called through a pointer have a standard argument
passing and return value mechanism. Since aggregates larger than 64 bytes (or 128 bytes in 4-
context mode) are never allocated to registers, and function arguments and return values are passed
only in registers, the compiler gives an error message on function arguments/return values that are
larger than 64 bytes (or 128 bytes in 4-context mode).

Extended Function Attributes

The following function attributes can be applied to functions to define their characteristics with
respect to inlining.

* _ noinline func();

* _ forceinline func(), __inline func();

The attribute noinline indicates that the function should not be inlined. The attribute _ inline is a
hint to the compiler to inline the program. The attribute _ forceinline is a strong hint for the
compiler to inline the function. Unless optimization or inlining is turned off the function will be
inlined by the compiler. _ forceinline functions are by default static functions. See Section 2.2.2,
“Inlining” on page 19 for information on inline __ forceinline functions.

Optimizing Pointer Arguments

It is possible to improve the speed of access to function arguments passed in with pointers. For
example:

void foo (MyStruct *p)

{

some code using *p and assigning *p

}

main ()

{
MyStruct x;
...code ...
foo (&%) ;
...code...

In the preceding code, you wish to use the function foo to modify the contents of the structure x, by
passing the address of x to foo. Since general-purpose registers cannot be accessed with pointers,
the compiler cannot place the structure x into registers, which significantly slows access to the data
contained in x.

One way to write the preceding code, which still allows “x” to be placed into registers, is as
follows:

| Language Support Reference Manual 53

Intel® Microengine C Compiler Language Support u

C Language Support I n

3.7.41

54

MyStruct CompilerTemp;

void foo(void)

{

some code directly using and assigning CompilerTemp

main ()

{

MyStruct x

...code. ..

CompilerTemp = X; /* copy -in */
foo() ;

x = CompilerTemp; /* copy-out */

In this code, the program copies x into a global temporary structure that is accessible to both main
and foo, allows foo to perform operations on this temporary structure, and copies the results back
into x. Both the temporary structure CompilerTemp and the structure x can be placed into registers,
with a significant performance gain over the first example.

The “restrict” Qualifier

The compiler can automatically perform the structure copy optimization described above if the
“restrict” qualifier is applied to the function definition of “foo”:

void foo(MyStruct * restrict p)

{

alias-free code using *p and assigning *p

}

main ()

{

MyStruct x;
..code ...

foo (&x) ;
..code. ..

The “restrict” qualifier must come directly before the variable name. This qualifier informs the
compiler that the memory pointed to by the attached pointer parameter is not accessed through
“unknown” means—either through another pointer whose definition is ambiguous, or from another
thread. The optimization described above is only guaranteed to be possible, and safe, when the
following conditions exist:

¢ The memory location pointed to by the “restrict” pointer parameter is only accessed using a
dereference of that particular pointer, or with copies of that pointer which are defined within
the function. The pointer is not assigned to a non-restricted pointer, and the restricted pointer
copies, if they exist, are only assigned to once (similar to “const” variables).

¢ The memory location pointed to by the “restrict” parameter is only accessed from a single
thread and a single microengine while the function is executing.

* The "restrict" pointer parameter is not cast to another type of pointer.

* The “restrict” parameter is dereferenced with a constant offset. For example, in the preceding
code, the function body can contain *p, p->field, and *(p+2), but not *(p+i) where “i” is not a
constant.

Language Support Reference Manual

3.8

Intel® Microengine C Compiler Language Support

C Language Support

The compiler can check for simple violations of the above rules and will not perform the "structure
copy optimization" in those cases, but you must determine whether the "restrict" qualifier is
appropriate (otherwise the qualifier would not be needed). The option "-Qperfinfo=256" will tell
the compiler to print out information on any "restrict rule violations" that it finds.

User Assisted Live Range Analysis

Register allocation and other compiler optimizations depend on correct live range information of
register variables to make the right decision. A register variable is defined as a variable that could
be assigned to a register (transfer register, signal register, general purpose register). A live range of
a register variable is the period between the definition of this variable and the last use of the
defined value. When a register variable has multiple definitions in the program, and each definition
has sequential reads, multiple live ranges are assigned to the same variable. Each live range covers
one definition and its sequential reads.

The live range of a register variable begins with a write into the variable; and it terminates at the
point where there is no subsequent read of that value, i.e., the last read point. A register variable has
the same physical register assigned to it for the span of one live range. It could have different
physical registers assigned to it across different live ranges. You cannot have another write into the
same variable in the middle of a live range (otherwise the live range would be split), but you could
have multiple reads in the middle of a live range. Once past the last read, the live range is
terminated and the physical register can be released.

A register variable can have a write without a read, or a read without a write. For example:

Example A

Example B

Example C

main()

{

__declspec(sram_write_reg) x;
SIGNAL sf1;

/I read x without
/I write to x first

sram_write(&x, &p, 1,
ctx_swap, &s1);

|3

main()

{
__declspec(sram_read_reg) x;
SIGNAL s1;

/I write into x
/I no read of x

sram_read(&x, &p, 1, ctx_swap,
&s1);

}

main()

{

__declspec(sram_read_reg) x;
SIGNAL s1;

/I write into x

sram_read(&x, &p, 1, ctx_swap,
&s1);

// write into x again
sram_read(&x, &q, 1, ctx_swap,
&s1);
/I read x
=X

}

In example A, x is read without being written, so the compiler assumes the live range starts from
the beginning of the program. In example B, x is written but not read; the compiler concludes that
the write is redundant and can be removed during optimization. Example C is the variation of
example B. X is rewritten before the value from the first sram_read is used. The compiler can
remove the first sram_read as a redundant instruction. Even if it is not removed for other reason,
the compiler will release the physical register x immediately after this instruction.

Language Support Reference Manual

55

C Language Support

| Intel® Microengine C Compiler Language Support int6I
®

| 56

In summary, a write always terminates an old live range, and may start a new live range if there is a
preceding read. And, a read always extends the live range of a register at least to the read point.

One of the challenges this process brings to the compiler is the implicit read/write of a register.
Normally, you can only modify or reference a register though explicitly expressed names, like
register X in our previous examples. This process provides you with ways to implicitly read and
write a register without referring to the register name. The scenarios include but are not limited to
the following:

¢ A signal/Xfer register is defined on a remote ME and used on local ME. The definition/write is
not visible from the local program.

* A signal/Xfer register is defined locally and used on a remote ME. The reference/read is not
visible from the local program.

* A signal/Xfer register is assigned an absolute register number. It could be read/written without
referring to the symbolic name.

¢ A signal has the signal number exposed through signals() or signal number().It could be read/
written without referring to the symbolic name, for example, though local csr write.

* A xfer register has address taken and used in indexing reference through T INDEX (not
supported in PR3).

* A NN register that being referenced indirectly though NN register ring.

¢ A synchronized I/O operation with sig_done. Fox example:
__asm sram write[x, &p, 0, 2], sig donel[sl];
__asm ctx_arb([sl];

Even if this instruction is the last use of the xfer register(s), you should not release the xfer
register(s) immediately. The semantics of I/O instructions requires you to hold the xfer register(s)
until the signal arrives. So in our example, the live range of x needs to be extended to pass

ctx arb.

Under certain scenarios the compiler cannot not detect the correct live range of a register. For
example, if the compiler prematurely terminates the live range of a register, it could overwrite the
value currently in use; or if the compiler prolongs the live range of a register, it could run out of
register space unnecessarily. You must supply live range directives for the compiler to make the
right decision.

There are three compiler directives for liveness computation:

e implicit read() will prolong the live range to at least the point where
__implicit read() is called. If there are other reads of the same register after this point,
then adding implicit read () does not have any effect on the program.

e implicit_write() will terminate a live range, and start a new one if there are
following reads. If implicit write () is followed by another write, and there is no
read in between, then this implicit write () has no effect on the program.

e free write buffer() will free the I/O buffer (xfer register) only if there is
no other read of it after this point. See Section 7.2, “Things to Remember When Writing
Microengine C Code” on page 374 for examples of the use of free write buffer ()
and implicit read().

Language Support Reference Manual

Note:

3.9

Intel® Microengine C Compiler Language Support
C Language Support

For syntax, please see the intrinsics in Section 4.

Viewing Live Ranges

The command line option -Qliveinfo displays live-range information about a set of register classes.
You can use -Qliveinfo or -Qliveinfo=all to display live-range information for all register classes,
or use -Qperfinfo=<reg_class,...> to display live-range information for a selected set of register
class. Section 2.3.3, “Supported Compiler Option Switches” on page 20, explains the syntax of the
option in detail.

If a variable is live at some point in a program, this means that the variable's value is used
somewhere after that point in the program, and therefore storage (registers in this case) must be
reserved for that variable. If too many variables are “live” at the same point in a program, not all of
them will be able to be stored in registers, and some of them will have to be “spilled,” or demoted,
into local memory, NN registers, or SRAM. This can adversely affect performance. When this
happens, -Qliveinfo can help you analyze your program and determine which code segments have
a high “register pressure” and thus need to be restructured.

Every object in your program that is assignable to registers, including user variables, is represented
in a common format, the “virtual register.” Virtual registers have a class, ID number, and optionally
a user variable name. Register allocation is the process of mapping virtual registers to physical

ones. The - Qliveinfo printout provides information on these virtual registers in the folloing format:

cls.ID(variable_name)

where “cls” is one of the register class names specified in the -Qliveinfo parameter set, “ID” is the
ID of the VR, and “variable name” is the name of the corresponding user variable, if any.

-Qliveinfo prints the live-range info for each register class separately. For a given register class, the
first part of its live-range display is a mapping from the virtual registers of that class to the
corresponding user variable names. Not all virtual registers can be mapped to a variable name. For
those that cannot be mapped, an ellipsis (...) is used instead. Some VRs will correspond to
compiler-generated variables (usually of the form “cgt.nnn”). Global variables in your code will
have their names modified slightly.

The following is an example of the virtual register map:

Virtual gpr Registers to User Variables Mapping:

nn _inl 0la.c(30) X gr.123
nn_inl 0la.c(32) Y% gr.328
nn_inl 0la.c(32) _y+4 gr.329
nn_inl 0la.c(32) gr.330

After the virtual register map, the live-range info is printed for each pseudo-assembly instruction in
each function. At the top of each function display, three sets of VRs are printed: the live-in set, the
live-out set, and the live-through set. The “live-in” set is the set of VRs that are live at the points
where the function is called. “Live-out” is the set of VRs that are either “live-in” or defined in the
function, and are used after the function returns. “Live-through” is the set of VRs that are “live-in”
and “live-out,” but not referenced inside the function. “Live-through” reflects the register pressure
from the function's callers. The function-level liveness information is then followed by the live-

| Language Support Reference Manual 57

C Language Support

Intel® Microengine C Compiler Language Support int6I
®

3.91

58

range information for each pseudo-assembly instruction (pseudo-assembly instructions are used
internally by the compiler, and correspond roughly with IXP assembly instructions, but may have
different syntax).

An example of the live-range info for a function is:

Live info. of gpr registers for Function testlb:
Live in(1):
gr.671(..)

Live out(0):
Live through(0) :
Live set(l): gr.671(..)

[FHRFFEAE puthi (S1); put('\n');
1 immed [gr.348(val) , 65535, <<0]
Live set(2): gr.348(val) gr.671(..)

2 immed wl[gr.348(val) , 32767]
Live set(2): gr.348(val) gr.671(..)

3 .mcall[puthi#, gr.663(..)]
Live set(l): gr.671(..)

4 immed [gr.328(c) , 10, <<0]
Live set(2): gr.328(c) gr.671(..)

5 .mcall[put#, gr.655(..) 1
Live set(1l): gr.671(..)

[xxEExK [puthi (S1/(1<<0)); put('\n');
6 immed [gr.348 (val) , 65535, <<O0]
Live set(2): gr.348(val) gr.671(..)

Each pseudo-assembly instruction is preceded by a set of the VRs that are live at the point before
the instruction executes. The numbers that occur after the set names ("Live set(n)") indicate the
number of relative registers needed to allocate the live VRs at that point. "Shared" VRs or variables
will count as a fraction of a register, because several absolute registers can be mapped into a single
relative register. In the above example, the VR gr.348 is live between instructions 1 and 3, and live
after instruction 6. Instruction 1 writes to the VR, which makes it live afterward (recall that
liveness is an indication of whether a VR's value is needed). Instruction 3 is a function call to
puthi(), which uses the value of gr.348 (this fact would be apparent on examination of the live-
range info of the puthi() function). After the function call, gr.348 is no longer live because its value
was only needed for the function call. gr.348 becomes live again after instruction 6, because the VR
is rewritten with different value for the next puthi() call (which is not shown).

Limitations and Restrictions on Viewing Live Ranges

¢ Pseudo instructions do not exactly reflect the assembly instructions in the final list file.
Register allocation, local memory allocation, scheduling, and other optimizations might
delete, add, modify, or reorder some instructions. Some of the pseudo instructions are compiler
directives only, and will not produce any physical instructions in the final list file.

* Ata given program point, register pressure slightly greater than the number of available
registers does not necessarily mean that a spill (demotion to another storage class) will be
generated for one of the live variables. Some variables may be found to be equivalent to each

Language Support Reference Manual

3.10

Intel® Microengine C Compiler Language Support
C Language Support

other and may share the same register. Conversely, register pressure which is slightly smaller
than the number of available registers does not guarantee that no spilling is needed, because
additional registers may need to be allocated to perform operations such as memory I/O, or to
temporarily hold values from other register classes.

* Not all virtual registers can be mapped back to user variables.

* Some variables have modified names that cannot be found in the original source code. They
are either global variables or compiler-generated variables.

* When the compiler allocates registers to variables, transfer registers are allocated first. If there
are not enough transfer registers to hold all the live transfer register values at a given program
point, some of the values will be stored (spilled) in GPRs instead. This may in turn cause spills
(demotion to NN registers or memory) in the GPRs that are live at that point. Since the
-Qliveinfo output is printed before register allocation, it might show a GPR register pressure
which is smaller than the number of available registers at a given program point, even though
a spill is generated at that point. If this happens, the register pressure of the transfer registers
should be examined. Any transfer register pressure larger than the number of physical registers
should be added into the GPR register pressure.

* Ifyour code contains local memory variables, 2 GPRs are reserved from the allocation pool, so
that local memory address calculations can be performed.

* Variables declared as volatile are marked as live at every point within their scope. Function-
local volatile variables are live within the scope of their defining function, and global volatile
variables are live within the scope of the entire program.

Critical Path Annotation and Code Layout

On the IXP architecture, there is a penalty paid for each branch that is taken, i.e. each time the code
does not proceed sequentially. This can sometimes be removed by use of branch defer slots, but
the compiler is not always able to completely fill the defer slots.

Code layout is an optimization performed by the compiler that arranges the code in an order that
reduces the number of taken branches. As an example, look at the following code:

if (condition)

{

<statement 1>;

else

{
}

<statement 2>;

Typically, the compiler would produce code similar to this:

alu [--, --, b, condition]
bne [labl#]
<statement 1>
br [lab#]
labl#:
<statement 2>
lab2#:

Notice that there is a taken branch on each path.

Language Support Reference Manual 59

C Language Support

Intel® Microengine C Compiler Language Support int6I
®

60

Now let's assume that the compiler knows that the 'else' clause is executed far more frequently than
the 'then' clause. The compiler could arrange the code differently as follows:

alu [--, --, b, condition]
beq [labl#]
<statement 2>
lab2#:
labl#:
<statement 1>
br [lab2#]

Now there are no branches when the 'else' clause is executed and 2 branches when the 'then' clause
is executed. This is a win on the average since the 'else' clause is much more frequently executed.
In fact, this optimization will always win when the 'else' clause is taken 2/3 of the time or greater.

Another case is the switch statement. A switch is fairly expensive to implement because it involves
an indexed branch to a branch. In the case of a switch, if one leg of the switch is taken more than
30% of the time, a test for that leg before doing the switch will improve the code.

The compiler cannot do this optimization without direction from the programmer. This is because
these transformations would hurt performance if the execution ratios were not what the compiler
assumed. For this reason, the compiler provides an intrinsic to mark the “critical path” in the
program, that is the path that is executed most frequently.

Use the intrinsic function:

__critical_path()

to indicate that this point in the program is on the critical path. For code that is on the critical path,
you should mark the leg of a two way branch (e.g. if statement) that is taken 2/3 of the time or
more, and for a switch statement you should mark the most important leg if it is taken 1/3 of the
time or more. You should not mark any two paths that are mutually exclusive as both critical, as
this provides no significant information to the compiler

The compiler is capable of inferring, from the critical path() directives that you insert, other
parts of the program that are on the critical path. For example, if you have a series of nested if's
you only need to mark the leg of the innermost one as being on the critical path. If one critical path
will overlap another one, the user may want to set priorities on the paths. Please see Section 3.10.1,
“Multiple Critical Paths” on page 61 for more details.

Here are some rules you should take into consideration when marking the critical path:
* Put a critical path marker inside the main loop of the program, at the top.
* For an if with an else, mark one side or the other if it is executed 2/3 of the time or more.
* For a switch, mark the most often taken case if it is taken 1/3 of the time or more.

¢ Ifyou have an if without an else, put a critical path marker in the 'then’ clause if the if is taken
2/3 of the time or more

* Ifyou have an if that ends with a return or goto statement, and the if (and hence the return or
goto) is not executed 2/3 of the time or more, mark the statement following the statement or
block controlled by the if.

Language Support Reference Manual

3.10.1

Intel® Microengine C Compiler Language Support
C Language Support

* If you have a function that is used both on the critical path and off the critical path, do not put
critical path markers in the function.

Basically, you want to walk through the code for your program following the most frequently taken
path, and place a marker whenever the code makes a decision and one path is on the critical path
and the others are not.

Multiple Critical Paths

If several critical paths overlap each other, the branches on the overlapping sections will be laid out
in an arbitrary order. For example:

if (condl) {
__critical path();
// block 1: most frequent case

else {
if (cond2) f{
__critical_path();
// block 2: second most frequent case

else {
// block 3: infrequent case

In the above segment of code, the user wants the "if (cond1)" statement to give preference to "block
1". The user also wants the "if (cond2)" statement to give preference to "block 2". If the
_critical_path() directive is used as above, the critical path choice at "if (cond2)" will be extended
upwards by the compiler and overlap with the critical path choice at "if (cond1)". The compiler will
not know how to choose the default branch direction for "if (cond1)". This is by design; if the
critical paths were not extended in this fashion the user would have to insert a directive inside
every if statement surrounding a given frequently executed block.

When critical paths overlap, the user can tell the compiler which one to give preference to by
assigning a priority to each path. The _ critical path() directive takes an optional integer argument,
which specifies the priority of that path. For example:

if (condl) f{
__critical_path(20);
// block 1: most frequent case

}

else {
if (cond2) {
__critical path(1);
// block 2: second most frequent case

else {
// block 3: infrequent case

The numbers can range from 0 to 100. The default is 100 if no argument is specified. The critical
path with the higher number is given priority. In the above example, "block 1" will be placed as the
default for "if (cond1)" because it has a higher priority (20) than the critical path that flows through
"if (cond2)".

Language Support Reference Manual 61

C Language Support

Intel® Microengine C Compiler Language Support int6I
®

3.1

62

User-Guided switch() Statement Optimization

You can supply information that will determine how the compiler will perform certain
optimizations. Among these are default case removal and switch block packing.

Given the following code:

void main ()

{
__declspec(sram) int mem([10] = {0,1,2,3,4,5,6,7,8,9};
int x = 0;
switch (mem[0])

{

case 0:
X = 1;
break;
case 1:
X = 2;
break;
case 2:
X = 3;
break;

The compiler will generate code such as the following:

sram[read, $0, a0, 40, 1], ctx swapl[sl]
alul--, 2, -, $0]
blo[l 10#], defer([1l]
alula0, --, B, $0]
jump[a0, 1 21#], targets[l 23#,1 22#,1 21#]
1 21#:
br[l 4#]
1 22#:
br[l 6#]
1 23#:
br[l 8#]
1 44:
br[l 10#], defer([l]
immed[a2, 1, <<O0]
1 6#:
br[l_10#], defer([l]
immed[a2, 2, <<0]
1_8#:
immed[a2, 3, <<O0]
1 10#:

The preceding code example shows two possible optimizations that the compiler can perform:

1. The code to test and handle the case where the switch() value does not match any of the other
specified cases is not needed.

2. Instead of having the code jump [] to a jump table which then branches to the code to handle
each case, the Jump [] can go directly to the handler code, at an offset based on the value of x.
This optimization can be performed because each case is handled by code that is
approximately of equal length (two instructions). Therefore the offset for each handler is equal
to the value of x times two.

The compiler will perform the above optimizations based on the input you supply.

Language Support Reference Manual

In

3.11.1

3.11.2

®

Intel® Microengine C Compiler Language Support
C Language Support

Default Case Removal

The first optimization in this example, removal of the handler code for the unmatched (“default™)
case, requires that you select and provide the appropriate value of the switch() argument. You
direct the compiler to remove the “default” case by creating an empty default case and annotating it
with the intrinsic function impossible path (). For example:

void main ()

{
_declspec(sram) int mem[10] = {0,1,2,3,4,5,6,7,8,9};
int x = 0;
switch (mem[0])
{
case 0:
x = 1;
break;
case 1:
X = 2;
break;
case 2:
X = 3;
break;
default:
__impossible path();// add default case, and annotate with intrinsic.
}

Switch Block Packing

The second optimization in this example (switch block packing) should only be performed if all
case handlers are approximately equal in length, with that length preferably a power of two. If the
__switch pack () intrinsic function is placed in the default case, the compiler will try to
predict whether the code will benefit from switch block packing, and will perform the optimization
if this is possible. For example:

void main ()

{
__declspec(sram) int mem[10] = {0,1,2,3,4,5,6,7,8,9};
int x = 0;
switch (mem[0])
{
case 0:
X = 1;
break;
case 1:
X = 2;
break;
case 2:
X = 3;
break;
default:
__switch_pack (swpack_auto) ;
}

The possible arguments for the switch pack () function are described in the swpack t
enum in the ixp.h header file:

Language Support Reference Manual 63

Intel® Microengine C Compiler Language Support u

C Language Support I n

3.12

3.13

64

typedef enum {

swpack_none, // no pack, jump[] to a jump table
swpack_lmem, // no pack, but use local memory to hold jump table
swpack_auto, // auto pack when appropriate
swpack_0, // pack if no extra registers are required

// to perform the jump[] offset calculation
swpack_1, // pack if at most 1 register is required to

// perform the jump[] offset calculation
swpack_2, // pack if at most 2 registers are required

// to perform the jump[] offset calculation
swpack_3 // pack if at most 3 registers are required

// to perform the jump[] offset calculation
} swpack_t;

Note that this optimization should not be performed if the case handlers vary
widely in length, because the smaller handlers will have to be padded so that all
handler offsets occur at the same intervals.

Creating Context Swap-Free Regions of Code

The no swap begin() and no swap end() intrinsics can be used to create a section of code
where the compiler will not create any instructions that incur a context swap, or move any code
into the region that will incur a context swap. This allows the user to write critical sections without
incurring the overhead of explicit synchronization. Note that the other microengines on the NPU
will still continue to execute in parallel. To create a context swap-free region, simply place the
__no_swap begin() and _no_swap_end() intrinsics at the beginning and the end of the desired
section of code, as shown in the following example:

__no_swap_begin()
critical section code
__no_swap_end()

If the code within the critical section contains a context swap operation, the compiler will generate
an error message. This includes any access to data structures stored in memory. Function calls
made in the critical section are also checked for this condition. Aside from this checking, the
compiler will also guarantee that no other code that incurs context swaps will be moved into this
region through compiler optimizations.

Loop unrolling control

When the -O2 (compile for maximum code speed) option is enabled, the compiler can perform an
optimization called "loop unrolling" as shown in the following example.

Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support

Original loop:

for (1 = 0; 1 < 10; i++) {

alil = i;

}

Loop unrolled by 2X:

for (1 = 0; 1 < 10; 1 += 2) { // unroll by 2
alil = i;
ali+l] = i+1

The loop in the second code segment has been unrolled by 2X (the "unroll factor" is 2). Two
iterations of the original loop will execute in one iteration of the unrolled loop. The total number of
branches executed in the loop is halved. Also, the two statements in the loop body can be optimized
together—computation can be reused and more scheduling and pipelining opportunities have been
created. Loop unrolling therefore improves the performance of loops, at a cost in code size.

Loop unrolling is performed only for "for" loops. If loops are nested, only the innermost loop will
be unrolled. The compiler automatically determines, using various heuristics, whether a benefit can
be had for unrolling a given loop, and what the proper "unroll factor" should be. If you want more
precisely controlled unrolling behavior, there are two #pragma directives that you can use, as
shown in the following example::

#pragma nounroll// Don't unroll this loop
#pragma unroll (<unroll factors)// Unroll this loop by the given unroll factor

These directives are placed directly before the loop to be managed. This loop must be a "for" loop,
and must be the innermost loop in a series of nested loops. This is shown in the following
examples:

Language Support Reference Manual 65

C Language Support

Intel® Microengine C Compiler Language Support int6I
®

3.14

3.141

66

#pragma nounroll
for (i = 0; i < 10; 1 ++) // Don't unroll this

#pragma unroll (2)
for (i = 0; 1 < 10; 1 ++) // Unroll this loop by 2X, exactly as in
// the above example

// NOT LEGAL, must be applied to
#pragma unroll (2) // innermost loop
for (i = 0; 1 < 10; i++)
for (j = 0; j < 6; Jj++)

#pragma unroll(2)// NOT LEGAL, must be applied to for loop
while (1)

The "unroll factor" parameter is the total number of iterations of the loop body that will be in the
final unrolled loop. If this parameter is 0 or 1, no unrolling will be performed.

Mixing C and Microcode in One Microengine

Command Line Options and Usage model

A typical application that mixes C and microcode defines one or more functions in C files, and one
or more microcode blocks in assembly file. A main() function must be defined in C. Global
variables require initialization and must be defined in C. Thread local memory variables must be
defined in C files as there is no thread local memory in microcode. A function in microcode is a
label that you can jump to. C functions call microcode functions by first setting arguments and
returning address in symbolic registers, then jumping to the label. Microcode can also call C
functions in a similar way. The returned value is placed in symbolic registers as well.

Any file scope global variables defined in C can be referenced from microcode. Any microcode
module level global register variable, or module level memory variable can be referenced from C
functions. The naming translation scheme between C and microcode is described in Section 3.14.2.

The following command line option supports mixing C and microcode in one compilation:
-uc

With this option on, you can pass a number of C files, together with a number of microcode files to
the compiler. First, all C files are compiled into a single microcode file, usually named as
ipo_out.uc, and a header file, usually named as ipo_out.h. This header file contains macro
definitions of offsets for thread local variables. The compiler then creates a temporary, temp.uc, as
the high-level microcode file. Temp.uc includes ipo_out.uc, ipo_out.h, (unless they are renamed by
-Fa or -0) and all other microcode files passed on the command line. Compiler later invokes UCA
(microcode assembler) to assemble temp.uc into a list file.

After compilation, temp.uc is removed, but ipo_out.uc and ipo_out.h is preserved in the directory.

The following command line options can change the default behavior of mixing compilation:

Language Support Reference Manual

3.14.2

3.14.21

Intel® Microengine C Compiler Language Support

C Language Support
-S The driver will not invoke UCA, only generate the uc file.
-Fa <filename> or -0 <filename> The microcode file produced by compiler

is renamed to <filename>
-0, -02, -01 The driver will invoke UCA with -O
-Zi The driver will invoke UCA with -g
-Gx2800/-Gx2400 The driver will invoke uca with -ixp2800/-ixp2400

-Fe<filename> The list file produced from UCA is renamed to <filename>.

Naming and Calling Conventions

To avoid name conflicts with microcode, the compiler inserts a leading underscore (' ') to all C
variables and functions. For example, a function foo() in C source file is referred as _foo# in
assembly; a global memory variable x is referred as _x in assembly. Additional rules regarding
naming convention on variables are explained in following subsections.

Register Variable Naming Conventions
When referencing register variables across the boundary of C and microcode, the following
conventions are to be followed:

* For SRAM transfer registers, the microcode requires a prefix name of “$”. For the same
SRAM xfer variable myvar in C, the corresponding name is $myvar in microcode.

* For DRAM transfer registers, the microcode requires a prefix name of “$$”. For the same
DRAM xfer variable myvar in C, the corresponding name is $$myvar in microcode.

* For next neighbor registers, the microcode requires a prefix name of “n$”. For the same nn reg
variable myvar in C, the corresponding name is n$myvar in microcode.

* For shared registers, the microcode requires a prefix name of “@”. For example, the following
C variable:

__declspec (shared gp_reg) rr;

is translated into microcode as shown:

.reg read @ rr;

In C, register variables can carry a size bigger than a 4 byte word; while in microcode, the size of
each register variable is 4 bytes. When referencing such a variable from microcode, a postfix of
“ <n>” where n=0,1,2,..., is appended to distinguish each 4 byte part. For example, the
following C variable

__declspec(sram gp_reg) rrl[4];

is translated into microcode:

.reg read $ rr 0

Language Support Reference Manual 67

C Language Support

| Intel® Microengine C Compiler Language Support int6I
®

3.14.2.2

3.14.2.3

| 68

.reg read $_ rr_ 1
.reg read $_rr_ 2
.reg read $_rr_ 3

Sharing Variables Between C and Assembly

All register variables may be shared between the C and assembly source files in the program.