
Intel® IXP2400/IXP2800 Network
Processor
Programmer’s Reference Manual

November 2003

Order Number: 278746-014

ii Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The IXP2400/IXP2800 Network Processor may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2003

Intel and Intel XScale are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries

*Other names and brands may be claimed as the property of others.

Revision History

Revision Date Revision Description

07/12/01 001 Internal release.

09/07/01 002 Internal release. Updated instructions

10/10/01 003 Release for Customer Information Book V0.3.

10/31/01 004 Pre-Release V 1.

11/04/01 005 Update for Customer Information Book V0.3

01/25/02 006 IXA SDK 3.0 Pre-Release II

04/22/02 007 Release for the IXA SDK 3.0

08/02/02 008 First combined IXP2400/IXP2800 version for the IXA SDK 3.0 Pre-Release 4

11/01/02 009 Release for the IXA SDK 3.0 Pre-Release 5

01/22/03 010 Release for the IXA SDK 3.0 Pre-Release 6

05/31/03 011 Release for the IXA SDK 3.1 Pre-Release 2

07/3/03 012 Release for the IXA SDK 3.1 Pre-Release 3

09/8/03 013 Release for the IXA SDK 3.5

11/16/03 014 Release for the IXA SDK 3.5 Pre-Release 2

Intel® IXP2400/IXP2800 Network Processor
Contents
1 Introduction...21

1.1 About this Document ...21
1.2 Related Documentation...21

2 Assembler ..23

2.1 Acronyms ..23
2.2 Definitions..23
2.3 Source File Elements ..24

2.3.1 Instructions ...24
2.3.2 Directives..24
2.3.3 Comments ..24

2.4 Block Structure ..25
2.5 Assembly Process Steps...25
2.6 Assembler Preprocessor ...26

2.6.1 Preprocessor Reserved Labels ..27
2.6.2 Preprocessor Operation ...27
2.6.3 Constant Expressions (const-expr) ..28

2.6.3.1 Preprocessor Binary & Unary Operators29
2.6.3.2 Preprocessor: Functions ...29
2.6.3.3 STRING Operator..30
2.6.3.4 LOG2() Function..31
2.6.3.5 Preprocessor Function Examples ...32

2.6.4 Macros and Expansion Token Restriction..33
2.6.5 Syntax for Argument and Token lists ...33
2.6.6 Leading and Trailing Spaces in Macros ...34
2.6.7 Environment Variables ...34
2.6.8 Predefined Processor Type and Revision Symbols34
2.6.9 Predefined Import Variables...38

2.7 Preprocessor Usage Techniques ..38
2.7.1 Branching into a Macro ..38
2.7.2 Constructing Names from Numbers ...40

2.8 Registers and Signals ...41
2.8.1 Register Naming Conventions..42

2.8.1.1 Indexed Registers ...42
2.8.1.2 Mixing Indexed and Named Register Usage.............................46
2.8.1.3 Transfer Registers (xfer) ...46

2.8.2 Register Declarations ...46
2.8.2.1 Preferred Register Declaration Syntax......................................47
2.8.2.2 Details of Volatile and Visible ..51
2.8.2.3 Compatible Register Declaration Syntax...................................51
2.8.2.4 Dealing with self-write neighbor regs ..52

2.8.3 Aggregate and Array Support...52
2.8.3.1 Register Arrays..52
2.8.3.2 Compatibility with Earlier Releases ...53
2.8.3.3 Doubled Signal References...54
2.8.3.4 Usage Notes..55
2.8.3.5 Compatibility Issues ..56
Programmer’s Reference Manual iii

Intel® IXP2400/IXP2800 Network Processor
2.8.4 Transfer Order(.xfer_order) .. 56
2.8.5 Register Lifetime Details .. 57

2.8.5.1 MEv2 Queue Information .. 58
2.8.6 Signal Declarations .. 58
2.8.7 Use of REMOTE Keyword.. 59
2.8.8 Address Operator... 60

2.8.8.1 Accumulating Results for ctx_arb[--] ...62
2.8.8.2 Examples of Address Operator and Visible/Volatile Signals 63

2.8.9 Signal Lifetime Details.. 64
2.8.10 Register Allocatior Directives ... 64
2.8.11 GPR A/B Bank Conflicts...69

2.8.11.1Automatic A/B Bank Conflict Resolution 70
2.8.12 GPR Spilling... 70
2.8.13 Lifetime Out-Of-Register Errors.. 71

2.8.13.1Transfer Register Lifetimes ... 74
2.9 Assembler Optimizer... 75
2.10 Assembler Directives .. 77

2.10.1 Summary of Directives ... 77
2.11 Directives Definitions... 79

2.11.1 Token Replacement (#define, #undef) ... 79
2.11.2 Optimization Directives... 80
2.11.3 Loops ... 81

2.11.3.1For Loops (#for, #endloop).. 81
2.11.3.2Repeat Loops (#repeat, #endloop) ... 81
2.11.3.3While Loops (#while, #endloop) .. 82

2.11.4 Macros (#macro, #endm) ... 82
2.11.5 Conditional Assembly (#Ifdef, #If, #else, #elif, #endif) 84
2.11.6 Error Reporting (#error).. 85
2.11.7 File Inclusion (#include) ...86
2.11.8 Import Variable (.import_var)..86
2.11.9 Code block directive (.begin, .end)... 87
2.11.10 Manual Register Allocation (.addr) ... 88
2.11.11 Memory Allocation Directives... 89
2.11.12 Memory Block and Register Initialization ...90
2.11.13 Local Memory Mode Directives.. 91
2.11.14 Number of Contexts Directive .. 91
2.11.15 Initial Next Neighbor Mode Directive.. 91
2.11.16 Operand Synonym (.operand_synonym) ...91
2.11.17 Structured Assembly .. 92

2.11.17.1Conditional (.if, .elif, .else, .endif, if_unsigned, .elif_unsigned)92
2.11.17.2Repeat Loops (.repeat, .until).. 93
2.11.17.3While Loops (.while, .endw) .. 93
2.11.17.4Break and Continue .. 93
2.11.17.5Conditional Expressions.. 93
2.11.17.6Errors ..95

2.11.18 Structured Assembly Usage Considerations.. 96
2.11.19 Warning Directives ... 97

2.12 Subroutine Definition (.subroutine, .endsub)... 98
2.13 Linker Directives.. 98
iv Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
3 MEv2 Instruction Set ..101

3.1 Instruction Syntax..103
3.1.1 Restricted and Unrestricted Src and Dest Operands103

3.1.1.1 Two Source Operand Selection Rules104
3.1.2 I/O Instruction Format...104

3.1.2.1 Source Operands (src_op1, src_op2)104
3.1.2.2 Reference Count (ref_cnt) ...105
3.1.2.3 Optional Tokens (opt_tok) ...105
3.1.2.4 Event Signals ..108

3.1.3 Condition Codes...111
3.1.4 Branch Defer (defer[n])...112
3.1.5 Coding Restrictions ..113

3.1.5.1 Branch or I/O Command in Defer Slot.....................................113
3.1.5.2 Condition Codes after Swap..114
3.1.5.3 CAM after Conditional P3 Branch ...114
3.1.5.4 Dram with Swap ..115
3.1.5.5 BCC after Conditional P3 branch ..115
3.1.5.6 LOCAL_CSR_RD cannot be in last defer slot.117
3.1.5.7 LOCAL_CSR_WR to ACTIVE_LM_ADDR, or

CAM_LOOKUP ...117
3.1.5.8 LOCAL_CSR_RD must be followed by an IMMED op118
3.1.5.9 I/O Command Op after LOCAL_CSR_WR..............................119
3.1.5.10LOCAL_CSR_WR to CTX_WAKEUP_EVENTS.....................120

3.1.6 MEv2 Permitted Coding Sequences ..121
3.1.6.1 Swap after P3 Branch ...121
3.1.6.2 Memory Command after P3 Branch..121
3.1.6.3 Swap after Voluntary Swap. ..122
3.1.6.4 A LOCAL_CSR_WR in defer slot ..122
3.1.6.5 LOCAL_CSR_WR can be followed by a LOCAL_CSR_RD

or LOCAL_CSR_WR...123
3.2 Instruction Set ...124

3.2.1 ALU ..124
3.2.2 ALU_SHF ...126
3.2.3 ASR ..128
3.2.4 BCC (BRANCH CONDITION CODE)...129
3.2.5 BR ..130
3.2.6 BR_BCLR, BR_BSET ..131
3.2.7 BR=BYTE, BR!=BYTE ...132
3.2.8 BR=CTX, BR!=CTX..133
3.2.9 BR_INP_STATE, BR_!INP_STATE ...134
3.2.10 BR_SIGNAL, BR_!SIGNAL ..135
3.2.11 BYTE_ALIGN_BE, BYTE_ALIGN_LE..136
3.2.12 CAM_CLEAR ...139
3.2.13 CAM_LOOKUP ..140
3.2.14 CAM_READ_TAG ..142
3.2.15 CAM_READ_STATE..143
3.2.16 CAM_WRITE..144
3.2.17 CAM_WRITE_STATE ..145
3.2.18 CAP (Enumerated CSR Addressing) ...146
3.2.19 CAP (Calculated Addressing)...148
3.2.20 CAP (Reflect) ...153
Programmer’s Reference Manual v

Intel® IXP2400/IXP2800 Network Processor
3.2.21 CRC_LE, CRC_BE .. 155
3.2.22 CTX_ARB... 158
3.2.23 DBL_SHF ... 160
3.2.24 DRAM (Read and Write) .. 161
3.2.25 DRAM (RBUF and TBUF) .. 163
3.2.26 FFS .. 165
3.2.27 HALT .. 166
3.2.28 HASH ... 167
3.2.29 IMMED ...170
3.2.30 IMMED_B0, IMMED_B1, IMMED_B2, IMMED_B3.............................. 172
3.2.31 IMMED_W0, IMMED_W1... 173
3.2.32 JUMP ... 174
3.2.33 LD_FIELD, LD_FIELD_W_CLR ... 175
3.2.34 LOAD_ADDR ... 176
3.2.35 LOCAL_CSR_RD... 177
3.2.36 LOCAL_CSR_WR.. 178
3.2.37 MSF (Media Switch Fabric) .. 179
3.2.38 MUL_STEP ..182
3.2.39 NOP ... 184
3.2.40 PCI ...185
3.2.41 POP_COUNT... 187
3.2.42 RTN.. 188
3.2.43 SCRATCH (Read & Write) ... 189
3.2.44 SCRATCH (Atomic Operations)... 191
3.2.45 SCRATCH (Ring Operations)... 193
3.2.46 SRAM (Read & Write) .. 195
3.2.47 SRAM (Atomic Operations).. 197
3.2.48 SRAM (CSR).. 201
3.2.49 SRAM (Read Queue Descriptor)..203
3.2.50 SRAM (Write Queue Descriptor) ..207
3.2.51 SRAM (Enqueue) ... 209
3.2.52 SRAM (Dequeue)... 213
3.2.53 SRAM (Ring Operations).. 216
3.2.54 SRAM (Journal Operations) ... 218

4 Address Maps .. 221

4.1 Intel XScale“ Address Map.. 221
4.1.1 DRAM Memory and Intel XScale“ Core Flash ROM (2GB).................. 222
4.1.2 SRAM Memory (1GB) .. 222
4.1.3 CAP-CSRs (32MB)... 223

4.1.3.1 ME Transfer and Local CSRs.. 224
4.1.3.2 Peripherals .. 225
4.1.3.3 CAP CSRs... 225

4.1.4 SlowPort - Flash ROM (64M) ... 226
4.1.5 MSF (32M) ... 226
4.1.6 Scratch (32M)... 227
4.1.7 SRAM CSRs and Queue Array (64MB) ... 228
4.1.8 DRAM CSRs (32M).. 229
4.1.9 Intel XScale“ Core Local CSRs (32M).. 230

4.1.9.1 Hash Operations ... 230
vi Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
4.1.10 PCI IO (32M) ..231
4.1.11 PCI CFG (32M) ..231
4.1.12 PCI Special Cycles / IACK (32M) ...232
4.1.13 PCI Configuration Registers (32M) ..232
4.1.14 PCI Controller CSRs ..232
4.1.15 PCI Memory (1/2GB)..232

4.2 PCI Address Map ..233
4.2.1 DRAM Memory Space..234
4.2.2 SRAM Memory Space..235
4.2.3 CSR Memory Space...236

4.3 Microengine Address Map...238

5 Control and Status Registers (CSRs)...241

5.1 Introduction..241
5.1.1 IXP2800 and IXP2400 CSR Summary...241
5.1.2 Register Notation Conventions...242
5.1.3 Reserved Fields ...242

5.2 Microengine Local CSRs...243
5.2.1 USTORE_ADDRESS ...247
5.2.2 USTORE_DATA_LOWER, USTORE_DATA_UPPER.........................248
5.2.3 USTORE_ERROR_STATUS ...249
5.2.4 ALU_OUT...249
5.2.5 TIMESTAMP_HIGH, TIMESTAMP_LOW ..250
5.2.6 ACTIVE_CTX_FUTURE_COUNT..250
5.2.7 INDIRECT_CTX_FUTURE_COUNT..251
5.2.8 ACTIVE_FUTURE_COUNT_SIGNAL..251
5.2.9 INDIRECT_FUTURE_COUNT_SIGNAL..251
5.2.10 PROFILE_COUNT ...252
5.2.11 PSEUDO_RANDOM_NUMBER...253
5.2.12 NEXT_NEIGHBOR_SIGNAL ...253
5.2.13 PREV_NEIGHBOR_SIGNAL ...254
5.2.14 SAME_ME_SIGNAL...255
5.2.15 ACTIVE_CTX_STS ..255
5.2.16 INDIRECT_CTX_STS ..256
5.2.17 CTX_ARB_CNTL ...257
5.2.18 CTX_ENABLES..257
5.2.19 CC_ENABLE ..260
5.2.20 CSR_CTX_POINTER...260
5.2.21 ACTIVE_CTX_SIG_EVENTS...261
5.2.22 INDIRECT_CTX_SIG_EVENTS...261
5.2.23 ACTIVE_CTX_WAKEUP_EVENTS ...261
5.2.24 INDIRECT_CTX_WAKEUP_EVENTS ...261
5.2.25 ACTIVE_LM_ADDR_0 ...262
5.2.26 ACTIVE_LM_ADDR_1 ...262
5.2.27 INDIRECT_LM_ADDR_0 ...262
5.2.28 INDIRECT_LM_ADDR_1 ...262
5.2.29 BYTE_INDEX ...263
5.2.30 T_INDEX ..264
5.2.31 T_INDEX_BYTE_INDEX..264
5.2.32 INDIRECT_LM_ADDR_0_BYTE_INDEX...265
Programmer’s Reference Manual vii

Intel® IXP2400/IXP2800 Network Processor
5.2.33 INDIRECT_LM_ADDR_1_BYTE_INDEX...265
5.2.34 ACTIVE_LM_ADDR_0_BYTE_INDEX... 265
5.2.35 ACTIVE_LM_ADDR_1_BYTE_INDEX... 265
5.2.36 NN_PUT... 265
5.2.37 NN_GET... 266
5.2.38 CRC_REMAINDER.. 267
5.2.39 LOCAL_CSR_STATUS.. 267

5.3 RDR DRAM Controller - IXP2800 ... 268
5.3.1 RDRAM_CONTROL (# = 0,1,2) ... 269
5.3.2 RDRAM_ERROR_STATUS_1 (# = 0,1,2) ... 271
5.3.3 RDRAM_ERROR_STATUS_2 (# = 0,1,2) ... 272
5.3.4 RDRAM_ECC_TEST (# = 0,1,2)..273
5.3.5 RDRAM_SERIAL_COMMAND (# = 0,1,2)... 274
5.3.6 RDRAM_SERIAL_DATA (# = 0,1,2) .. 275
5.3.7 RDRAM_CONFIG_1 (# = 0,1,2)... 275
5.3.8 RDRAM_CONFIG_2 (# = 0,1,2)... 277
5.3.9 RDRAM_CONFIG_3 (# = 0,1,2)... 278
5.3.10 RDRAM_RAC_INIT (# = 0,1,2) .. 279
5.3.11 RDRAM_MISC_RAC_CONTROL.. 281
5.3.12 RDRAM_RAC_CONFIG...281
5.3.13 RDRAM_1066_CONFIG_GROUP (# = 0,1,2) 282
5.3.14 RDRAM_SERIAL_CONFIG (# = 0,1,2).. 282
5.3.15 RDRAM_K0 through RDRAM_K11 (# = 0,1,2) 283

5.4 DDR SDRAM Controller - IXP2400... 285
5.4.1 DDR SDRAM Register Map ... 285
5.4.2 DRAM Controller Control Register (DU_CONTROL)........................... 285
5.4.3 DRAM Error Status Register 1 (DU_ERROR_STATUS_1) 288
5.4.4 DRAM Error Status Register 2 (DU_ERROR_STATUS_2) 289
5.4.5 DRAM ECC Test Register (DU_ECC_TEST) 290
5.4.6 DRAM Initialization Register (DU_INIT) ... 292
5.4.7 DRAM Controller Control Register 2 (DU_CONTROL2) 293
5.4.8 DRAM RCOMP & I/O Registers... 294

5.4.8.1 DDR_Rx_DLL.. 298
5.4.8.2 DDR_Rx_Deskew ... 299
5.4.8.3 DDR_RDDLYSEL_RECVEN... 299

5.5 SRAM QDR Controller .. 300
5.5.1 SRAM_CONTROL ... 302
5.5.2 SRAM_PARITY_STATUS_1..304
5.5.3 SRAM_PARITY_STATUS_2..304
5.5.4 SPARE ...305
5.5.5 QDR_INTERNAL_PIPELINE ... 306
5.5.6 QDR_RX_DLL.. 306
5.5.7 QDR_RX_DESKEW...307
5.5.8 QDR_RD_PTR_OFFSET... 307
5.5.9 QDR RCOMP Registers...308

5.5.9.1 Q_RCMP_SETUP_CONTROL ... 308
5.5.9.2 Q_RCMP_PMOS_MEASURED.. 311
5.5.9.3 Q_RCMP_NMOS_MEASURED.. 311
5.5.9.4 Q_RCMP_PMOS_OVERRIDE.. 312
5.5.9.5 Q_RCMP_NMOS_OVERRIDE ... 312
viii Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
5.5.9.6 Q_RCMP_PMOS_NMOS_SCOMP_OVERRIDE (IXP2400
and IXP2800 Rev A)..313

5.5.9.7 Q_RCMP_PMOS_NMOS_SCOMP_OVERRIDE(IXP2800
Rev B) ...314

5.5.9.8 Q_RCMP_STRENGTH_SLEW_INDEX_SEL315
5.5.9.9 Q_RCMP_ADDR_PMOS_PU_OFFSET317
5.5.9.10Q_RCMP_ADDR_NMOS_PD_OFFSET.................................317
5.5.9.11Q_RCMP_DATA _PMOS _PU_OFFSET................................317
5.5.9.12Q_RCMP_DATA_NMOS_PD_OFFSET318
5.5.9.13Q_RCMP_K_CLK_PMOS_PU_OFFSET................................318
5.5.9.14Q_RCMP_KCLK_NMOS_PD_OFFSET..................................318
5.5.9.15Q_RCMP_DQ_PMOS_PU_OFFSET......................................319
5.5.9.16Q_RCMP_DQ_NMOS_PD_OFFSET......................................319
5.5.9.17Q_RCMP_PMOS_NMOS_VERT_OVERRIDE319
5.5.9.18Slew Rate Tables ..320

5.5.10 QDR unit initialization ...322
5.5.10.1IXP2800 A Steppings QDR initial setup procedure322
5.5.10.2IXP2800 B Steppings - QDR initial setup procedure...............324
5.5.10.3IXP2400 QDR initial setup procedure326

5.6 CSR Access Proxy (CAP) ...327
5.6.1 Scratchpad Memory CSRs (CAP CSR) ...327

5.6.1.1 SCRATCH_RING_BASE_# (# = 0 -15)...................................328
5.6.1.2 SCRATCH_RING_HEAD_# (# = 0 - 15)329
5.6.1.3 SCRATCH_RING_TAIL_# (#= 0 - 15).....................................330

5.6.2 Hash Configuration (CAP CSR) ...330
5.6.2.1 HASH_MULTIPLIER_48_# (# = 0,1).......................................331
5.6.2.2 HASH_MULTIPLIER_64_# (# = 0,1).......................................331
5.6.2.3 HASH_MULTIPLIER_128_# (# = 0,1,2,3)...............................332

5.6.3 Fast Write CSRs (CAP CSR) ...333
5.6.3.1 THD_MSG (Generic) ...334
5.6.3.2 THD_MSG_CLR_#_$_& (# = {0,1}, $= {0,7 or 3}, & = {0,7})...335
5.6.3.3 THD_MSG_#_$_& (# = {0,1}, $ = {0,7 or 3}, & = {0,7})335
5.6.3.4 THD_MSG_SUMMARY_#_$ (# = {0,1}, $ = {0,1})336
5.6.3.5 SELF_DESTRUCT_# (# = 0 -1) ..336
5.6.3.6 INTERTHREAD_SIG...337
5.6.3.7 XSCALE_INT_# (# = A, B) ..337

5.6.4 Global Control (CAP CSR) ...338
5.6.4.1 PRODUCT_ID ...338
5.6.4.2 MISC_CONTROL..339
5.6.4.3 MSF Clock Control CSR (MCCR) - IXP2400 only340
5.6.4.4 IXP_RESET_0...344
5.6.4.5 IXP_RESET_1...347
5.6.4.6 CLOCK_CONTROL ..348
5.6.4.7 STRAP_OPTIONS ..350
5.6.4.8 WATCHDOG_HISTORY ...351

5.6.5 Timer (CAP CSR)...352
5.6.5.1 T#_CTL (# = 1,2,3,4) ...352
5.6.5.2 T#_CLD, (# = 1,2,3,4)..353
5.6.5.3 T#_CSR, (# = 1,2,3,4) ...354
5.6.5.4 T#_CLR(# = 1,2,3,4)..354
5.6.5.5 TWDE..354

5.6.6 GPIO (CAP CSR) ...355
5.6.6.1 GPIO_PLR ..356
Programmer’s Reference Manual ix

Intel® IXP2400/IXP2800 Network Processor
5.6.6.2 GPIO_PDPR ... 357
5.6.6.3 GPIO_PDSR ... 357
5.6.6.4 GPIO_PDCR ... 358
5.6.6.5 GPIO_POPR ... 358
5.6.6.6 GPIO_POSR, GPIO_POCR.. 358
5.6.6.7 GPIO_REDR, GPIO_FEDR .. 359
5.6.6.8 GPIO_EDSR ... 360
5.6.6.9 GPIO_LSHR, GPIO_LSLR.. 361
5.6.6.10GPIO_LDSR.. 362
5.6.6.11GPIO_INER...362
5.6.6.12GPIO_INSR...362
5.6.6.13GPIO_INCR .. 363
5.6.6.14GPIO_INST ...363

5.6.7 UART (CAP CSR) .. 364
5.6.7.1 UART_RBR...365
5.6.7.2 UART_THR ...365
5.6.7.3 UART_DLRL, UART_DLRH.. 365
5.6.7.4 UART_IER... 366
5.6.7.5 UART_IIR.. 367
5.6.7.6 UART_FCR ...369
5.6.7.7 UART_LCR ...371
5.6.7.8 UART_LSR.. 373
5.6.7.9 UART_SPR ...375

5.6.8 PMU (Performance Monitor UNit) (CAP CSR)..................................... 376
5.6.8.1 PMUCONTCFG—PMU Control Bus Configuration Register .. 378
5.6.8.2 PMUSTAT—PMU Counter Interrupt Status Registers 380
5.6.8.3 PMUMASK—PMU Counters Interrupt Mask Registers........... 382
5.6.8.4 PMUINTEN—PMU Interrupt Enable Register 386
5.6.8.5 CHAPCMDN—CHAP Command N Register (N = 0...5) 387
5.6.8.6 CHAPEVN—CHAP Events N Register (N = 0...5) 391
5.6.8.7 CHAPSTAT# (# = 0...5)... 393
5.6.8.8 CHAPDATAN—CHAP Data N Register (N = 0...5) 394

5.6.9 SlowPort (CAP CSR).. 395
5.6.9.1 SP_CCR.. 396
5.6.9.2 SP_WTC1 ... 398
5.6.9.3 SP_WTC2 ... 399
5.6.9.4 SP_RTC1 .. 401
5.6.9.5 SP_RTC2 .. 401
5.6.9.6 SP_FSR .. 403
5.6.9.7 SP_PCR.. 404
5.6.9.8 SP_ADC.. 404
5.6.9.9 SP_FAC .. 405
5.6.9.10SP_FRM.. 405
5.6.9.11SP_FIN..406
5.6.9.12SP_TXE .. 406
5.6.9.13SP_RXE .. 407

5.7 Media and Switch Fabric Interface (MSF) - IXP2800.. 408
5.7.1 MSF_RX_CONTROL ... 413
5.7.2 MSF_TX_CONTROL.. 418
5.7.3 MSF_INTERRUPT_STATUS... 421
5.7.4 MSF_INTERRUPT_ENABLE... 424
5.7.5 CSIX_TYPE_MAP.. 425
5.7.6 FC_EGRESS_STATUS ...425
x Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
5.7.7 FC_INGRESS_STATUS ..427
5.7.8 FC_STATUS_OVERRIDE..429
5.7.9 MSF_CLOCK_CONTROL..430
5.7.10 FCIFIFO ...432
5.7.11 FCEFIFO..433
5.7.12 RX_DESKEW_# (# = pin name)...433
5.7.13 SPI4_DYNFILT_THRESH..434
5.7.14 MSF_DLL_DATA_DELAY_CTL ...435
5.7.15 FC_DYNFILT_THRESH...436
5.7.16 FC_DLL_DATA_DELAY_CTL..437
5.7.17 HWM_CONTROL...438
5.7.18 RX_THREAD_FREELIST_# (# = 0,1,2) ...439
5.7.19 RX_PORT_MAP...441
5.7.20 RBUF_ELEMENT_DONE ..441
5.7.21 RX_CALENDAR_LENGTH ..441
5.7.22 FCEFIFO_VALIDATE...442
5.7.23 TX_SEQUENCE_# (# = 0,1,2) ...442
5.7.24 RX_THREAD_FREELIST_TIMEOUT_# (# = 0,1,2).............................443
5.7.25 RX_PORT_CALENDAR_STATUS_# (0 TO 255)443
5.7.26 TX_CALENDAR_LENGTH...444
5.7.27 TX_CALENDAR_# (# = 0 - 255)...445
5.7.28 TX_PORT_STATUS_# (# = 0 - 255) ..445
5.7.29 TX_MULTIPLE_PORT_STATUS_# (# = 0 - 15)445
5.7.30 TBUF_ELEMENT_CONTROL_$_# ($ = A, B, # = Element No)446
5.7.31 TRAIN_DATA ...449
5.7.32 TRAIN_CALENDAR ...452
5.7.33 TRAIN_FLOW_CONTROL...453
5.7.34 RX_PHASEMON_# (# = pin name)..455
5.7.35 MSF_IO_BUF_CTL ..457
5.7.36 FC_IO_BUF_CTL...458
5.7.37 MSF Initial Setup Procedure for the IX2800 Rev A459
5.7.38 MSF Initial Setup Procedure for the IX2800 Rev B460

5.8 Media and Switch Fabric Interface(MSF) - IXP2400 ...462
5.8.1 IXP2400 MSF Address Map...462
5.8.2 MSF_Rx_Control..464
5.8.3 MSF_Tx_Control ..466
5.8.4 MSF_Interrupt_Status ..470
5.8.5 MSF_Interrupt_Enable ...472
5.8.6 CSIX_Type_Map ..473
5.8.7 FC_Egress_Status ...473
5.8.8 FC_Ingress_Status...474
5.8.9 HWM_CONTROL...475
5.8.10 SRB_Override ..478
5.8.11 Rx_Thread_Freelist_{0.3} ..479
5.8.12 RBUF_Element_Done..480
5.8.13 Rx_MPHY_Poll_Limit ...480
5.8.14 FCEFIFO_Validate ...481
5.8.15 Rx_Thread_Freelist_Timeout_{0..3} ..482
5.8.16 Tx_ Sequence_{0..3}..482
5.8.17 Tx_MPHY_Poll_Limit ...483
Programmer’s Reference Manual xi

Intel® IXP2400/IXP2800 Network Processor
5.8.18 Tx_MPHY_Status... 484
5.8.19 Tx_MPHY_Status_Extension... 487
5.8.20 Rx_UP_Control_{0..3}.. 489
5.8.21 Tx_UP_Control_{0..3} .. 492
5.8.22 Rx_FIFO_Control_{0,1,2,3}.. 493
5.8.23 MSF_Rx_RCOMP_Status.. 495
5.8.24 MSF_Tx_RCOMP_Status .. 495
5.8.25 MSF_Rx_RCOMP_Override ..496
5.8.26 MSF_Tx_RCOMP_Override... 497
5.8.27 FCIFIFO ... 497
5.8.28 FCEFIFO.. 498
5.8.29 TBUF_ELEMENT_CONTROL_$_# ($= A, B, # = Element No) 498

5.9 PCI ..502
5.9.1 PCI Configuration Space.. 502

5.9.1.1 PCI_VEN_DEV_ID.. 503
5.9.1.2 PCI_CMD_STAT... 503
5.9.1.3 PCI_REV_CLASS ... 504
5.9.1.4 PCI_CACHE_LAT_HDR_BIST ... 505
5.9.1.5 PCI_CSR_BAR ...505
5.9.1.6 PCI_SRAM_BAR... 506
5.9.1.7 PCI_DRAM_BAR .. 507
5.9.1.8 PCI_SUBSYS.. 507
5.9.1.9 PCI_INT_LAT.. 508
5.9.1.10PCI_RCOMP_OVERRIDE .. 508
5.9.1.11PCI_RCOMP_STATUS (IXP2400 Rev A and IXP2800) 509
5.9.1.12PCI_RCOMP_STATUS (IXP2400 Rev B)............................... 511
5.9.1.13PCI_IXP_PARAM.. 511

5.9.2 PCI Controller CSRs .. 513
5.9.2.1 PCI_OUT_INT_STATUS... 515
5.9.2.2 PCI_OUT_INT_MASK... 515
5.9.2.3 MAILBOX_# .. 516
5.9.2.4 XSCALE_DOORBELL .. 516
5.9.2.5 XSCALE_DOORBELL_SETUP... 517
5.9.2.6 PCI_DOORBELL... 517
5.9.2.7 PCI_DOORBELL_SETUP... 518
5.9.2.8 CHAN_#_BYTE_COUNT.. 518
5.9.2.9 CHAN_#_PCI_ADDR.. 519
5.9.2.10CHAN_#_DRAM_BAR .. 519
5.9.2.11CHAN_#_DESC_PTR... 520
5.9.2.12CHAN_#_CONTROL... 520
5.9.2.13CHAN_#_ME_PARAM.. 523
5.9.2.14DMA_INF_MODE.. 523
5.9.2.15PCI_SRAM_BAR_MASK .. 524
5.9.2.16PCI_DRAM_BAR_MASK .. 525
5.9.2.17PCI_CONTROL...526
5.9.2.18PCI_ADDR_EXT ... 531
5.9.2.19XSCALE_ERR_STATUS .. 531
5.9.2.20XSCALE_ERR_ENABLE .. 534
5.9.2.21XSCALE_INT_STATUS ..536
5.9.2.22XSCALE_INT_ENABLE ..538
5.9.2.23ME_PUSH_STATUS... 539
5.9.2.24ME_PUSH_ENABLE... 539

5.10 Intel XScale“ Core Local CSRs ... 541
xii Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
5.10.1 Interrupt Controller (Intel XScale“ Core)...541
5.10.1.1{IRQ,FIQ}RAW_STATUS ..545
5.10.1.2{IRQ,FIQ}STATUS ..547
5.10.1.3{IRQ,FIQ}ENABLE ..547
5.10.1.4{IRQ,FIQ}ENABLE_SET ...547
5.10.1.5{IRQ,FIQ}ENABLE_CLR ...548
5.10.1.6{IRQ,FIQ}SOFT_INT ...548
5.10.1.7SCRATCH_RING_STATUS..548
5.10.1.8{IRQ,FIQ}ERR_RAW_STATUS ..549
5.10.1.9{IRQ,FIQ}ERR_STATUS...550
5.10.1.10{IRQ,FIQ}ERR_ENABLE...551
5.10.1.11{IRQ,FIQ}ERR_ENABLE_SET..551
5.10.1.12{IRQ,FIQ}ERR_ENABLE_CLR..551
5.10.1.13{IRQ,FIQ}RAW_ATTN_STATUS...552
5.10.1.14{IRQ,FIQ}ATTN_STATUS ...552
5.10.1.15{IRQ,FIQ}ATTN_ENABLE ...553
5.10.1.16{IRQ,FIQ}ATTN_ENABLE_SET..553
5.10.1.17{IRQ,FIQ}ATTN_ENABLE_CLR..554
5.10.1.18{IRQ,FIQ}THD_RAW_STATUS_$_# ($= A, B and # = 0 - 3) 554
5.10.1.19{IRQ,FIQ}THD_STATUS_$_# ($= A, B and # = 0 - 3)555
5.10.1.20{IRQ,FIQ}THD_ENABLE_$_# ($= A, B and # = 0 - 3)555
5.10.1.21{IRQ,FIQ}THD_ENABLE_SET_$_# ($= A, B and # = 0 - 3) .556
5.10.1.22{IRQ,FIQ}THD_ENABLE_CLR_$_# ($= A, B and # = 0 - 3) .556

5.10.2 Hash Operation (Intel XScale“ Core)..556
5.10.2.1HASH_OP_48_# (# = 0,1)...557
5.10.2.2HASH_OP_64_# (# = 0,1)...558
5.10.2.3HASH_OP_128_# (# = 0,1,2,3)...558
5.10.2.4HASH_DONE ..559

5.10.3 Breakpoint (Intel XScale“ Core)..560
5.10.3.1BRK_RAW_STATUS ..562
5.10.3.2BRK_STATUS...563
5.10.3.3BRK_ENABLE...563
5.10.3.4BRK_ENABLE_SET..563
5.10.3.5BRK_ENABLE_CLR..564

5.11 Intel XScale“ Co-Processors ...564
5.12 MSF differences between IXP2400 and IXP2800 ...564

A UCA Warnings..567

A.1 Introduction..567
A.2 UCA Warning (level 4) 4101..569
A.3 UCA Warning (level 1) 4700..569
A.4 UCA Warning (level 3) 4701..569
A.5 UCA Warning (level 2) 4702..570
A.6 UCA Warning (level 1) 5000..571
A.7 UCA Warning (level 3) 5002..571
A.8 UCA Warning (level 1) 5003..571
A.9 UCA Warning (level 3) 5004..572
A.10 UCA Warning (level 1) 5007..572
A.11 UCA Warning (level 4) 5008..573
A.12 UCA Warning (level 1) 5009..574
A.13 UCA Warning (level 1) 5011..574
A.14 UCA Warning (level 3) 5012..575
A.15 UCA Warning (level 2) 5100..575
Programmer’s Reference Manual xiii

Intel® IXP2400/IXP2800 Network Processor
A.16 UCA Warning (level 2) 5101 ...576
A.17 UCA Warning (level 2) 5102 ...576
A.18 UCA Warning (level 2) 5103 ...576
A.19 UCA Warning (level 2) 5104 ...577
A.20 UCA Warning (level 1) 5114 ...577
A.21 UCA Warning (level 1) 5115 ...577
A.22 UCA Warning (level 1) 5116 ...578
A.23 UCA Warning (level 2) 5117 ...578
A.24 UCA Warning (level 2) 5118 ...578
A.25 UCA Warning (level 3) 5121 ...579
A.26 UCA Warning (level 4) 5122 ...579
A.27 UCA Warning (level 4) 5124 ...580
A.28 UCA Warning (level 4) 5125 ...580
A.29 UCA Warning (level 4) 5126 ...580
A.30 UCA Warning (level 4) 5127 ...581
A.31 UCA Warning (level 4) 5128 ...581
A.32 UCA Warning (level 2) 5129 ...582
A.33 UCA Warning (level 2) 5130 ...582
A.34 UCA Warning (level 1) 5131 ...582
A.35 UCA Warning (level 2) 5132 ...583
A.36 UCA Warning (level 3) 5133 ...583
A.37 UCA Warning (level 4) 5134 ...583
A.38 UCA Warning (level 1) 5135 ...584
A.39 UCA Warning (level 1) 5136 ...584
A.40 UCA Warning (level 1) 5137 ...584
A.41 UCA Warning (level 1) 5138 ...585
A.42 UCA Warning (level 1) 5139 ...585
A.43 UCA Warning (level 1) 5140 ...585
A.44 UCA Warning (level 1) 5141 ...586
A.45 UCA Warning (level 1) 5142 ...586
A.46 UCA Warning (level 1) 5143 ...587
A.47 UCA Warinng (level 3) 5144 ...587
A.48 UCA Warning (level 1) 5145 ...588
A.49 UCA Warning (level 1) 5146 ...588
A.50 UCA Warning (level 1) 5147 ...589
A.51 UCA Warning (level 2) 5148 ...589
A.52 UCA Warning (level 2) 5149 ...590
A.53 UCA Warning (level 1) 5150 ...590
A.54 UCA Warning (level 4) 5151 ...591

Figures

2-1 Assembly Process... 26
2-2 Processor Type Constant Values.. 36
2-3 Bank Allocation Diagram... 69
2-4 Example of a .lvr File... 72
2-5 Example of a .lvr File Without a Real uword ... 72
2-6 Lifetime Register Spreadsheet.. 73
xiv Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
3-1 Load Immediate...170
3-2 Read Queue Descriptor Commands ...205
3-3 Write Queue Descriptor Commands ...208
3-4 Enqueue One Buffer at a Time using the Enqueue Command211
3-5 Enqueue a String of Buffers to a Queue ...212
3-6 Dequeue Buffer ...214
3-7 Example of the Three Dequeue Modes...215
4-1 Four GB (32 bit) Intel XScale“ Address Space Divided among Various

Targets ..221
4-2 Four GB (32 bit) PCI Address Space ..234
5-1 Conceptual Diagram of Counter Array ..377
5-2 Count Types Example ...392
5-3 Breakpoint Implementation..561

Tables

2-1 Acronym Definitions ..23
2-2 Summary of Preprocessor Directives..27
2-3 Binary & Unary Operators ...29
2-4 Functions...29
2-5 Examples of log2() Function..32
2-6 Processor Type Symbols ..35
2-7 Revision Symbols..35
2-8 Predefined Import Variables..38
2-9 Registers Used By Contexts in Context-Relative Addressing Mode45
2-10 MEv2 Logical Queues ...58
2-11 Assembler Directives...77
2-12 Optimization List for #pragma optimize Directive ..80
2-13 Condition directives ...84
2-14 Error Reporting Severity Levels ..86
2-15 Register Mapping - Context Relative to Absolute..88
2-16 pos and const Values ..95
2-17 Linker Directives..98
3-1 Summary of Microengine Instructions ...101
3-2 Source/Destination Choices for Addressing Modes ..103
3-3 Legal Combinations of Source Operands ...104
3-4 Reference Count Sizes ...105
3-5 I/O Command Token Descriptions ..105
3-6 Instructions and Optional Tokens that use Signals ...108
3-7 Signal Restrictions for each I/O Instruction [command]109
3-8 Branch Defer Summary...112
3-9 Branch on Condition Code Instructions...129
3-10 Initial Register Contents ..136
3-11 Initial Register Contents ..137
3-12 CAM_LOOKUP Result ...141
3-13 CAM_READ_STATE Result ...143
3-14 Enumerated CAP CSR Registers..146
3-15 CAP Indirect Format (Read and Write Commands) ..147
Programmer’s Reference Manual xv

Intel® IXP2400/IXP2800 Network Processor
3-16 CAP Field Definitions .. 147
3-17 CAP Bit Map Address Field Encoding (src_op1 + src_op2).............................. 150
3-18 CAP Calculated Address Field Encoding (src_op1 + src_op2)......................... 151
3-19 CAP Indirect Format (Read and Write Commands).. 151
3-20 CAP Field Definitions .. 151
3-21 CAP (Reflect) Indirect Format ... 154
3-22 CAP (Reflect) Field Definitions.. 154
3-23 DRAM Indirect Format .. 161
3-24 DRAM Field Definitions ... 161
3-25 DRAM RBUF_RD & TBUF_WR Indirect Format... 163
3-26 DRAM RBUF_RD & TBUF_WR Field Definitions ...163
3-27 Number of S-Transfer Registers Used by Hash Instruction 167
3-28 Hash Indirect Format... 168
3-29 Hash Field Definitions ... 168
3-30 Data Format in Transfer Registers.. 168
3-31 MSF Indirect Format ... 180
3-32 MSF Field Definitions .. 180
3-33 RBUF / TBUF Offset Address 128 64-Byte Elements.......................................181
3-34 RBUF / TBUF Offset Address 64 128-Byte Elements 181
3-35 RBUF / TBUF Offset Address 32 256-Byte Elements 181
3-36 PCI Address Space... 185
3-37 PCI Indirect Format ... 186
3-38 PCI Field Definitions..186
3-39 Scratch (Read and Write) Indirect Format .. 189
3-40 Scratch (Read and Write) Indirect Field Definitions .. 189
3-41 Scratch (Atomic Operations) Indirect Format.. 192
3-42 Scratch (Atomic Operations) Indirect Field Definitions...................................... 192
3-43 SCRATCH Ring Number Encoding (src_op1 + sr_op2) 193
3-44 SCRATCH Ring Indirect Format ...194
3-45 SCRATCH Ring Indirect Field Definitions ... 194
3-46 SRAM (Read and Write) Indirect Format ..195
3-47 SRAM (Read and Write) Indirect Field Definitions .. 195
3-48 SRAM Indirect Format (IXP28xx Rev A: all Atomics; IXP28xx Rev B: Pull

Atomics) .. 199
3-49 SRAM Indirect Field Definitions (IXP28xx Rev A: all Atomics; IXP28xx Rev B:

Pull Atomics) ... 199
3-50 SRAM Indirect Format (IXP28xx Rev B: no_pull Atomics)................................200
3-51 SRAM Indirect Field Definitions (IXP28xx Rev B: no_pull Atomics) 200
3-52 SRAM CSR Indirect Format .. 201
3-53 SRAM CSR Field Definitions...202
3-54 SRAM (Read Queue Descriptor) Indirect Format ...206
3-55 SRAM (Read Queue Descriptor) Field Definitions .. 206
3-56 SRAM (Enqueue) Indirect Format... 210
3-57 SRAM (Enqueue) Field Definitions ... 210
3-58 SRAM (dequeue) Indirect Format ... 214
3-59 SRAM (dequeue) Field Definitions.. 214
3-60 SRAM Ring Descriptor Format.. 216
3-61 SRAM Ring Size Encoding ... 216
3-62 SRAM Ring Indirect Format .. 217
3-63 SRAM Ring Indirect Field Definitions ..217
xvi Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
3-64 SRAM Journal Indirect Format ..220
3-65 SRAM Journal Indirect Field Definitions..220
4-1 Flash ROM - DRAM Mapping..222
4-2 SRAM Address Map for the Intel XScale“ Core ..223
4-3 ME Transfer register and Local CSR Address Map for the Intel XScale“ Core.224
4-4 ME Transfer Register Addresses ..225
4-5 Peripherals Address Map for the Intel XScale“ Core..225
4-6 CAP CSR Address Map for the Intel XScale“ Core...225
4-7 Slow Port Address Map for the Intel XScale“ Core ...226
4-8 MSF Address Map for the Intel XScale“ Core ...226
4-9 RBUF/ TBUF Offset Address 128 64-Byte Elements ..227
4-10 RBUF/ TBUF Offset Address 64 128-Byte Elements227
4-11 RBUF/ TBUF Offset Address 32 256-Byte Elements227
4-12 Scratch Address Map ..228
4-13 SRAM Queue Array Address for the Intel XScale“ Core229
4-14 DRAM CSRs ...229
4-15 Intel XScale“ Core CSRs...230
4-16 Intel XScale“ Core Hash Operand and Results Registers.................................230
4-17 PCI I/O Space ...231
4-18 PCI Configuration Space...231
4-19 PCI Configuration Space...232
4-20 IXP2400/IXP2800 PCI Configuration Space ...232
4-21 IXP2400/IXP2800 PCI Controller CSR Space ..232
4-22 IXP2400/IXP2800 PCI Configuration Space ...233
4-23 PCI Address Offset vs SRAM Controller ...235
4-24 CSR Memory Space for PCI ...236
4-25 CAP CSR Memory Space Breakdown for PCI ..237
4-26 ME I/O Access...238
5-1 CSR Summary ..241
5-2 Register Notation Conventions..242
5-3 Microengine Local CSR Summary ..243
5-4 Microengine Local CSR Latencies ..245
5-5 NN_PUT Ring Behavior ..266
5-6 NN_PUT Ring Latency ..266
5-7 RDR DRAM Register Summary ..268
5-8 Address Bank Remapping (Optimize RDRAMs) ...270
5-9 Address Bank Remapping (Optimize Banks) ..271
5-10 RDRAM Constants (Hexadecimal) for 3-Channel Mode Part 1283
5-11 RDRAM Constants (Hexadecimal) for 3-Channel Mode Part 2284
5-12 RDRAM Constants (Hexadecimal) for 3-Channel Mode, Part 3284
5-13 DDR SDRAM Register Map ..285
5-14 RR_SYND values and error bit position mapping ...290
5-15 DRAM RCOMP & I/O Configuration Register Map ...294
5-16 SRAM Register Summary ...300
5-17 Queueing Modes ...304
5-18 Strength Control Settings ..315
5-19 SRAM Register Summary (where # = 0,1,2,3) ...320
5-20 Slew Table Format: IXP2400 ..321
5-21 Slew Table Format: IXP2800 ..321
5-22 Slew Rate Table Recommended Initial Values (IXP2800)321
Programmer’s Reference Manual xvii

Intel® IXP2400/IXP2800 Network Processor
5-23 Slew Rate Table Recommended Initial Values (IXP2400)................................322
5-24 Scratchpad Memory Register Summary ... 327
5-25 Head/Tail Use and Full Threshold by Ring Size ... 329
5-26 Hash Multiplier Register Summary.. 330
5-27 Inter-Process Communication Register Summary .. 333
5-28 Global Chassis Registers.. 338
5-29 Timer Register Map... 352
5-30 GPIO Register Map... 355
5-31 UART Register Map ..364
5-32 Interrupt Conditions... 367
5-33 Interrupt Identification Register Decode.. 368
5-34 PMU Register Summary ... 376
5-35 PMU Control Bus data Map .. 378
5-36 CHAP Command N Register Bit Definition ... 388
5-37 CHAP Events N Register Bit Definition ... 391
5-38 CHAP Status N Register Bit Definition.. 393
5-39 CHAP Data N Register Bit Definition ..395
5-40 SlowPort Register Map ... 395
5-41 Corresponding Clock Division Values with Respect to the Register Values

(for IXP2xxx rev A) .. 396
5-42 Corresponding Clock Division Values with Respect to the Register Values

(for IXP2400 rev B) ... 397
5-43 Corresponding Clock Division Values with Respect to the Register Values

(for IXP2800 rev B) ... 397
5-44 MSF Register Summary..408
5-45 Number of Elements per RBUF or TBUF Partition.. 417
5-46 New Port Status to be saved based on currently saved value and new value

received on TSTAT ... 421
5-47 List of RX_DESKEW_# Registers... 433
5-48 RBUF High Water Marks... 439
5-49 Rx_Thread_Freelist Use ... 440
5-50 CSIX TBUF_ELEMENT_CONTROL_A_# .. 447
5-51 CSIX TBUF_ELEMENT_CONTROL_B_# .. 448
5-52 SPI-4 TBUF_ELEMENT_CONTROL_A_#.. 448
5-53 SPI-4 TBUF_ELEMENT_CONTROL_B_#.. 449
5-54 List of RX_PHASEMON_# Registers..455
5-55 IXP2400 MSF Address Map.. 462
5-56 IXP2400 MSF Allowable Major Bus Modes .. 469
5-57 IXP2400 Rx Mode Programming .. 491
5-58 UTOPIA Transmit Control Word Format ... 499
5-59 POS-PHY Transmit Control Word Format .. 500
5-60 CSIX Transmit Control Word Format ..501
5-61 PCI Configuration Register Map ...502
5-62 PCI MEM Space CSR Register Map... 513
5-63 Descriptor Format: .. 520
5-64 Operation of Unlinked Descriptor .. 521
5-65 How Window Sizes are Determined (PCI_SRAM_BAR) 525
5-66 How Window Sizes are Determined (PCI_DRAM_BAR) 526
5-67 Intel XScale“ Core Gasket Configuration Register Map.................................... 541
5-68 Hash Operation/Result Register Map ... 556
xviii Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
5-69 Break Point Register Map for the Intel XScale“ Core ..561
A-1 UCA Warnings...567
Programmer’s Reference Manual xix

Intel® IXP2400/IXP2800 Network Processor
Introduction
Introduction 1

1.1 About this Document

This manual serves as a reference for microcode programming the Intel® IXP2400 and Intel®

IXP2800 Network Processors. The intended audience for this book is Developers and Systems
Programmers.

The book is organized as follows:

Section 2, “Assembler” describes the assembler.

Section 3, “MEv2 Instruction Set”, describes the microinstruction set and provides example
microcode.

Section 4, “Address Maps”, provides the address maps for the MEs, PCI and the Intel XScale®
core.

Section 5, “Control and Status Registers (CSRs)”, describes the internal registers and provides
examples of their use.

Appendix A, “UCA Warnings”, lists the UCA Warnings and error messages.

Note: For a detailed technical description of the IXP2800 Network Processor, refer to the IXP2800
Network Processor Hardware Reference Manual. Similarly, refer to the IXP2400 Network
Processor Hardware Reference Manual for a detailed technical description of the IXP2400
Network Processor.

1.2 Related Documentation

Further information is available in the following documents:

IXP2800 Network Processor Datasheet - Contains summary information on the IXP2800 including
a functional description, signal descriptions, electrical specifications, and mechanical
specifications.

IXP2400 Network Processor Datasheet - Contains summary information on the IXP2400 including
a functional description, signal descriptions, electrical specifications, and mechanical
specifications.

IXP2400/IXP2800 Network Processor Development Tools User’s Guide - Describes the
Workbench and the development tools you can access through the use of the Workbench.

IXP2800 Network Processor Hardware Reference Manual - Contains detailed hardware technical
information of the IXP2800 Network Processor for designers.

IXP2400 Network Processor Hardware Reference Manual - Contains detailed hardware technical
information of the IXP2400 Network Processor for designers.
Programmer’s Reference Manual 21

Intel® IXP2400/IXP2800 Network Processor
Assembler
Assembler 2

This chapter describes the microcode assembler.

2.1 Acronyms

Table 2-1 lists common acronyms used in this chapter.

2.2 Definitions

For the purposes of this document, the word scope of a virtual register refers to that portion of the
flattened input source in which it is possible to refer to that virtual register. The live-range (or
lifetime) of a virtual register refers to that portion of the code where that register contains a value
that will be used later. Generally, the live-range extends from when the register is set to where that
value is last used.

Note that the scope and live-range may not coincide. In particular, the live-range may extend
outside of the scope due to, for example, a subroutine call. Even if the subroutine is outside of the
scope of the register, the register may be live within the subroutine. Similarly, the live-range may
be smaller than the scope.

Transfer registers come in two variants. One is a read or in transfer register. These are registers that
may be used as the source of an ALU operation. The name comes from the fact that they typically
are used for “read” I/O operations. The other is a write or out transfer register. These may be used
as a destination of an ALU operation. They are typically used for “write” I/O operations. A virtual
register may be defined as a read transfer register, as a write transfer register, or as a R/W (or both)
register. In the first two cases, the virtual register is allocated from either the read or write banks of
transfer registers. In this third case, the virtual register is allocated in both the read and write banks
at the same address. These are needed for I/O operations that do both reads and writes at the same
time. Historically, all transfer registers fell into this category.

Table 2-1. Acronym Definitions

Acronym Description

CAP CSR Access Proxy: IXP2800/IXP2400 functional unit containing majority of CSRs

GPR General Purpose Register

MSF Media Switch Fabric

UCA Microcode Assembler

UCLD Microcode linker that links together the .list files from multiple microengines

microword Microcode instruction word

MEv1 Microengine Version 1 (e.g. IXP1200)

MEv2 Microengine Version 2 (e.g. IXP2800 and IXP2400)
Programmer’s Reference Manual 23

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.3 Source File Elements

A source file (.uc) must be created before the assembly process can begin. The .uc file contains
three types of elements:

• Instructions: Consists of an opcode and arguments and generate a microword in the .list file.

• Directives: Pass information either to the preprocessor, assembler, or to downstream
components (e.g., the linker) and generally do not generate microwords.

• Comments: Ignored in the assembly process.

The elements in the source are case insensitive.

A microword is the result of assembling one instruction.

2.3.1 Instructions

Instruction lines in the source code generate microwords in the output. They can be preceded by
zero or more labels and can be followed by an optional set of parameters followed by optional
modifiers. Instruction lines can span multiple physical lines of input.

A label is a symbol representing an instruction address that is resolved by the assembler (e.g.,
start#:). A label is composed of a string of alphanumeric characters (including “_”) which ends in
the pound sign (#) followed by a colon (:). A reference to a label (e.g., in a branch instruction)
would omit the colon character because it is referencing a label defined elsewhere.

By convention, labels start in column 1, though this is not a requirement for the assembler. You can
use none or as many labels as you want for each instruction. The only restriction is that each label
must have a unique name.

All labels for a given instruction must be defined before the actual instruction specification.

2.3.2 Directives

Directives pass information to the assembler or linker, but they generally do not generate
microwords in the output. Directives start with the directive name optionally followed by
parameters. Directives cannot span multiple lines.

2.3.3 Comments

There are two forms of comment. One comment form starts with a semicolon (;) character and runs
to the end of the line. Thus, each new comment line must start with a semicolon. The semicolon
may start anywhere on any line. Comments on a line that also contains all or part of an instruction
are associated with that instruction. Lines containing comments alone are associated with the next
instruction following it. Comments beginning with a semicolon appear in the output file.

C-style comments (e.g., //comment or /* comment*/) are also supported, but these comments are
removed and do not appear in any output file. Comments attached to token expansion definitions
(e.g., #define) and comments associated with macro parameters do not appear in the output.
24 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.4 Block Structure

The source code is logically broken into a hierarchy of blocks. That is, blocks may contain sub-
blocks, but a block cannot be partially contained in a higher-level block.

Blocks are explicitly delimited by “.begin” and “.end” directives,

.begin

.end

Or in the older supported directives,

.local

.endlocal

Or by directives that define a subroutine.

.subroutine

.endsub

2.5 Assembly Process Steps

As shown in Figure 2-1, invoking the assembler results in a two-step process composed of
preprocessing and assembly steps. The preprocessor step takes a .uc file and creates a .ucp file for
the assembler. The assembler takes a .ucp file and creates an intermediate file with the file name
extension of .uci. The .uci file is used by the assembler to create the .list file and provides error
information that may be used in resolving semantic problems (such as register conflicts) in the
input file.

The assembler performs the following functions in converting the .uc file to a .list file:

• Checks instruction restrictions.

• Resolves symbolic register names to physical locations.

• Optimizes the code, by inserting defer[] optional tokens.

• Resolves label addresses.

• Translates symbolic opcodes into bit patterns.

The preprocessor is invoked from within the assembler. Command line options are available when
invoking UCA.exe (or UCA.dll via the workbench).

uca [options] microcode_file microcode_file...

For detailed information on Assembler Command Line Options, refer to the IXP2400/IXP2800
Network Processor Development Tools User’s Guide.
Programmer’s Reference Manual 25

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.6 Assembler Preprocessor

The preprocessor is invoked automatically by the assembler to transform a program before actual
assembly. The preprocessor provides six separate facilities that you can use as you see fit:

• Inclusion of files. These are files of declarations that can be substituted into your program.

• Macro expansion. You can define macros, which are abbreviations for arbitrary fragments of
assembly code, and then the preprocessor will replace instances of the macros with their
definitions throughout the program.

• Conditional compilation. Using special preprocessing directives, you can include or exclude
parts of the program according to various conditions.

• Line control. If you use a program to combine or rearrange source files into an intermediate
file which is then assembled, you can use line control to inform the assembler of where each
source line originally came from.

• Structured Assembly. You can organize the control flow of the ME instructions into structured
blocks as opposed to a sea of goto statements.

Figure 2-1. Assembly Process

B0415-01

The assembler
(ucs.exe/dll)

Preprocessor

.ucp file

.uc file

.uci fileAssembler

.list file

optimizer
allocator
26 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
• Token Replacement. You can use causes instances of an identifier to be replaced with a token
string.

2.6.1 Preprocessor Reserved Labels

The preprocessor generates labels during macro expansion and during conditional assembly. Avoid
using labels with these prefixes to avoid confusion with those generated by the preprocessor and to
avoid the possibility of multiple label definitions. In the following table, nnn represents a three-
digit decimal number.

Mnnn_ Prefix used for macro references not preceded by a label.

lnnn_ Prefix used for labels for structured assembly constructs.

2.6.2 Preprocessor Operation

The preprocessor is a simple macro processor that processes the source file before the it is
assembled. It is important to have a basic understanding of how the preprocessor operates to
understand how directives interact with one another. This section provides a brief overview.

During the initial reading of an input file, there are three occasions when the file is read but not
processed:

• Within a #if…#endif clause, if the text is being skipped.

• Within a macro definition.

• Within the body of an assembly loop (e.g., #repeat).

In each of these cases, no processing of directives takes place, with the exception of the directive
that ends that context. Constructs of a similar type may nest, however, so that if within a macro
definition there is another macro definition, the first macro definition will not end until the second
(i.e., the matching) .endm is reached. Within a particular context, other directives are ignored. For
example, if a macro definition had a #if without a matching #endif, an error would not be reported
until the macro was referenced (expanded). So these constructs can be nested within each other, but
they cannot be only partially contained within each other. It would be an error, for example, to put
an unmatched #if within one macro and the “matching” #endif in another.

Lines that are being processed have expandable tokens expanded. Then macro references are
expanded. This means that an expandable token used as an argument in a macro reference is
expanded at the time of the reference, not when it is used within the body of the macro.

Table 2-2. Summary of Preprocessor Directives (Sheet 1 of 2)

Directive Arguments
Expanded? Description

#include No Start reading lines from another file.

#define No Define an expandable token.

#define_eval Yes Define an expandable token as the result of
evaluating a constant expression.

#undef No Undefine an expandable token.

#ifdef, #ifndef No Conditionally skip following lines.
Programmer’s Reference Manual 27

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.6.3 Constant Expressions (const-expr)

Constant expressions are expressions that evaluate to a constant. Generally, after the assembler
performs token substitution, the expression consists only of numeric constants and operators. The
exception to this is a number of preprocessor functions that take identifiers as arguments and that
Within an instruction, wherever a constant is valid, you can use a constant expression that is
surrounded by parenthesis. The parentheses are needed to differentiate expressions from tokens
such as "B-A" which should not be evaluated. For some directives, the parenthesis may be omitted,
but it is generally a good idea to use them.return identifiers or numeric constants as values.
Wherever the term const_expr appears in this manual, it can be replaced with (const_expr), where
const_expr is one of the following:

• (const)

• (const-expr bin-op const-expr)

• (unary-op const-expr)

• (const_expr ? const_expr : const_expr)

• function (token, token, ...)

#if, #elif Yes, including
defined(name)”

Conditionally skip following lines based on a
constant expression.

#else, #endif N/A Conditionally skip following lines.

#macro No Start defining a macro.

#endm N/A Finish defining a macro.

#repeat, #while Yes Repeat following lines based on a constant
expression.

#for No Repeat following lines based on a constant
expression.

#endloop N/A End repeated lines.

.if, .elif Yes Generate branch instructions.

.if_unsigned,

.elif_unsigned Yes Generate branch instructions

.else, .endif N/A Generate branch instructions.

.while Yes Generate branch instructions.

.while_unsigned Yes Generate branch instructions.

.endw N/A Generate branch instructions.

.repeat N/A Generate branch instructions.

.until Yes Generate branch instructions.

.until_unsigned Yes Generate branch instructions.

.break, .continue N/A Generate branch instructions.

Table 2-2. Summary of Preprocessor Directives (Sheet 2 of 2)

Directive Arguments
Expanded? Description
28 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.6.3.1 Preprocessor Binary & Unary Operators

The following binary and unary operators are supported within constant expressions. Operator
precedence is the same as defined for the C programming language.

2.6.3.2 Preprocessor: Functions

The following functions are supported within constant expressions. These functions, with the
exception of "defined", operate on the results of expanding tokens and evaluating expressions.

Note that in expanding .if and .elif, the defined(name) construct is replaced by a 0 or 1 as
appropriate.

Table 2-3. Binary & Unary Operators

Type Operator Associativity Comment

unary-ops ! ~ + - (unary) Right to left

bin-ops

* / % Left to right

+ - Left to right

<< >> Left to right

< <= => > Left to right These relational operators assume
signed 32-bit values

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left

, Left to right

Table 2-4. Functions (Sheet 1 of 2)

Function Description

IS_IXPTYPE(type)

Returns non-zero if the targeted processor type is only of the
type given by the parameter type and no other. The calculation
performed is "!(__IXPTYPE & ~(type))". Note: the parameter
type can be an expression such as "(type1 | type2)". This
function should be used in conjunction with the predefined
symbols described in Section 2.6.8.

isnum (token) Returns 1 if the token expands to a numeric constant,
otherwise it returns 0.

isimport(token)

Returns 1 if the token begins with”i$”, which indicates that it is
an import variable. Otherwise it returns 0. Note: the
.import_var directive will generate a warning if an import
variable does not begin with “i$” and it was used in an
isimport() call.
Programmer’s Reference Manual 29

Intel® IXP2400/IXP2800 Network Processor
Assembler
The constant expression function “strright(token,len)” originally meant to take the len characters
from the right-most position of token. Now, if len is <=0, it will mean to drop the left-most –len
characters. For example:

strright(abcdef, 2) ⇒ ef ; original behavior

strright(abcdef, -2) ⇒ cdef ; new behavior

2.6.3.3 STRING Operator

One of the limitations of the “string functions” within the preprocessor constant-expression parsing
is that they operate on identifiers, not true strings. This has practical implications. For example, a
macro may want an ALU operation passed in, and it may want to do something different based on
whether that operation allows a shift or not. The problem is that the operation cannot be compared
with streq, because the name of some of the operations is not a valid identifier. To address this,
there is a new operator defined by single quotes.

This operator will return a valid “identifier”, composed of the text enclosed by the quotes after
token expansion, that is, after macro arguments are expanded. However, the identifier is created
before any of the “arguments” are evaluated based on normal expression rules.

More precisely, the function will return an “identifier” formed by taking all of the (expanded) text
between the single quotes, minus any leading and trailing white space.

streq (token1, token2)
Returns 1 if both tokens are identifiers which match, or if both
are numeric constants which match;

otherwise it returns 0.

strstr (token1, token2)

Returns the index of the first occurrence of token2 in token1
(starting with 1). If token2 is not found

in token1, then it returns a value of 0. If either token is not an
identifier, it returns a value of -1.

strlen (token) Returns the number of characters in token. If the token is not
an identifier, it returns -1.

strleft (token1, token2)
Returns an identifier consisting of the leftmost token2
characters of token1. If token1 is not an identifier or token2 is
not numeric, the identifier "error" is returned.

strright (token1, token2)

Returns an identifier consisting of the rightmost token2
characters of token1. If token1 is not an identifier or token2 is
not numeric, the identifier "error" is returned.

Note that strright(token, -len) is essentially equivalent to
strright(token,strlen(token)-len).

defined(token) Evaluates to 1 if the token is a symbol defined within the
preprocessor or 0 otherwise.

log2(arg, round)
log2(arg)

Returns the log-based-2 of arg as an integer. The round
argument is optional and if omitted, it defauts to 0. Refer to
Section 2.6.3.4, “LOG2() Function” for a detailed description of
this function.

mask(sig)
Evaluates to 1 if sig is a single sigmal and 3 if sig is a double
signal. For a detailed explanation of this function, refer to
Section 2.8.8.1, “Accumulating Results for ctx_arb[--]”.

Table 2-4. Functions (Sheet 2 of 2)

Function Description
30 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
For example, one could write:

#macro test(arg)
#if (streq(’arg’, ’b-a’))
…

Note that the string operator was used both on the arg and in the comparison string. This points out
that the argument to the string operator may be a constant rather than an expandable token. One
detail to note: the leading and trailing white space is deleted, but interior white space is not.

In the context of constant-expressions, an identifier can also be created using double-quotes. This
behaves the same as the single-quoted version defined above, except that leading and trailing white
space is not removed. This would probably be used typically to construct an identifier consisting
only of white space, e.g. strstr(‘token’,” ”).

Note that text within double quotes is not token-expanded.

Here are some examples:

#define A 1

#define B 2

’ A + B ’ ; evaluates to “1 + 2”
’ 1 2 3 ’ ; evaluates to “1 2 3”
” A + B ” ; evaluates to “ A + B ”
” 1 2 3 ” ; evaluates to “ 1 2 3 ”

In this case, the string function would evaluate to “1 + 2”, not “3”. This illustrates the rule that
arguments are expanded but expressions are not evaluated.

2.6.3.4 LOG2() Function

The function log2() can be used within constant expressions. It takes two arguments, the second of
which is optional:

log2(arg,round) or log2(arg)

arg: Numeric value (taken as an unsigned value) whose log-2 value is desired

round: Optional numeric value determining how arg is to be rounded

The function returns the log-based-2 of arg as an integer. If the round argument is not supplied,
then the default rounding is 0. If arg is a power of two, then the same value is returned regardless of
round. If arg is not a power of two, the behavior depends on round, which is described in the
following tables:

Condition Results when arg is not a power of two

round < 0 Round result down to next smaller integer.

round = 0 Generate an error.

round > 0 Round result up to next larger integer.
Programmer’s Reference Manual 31

Intel® IXP2400/IXP2800 Network Processor
Assembler
Here are some examples.

2.6.3.5 Preprocessor Function Examples

The following examples show the usage of the functions.

The defined(token) constant expression evaluates to 1 if the token is a symbol defined within the
preprocessor, or 0 otherwise. Typical usage would be:

Condition Results when arg is zero

round < 0 -1

round = 0 Generate an error.

round > 0 0

Table 2-5. Examples of log2() Function

arg log2(arg) == log2(arg,0) log2(arg, -1) log2(arg,1)

0 error -1 0

8 3 3 3

10 error 3 4

0xFFFFFFFF == -1 error 31 32

Examples: Defined(token)

#if (defined(FOO) || defined(BAR))

Examples: ISNUM

#macro assign[reg, val]

#if (isnum(val))

// value is a numeric constant

immed[reg, val]

#else

// assume arg is the name of a register

alu[reg, --, b, val]

#endif

...
32 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.6.4 Macros and Expansion Token Restriction

Macros and expansion tokens share the same name space; therefore, it is invalid to have a macro
with the same name as a #define token.

2.6.5 Syntax for Argument and Token lists

In the preprocessor, several places exist where commas are used in separating items in a list. For
example:

#for identifier [arg1, arg2, ...]

and macro references:

macro[arg1, arg2, ...]

In both cases, commas can be included in the items list as long as they are enclosed in a matching
set of parentheses or brackets. For example, the directive:

#for id[item1, foo(bar,bif), immed[reg,32]]

would be expanded with id taking three values:

Examples: STREQ

#macro something[type]

#if (streq(type,sync))

...

/* This allows the application to specify type as the string

* "sync", assuming that the user has not #defined sync to be

* something else. So the application could call this macro as:

* something[sync]

* or

* something[async]

*/

Examples: STRSTR

#macro somethingelse[reg]

#if (strstr(reg,@) > 0)

/* reg is absolute */

#else

/* reg is relative */

#endif
Programmer’s Reference Manual 33

Intel® IXP2400/IXP2800 Network Processor
Assembler
item1

foo(bar,bif)

immed[reg,32]

The assembler does not interpret the “,” and take “bif)” or “immed[reg” as values.

2.6.6 Leading and Trailing Spaces in Macros

Leading and tailing spaces in macro arguments are automatically removed by the assembler. For
example:

marco[arg1, arg2]

would be translated by the assembler as

macro[arg1,arg2]

2.6.7 Environment Variables

The following environment variables are recognized by the assembler:

UCA_INCLUDE: A list of directories to be added to the include path. The list is separated by
semicolons:

dir1;dir2;dir3...

and is appended after the directories supplied on the command line.

2.6.8 Predefined Processor Type and Revision Symbols

The preprocessor defines the symbol __IXPTYPE, which identifies the target processor type(s) for
the code being assembled. It is defined to be some combination of the various processor type
symbols also defined by the preprocessor. Table 2-6 lists the processor type symbols and their
meanings.

The preprocessor also defines two symbols __REVISION_MIN and __REVISION_MAX, which
specify the target processor revision for the code being assembled. The values of these symbols are
defined according to the command line values or by the Workbench assembler settings. The
revision values consist of an 8-bit value. The upper 4-bits correspond to the major revision number
(which is a letter, such as “A”, “B”, etc) while the lower 4-bits correspond to the minor revision
number (such as 1, 2, 3, etc.).
34 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
All these symbols, other than the first one, are pure constants that have only one bit set (for the
processor-specific ones). The __IXPTYPE symbol indicates the processor types for which code is
being generated. Its value can consist of a single processor type or a combination of types.

The preprocessor also defines symbols for the various revision values. The revision symbols are
listed in Table 2-7.

Constant values can be thought of as a tree, as shown in Figure 2-2

Table 2-6. Processor Type Symbols

Symbol Meaning Type

__IXPTYPE Value is determined by command line arguments. It
takes on some combination of the following values. variable

__IXP2400 Processor Type IXP2400 1-bit set

__IXP2800 Processor Type IXP2800 1-bit set

__IXP28XX IXP2800 n-bits set

__IXP2XXX All MEv2 network processors. n-bits set

Table 2-7. Revision Symbols

Symbol Meaning Value

__REVISION_MIN Minimum processor revision for code being
assembled. Variable. Default is 0x00

__REVISION_MAX Maximum processor revision for code being
assembled. Variable. Default is 0xff

__REVISION_A0 A0 revision. 0x00

__REVISION_A1 A1 revision. 0x01

__REVISION_B0 B0 revision. 0x10

__REVISION_B1 B1 revision. 0x11

etc...
Programmer’s Reference Manual 35

Intel® IXP2400/IXP2800 Network Processor
Assembler
The leaf nodes represent values with a single bit set while non-leaf nodes represent the union
(bitwise-OR) of the nodes below them.

A default value can also be set using the environment variable UCA_IXPTYPE. For example:

set UCA_IXPTYPE=ixp2400

These predefined symbols should be used with the IS_IXPTYPE(type_expression) constant
expression function described in Section 2.6.3.2.

Figure 2-2. Processor Type Constant Values

 Root

__IXP1200

__IXP12XX __IXP2XXX

__IXP2400 __IXP28XX

__IXP2800 __IXP2850

Examples: Different Code Sequence for IXP2400 or IXP2800

#if (IS__IXPTYPE(__IXP28XX)

 // code for IXP2800

#elif (IS__IXPTYPE(__IXP2400)

 // code for IXP2400

#else

 #error

#endif
36 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
Any code targeted at a specific revision of the IXP2400/IXP2800 Network Processor should make
use of the predefined __REVISION_MIN and __REVISION_MAX symbols. For example, if the
code is designed to exploit certain features found only in processor revisions A1 or higher, then the
REVISION_MIN symbol can be used along with the #error directive to abort the assembly
process.

For example,

Revision
Number Hex Value

A0: 0x00

A1: 0x01

A2: 0x02

B0: 0x10

B1: 0x11

B2: 0x12

etc.

The default values for __REVISION_MIN and __REVISION_MAX are 0x00 and 0xff,
respectively.

In addition to the __REVISION_MIN and __REVISION_MAX symbols, the assembler also
predefines symbols of the form:

#define __REVISION_A0 (0x00)

#define __REVISION_A1 (0x01)

...

#define __REVISION_B0 (0x10)

#define __REVISION_B1 (0x11)

...

etc.

Examples: Code Only Works on MEv2

#if (!IS__IXPTYPE(__IXP2XXX)

 #error

#endif

Examples: Revsion Symbol Use

#if (__REVISION_MIN < __REVISION_A1)

#error "This feature is not supported on revision(s) prior to A1"

#else

; version specific code here

#endif
Programmer’s Reference Manual 37

Intel® IXP2400/IXP2800 Network Processor
Assembler
For more information on setting the processor type or revision, please refer to the IXP2400/
IXP2800 Network Processor Development Tools User’s Guide.

2.6.9 Predefined Import Variables

The Predefined Import variables are detailed in Table 2-8. For more information on import
variables, refer to Section 2.11.8, “Import Variable (.import_var)”.

2.7 Preprocessor Usage Techniques

This section contains techniques that you may find useful in writing ME software.

2.7.1 Branching into a Macro

There are occasions where the code might branch into a macro. This generally should be avoided as
the macro then becomes more difficult to modify, but it might be necessary.

Table 2-8. Predefined Import Variables

Name Definition

__CHIP_ID and

i$__CHIP_ID
This corresponds to the IXPTYPE valued defined in Section 2-6, “Processor
Type Symbols” and is derived from the PRODUCT_ID register.

__CHIP_REVISION and
i$__CHIP_REVISION

This gives the chip revision as defined in Section 2.6.8, “Predefined Processor
Type and Revision Symbols”, which is derived from the “PRODUCT_ID”
register.

__UENGINE_ID and
i$__UENGINE_ID

This varies from 0x00 - 0x07 and 0x10 - 0x17 for the IXP28xx and from 0x00 -
0x03, 0x10 - 0x13 for the IXP2400.
38 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
Examples: An Incorrect Method

An incorrect method would be to pass the label in, as follows:

#macro bad1[lab, ...]

...

lab alu[...]

...
#endm

and then to use it as:

bad1[mylab#:, ...]

...

br[mylab#:]

Which doesn’t work. What happens is that the macro expands its arguments, so that it gets (in the
example above):

mylab#: alu[...]

The preprocessor then realizes that a label is being defined within a macro expansion and
augments the name to make it unique. What you then get would be:

M001_mylab#: alu[...]
Programmer’s Reference Manual 39

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.7.2 Constructing Names from Numbers

There may be times where a repetitive task is to be done on a series of registers, where the register
name is formed by a base name and a number. For example, in the case where one wanted to
generate the lines:

One way to do this would be:

Examples: A Correct Method

The correct way to handle this circumstance is to define the label as normal within the
macro,e.g.,:
#macro good1[...]

...

lab#: alu[...]

...

#endm

When the macro is referenced, prefix the macro reference with a label. This provides a way to
identify which macro is being referenced. In this example, the macro reference would appear as:

use1#: good1[...]

To branch into the macro, one takes advantage of the fact that if the macro reference is preceded
by a label, that label (followed by an underscore) is used as the label prefix of the augmented
label. Thus, one would branch into the macro as:

br[use1_lab#]

where use1 is the label of the reference (minus the #) and lab is the label within the macro
definition. This technique may be extended to jumping into nested macros by preceding the
macro reference within the macro definition with a label.

Examples: Example Case

alu[reg1, 0, +, reg, <<0]

alu[reg2, 1, +, reg, <<2]

alu[reg3, 2, +, reg, <<4]

alu[reg4, 3, +, reg, <<6]

alu[reg5, 4, +, reg, <<8]

alu[reg6, 5, +, reg, <<10]
40 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
Another way would be to take advantage of the relationship between the numeric portion of the
name, the constant, and the shift value. You could write:

The problem with the expression reg/**/num is that you want to attach the value of num to
alphabetic characters. It is easy to do this kind of attachment to non alphabetic characters, (e.g.,
<<shift), but if we were to write regname_num, it would be taken as a single token that would not
be expanded. If we were to write reg num, for example “anotherway[3]”, it would expand to reg 3,
which would also be incorrect.

To get the correct value, we take advantage of the fact that the preprocessor removes C-style
comments. In this example, the comment is a minimal C-style comment. It serves to delimit the reg
and the num, but since it is removed, there is nothing left between the expanded texts.

2.8 Registers and Signals

The assembler resolves symbolic register names into physical register addresses. The following
sections describe the details of registers and signals.

Examples: Example case - Alternate Method 1

#macro oneway[reg, const, shift]

alu[reg, const, +, reg, shift]

#endm

oneway[reg1, 0, <<0]

oneway[reg2, 1, <<2]

...

Examples: Example case - Alternate Method 2

#macro anotherway[num]

#define_eval const num-1

#define_eval shift const*2

alu[reg/**/num, const, +, reg, <<shift]

#endm

anotherway[1]

anotherway[2]

anotherway[3]

...

<or>

#for cnt [1, 2, 3, 4, 5]

anotherway[cnt]

#endloop
Programmer’s Reference Manual 41

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.8.1 Register Naming Conventions

Registers are specified symbolically using a string of alphanumeric characters (including “_”). The
first character of a register name cannot be numeric. The bank to be accessed (such as GPR, SRAM
XFER, or DRAM XFER) and the addressing mode (context-relative or absolute) is determined by
prefixing the register name with the reserved characters “@” and “$”. Absolute addressing is only
supported for GPR registers; it is not supported for SRAM and DRAM transfer registers.

Register types are defined by prefixes applied to the register names. Registers have a type based on
the name. The table below shows the prefix (in bold) that is applied to register names to specify the
type. The word “reg” is the user specified name of the register. Local memory is shared by all
contexts using an index register and does not support relative or absolute names. Transfer and
neighbor registers can also be accessed globally using index registers.

One reason for this paradigm is to allow macros to determine the type of register being passed in as
an argument.

Note that whether an SRAM or DRAM transfer register is allocated strictly out of the read/in or
write/out registers is not considered “type” information and is not indicated by the name.

2.8.1.1 Indexed Registers

The MEv2 allows access to some of the register types by using an index register. An index register
is a local CSR that points to an address in the related register file. The actual register that is
addressed can be accessed in a manner similar to that of “normal” registers.

Generally, the index is set using the local_csr_wr instruction1. The exception is the index register
used for writes to the neighbor register. In this case, the CSR is located in the neighbor ME and is
not visible to the writer (although the neighbor can access it). Typically, it is initialized by the
neighbor and then the neighbor registers function as a FIFO, with the read/write index registers
never being directly set again (they are always advanced indirectly via post-increment).

Local memory can only be accessed through indexed registers; it does not support the use of
“named” registers. In the case of local memory, there are two independent index registers (zero and
one). The contexts in an ME can either share the same two registers, or each context can reference
its own set. For all other indices, each context within an ME shares the same index.

Register Type Relative Name Absolute Name

GPR reg @reg

SRAM Transfer $reg not available

DRAM Transfer $$reg not available

Next Neighbor n$rega

a. Named next neighbor registers are not supported in restricted addressing mode (refer
toSection 2.8.1.1, “Indexed Registers” and Section 3.1.1, “Restricted and Unrestricted Src and
Dest Operands”).

not available

1. See Section 5, “Control and Status Registers (CSRs)” for details on which local CSRs are used for which indices.
42 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
 Neighbor registers can be accessed by name or by an index, but the programmer will not typically
access the registers using both names and index in the same program1. Transfer registers can also
be accessed by name or by an index; however, it is more likely that you will access the registers
using both names and index in the same program.

Each of the indices supports a number of additional features, including:

• Post-increment

• Post-decrement

• Offsetting

The feature set of the different indices are shown in the following table:

Caution: The SRAM and DRAM indexing operations use the same local CSR as the index to these
memories.

The use of an indexed register reference is indicated by the leading asterisk (“*”) in the register
name. After that comes the normal type prefix and then the keyword “index”. In the case of local
memory, the keyword “index” is followed by a “0” or “1” to identify which Local Memory CSR
index register to use. Post-increment or post-decrement is indicated by appending “++” or “--” to
the register name. For example, “*n$index++”.

Offsetting refers to addressing a word (4-bytes) at a fixed offset from the word addressed by the
Index local CSR. The offset is a constant in the range from 0 to 15 words. When an offset is used,
the offset is bit-wise ORed into the address. This means that the address register must be aligned on
an appropriate boundary for offsetting to work2. Offsetting is indicated by appending a numeric
constant surrounded by square brackets to the register name. An example would be
“*l$index0[3]”.

Offsetting cannot be used with post-increment or post-decrement.

1. The index implements a FIFO that will eventually overwrite any named register.

Register
Type

Register
Name

Post-
increment

Post-
decrement Offsetting Local CSR Name for

Index Registera

a. Refer to Section 5 of this manual for a complete list of Local CSR Names.

Local
Memory

*l$index0
*l$index1

*l$index0++
*l$index1++b

b. Post increment and Post decrement are supported for unrestricted addressing only. See Section 3.1.1, “Restricted and Un-
restricted Src and Dest Operands”

*l$index0--
*l$index1--b

*l$index0[n]
*l$index1[n]c

c. For offsetting, n = 0 to 15 for unrestricted addressing. See Section 3.1.1, “Restricted and Unrestricted Src and Dest Oper-
ands”

ACTIVE_LM_ADDR_0
ACTIVE_LM_ADDR_1

Next
Neighbor
Fifo

*n$index *n$index++d

d. Optional when used as a source and required when used as a destination.

N/A N/A NN_PUT
NN_GET

SRAM
Transfer *$index *$index++ *$index-- N/A

T_INDEXl
DRAM
Transfer *$$index *$$index++ *$$index-- N/A

2. Alignment needs to be maintained by the programmer. The assembler cannot check for proper alignment.
Programmer’s Reference Manual 43

Intel® IXP2400/IXP2800 Network Processor
Assembler
An index register is the only way that the local memory can be accessed. Local memory does not
support the use of "named" registers as do the other register files. In the case of local memory, there
are two independent index registers for each context and one set for the active context (the context
that is currently executing).

In the case of local memory, the two index registers are referenced within the instructions using the
keywords *l$index0 and *l$index1. These keywords always refer to the active set. The ME can be
put into a mode where all contexts share the same two registers (the active set), or each context
uses its own set. This is specified using the assembler directives local_mem0_mode, and
local_mem1_mode (refer to Section 2 for more information on these directives). When an ME is
set up to have each context use their own two index registers and a context begins executing, its set
of registers are loaded into the active set and when the context goes to sleep, the active set are
saved back to context’s set. In the mode where all contexts share the same two registers, the active
set is only set that is used.

The local memory index registers are loaded using the local_csr_wr instruction. The following
register names can be used to access the two independent index registers for the active context.

For the contexts that are not active, users can access their local registers by first setting
CSR_CTX_POINTER to the correct context number. Then, the following register names can be
used to access the two independent index registers of the specified context.

Refer to Section 5 for more information on all these registers.

The Next Neighbor registers can use the index register in support of Next Neighbor Rings. When
the destination register is specified as *n$index++ the NN_PUT index register is used to perform a
put operation. When the source register is specified as *n$index++ the NN_GET index register is
used to perform a get operation.

The entire transfer register set can be accessed by a context using the Transfer Register Index
Registers (T_INDEX). A register number (as shown in Table 2-9) is written to the T_INDEX
register using the local_csr_wr instruction. Then in transfer register is read or written using the
notation shown in the Table 3-4 to specify either a source (for a write) or a destination (for a read).

ACTIVE_LM_ADDR_0 ACTIVE_LM_ADDR_1

ACTIVE_LM_ADDR_0_BYTE_INDEX ACTIVE_LM_ADDR_1_BYTE_INDEX

INDIRECT_LM_ADDR_0 INDIRECT_LM_ADDR_1

INDIRECT_LM_ADDR_1_BYTE_INDEX INDIRECT_LM_ADDR_1_BYTE_INDEX
44 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
Two registers of the same type other than GPR cannot appear as source operands in a single
instruction, but two registers of the same type can appear with one being a source and one being a
destination. This raises the question of what happens if in this case one wishes to apply an
increment/decrement operator to that register. The rule that the assembler uses is that when the
same index register is used as both a source and destination, any increment/decrement operator
must be applied to the destination usage. Usage on the source or on both will result in an error1.

Thus:

alu[*l$index0++, 1, +, *l$index0]

would be valid, but
alu[*l$index0 , 1, +, *l$index0++]

alu[*l$index0++, 1, +, *l$index0++]

would not. This is to prevent confusion in people who are looking at the code and who might think
that the first bad case is writing to the next register after the one being read, and who might think
that the second bad case is incrementing the index register twice.

Note that neighbor registers have different read and write pointers, so both of the following are
valid:
alu[*n$index++, 1, +, *n$index]

alu[*n$index++, 1, +, *n$index++]

It is allowed that the same local memory index can be offset differently as source and destination in
the same instruction. Thus, the following is valid:
alu[*l$index0[3], 1, +, *l$index0[4]]

Table 2-9. Registers Used By Contexts in Context-Relative Addressing Mode

Number of
Active

Contexts

Active
Context
Number

GPR
Absolute Register Numbers S Transfer or

Neighbor
Index Number

D Transfer
Index Number

A Port B Port

8

(Instruction
always specifies

Registers in
range 0-15)

0 0-15 0-15 0-15 0-15

1 16-31 16-31 16-31 16-31

2 32-47 32-47 32-47 32-47

3 48-63 48-63 48-63 48-63

4 64-79 64-79 64-79 64-79

5 80-95 80-95 80-95 80-95

6 96-111 96-111 96-111 96-111

7 112-127 112-127 112-127 112-127

4

(Instruction
always specifies

Registers in
range 0-31)

0 0-31 0-31 0-31 0-31

2 32-63 32-63 32-63 32-63

4 64-95 64-95 64-95 64-95

6 96-127 96-127 96-127 96-127

1. Conceptually, the hardware samples the value of the index register and uses that for both the source and destination references. Meanwhile,
the index register is modified. So it makes no sense to think about incrementing the register after the read operation but before the write
operation or incrementing it twice.
Programmer’s Reference Manual 45

Intel® IXP2400/IXP2800 Network Processor
Assembler
It is not valid, however, to use a post-modify on the destination and an offset on the same index as
source.

2.8.1.2 Mixing Indexed and Named Register Usage

Use of index registers does not result in any register allocation. Conceptually, this is similar to the
C language behavior that “int *p;” does not allocate an integer.

Local memory can be allocated and managed manually. You can allocate and choose specific
addresses for local memory use through #define’s; however, the preferred method is to use the
memory allocation directives described in Section 2.11.11, “Memory Allocation Directives” to
allocate blocks of local memory.

Caution: In the case of neighbor registers, the two methods (indexed and named) are conceptually exclusive.
When the indexed method is being used, one would not be using the named method, and since the
index defines a FIFO covering the entire register array, allocation is not relevant.

For transfer registers, however, indexed and named usage may be mixed. This is partially a result
that I/O references work on named transfer registers and not indexed transfer registers. To cause
the register allocation to occur, all of the registers need to have names and to be part of the
.xfer_order instruction, regardless of whether the programmer will actually reference them by
name. Additionally, the programmer needs to use .set or .use directives to indicate when these
registers are being used.

2.8.1.3 Transfer Registers (xfer)

The xfer parameter specifies a Transfer register. Transfer registers are always specified with one or
two $ characters as a prefix. S-Transfer register use one $ (example: $xfer) while D-Transfer
registers use to $ (example: $$xfer). Read and write transfer registers are specified by how they are
used. For example, reading $xfer reads a S-Transfer Read register while writing the register writes
an S-Transfer Write register

When an I/O instruction specify a reference count (ref_cnt) greater than 1,the data from multiple
transfers are read or written from a contiguous set of Transfer registers. In this case the xfer
parameter specifies the first register in the contiguous set. Since the instruction only specifies the
first register in the contiguous set of registers, the assembler requires that the programmer indicate
the names of registers that the programmer would like to use for the other contiguous registers.
This is specified using the .xfer_order assembler directive.

2.8.2 Register Declarations

The main purpose of register declarations is to assist the programmer in catching bugs; primarily
those resulting from typing the name of a register incorrectly. The use of register declarations may
be made optional or required depending on the command-line switches. If declarations are not
required, then a register that is used without being declared is implicitly declared with a global
scope and an automatic lifetime.
46 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.8.2.1 Preferred Register Declaration Syntax

Registers are declared1 using the .reg directive.

Registers can have four different attributes. These are specified as described later in this section by
keywords. The default attribute values (i.e., the attributes specified with no keywords) are
underlined. For a more thorough description, see the rest of this section.

Scope: This determines what part of the source code can reference this register. Conceptually, this
can have one of three values (if the declaration occurs within a block, then block is the default
scope; otherwise, module is the default):

• Block: The virtual register can only be referenced from its declaration to the end of the
enclosing block. This is similar to a variable declared within the body of a C-function.

• Module: The assembler currently has no notion of “module”. This attribute is reserved for
possible future use. At this release, the module attribute is effectively the same as having it at
global scope except that the name is prefixed in the list file. This is similar to a top-level non-
static variable in C.

• Global: The virtual register can be referenced from its declaration to the end of the module, or
from within other modules (via extern declarations). This is similar to a top-level non-static
variable in C.

Lifetime: This determines how the register allocator allocates this register. Conceptually, this can
have one of two values:

• Automatic: The allocator will determine those parts of the code where the register contains a
meaningful value. This is called the live-range of the virtual register. Two registers whose live-
ranges do not overlap may be safely allocated to the same physical register. This is the normal
situation.

• Volatile: The virtual register is allocated to a dedicated physical register; i.e. no other virtual
register will be allocated to the same physical register. This guarantees that a reference to a
different virtual register will never modify values in this virtual register. This would be needed
if either the allocator’s algorithms compute the wrong live-range, or if the register were to be
accessed asynchronously (e.g. a transfer register that was to the be target of a reflector
operation).

Direction: In the case of transfer registers, this indicates which of the read/write transfer registers
are being allocated. This can take three values:

• Read: Only a read transfer register is declared.

• Write: Only a write transfer register is declared.

• Both: Both a read and a write transfer register (at the same address) is declared. This is needed
for operations that do both a read and a write at the same time, e.g. test-and-set.

A transfer register that is not explicitly declared "read" or "write" (that is, it is implicitly declared
as read/write or "both") is considered as two separate but linked physical registers. That is, the live
range is computed for each of the pair separately.

This means that declaring a transfer register with the "read" or "write" keywords has no effect on
register allocation. This is because if it is declared as "both", but only used as a "read", then the
write "half" of the register will have an empty live range, and so it won’t conflict with anything
else. The same holds true if it is declared as "both" but only used as a "write" transfer register.

1. Note that index registers do not need to be declared. Since local memory can only be accessed by use of index registers, it is never declared.
Programmer’s Reference Manual 47

Intel® IXP2400/IXP2800 Network Processor
Assembler
The only advantage to declaring a register as "read" or "write" is that attempts to use that register
incorrectly (for example, making a read transfer register the destination of an ALU instruction)
results in an error. If the register were declared as "both", then such an attempt would not generate
an error, although it might generate a warning.

When register declarations are not used, there is no way to mark a register as "read" or "write". In
previous versions of the assembler, this was allowed via the .xfer_order_rd and .xfer_order_wr
directives. This usage is obsolete and now generates a warning and is equivalent to ".xfer_order". If
you want the error checking previously provided by .xfer_order_rd and .xfer_order_wr, you must
now declare the appropriate registers with either the READ or WRITE keywords.

Visibility: In the case of transfer registers, this indicates whether the register is visible to other
microengines via the reflector. Neighbor registers are always visible. Conceptually, this can take
one of two values:

• Visible: Other microengines can read/write this register.

• Invisible: Other microengines cannot read/write this register.

Note that it would be rare to have an absolute register declared with an automatic (non-volatile)
lifetime. Since absolute registers are generally accessed by multiple contexts, it should generally
have a volatile lifetime. Note that if an absolute register is declared with an automatic lifetime, the
assembler may choose to treat it as if its lifetime were volatile.

For more details on visible/remote, see Section 2.8.7.

A visible transfer register would automatically be considered volatile. The syntax of the register
declaration is:

.reg [keywords]* name1 name2 …

keywords: Zero or more keywords as described below.

namen:: One or more register names. You cannot declare a register whose name
matches one of the keywords.

The keywords define the attributes of the registers being declared, as defined by the following
table:

Keyword Meaning

volatile

If the volatile keyword is present, then the lifetime of the declared registers is set to
volatile. Otherwise, the lifetime is automatic. Note that in some cases (e.g. named
neighbor registers), the lifetime is always volatile, regardless of the absence or presence
of this keyword.

global
If the global keyword is present, then the scope of the declared registers is set to global.
Otherwise, if the declaration is within a block, the scope is set to block. If it is not within a
block, then the scope is set to module.

visible If the visible keyword is present, then the visibility of the declared transfer registers is
set to visible. Neighbor registers are always visible.

read

write

If either the read or write keywords are present, then the direction for transfer and
neighbor registers is set accordingly. These attributes have no effect on GPRs. If neither
keyword is given, or if both keywords are given, then the direction is set to both.
48 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
Usage of these keywords is summarized in the following tables:

Rules:

1. Remote cannot be used with any other keywords.

2. Extern can only be used with read or write.

3. Other keywords may be freely mixed.

It is valid to declare the same register as “.reg extern” and “.reg global”. It is also valid to declare a
remote register multiple times. This would occur when a macro which contains a remote register
declaration, is used multiple times.

extern
If the extern keyword is present, then the named registers are declared elsewhere
(either in this module or another that will be linked in). This is similar to the C-language
construct “extern type name”.

remote

If the remote keyword is present, then the named transfer or neighbor registers must be
declared in a different microengine and will presumably be the target of a neighbor write
or a reflector reference. These are resolved by UCLD. The remote register must be
declared as visible in the remote microengine in order to be seen by this microengine.

GPR Xfer Neighbor

volatile valid valid implieda

a. Implied means that it may be specified or not. In either case
the program behaves as if it were specified

global valid valid implied

visible error valid implied

read/write error valid error

extern valid valid valid

remote error valid valid

Keyword compatibility

volatile
global
visible read/write extern remote

volatile
global
visible

X OK error error

read/write OK X OK error

extern error OK X error

remote error error error X
Programmer’s Reference Manual 49

Intel® IXP2400/IXP2800 Network Processor
Assembler
It is valid to declare the same register name as remote and non-remote. In this case, context will
determine which register is referenced. This usage is confusing and should be avoided, but there
may be strange cases where this is required (such as two microengines running identical code and
which want to access each other’s transfer registers).

To declare registers with a “module” scope, they should be declared outside of any .begin/.end
blocks and without the GLOBAL keyword. (See Section 2.8.1.2, “Mixing Indexed and Named
Register Usage”.)

The attribute implications are summarized as follows:

neighbor ⇒ global, volatile, visible
visible ⇒ global, volatile
remote ⇒ global
extern ⇒ global

The response to declaring a register with the same name as a previously declared register is
summarized in the following table. Note that for the “first register/Block” column, the assumption
is that the second register is declared within the same block.

1First and second registers refer to same register.
2You can’t declare a module-scoped register within a block.
3Generates a high-level (level-4) warning.

In such cases, more than one register will exist with the same name. Which is referenced is a
function of the code. The following example shows that a local register declaration will mask a
global variable declaration of the same name within the scope of the local block:

.begin

.reg foo // defines a local variable named foo

.reg global foo // defines a global variable named foo

foo… // reference to foo is to the local variable

.end

foo … // reference to foo is to global variable

The directive .xfer_order does not declare registers. The arguments to .xfer_order need to be
declared before they are used in the .xfer_order. If programmers want to avoid writing out the
variable list twice, they can use a macro similar to:

#macro reg_order[type, regs]

First Register

Global Module Block Extern Remote

Second
Register

Global Error Error Warn OK1 OK

Module Error Error N/A2 Error OK

Block Warn3 Warn3 Error Warn3 OK

Extern OK1 Error Warn OK1 OK

Remote OK OK OK OK OK
50 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
.reg type regs

.xfer_order regs

#endm

reg_order[global volatile, $1 $2 $3]

reg_order[,$4 $5 $6]; Note, the null type field

For compatibility with earlier releases, .xfer_order_rd and .xfer_order_wr are still accepted;
however, they behave the same as .xfer_order. In order to get the checking that was previously
implied by these directives, the registers need to be declared with either the read or write keywords.

2.8.2.2 Details of Volatile and Visible

A register that is declared volatile and global has the same meaning as volatile in previous versions
of the assembler. That is, such virtual registers are allocated to dedicated physical registers.
However, registers can now be declared as volatile without being declared global. This means that
the virtual register is allocated to a dedicated physical register within the defining block. If the code
flow leaves that block, then the register could be reallocated. The typical use for this feature would
be microcode where different code blocks corresponded to different independent threads. In this
case, the defining block for the volatile registers would consist of all of the code for a given thread.
For example, the fact that context-0 had a particular volatile register should not affect the allocation
of the registers local to context-1.

Since volatile no longer implies global, it is also possible to have non-global visible registers. In
this case, there is the added restriction that any particular ME could only declare one visible
register with a given name. If two were declared, then there would be no way to distinguish them.
For example, the following code would be invalid:

.begin

.reg visible foo

…
.end

.begin

.reg visible foo // Not allowed because there are two visible foo’s

Note that this would have been legal if either or both declarations had omitted the visible keyword.

2.8.2.3 Compatible Register Declaration Syntax

For compatibility with existing code, there is an alternate syntax for declarations.

The directive:

.local reg1 reg2 reg3 …

is defined to be functionally equivalent to

.begin

.reg reg1 reg2 reg3 …

Similarly, the directive:
Programmer’s Reference Manual 51

Intel® IXP2400/IXP2800 Network Processor
Assembler
.endlocal

is defined to be functionally equivalent to

.end

Saying “functionally equivalent” means that it “behaves the same as”. However they are not fully
equivalent because the compatible and new syntax cannot be freely mixed. That is, a “.local” needs
to be closed with a “.endlocal”. The following two cases, for example, would be illegal:

.local
…

.end // Error: should be .endlocal

or

.begin
…

// Error: should be .end

2.8.2.4 Dealing with self-write neighbor regs

There is an ambiguity when writing to named neighbor registers. Normally, doing so writes to a
register in the neighboring ME. However, a CSR bit can be set that causes writes to go to the same
ME. This might be used, for example, to store certain constants or pseudo-constants for later use.

In general, the assembler cannot determine the setting of this CSR bit, so it needs the programmer
to indicate whether a write to a named neighbor register is going to the neighbor ME or to the self
ME.

The normal case is pretty straightforward. If the destination register is declared via a .reg
directive, then it is assumed to be local to this ME. If it is declared via a .reg remote directive,
then it is assumed to be in the neighbor. The one ambiguous situation is if the register is declared
with both a .reg and a .reg remote directive. In this case, it will be assumed that the actual
destination of the write is the register in the remote ME. While this usage may be needed in rare
occasions, it is confusing and should be avoided.

Note that it is up to the programmer to ensure that the destination of the neighbor write matches the
current setting of the CSR bit. If these do not match, then a random register in the wrong ME will
be modified.

2.8.3 Aggregate and Array Support

2.8.3.1 Register Arrays

The assembler supports the notion of an array of registers. This is called an "aggregate". These are
declared by giving a bracketed size following the name in ".reg". For example:

.reg $x[3]
52 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
declares an aggregate called "$x" consisting of three registers. The maximum size for an aggregate
is 128 registers. In the case of remote registers, the size can be left off, e.g. ".reg remote $r[]". You
cannot have an aggregate with the same name as a non-aggregate. So the following would be
invalid:

.reg $a[3]

.reg $a ; illegal because of $a[3] above

Aggregates cannot be implicitly declared, they must be declared explicitly.

The .xfer_order directive takes entire aggregates, not aggregate elements. For example:

.xfer_order $a $x $b

.xfer_order $a $x[0] $b ;; ERROR, can’t use indices

This would result in the registers being ordered as "$a $x[0] $x[1] $x[2] $b".

In instructions and most directives (exclusive of .reg and .xfer_order), elements of an array are
referenced with a bracketed index. Continuing the example above:

immed[$x[0], 1]

alu[$x[1], $x[2], +, 1]

alu[--,--,b,$x] ;; ERROR: missing index

immed[$x[3], 0] ;; ERROR: index out of range

2.8.3.2 Compatibility with Earlier Releases

In previous releases, brackets were not allowed in directives and were ignored in instructions. This
resulted in the odd code style:

.reg $y0 $y1 $y2

.xfer_order $y0 $y1 $y2

immed[$y[0], 0]

...

Code that does this should be rewritten to use the new style (as described in the previous section).
For the current release, to maintain some compatibility with earlier code and to give programmers
a chance to update their code, the will exhibit the following behavior:

• If a reference looks like an aggregate element reference, but there is no register with the
specified name, then the assembler will remove the brackets and try to find that register. It will
also generate a warning that the code should be updated. For example, if there was a reference
"$name[3]" and there was no register named "$name", UCA would look for "$name3".

• If a reference looks like an old-style aggregate (e.g. $name0), but there is no register with the
specified name, then the assembler will look up the register as a true aggregate (e.g.
$name[0]). It will also generate a warning that the code should be updated. For example,
"$name0" will match a register that was declared as ".reg. $name[4]".

This behavior is a temporary one to give programmers more of a chance to update their code.
Future releases will drop this behavior.
Programmer’s Reference Manual 53

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.8.3.3 Doubled Signal References

A doubled signal is another type of "aggregate". For DRAM references, both signals are needed to
indicate that the I/O has completed. For other I/O instructions that generate a doubled signal, one
"half" indicates that the write-transfer-register has been consumed, and the other "half" that the
read-transfer-register has been filled.

From a syntactic point of view, references to a doubled signal name by itself (e.g. "sig") will refer
to essentially the entire pair. To reference the low half, one would append either "[0]" or "[write]"
to the signal (e.g. "sig[0]" or "sig[write]"). To reference the high half, one would append either
"[1]" or "[read]" to the signal (e.g. "sig[1]" or "sig[read]"). References to "[0]" versus "[write]" (or
"[1]" versus "[read]") are equivalent; i.e. either can be used interchangeably. The suggested use is
that when the signal refers to a DRAM transaction "[0]" and "[1]" would be used, and when the
signal refers to another transaction, "[write]" and "[read]" would be used.

Note that doubled signals look very similar to an array of signals (of length 2), except that in this
context, "write" is a synonym for "0", and "read’ is a synonym for "1" (as an aid in readability).

Doubled signals can be referenced three ways: via the address operator, via a br_*signal, and via a
ctx_arb.

The address operator can be applied to the unqualified name (e.g. "sig"), or to the qualified ones
("sig[0]" or "sig[read]"). The address of "X" would be the address of "X[0]". Examples would
include:

immed[x, &s] ; references low/write half

immed[y, (1+&remote(s))] ; references high/read half

The br_*signal (br_signal, br_!signal) instructions always reference qualified names. So the
following would be valid:

l1#: br_!signal[dram_sig[0], l1#] ; references low half

l2#: br_!signal[dram_sig[1], l2#] ; references high half

l3#: br_!signal[sram_sig[write], l3#] ; references low half

l4#: br_!signal[sram_sig[read], l4#] ; references high half

The br_*signal functions should not reference the unqualified names (see Section 4.1.6.3.2).

The ctx_arb instruction can reference qualified or unqualified names. If the unqualified name is
used, then it will be automatically doubled by the assembler, for example:

dram[…], sig_done[s]

ctx_arb[s] ; equivalent to ctx_arb[s[0], s[1]]

For advanced users, the individual halves of the signal can be referenced by using the qualified
names, for example:

sram[swap, $x, addr,0], sig_done[s]

ctx_arb[s[read]] ; not automatically doubled due to "[read]"

...; it is now safe to access $x as a read xfer reg

ctx_arb[s[write]] ; not automatically doubled due to "[write]"

...; it is now safe to access $x as a write xfer reg

 ; or to reuse "s"
54 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
Note that this is advanced usage. In most cases, the programmer would use the unqualified name. It
is only in extremely rare circumstances that advanced programmers would use qualified names in a
ctx_arb.

These points are summarized in the following table:

Note that if a doubled signal is half-consumed before a ctx_arb (either through a br_*signal or
ctx_arb with a qualified name), then the signal must be referenced with a qualified name. For
example:

sram[swap, $x, …], sig_done[d]

ctx_arb[d[read]]

ctx_arb[d] ;;; ERROR: must be d[write] or d[0]

2.8.3.4 Usage Notes

In typical usage, programmers won’t need to use br_*signal for I/O references, so they can just use
unqualified names in the ctx_arb instruction, and virtually all aspects of doubled signals are
handled automatically by the assembler. I.e. when using ctx_arb and unqualified signal names,
programmers can treat doubled and non-doubled signals in the same manner.

In some cases, which may be rare, programmers may want to poll a doubled signal using
br_!signal. In this case, they need to be aware of whether the signal is doubled or not, and if it is,
they need to use the appropriate qualified name.

In very rare cases, for advanced programmers, they may want to ctx_arb on a qualified doubled-
signal name, so that (typically) they can access the read transfer registers before the write
completes. This is an advanced technique to be used in special circumstances. It is not expected to
be used by the majority of programmers.

Uses

Reference Address of br_*signal ctx_arb

s (unqualified) OK Invalid OK
(automatically doubled)

s[0] (qualified, DRAM)
s[write] (qualified, non-DRAM) OK OK OK

(not doubled)

s[1] (qualified, DRAM)
s[read] (qualified, non-DRAM) OK OK OK

(not doubled)
Programmer’s Reference Manual 55

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.8.3.5 Compatibility Issues

In previous releases, in the br_*signal usage, a different syntax was used:

For compatibility with earlier releases, br_*signal will continue to accept "s" rather than "s[0]" or
"s[write]", although such use should be discouraged. This is to avoid confusion with the automatic
doubled of ctx_arb. Similarly, the syntax "s+1" will be accepted for "s[1]", although this is not
recommended. At some future release, such forms may cease to be accepted.

Similarly, where one used to write:

.if (signal(s+1))

one should now write:

.if (signal(s[1]))

2.8.4 Transfer Order(.xfer_order)

The .xfer_order directive describes an ordering of transfer registers. In the case of transfer
requiring multiple 32-bit data transfers, it is necessary to describe to the assembler those 32-bit
register names that must be contiguously ordered in the transfer register address space. This is so
that the intended data can be accessed predictably by symbolic specification to individual registers.
The .xfer_order reserved name is followed by the ordered list of register names (order increases
from left to right).

For compatibility with earlier releases, .xfer_order_rd and .xfer_order_wr are still accepted;
however, they behave the same as .xfer_order. In order to get the checking that was previously
implied by these directives, the registers need to be declared with either the read or write keywords.

All registers that are related via .xfer_order must have the same scope. So, for example, the
following would be invalid:

Previous Syntax Current Syntax

s s[0] or s[write]

s+1 s[1] or s[read]

Instruction Format

.xfer_order reg1 reg2 ...
56 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler

Similarly, the following would also be invalid:

This is because $x1 is declared with a module scope, and $x2 is declared with a global scope (since
visible implies global).

2.8.5 Register Lifetime Details

For non-volatile registers, the lifetime is computed automatically. Basically, the register is
considered “live” everywhere it is used as a source of an operation. This “liveness” is then
propagated backwards, up the flow graph until it is terminated by an operation that “sets” or
assigns a value to that register.

If the register is not volatile and has a block scope, then the live-range is truncated when it leaves
the register’s defining block. The exception to this is when it makes a subroutine call/return.

More particularly, when going up the flow graph, the live range is truncated when the current
microword is inside the register’s defining block, the next microword in the graph is not, and the
branch was not caused by a RTN. This is illustrated in the figure below. If the current microword is
the one labeled “re-entry point”, then the next-microword is not in the code block, but since the
next-microword is a RTN, the live range is not truncated and continues up through the subroutine
and back into the code block.

Examples: Incorrect Usage of Xfer_order (1)

.begin

 .reg $x1 $x2

 .begin

 .reg $x3 $x4

 .xfer_order $x1 $x2 $x3 $x4 // invalid

Examples: Incorrect Usage of Xfer_order (2)

.reg $x1

.reg visible $x2

.xfer_order $x1 $x2 // invalid

code block
code...
call
re-entry point
code...

subroutine
entry point

rtn

The register live
range is computed
from point of use
upwards to point
of setting.
Programmer’s Reference Manual 57

Intel® IXP2400/IXP2800 Network Processor
Assembler
A similar situation exists when extending the live range of a transfer register. (It is extended going
down the flow graph from the I/O operation to the completion of the I/O operation, typically a
ctx_arb.) In this case (going down the flow graph), the live range is truncated when the current
microword is in the register’s defining block, the next microword is not, and the next microword is
either not in a subroutine or is in the same subroutine as the current microword. That is, a
“subroutine call” is defined as a branch into a subroutine block from someplace not in that
subroutine block, and the live range going down the flow graph is truncated when it leaves the
defining block, unless it is a “subroutine call” as defined above.

Consider the case of a block-scoped register that wants to maintain its value outside of its block.
This would be similar to a variable in C defined within a function with the static qualifier. This
could be done in one of two ways:

The register could be declared as volatile. This will guarantee that no one else will clobber that
register, although it will “use up” a dedicated physical register.

The register could be declared as having a module or global scope. This makes it potentially visible
elsewhere in the code, but would result in its lifetime not being truncated.

2.8.5.1 MEv2 Queue Information

The MEv2 I/O operations (with the exception noted below) are inherently unordered with respect
to each other. That is, the implementation may enforce some particular order, but the architecture
does not. As a result, all MEv2 operations go to the "unknown" queue, and a signal must be
specified on each operation. You may take advantage of the ordering of a particular implementation
as determined from other sources (and indicated to the assembler through the mechanisms
described in the section entited “Determining when I/O operations complete” on page 66), but such
code will be inherently non-portable.

The exception to the above is operations to the MSF with the ordered optional token (see
Table 2-10). The ordering of MSF transactions is limited in certain circumstances (e.g. between
writes to the TBUF and TX_VALIDATE). Thus code that is designed to be portable with future
versions of the architecture should limit use of the ordered token to this case. The current
implementations, however, maintain order of all transactions. If you want to take advantage of this,
you may use the ordered token in more situations. The danger in doing so, however, is that such
code may break for future generations of the chip.

2.8.6 Signal Declarations

Signals are declared in a manner similar to registers:

.sig [keywords]* name1 name2 …

Table 2-10. MEv2 Logical Queues

Instruction Condition Queue

MSF read, ordered MSF-Read

write, ordered MSF-Write

other unknown

other unknown
58 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
keywords: Zero or more keywords as described below.

namen: One or more signal names. You cannot declare a signal whose name

matches one of the keywords.

The keywords define the attributes of the signals being declared, as defined by the following table:

The namespace for signals is the same as for GPRs, i.e. an alphabetic character followed by zero or
more alphanumeric characters. Most particularly, there is no type prefix. This is because there is no
reasonable scenario where a macro argument could represent a register or a signal, and the macro
has to determine which it is.

The volatile keyword would in general be needed if the signal were being generated other than in
response to some action within this thread. This might be needed, for example, for an inter-thread
signal.Preferred Register Declaration Syntax

The keyword restrictions are the same as for registers as described in Section 2.8.2.1, “Preferred
Register Declaration Syntax”.

When a signal is consumed via a ctx_arb, all of the signals will be checked for number. For any of
these signals, if the source along any path generates a doubled signal1, then all sources must
generate a doubled signal. Each doubled signal will implicitly include the next higher signal in the
ctx_arb. For more information on doubled signals, refer to Section 2.8.3.3, “Doubled Signal
References”.

2.8.7 Use of REMOTE Keyword

Registers are defined by the code for the micro-engine in which they are located. Other micro-
engines (e.g. those doing a neighbor-write or reflector operation) reference these via the “remote”
keyword.

Keyword Meaning

volatile If the volatile keyword is present, then the lifetime of the declared signals is set to
volatile. Otherwise, the lifetime is automatic.

global
If the global keyword is present, then the scope of the declared signals is set to global.
Otherwise, if the declaration is within a block, the scope is set to block. If it is not within a
block, then the scope is set to module.

visible If the visible keyword is present, then the visibility of the declared signals is set to
visible.

extern If the extern keyword is present, then the named signal needs to be defined elsewhere
(either in this module or another that will be linked in).

remote

If the remote keyword is present, then the named signals must be defined in a different
microengine and will presumably be the target of a remote reference (e.g. sending an
inter-thread signal). These are resolved by UCLD. The remote signal must be declared
as visible in the remote microengine in order to be seen by this microengine.

1. Some I/O operations generate two signals; i.e. the signal specified for the I/O operation must be even, and that signal and the next higher
odd signal is also returned. Such a signal is called a “doubled signal” in this document. For more information on double signals, refer to
Section 3.1.2.4, “Event Signals”
Programmer’s Reference Manual 59

Intel® IXP2400/IXP2800 Network Processor
Assembler
Similarly, signals are defined by the user or recipient of the signal (e.g. the micro-engine doing the
ctx_arb). Other micro-engines that wish to send a signal (e.g. via a CSR write) would declare these
signals with the “remote” keyword. Note that the only valid operation on a remote signal is taking
the address of it. It is never valid to ctx_arb on a remote signal, since that signal does not exist in
the current micro-engine.

Note also that in order to successfully resolve the remote register or signal, it must be declared as
“visible” in the remote micro-engine.

This is illustrated in the following examples:

Examples: ME0 does a named neighbor write to ME1

Note in this example that neighbor registers are located in the ME1 that reads them and not in the
ME0 that writes them.

Examples: ME1 does a reflector read from ME3

Note in this example that $name is located in ME3, and it is accessed using normal source/
destination references. In ME1, it is declared as “remote” and referenced via the “cap” command.

Examples: ME4 sends a signal to ME2 (thread 1)

Note in this example that the signal is declared and used normally in ME2 (except that it is declared
“visible”), and that it is referenced via the address operator in ME4.

2.8.8 Address Operator

There is a need to be able to take the address of transfer registers and signals (the “address” of a
signal is the signal-number associated with it). This is needed for registers and signals defined
locally (i.e. non-remotely) and for ones declared remote.

ME0 code ME1 code

.reg remote n$name .reg visible n$name

alu[n$name, …] alu[xxx, --, b, n$name]

ME1 code ME3 code

.reg remote $name .reg visible $name

.reg $my_xfer immed[$name, …]

cap[read, $my_xfer, 3, $name, 0, 1], ctx_swap[sig]

ME4 code ME2 code

.sig remote rsig .sig visible rsig

cap[fast_wr, ((2<<7) | (1<<4) | (&remote(rsig,2))), interthread_sig] ctx_arb[rsig]
60 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
Note that the address of a register is a "long-word address" (or equivalently a "register number"). In
other words, all low-order bits of the address are significant, and the addresses of the first few
registers are 0, 1, 2, etc. (not 0, 4, 8). The "address" of a signal is its signal number, in the range of
1…15.

When registers and signals are defined locally, this is done by prepending an “&” to the register/
signal name; e.g.: &$xfer, &sig_name.

When registers and signals are declared remotely, the reference is defined with the following
pseudo-function:

&remote(name, ME_num, ...)

name: Name of remote register/signal

ME_num: Number of remote microengine

In the case where a register/signal is declared in a different block (typically corresponding to a
different context), it is also considered “remote”. It is referenced with the “&remote(name)”
construct as described above, but with no ME_num specified.

If more than one ME_num is specified, then a check will be made to make sure that the specified
register/signal has the same address in all of the listed microengines. This can be used, for example,
when computing the address of a transfer register for a cap command where the microengine to be
reflected to is being selected at run-time. For example:

; Assume ME is in range of 1…3

immed[reg1, ((1<<15) | (CTX<<6) | (&remote($r,1,2,3)<<2))]

alu[reg1,reg1,or,ME,<<10)

cap[read, $x, regA, TMP, 1], …

In all of these cases, the reference is usable where a constant would be used. Depending upon the
usage, registers or signals that have their address taken may or may not need to be declared volatile
by the programmer.

These operators (as well as imported variables) can also be used in constant expressions.

In the context of constant expressions, the address of a remote (or local) neighbor register can be
taken. Note that when taking the address of a remote neighbor register, the ME number of the
neighbor does not need to be specified, and so the &remote() function is not needed. That is, to take
the address of a remote neighbor register, it is sufficient to say "&n$reg".

Note also that the address of a local neighbor register can be taken within a constant expression but
not outside of a constant expression. Constant expressions have enclosing “()”, so the following is
valid:

.reg n$local gpr

immed[gpr, (&n$local)]

but the following is not:

.reg n$local gpr

immed[gpr, &n$local] ; Error: must be within constant expr
Programmer’s Reference Manual 61

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.8.8.1 Accumulating Results for ctx_arb[--]

In order to use the ctx_arb[--] feature, you need to be able to accumulate a subset of certain signals
into a register. In order to do this, you need a way to get the size of the signal and way to shift it to
the correct position. To support this, there is a built-in function for constant expressions

mask(sig)

 which will expand to "1" for normal signals and "3" for doubled signals . This would typically be
used to generate a bit-mask to be written to active_ctx_wakeup_events as illustrated in the example
below.

The mask() function behaves differently based on whether the specified signal is active at the time
of use (e.g. if the use of mask() is between the I/O and the ctx_arb). If the signal is active, the value
of the mask function will be based on whether the active signal is doubled or not. This is because
another, unrelated use of the signal may use it in the other sense. However, if the signal is not active
at the time that mask() is used, but the signal is only used in a doubled or single sense, the mask()
function succeeds. If the signal is not active where mask() is used, and the signal is used in both a
single and doubled manner, then an error results.

Additionally, the alu (alu_shf) instruction will support syntax for shifting based on the address of a
signal. In particular, the shift token can take any of the following forms:

<<&sig_or_reg

<<&remote(sig_or_reg)

<<&remote(sig_or_reg, me)

<<(constant_expression)

This would be used as indicated in the following example (for an explanation of ".io_completed",
see the section entitled “Determining when I/O operations complete” on page 66”):

alu[sig_mask, --, b, (mask(sig1)), <<&sig1]

.if (…)

alu[sig_mask, sig_mask, or, (mask(sig2)), <<&sig2]

.endif

.if (…)

alu[sig_mask, sig_mask, or, (mask(sig3)), <<&sig3]

.endif

local_csr_wr[active_ctx_wakeup_events, sig_mask]

ctx_arb[--]

.io_completed sig1 sig2 sig3

Note that if the mask() function is invoked where a signal is live and single, but then that value is
later used when the signal is doubled, (or vice versa), the code will fail with no warnings or errors.
For example:

Example of incorrect usage of mask()

sram[read, $x, a,0, 1], sig_done[sig1] ; sig1 is single

alu[sig1_mask, --, b, (mask(sig1)), <<&sig1] ; mask() is 1

ctx_arb[sig1]

…
.if (…)

sram[swap, $x, a,0], sig_done[sig1] ; sig1 is now doubled

alu[tot_mask, tot_mask, or, sig1_mask] ; sig1_mask is 1
62 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
; ERROR: tot_mask is now incorrect. It is 1, but should be 3

.endif

local_csr_wr[active_ctx_wakeup_events, tot_mask]

ctx_arb[--]

.io_completed sig1 …

2.8.8.2 Examples of Address Operator and Visible/Volatile Signals

The first example is one context (context-0) signaling another (context-1) in the same ME:
.if (ctx() == 0)

.sig remote s

local_csr_wr[…, (…&remote(s)…)]

…
.elif (ctx() == 1)

.begin // begin block for context-1

.sig visible s

.while(1)

…
.endw

.end

.elif …

In this case, context-0 is using a remote declaration and the "&remote(name)" construct to
reference a signal declared within the same ME, but which is local to a different block.

Note that if context-1 was in a different ME, then the picture would look almost identical, except
that the reference would be "&remote(name,ME_num)".

In either case, there is a problem if the programmer wants to use the same visible signal in
different, independent contexts. There are several ways in which this could be addressed:

1. Use three different names, e.g. "s1", "s2", etc.

2. Use a .begin/.end block that included multiple contexts (but preferably not the unnecessary
contexts, as this would defeat the purpose of making the visible signal non-volatile).

3. Make the signal "s" volatile and global, and just live with wasting a signal in the other
contexts.

Another example where this mechanism would be useful is in the case where one ME (the master)
is initializing some data structure and wants to hold off the other MEs (the slaves) until the
structure is initialized. A typical way to do this is to have the master ME send an inter-thread signal
to the slave MEs. This signal would have to be visible, but it would only be used during
initialization. This could be handled in slaves as:

.if (ctx() == 0)

.begin

.sig visible wakeup

lab#: br_!signal[wakeup, lab#]

.end

.endif

In this case, after the begin/end block was exited, the physical signal allocated to "wakeup" would
be available for reuse.

The master would do something like:
Programmer’s Reference Manual 63

Intel® IXP2400/IXP2800 Network Processor
Assembler
.reg remote wakeup

cap[fast_wr, ((0 << 7) | &remote(wakeup,0)), interthread_sig]

cap[fast_wr, ((1 << 7) | &remote(wakeup,1)), interthread_sig]

cap[fast_wr, ((2 << 7) | &remote(wakeup,2)), interthread_sig]

…

2.8.9 Signal Lifetime Details

Normally, the lifetime of a signal extends from the I/O operation that generates the signal to the
point where the signal is “consumed” via a context arbing operation or a br_signal operation.
However, there are two cases where the signal is not generated in response to an I/O operation.

The first is where the generator of the signal is asynchronous with respect to the microengine in
question. An example of this is an inter-thread signal. In this case, it should probably be declared as
volatile.

The second case is where the microengine in question initiates the action that will eventually result
in a signal, but that action is not an I/O operation. An example of this might be a CSR write which
initiates a PCI DMA operation. In this case, a .set directive can be placed following the I/O
instruction that writes to the PCI register that initiates the PCI DMA. This tells the assembler that
the signal is now active.

2.8.10 Register Allocatior Directives

There are several areas where limitations in the assembler cause it to make overly pessimistic
assumptions. There are two ways that this can be dealt with:

• The simple approach is to do nothing. The assembler should always “do the right thing” or do
the safe thing. The only two problems are that there may be excessive warnings and the
register usage may not be optimal. The problems with the warnings can be handled via the
warning mechanisms. If the register usage is a problem, then the following approach can be
used.

• There is a series of directives (as described in this section) that allows the advanced user to
more carefully tune the register allocation process and possibly achieve better register
utilization. The downside is that use of these directives will be less-obvious to a casual user
and would require a greater understanding of the register allocation process.

There are four areas where limitations of the register allocator may cause spurious warnings or
non-optimal register allocation. These are described in the following four sections.

Register Used Before Being Set

If there is no path that sets a register before using it, then a low-level warning is issued (“Used
before set”). If there were some paths that set it and some that do not, then a high-level warning is
issued (“Maybe used before set”).

A typical example of this second kind would be:

.if (condition_1)

immed[reg, 0]

.endif

…

64 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
.if (condition_1)

alu[…,reg]

.endif

The assembler does not know that the second conditional is taken only if the first is already taken.
It assumes that the first conditional can be skipped and that the second can be taken. This results in
the register being used before being set.

To address this in the case that the warning level is set to include this warning and the programmer
has verified that there actually is no problem (i.e. in the above example, if the two conditions were
different, there would be a real problem), the programmer could use the .set directive.

.set reg1 reg2 …
reg1 reg2 …:One or more registers to be “set”.

This directive looks like an assignment to the register allocator (thus getting rid of the “used before
set” warning), but it does not generate actual code.

Correct behavior can always be achieved by placing the .set directive at the start of the affected
block. More optimized usage would place the directive immediately before the conditional causing
the problem. Using the above example, the following would always be valid:

.begin

.reg reg

.set reg // .set directive at start of block

…
.if (condition_1)

immed[reg, 0]

.endif

…
.if (condition_1)

alu[…,reg]

.endif

But the allocator may use the registers more effectively if it is placed just before the conditional:

.begin

.reg reg

…
.set reg // .set directive before conditional

.if (condition_1)

immed[reg, 0]

.endif

…
.if (condition_1)

alu[…,reg]

.endif

Note that it would be an error to place it after that conditional (i.e. between the two conditionals).
In this case, you would be “assigning” a value to the register after having done so with an actual
assignment. In this case, it would appear to the register allocator that the register was set at the .set
directive and then used, and hence the setting of the register using the immed instruction was
irrelevant (i.e. that value was never used). It would therefore be free to clobber the value of reg
between the immed and the .set directive.
Programmer’s Reference Manual 65

Intel® IXP2400/IXP2800 Network Processor
Assembler
This directive would also be required if the setting of transfer registers were done using the index
register. In this case, the assembler would not know which registers were actually being set.
Presumably the programmer knows and can use the .set directive to tell the assembler.

Note also that this directive should not be placed after register declarations as a matter of course,
because this may mask real bugs. This directive should only be used after the programmer has
determined that the warning is caused by a limitation of the assembler and not due to a potential
problem with the code.

A similar directive, .set_sig can be used with signals:

.set_sig sig1 sig2 …
sig1 sig2 …: One or more signals to be “set”.

This would be used in the case where the signal is being generated other than by an I/O operation.
An example of this would be when writing to the CSR that initiates a PCI DMA operation.

Refer to the section “Use of .set and .use with transfer registers” on page 68 for additional
information on using the .set directive.

Determining when I/O operations complete

The assembler has to determine when I/O operations, particularly write operations complete. As
detailed in Section 2.8.13.1, “Transfer Register Lifetimes”, the assembler attempts to determine
when a write I/O operation completes, but it may not be able to do so in all circumstances. If it
cannot, it will report an error.

To indicate that an I/O operation is completed, the programmer would use one of the .io_completed
directives:

.io_completed name1 name2 …

.io_completed_type type

name1 name2 …:One or more signals or transfer registers whose I/O operations

have been completed.

type: Memory type (listed below)
SRAM, DRAM, SCRATCH, MSF, CAP, HASH, PCI

The directive ends the live ranges of referenced I/O operations. An operation is referenced if at the
directive it is not completed and any of:

• The directive lists a signal used by the operation (or on a following operation using the same
queue).

• The directive names the type of the operation.

• The directive lists any of the registers involved with the operation.

Ending the operation ends the live ranges of all parts of the referenced operation (e.g. the transfer
registers and the signal)1.

One common case where the programmer needs to indicate where an I/O operation is completed is
the same scenario as described in “Register Used Before Being Set” on page 64.

For example, consider:

.if (condition_1)
66 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
sram[write, $xfer, …], sig_done[sig]

.endif

…
.if (condition_1)

ctx_arb[sig]

.endif

The assembler doesn’t know that after the I/O operation has been issued, the ctx_arb must be
executed. It assumes that the ctx_arb could be skipped. The solution would be to place after this
code:
.io_completed sig

Note also that there would have to be a “.set_sig sig” before the first conditional. Otherwise, you
would get a warning that the signal might be used before it was set.

Another example is that while the MEv2 spec does not guarantee ordering between certain I/O
operations, the user may know (and for some reason want to take advantage of) some
implementation guaranteeing the order. In this case, the “correct” way to handle it is to use a
different signal on all of the operations, and then to context-arb on all of them, but for some reason,
the programmer may not want to do this. For example:

(1) sram[write, $x1, …] ; no signals specified, non-portable
(2) …
(3) sram[write, $x2, …], ctx_swap[…]

To indicate to the assembler that use of the register is finished, the programmer could use:

(1) sram[write, $x1, …] ; no signals specified, non-portable
(2) …
(3) sram[write, $x2, …], ctx_swap[…]

(4) .io_completed $x1

The lifetime of $x1 would extend from the setting of the register, through the I/O operation, and
continue to an appropriate .io_completed. Note that in this example, the user could also have
used “.io_completed_type sram”. Note also that this directive is not needed if the assembler can
determine when the use is completed.

Note that since GPRs cannot be used with .io_completed, there is no ambiguity as to whether the
name refers to a signal or to a register.

Using registers indirectly

A similar but slightly different problem occurs when read transfer registers are referenced via the
index register. The issue is that the assembler doesn’t know which registers are addressed by the
index register, so it doesn’t know when the read values are actually used.

1. Note that this can be abused with the unobvious construct:
.reg $x $y

.xfer_order $x $y

sram[read, $x, a,0, 2], sig_done[s]

….

.io_completed $y

Such usage is confusing and should be avoided.
Programmer’s Reference Manual 67

Intel® IXP2400/IXP2800 Network Processor
Assembler
The programmer needs to tell the assembler that the transfer registers in question are being used up
to the point when they are not. This can be done with the .use directive:

.use reg1 reg2 …
reg1 reg2 …: One or more registers whose use has been completed.

Similar to the .set directive, this appears as a use of the named registers but without generating any
microwords.

Since those three registers are “used” by the .use directive, the lifetime of those registers will
extend from the I/O operation to the .use directive, encompassing the uses from the index register.

Refer to the next section for additional information on using the .use directive with transfer
registers.

Use of .set and .use with transfer registers

The .set directive can be used with both "read" and "write" transfer registers, but ".use" can only be
used with "read" transfer registers (but ".use_wr" can be used with "write" transfer registers, see
below for details).

More particularly, if .set is applied to a R/W (both) transfer register, it is considered as "setting"
both the read register and the write register. If .use is applied to a R/W (both) transfer register, it is
considered as a use only of the read register. If .use is applied to a register declared as ".reg write",
then it generates an error.

Variants on .set and .use exist:

.set_rd reg1 reg2 …

.set_wr reg1 reg2 …

.use_rd reg1 reg2 …

.use_wr reg1 reg2 …

These variants can only be used with transfer registers of the appropriate type (e.g. ".set_rd" cannot
be used with registers that are not transfer registers or which have been declared as "write"). An
example of when you would use these is:

sram[read, $X, a,0, 1], ctx_arb[s] ; reads (sets) $X.read

… ; area-1

…
… ; set t_index to point to $X

immed[*$index, 0] ; sets $X.write

.set_wr $X

sram[write, $X, a,0, 1], ctx_arb[s] ; writes (uses) $X.write

…

Examples: indirect usage

.xfer_order $1 $2 $3

sram[read, $1, addr1, addr2, 3], ctx_swap[sig]

// set up transfer register index register (not shown)

alu[…, *$index++] // uses $1

alu[…, *$index++] // uses $2

alu[…, *$index++] // uses $3

.use $1 $2 $3
68 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
alu[--,--,b,$X] ; use $X.read

The problem is that if one uses ".set" rather than ".set_wr", then it will "set" both the read and write
transfer registers, so it will appear that the read of $x is useless, and the assembler is free to clobber
$X within area-1. This is avoided by using ".set_wr".

2.8.11 GPR A/B Bank Conflicts

The GPRs are physically split into two banks called GPR_A and GPR_B. For each instruction, one
GPR_A and one GPR_B operand can be read to form the two input operands to the execution
datapath. The micro assembler allocates all GPRs into either the A or B GPR bank based on the
specified pairings of GPR source operands as defined by the instruction source listing,. Certain
topological pairings of GPR source operands, cause an unresolved allocation problem. For
example, consider the three instructions below:

alu[dest_op,source_op_a,+,source_op_b]

alu[dest_op,source_op_b,+,source_op_c]

alu[dest_op,source_op_a,+,source_op_c]

The first instruction above specifies that source_op_a and source_op_b must be on opposite GPR
banks since these two operands must be simultaneously accessed. The second instruction specifies
that source_op_b and source_op_c must also be on opposite banks for the same reason. Taken
together, these two allocation constraints imply that source_op_a and source_op_c must be
allocated to the same bank since they both require access in a bank opposite to that of source_op_b.
However, the third instruction is in direct conflict with this since it requires source_op_a and
source_op_c to be allocated on opposite banks.

These allocation problems can be understood and solved by some simple graphical analysis. The
above example can be diagrammed as shown in Figure 2-3.

Whenever a loop is formed with an odd number of sides, dual bank allocation is impossible. The
solution is to rewrite the register relationships to either break the loop or form a loop with an even
number of sides. In other words, rewrite the code to use a different GPR (causing the loop to break)
or introduce another GPR in such a way as to add another side to the loop.

Figure 2-3. Bank Allocation Diagram

A9372-01

source op A source op B

source op C
Programmer’s Reference Manual 69

Intel® IXP2400/IXP2800 Network Processor
Assembler
When the microassembler identifies this problem, it attempts to automatically solve the problem as
described in Section 2.8.11.1, “Automatic A/B Bank Conflict Resolution” if, and only if, you have
enabled this feature. By default, the feature is turned off. If the microassembler cannot solve the
problem, it dumps the relevant topological information so that you can determine the best way to
solve the problem. The design of the data path is such that the bank allocation problem is not
shared by the transfer register banks because these registers can be accessed from either input port
to the ALU.

2.8.11.1 Automatic A/B Bank Conflict Resolution

Automatically fixing A/B Bank conflicts is in some ways pretty straightforward. Where such a
conflict exists, the assembler inserts an instruction to copy one of the registers to a temporary
register and replaces the register reference with a reference to the temporary register.

The assembler attempts to minimize the number of added instructions, but it is likely that the
programmer can do a better job of inserting such copies, since the programmer knows more about
what the critical paths are within the program.

For implementation reasons, the assembler considers certain instructions as unmodifiable, and
hence the registers in those instructions are unable to be changed to resolve an A/B bank conflict.
The programmer can use the #pragma optimize mechanism (see Section 2.11.2) to further mark
portions of the code as unmodifiable. This means that even if the option to automatically fix these
conflicts is enabled, the assembler may not be able to fix certain conflicts.

By default this option is disabled. This is so that the user has to make an explicit request before the
assembler starts inserting instructions into the user's program.

2.8.12 GPR Spilling

The basic approach for spilling GPRs to local memory is to map all of the virtual registers into
physical registers. If the number of physical registers needed exceeds the available number, then
spilling is required. Then, some number of the physical registers are selected to be located in local
memory rather than in an actual GPR.

The steps that need to be taken are:

1. Determine which "physical registers" are able to be located in local memory.

2. Select a sufficient number of these that the remaining ones can fit into the actual physical
registers.

3. Assign the spilled registers to local memory addresses.

4. Modify the source code to use local memory

If relative GPRs are spilled, then a non-spillable relative GPR is used to store the address of a local
memory block to be used by that context. Absolute GPRs are not spilled.

Due to certain implementation restrictions, the assembler may not be able to use spilling to always
resolve a "too many GPR" condition. Also, the programmer can use the #pragma optimize
mechanism (see Section 2.11.2) to further mark portions of the code as unmodifiable.

While the assembler attempts to be efficient in modifying the code, it does not understand the
program nearly as well as the programmer. While having the assembler handle spilling is
convenient, it is likely that the programmer could use a similar approach to resolve the issue with
less execution overhead.
70 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
By default this option is disabled. This is so that the user has to make an explicit request before the
assembler starts inserting instructions into the user’s program.

2.8.13 Lifetime Out-Of-Register Errors

A long present problem with the assembler has been that if the source code requires too many
registers, it has been hard to figure out where the problem is occurring, and hence where changes
should be made in order to reduce the number of required registers.

To help address this issue, there is now a command-line flag “-lr” which dumps the register lifetime
information into a new file with a “.lri” extension. The reason that a new file is being used rather
than using the .uci file is that if register allocation fails, then a .uci file is not produced.

Eventually, support for reading and displaying the .lri file will be integrated into the Workbench.
However, until this is done and for non-Win32 systems, the user will have to manually examine the
.lri file.

The .lri file basically consists of the raw source (post preprocessor) along with embedded
“directives” giving the registers live at each line.

The directives are:
.%live_regs cnt addr gpr sr_xfer sw_xfer dr_xfer dw_xfer sig

This gives the count of live registers of the different types for the associated uword. The addr field
gives the corresponding uword address (if the source file assembles successfully and the optimizer
is not used). The next six numbers then give the counts in terms of relative registers. The count of
GPRs can be non-integral due to absolute GPRs (since an absolute GPR occupies the space of
either 1/8 or 1/4 that of a relative register, depending on how many contexts there are). “sr_xfer”
refers to SRAM-read transfer registers, “dw_xfer” refers to DRAM-write-transfer registers, etc.

;%live_regs cnt addr gpr $R $W $$R $$W sig

This is a “comment” line that indicates what the different numbers from the “.%live_regs cnt”
directive mean. It is particularly useful (as described later) when the counts are imported into a
spreadsheet.

.%live_regs type addr name1 name2 name3 …

This gives the actual list of live registers. The type field contains the same labels as from the
“;%live_regs cnt” line; i.e. “gpr”, “$R”, “$W”, “$$R”, “$$W”, and “sig”. There is also a “@gpr”
type, whose line lists all of the absolute GPR registers. Since absolute registers are essentially
always live, rather than repeating this list throughout the file, the absolute GPRs are just listed
once, at the beginning.

The addr field is as described above for “;%live_regs cnt”. The names are the names of the live
registers. If the list is empty for a particular type, then that line is suppressed.
Programmer’s Reference Manual 71

Intel® IXP2400/IXP2800 Network Processor
Assembler
Here are some miscellaneous comments about the listing:

• The number of registers listed in the “.%live_regs xxx” lines may not match the count in the
“.%live_regs cnt” lines for several reasons: for GPRs, the count also includes absolute GPRs,
listed once at the beginning. Also, doubled signals increment the count by 2, but are only listed
once.

• Due to implementation reasons, there may be a block of text with a separator and “.%live_regs
cnt”, but which does not contain a real uword. For example:

• Due to scoping, the same register may be repeated in the list. For example, there could be
several registers named “tmp” defined in different nested scopes that are all live at the same
time.

• The counts should be taken as indications of where the problem may lie and not as a hard-and-
fast indicator of allocation success. For example, at the worst-case, there may be only 31 GPRs
live, but it may still fail allocation due to A/B bank issues.

Figure 2-4. Example of a .lvr File

;--

This is a separator between lines to make the file easier to
read.

An example output might be:

;%live_regs cnt addr gpr $R $W $$R $$W sig

.%live_regs @gpr 0 @g1

; lri_regs.uc: test of lri live range values

.reg tmp ; module

.reg global g

;---

.%live_regs cnt 0 0.125 2 1 0 0 0

.%live_regs $R 0 $z $i2

.%live_regs $W 0 $z

nop

;---

.%live_regs cnt 1 0.125 2 1 0 0 0

.%live_regs $R 1 $z $i2

.%live_regs $W 1 $z

immed[tmp, 0]

Figure 2-5. Example of a .lvr File Without a Real uword

;--

.%live_regs cnt 2 0 0 0 0 0 0

.if (x == 0)

;--

.%live_regs cnt 2 1 0 0 0 0 0

.%live_regs gpr 2 x

alu[--,--,B,x]
72 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
One of the most useful things to do with the .lri file is to filter it based on “.%live_regs cnt”, load it
into a spread sheet, and then plot the counts. For example:

grep “%live_regs cnt" <file.lri >file.dat

One might then read that file into a spreadsheet, graph the data, and get a plot looking like
Figure 2-6.

From this, one can see that the GPR usage peaks around line 327 with a value of 23.5. Since this
project was running in 4-ctx mode, there are 64 GPRs available, so about 40 of them should be
available. If, however, the peak at line 327 exceeded 64, then register allocation would probably
fail. In that case, by looking at what registers were live in that region, the programmer could
hopefully identify some that could be made not live. Possible ideas for coping with excess register
pressure would include:

• Rewriting the code to use fewer registers. For example, re-computing a value rather than using
a value computed earlier. Similarly, delaying a calculation until just before a result is needed
may help.

• Using absolute GPRs rather than relative ones where the value is not needed beyond a context-
arb, or where the value is the same for all contexts. Note that absolute GPRs are essentially
always live1, so that an absolute virtual GPR corresponds to an actual physical register. Thus,
absolute GPRs should be used for data with some permanence rather than for short-lived
temporaries.

Figure 2-6. Lifetime Register Spreadsheet

1. Absolute registers are typically used to communicate between threads. As such, most absolute registers are used
by multiple threads. This means that most absolute registers need to be considered “used” whenever there is a
context arb. This would make them live most of the time, so as a simplifying assumption, the assembler makes
them live always.
Programmer’s Reference Manual 73

Intel® IXP2400/IXP2800 Network Processor
Assembler
• If the neighbor registers are not being used as a FIFO, they can become the repository of
constants or pseudo-constants (values computed during startup but which don’t change during
the main loop).

• Using local memory to replace GPRs. This is particularly effective if one of the local memory
index registers isavailable.

• It is also possible that the live-ranges of some registers are not being computed correctly due to
incorrect use or lack of use of some of the directives. This would be indicated if a register was
listed as live when it really was not. An example of this would be if a register was used, and
then in a later section it was conditionally set and then later conditionally used (i.e. “correlated
conditionals”). Without an appropriate “.set” directive, the register would be considered live
from the first set to the last use, when in reality, it wasn’t “live” between the two sets of
references. In this case, the code produced would not be incorrect, but it may use more
registers than necessary. Putting in the appropriate “.set” might reduce the register pressure.

• Another possibility is that there is an outright bug in the source code, and that by fixing the
bug, the number of necessary registers would go down.

2.8.13.1 Transfer Register Lifetimes

It can be tricky for the assembler to compute when the lifetime ends for a write transfer register.
The reason for this is that the instruction that ends the lifetime may only indirectly be related to the
instructions using the register.

The same logic is used to extend the lifetime of read transfer registers, although typically this is not
necessary as the registers are used after the I/O operation completes. It might be necessary if an I/O
operation reads three words and only used the first and third. Then we would have to extend the
lifetime of the second one.

The rule for transfer register lifetimes is that the lifetime extends beyond the I/O instruction until
one of the following:

• An I/O instruction to the same queue generates a signal, and then that signal is consumed.

• The lifetime is explicitly ended via the .io_completed directive (see Section 2.8.10).

• The end of the defining block is reached.

Based on the I/O instruction, the queue may or may not be known. For MEv2, the queue is almost
always unknown, with a few exceptions detailed below.

Note also that the word “queue” in this context refers to a logical queue, which may or may not
represent a physical queue. For example, two operations that are stored on the same physical queue
but which are processed in such a way that they may become reordered may be represented for the
purpose of this section as being on two different queues.
74 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.9 Assembler Optimizer

The optimizer reduces execution time by performing the following optimizations:

1. Branch target optimization: Branches to unconditional branches are modified to directly
branch to the ultimate branch target. This optimization is particularly useful for nested
conditional statements. In addition, branches to consecutive addresses are removed. This
optimization is useful when a conditional statement evaluates to false at assembly time.

2. Defer shadow filling: The defer shadows for branches and context swapping instructions are
filled by moving instructions down into their defer shadows.

3. NOP removal: Unnecessary NOPs (NOPs that are not required to avoid violating timing
constraints) are removed. For example, NOPs can be used to hide the latency between a
local_csr_wr to an index register and the use of that index register. If the use of the index
register were to be moved in a previous optimization step, then one or more of the NOPs might
become unnecessary and would be removed.

4. NOP replacement: NOPs that cannot be safely removed in the above optimization step will be
replaced by moving instructions down.

The optimizer is enabled via a Workbench dialog box or command-line option. Once enabled, the
optimizer can be disabled and re-enabled for specific code sections by using the #pragma optimize
directive described in section Section 2.11.2.

The following nonsensical example illustrates each type of optimization.

Un-optimized code:

label#:

.if (x==y)

 .if (x==1)

immed[z,0]

.endif

.elif (x>y)

immed[z,1]

.endif

#define i 1

#define j 2

.if (i==j)

alu[z,z,+,1]

.endif

alu[z,z,+,2]

local_csr_wr[ACTIVE_LM_ADDR_0,0]

nop

nop

nop

alu[z,z,+,*l$index0]

crc_be[crc_32,z,z]
nop
crc_be[crc_32,z,z]
Programmer’s Reference Manual 75

Intel® IXP2400/IXP2800 Network Processor
Assembler
br [label#]

Optimized code:

.if (x==y)

label#:

alu[--,l0000!x,-,l0000!y]

bne[l000_01#]

.if (x==1)

alu[--,l0000!x,-,1]

; BRANCH TARGET OPTIMIZATION: changed branch label from l001_01# to l000_end#.

bne[l000_end#]

.endif

.elif (x>y)

l001_01#:

l001_end#:

br[l000_end#], defer[1]

; BRANCH LATENCY FILL OPTIMIZATION: the microword below was "pushed" down
; position

immed[l0000!z,0]

l000_01#:

alu[--,l0000!x,-,l0000!y]

ble[l000_02#]

immed[l0000!z,1]

.endif

.if (i==j)

; BRANCH TARGET OPTIMIZATION: removed branch to next address.

; br[l002_01#]

; The following microwords are unreachable and have been commented out

; alu[l0000!z,l0000!z,+,1]

; End commenting out unreachable code

.endif

l000_02#:

l000_end#:

l002_01#:

l002_end#:

local_csr_wr[active_lm_addr_0,0]

nop

nop

; NOP REPLACEMENT OPTIMIZATION: the microword below was "pushed" down 4

;positions

alu[l0000!z,l0000!z,+,2]

alu[l0000!z,l0000!z,+,*l$index0]

crc_be[crc_32,l0000!z,l0000!z]

; NOP OPTIMIZATION: removed unnecessary NOP.

; nop

br[label#], defer[1]

; BRANCH LATENCY FILL OPTIMIZATION: the microword below was "pushed" down 1
; position

crc_be[crc_32,l0000!z,l0000!z]
76 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.10 Assembler Directives

This section defines the Assembler directives are supported by the assembler

2.10.1 Summary of Directives

Table 2-11. Assembler Directives (Sheet 1 of 3)

Type Directive Arguments
Expanded Description

pr
ep

ro
ce

ss
or

Assembler
Loops

#for No Repeat following lines based on a const
expression.

#repeat, #while Yes Repeat following lines based on a const
expression.

#endloop N/A End repeated lines.

Assembler
Macros

#macro No Start defining a macro.

#endm N/A Finish defining a macro.

Conditional
Assembly

#ifdef, #ifndef No Conditionally skip following lines.

#if, #elif

 Yes,
including

“defined(nam
e)”

Conditionally skip following lines based on a
const expression.

#else, #endif N/A Conditionally skip following lines.

Error Reporting #error Displays a message and optionally aborts
processing.

File Inclusion #include No Start reading lines from another file.

Token
Replacement

#define

#define No Define an expandable token.

#define_eval Yes Define an expandable token to a const
expression.

#undef No Undefine an expandable token.

Structured
Assembly

.if, .elif Yes

Generate ME instructions that are executed at
runtime.

.if_unsigned,

.elif_unsigned Yes

.else, .endif N/A

.while Yes

.while_unsigned Yes

.endw N/A

.repeat N/A

.until Yes

.until_unsigned Yes

.break, .continue Yes
Programmer’s Reference Manual 77

Intel® IXP2400/IXP2800 Network Processor
Assembler
A
ss

em
bl

er
Import Variable .import_var Defines a set of symbolic names that will be

imported by the linker.

Local Regions
.begin Defines a region of code and a new set of

registers that are only visible within that
region..end

Local Regions
old form

.local Older form of region definition, supported for
compatibility with older code..endlocal

Register
declaration .reg

Declares register symbolic names which will
be allocated to physical registers by the
assembler.

Initialization .init Initializes all or part of a block of memory or a
register.

Manage register
and signal usage
warnings

.set

.set_sig

.set_rd

.set_wr

These directives generate no code, affecting
“used before set” warnings for registers and
signals.

Extend or define
register lifetime

.use

.use_rd

.use_wr

These directives generate no code, but tell the
assembler registers in question are being
used up to the point where they are not.

Signal
completion of I/O
operation

.io_completed

.io_completed_type

These directives generate no code, telling the
assembler that an I/O operation has been
completed.

Manual Register
& Signal
Specification

.addr Preferred form to manually allocate registers
and signals.

Old form of
Manual Register
Specification

.areg

.breg

.$reg

.$$reg

Older forms to manually allocate registers.

Optimization
Directives #pragma optimize This directive provides precise control over the

optimizations performed by the assembler.

Subroutine
Definition

.subroutine

.endsub
Define a region of code containing a
subroutine.

Memory
Allocation

.local_mem

.global_mem

Allocate a block of memory for a shared
resource (i.e., SRAM, DRAM, SCRATCH, or
local memory).

Local Memory
Mode

.local_mem0_mode

.local_mem1_mode
Set local memory mode to either abs or rel

Number of
Contexts .num_contexts Set context mode for the microengine to 4 or 8

threads.

Neighbor Mode
Directive .init_nn_mode

Set the initial NN_MODE in the CTX_ENABLE
register, either “neighbor” or “self”. If two
different values are specified, an error results.
If no value is specified, the default value is
"neighbor".
Note that this is handled by the loader and
does not generate any microcode.

.xfer_order Define an ordering of transfer registers.

Table 2-11. Assembler Directives (Sheet 2 of 3)

Type Directive Arguments
Expanded Description
78 Programmer’s Reference Manual

Transfer Order .xfer_order_rd
.xfer_order_wr

.xfer_order_rd and .xfer_order_wr are
obsolete -- do not use.

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.11 Directives Definitions

2.11.1 Token Replacement (#define, #undef)

The #define directive causes subsequent instances of the identifier to be replaced with the token
string. After this directive, the identifier is referred to as an expandable token. The #undef directive
removes the definition for the given identifier.

Macros and expansion tokens share the same name space (i.e. it is illegal to have a macro with the
same name as a #define token).

.

Note that there cannot be any spaces between “identifier” and the “(“.

This facility is essentially equivalent to that of the C-processor. The expansion of arguments,
however, is handled in a similar manner to arguments for macros defined with #macro.

There is a variation of #define that defines the replacement for the identifier as the value of const-
expr. If the identifier is previously defined, then it is redefined. This is primarily designed for use
within assembly loops. The constant expression can evaluate to either a numeric constant or to an
identifier. For details on identifier expressions, see Section 2.6.3, “Constant Expressions (const-
expr)”.

.

Li
nk

er
Linker Directives

.image_name

.entry

.page

.ucode_size

The following directives are passed through
the assembler to the linker and are listed
without comment.

Table 2-11. Assembler Directives (Sheet 3 of 3)

Type Directive Arguments
Expanded Description

Instruction Format

#define identifier token-string

#define identifier(arg1, ...) token-string

#undef identifier

Instruction Format

#define_eval identifier const-expr
Programmer’s Reference Manual 79

Intel® IXP2400/IXP2800 Network Processor
Assembler
.

2.11.2 Optimization Directives

The "#pragma optimize" directive allows the various assembler optimizations to be individually
disabled or re-enabled for specified blocks of code. The syntax is as follows:

#pragma optimize("optimization-list", {on | off})

The optimization-list specifies the types of optimizations to enable or restore. An empty list
specifies all types of optimizations. Values are:

Examples

Note that the following would be valid:

#define_eval foo 123

#define_eval foo foo + 123 /* assuming foo is initially numeric */

#define_eval foo abc

#define_eval foo strleft(abcd, 2) /* evaluates to ab */

but the following would not be:

#define_eval foo abc def

This is because "abc def" is not a valid expression.

Table 2-12. Optimization List for #pragma optimize Directive

Optimization
Type Description

b Fill defer shadows (bubbles) (see Section 2.9, item 2).

n Optimize NOPs (see Section 2.9s., items 3 and 4).

t Optimize branch targets, (see Section 2.9, item 1).

d
All of the above execution speed optimizations (b,n, and t), optimize
branch targets, fill defer shadows, and replace/remove NOPs (see
Section 2.9). Equivalent to specifying “tbn”.

f Try to automatically fix A/B Bank conflicts (see Section 2.8.11).

s Try to automatically spill GPRs into local memory (see Section 2.8.12).

empty string Equivalent to specifying all of the above.
80 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
Specifying "off" marks the instructions following the #pragma optimize directive as not subject to
optimization. Specifying "on" marks subsequent instructions as subject to the specified
optimizations.

These directives can nest. That is, conceptually, there is a count for each type of optimization that
starts at zero. When a “#pragma optimize("optimization-list", off)” directive is seen, the count is
incremented. When an “#pragma optimize("optimization-list", on)” directive is seen, the count is
decremented. Optimizations are disabled whenever the count is greater than zero. The rationale for
this is that a macro may want to disable optimizations for a sequence within itself, but if the caller
had previously disabled optimizations, then the macro should not “accidentally” turn them back on.
It is an error if the count ever goes negative. For example, it would be an error if the first such
directive seen in a function is “#pragma optimize("optimization-list", on)”. Note that this directive
only turns optimizations off or restores them; it cannot turn them on if the user did not specify
optimizations via the command line arguments.

2.11.3 Loops

2.11.3.1 For Loops (#for, #endloop)

Repeats the text-lines with the identifier taking on each of the listed values. The identifier behaves
as if it were the target of a #define. That is, it is set at a global scope, overwriting any existing
definition. After the loop is ended, the identifier continues to exist with the last value specified in
the directive.

.

2.11.3.2 Repeat Loops (#repeat, #endloop)

Repeats text-lines for the indicated number of times. If const-expr evaluates to a negative number,
an error results.

Examples

#pragma optimize(“fs”, off) ;Turn off A/B conflict fixing and spill
;optimizations

#pragma optimize(“”, on) ;Turn on all optimizations

Instruction Format

#for identifier [arg1, arg2, ...]

text-lines

#endloop

Examples

#for id[1,2,3]

immed[reg,id]

#endloop

Assembles to:
immed[reg,1]

immed[reg,2]

immed[reg,3]
Programmer’s Reference Manual 81

.

2.11.3.3 While Loops (#while, #endloop)

This repeats text-lines as long as the expression evaluates to a nonzero value.
.

2.11.4 Macros (#macro, #endm)

A macro is a series of directives and instructions grouped together as a single command. Macros
are identified by an identifier and optional parameters can be passed to the macro for processing.

.

Instruction Format

#repeat const-expr

...text-lines...

#endloop

Examples

#repeat (2)

immed[reg,5]

#endloop

Assembles to:
immed[reg,5]

immed[reg,5]

Instruction Format

#while const-expr

...text-lines...

#endloop

Examples

#define LOOP 3

#while (LOOP > 0)

immed[reg1,5]

#define_eval LOOP (LOOP-1)

#endloop

Assembles to:
immed[reg,5]

immed[reg,5]

immed[reg,5]

Instruction Format

#macro identifier(arg1, arg2, ...)

...text-lines...

#endm

Intel® IXP2400/IXP2800 Network Processor
Assembler
References to macros are defined by:

These references are replaced by text-lines, and instances of the parameters in the text-lines are
replaced by the macro arguments. Any leading or trailing spaces in macro arguments are ignored
by the assembler. If a label is supplied before the macro reference, it is inserted before the first line
in text-lines. Additionally, labels appearing in text-lines have the label from the reference
prepended. If there is no label in the reference, the labels appearing in text-lines have an
automatically generated prefix prepended.

For example, consider the code fragment:

These two references would expand into:

Note that a comma enclosed within a set of parenthesis or brackets within the token list in the
macro reference does not serve to separate the items–it is considered part of the item itself. For
more information about commas within parentheses and brackets, see Section 2.6.5

Optionally, a signal can be replaced with the construct
signals(sig1, sig2, …)

Where sigN can also be of the form signals(…).

The effect is the same as if sigN were entered as an operand of the ctx_arb. For example:
ctx_arb[siga, sigb, signals(sigc, sigd, signals(sige, sigf)), sigg, signals]

Instruction Format

[label] identifier[arg1, arg2, ...]

Examples

#macro test1[param1,param2]

immed[param1,param2]

mylab#:

alu[reg,reg1,+,param1]

br=0[mylab#]

#endm

l1#: test1[reg2, 5]

l2#: test1[reg2, 6]

Examples

l1#:

immed[reg2, 5]
l1_mylab#:

alu[reg,reg1,+,reg2]

br=0[l1_mylab#]
l2#: immed[reg2, 6]

l2_mylab#:

alu[reg,reg1,+,reg2]

br=0[l2_mylab#]
Programmer’s Reference Manual 83

Intel® IXP2400/IXP2800 Network Processor
Assembler
would be equivalent to:
ctx_arb[siga, sigb, sigc, sigd, sige, sigf, sigg]

Note that “signals” with no arguments becomes effectively a null signal, although this can also
be done using “sig_none”. This mechanism is primarily designed to pass a variable number of
signals into a macro using a single argument.

2.11.5 Conditional Assembly (#Ifdef, #If, #else, #elif, #endif)

Conditional directives are similar to the directives used with a standard CPP. If the identifier is
defined (for #ifdef), then the following text-lines are included in the output. If the identifier is not
defined, the else lines are included. There may be multiple #elif clauses. If none of the #if or #elif
clauses are true and there is an #else clause, those text lines will be included. Identifier replacement
is done within the constant expression.

Conditional assembly constructs can nest.

Examples

#macro foo[sigs]

ctx_arb[sigs]

#endm

…

foo[signals(sig1,sig4)]

Examples

#macro add(out_dst, in_src_a, in_src_b)

inside_label#:

alu[out_dst, in_src_a, +, in_src_b]

#endm

The following code:
label_outside#:

immed[reg,4]

add(result, reg, 6)

Assembles to:
label_outside#:

immed[reg,4]

add(result, reg, 6)

m000_inside_label#:

alu_shf[result, reg, +, 6,0]

Table 2-13. Condition directives

#if #else #elif

#ifdef #ifndef #endif
84 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
.

.

2.11.6 Error Reporting (#error)

Print the specified string with the specified error severity level
.

The severity is an optional integer with a default value of 4 and the following meanings:

Instruction Format

#ifdef identifier ; ifdef can be replaced with ifndef

...text-lines...

#else

...text-lines...

#endif

Instruction Format

#if const-expr

...text-lines...

#elif const-expr

...text-lines...

#else

...text-lines...

#endif

Examples

#define test_val 5

#if (test_val > 3)

immed[reg,1]

#elif (test_val < 3)

immed[reg,2]

#else

immed[reg,3]

#endif

Assembles to
immed[reg,1]

Changing the test_val to 0 assembles to:
immed[reg,2]

Changing the test_val to 3 assembles to:
immed[reg,3]

Instruction Format

#error [severity] "message string"
Programmer’s Reference Manual 85

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.11.7 File Inclusion (#include)

The line of code with the include directive will be replaced with the contents of the named file.
There is no default extension. The correct extension must be supplied. The search path consists of
the current directory of the file containing the directive, directories specified on the command line,
and directories specified via environment variables. Files that are included can themselves include
other files. Note that there is no form using angle brackets (< >), which is different from CPP.

.

2.11.8 Import Variable (.import_var)

Defines a set of symbolic names that will be imported by the linker. These directives may be used
wherever a numeric constant may be used. A typical example would be assigning the value of a
symbol to a register via the immed opcode.

The result of this directive is that the portions of the assembled instructions that would have
contained the constant value are left void, and directives are passed to the linker so that the linker/
loader can insert the constants in the appropriate places. A potential problem is that the constants
being imported may be as large as 32 bits, whereas immediate data within the instruction are
limited to smaller values. Thus, the programmer may want to load some part of the imported
constant other than the lower order bits. To allow this, the reference to the imported symbol may be
suffixed with >>num, which indicates that the imported value should be right-shifted by the
specified amount (num), and the low order bits of the result are used. If no such suffix is applied,
the effect is the same as a suffix of >>0.

Imported variables can also be used in constant expressions, for example:

immed[reg, ((sym1 >> 8) & 0xFFFF), <<8]

.

The scope of imported variables is essentially global, although the symbol can only be referenced
after its definition.

Table 2-14. Error Reporting Severity Levels

severity level meaning

0 Information

1 Warning

2 Error

3 Error; abort processing this file

4 Error; abort all processing

Instruction Format

#include “filename.ext”

Instruction Format

.import_var sym1 sym2 ...
86 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
Import variable names should be prefixed with “i$” so that the preprocessor function isimport()
(see Table 2-4) can correctly identify the name as an import variable. If isnum() is used on an
import variable which does not have the “i$” prefix, the import_var directive will generate a
warning (see Appendix A, “UCA Warnings” warning A.53).

2.11.9 Code block directive (.begin, .end)

The block directives define a region of code and a new set of registers that are only visible within
that region.

Blocks are explicitly delimited by “.begin” and “.end” directives:

Instruction Format

An older syntax for defining block structure is still supported, but should not be used for new code:
.

.begin

.reg name1 name2 ...

...

.end

Instruction Format- older supported form

.local reg1 reg2...

.endlocal
Programmer’s Reference Manual 87

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.11.10 Manual Register Allocation (.addr)

In rare cases, a programmer may want to manually allocate registers. As shown below, specifying a
relative register allocates an entire row of addresses, while specifying an absolute register allocates
only one cell.

Caution should be used to avoid allocating the same register location more than once. For example,
it is probably wrong to assign a relative GPR to 2, and an absolute GPR to 50, because relative
GPR 2 allocates the entire row of absolute GPR addresses: 2, 18, 34, and 50.

Note: If any GPR is manually allocated, all GPRs must be manually allocated. The same is true for
neighbor registers. However, transfer registers and signals can be partially manually allocated and
the rest automatically allocated.

Manual register and signal allocation is now done with the following directive:

.addr name address [bank]

name: Name of register or signal

address: Address of register

bank: In the case of GPRs,bank should either be “a” or “b”

The type of register determines where the register is allocated. If name matches both a GPR and a
signal, then if the bank token is present, it is assumed to be the GPR; otherwise it is assumed to be
the signal.

Table 2-15. Register Mapping - Context Relative to Absolute

Context
Relative
address

Absolute Address

Context Relative 0-15 for ctx:

0 1 2 3 4 5 6 7

0 0 16 32 48 64 80 96 112

1 1 17 33 49 65 81 97 113

2 2 18 34 50 66 82 98 114

3 3 19 35 51 67 83 99 115

4 4 20 36 52 68 84 100 116

5 5 21 37 53 69 85 101 117

6 6 22 38 54 70 86 102 118

7 7 23 39 55 71 87 103 119

8 8 24 40 56 72 88 104 120

9 9 25 41 57 73 89 105 121

10 10 26 42 58 74 90 106 122

11 11 27 43 59 75 91 107 123

12 12 28 44 60 76 92 108 124

13 13 29 45 61 77 93 109 125

14 14 30 46 62 78 94 110 126

15 15 31 47 63 79 95 111 127
88 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
Note that this directive does not declare a register or signal. If register declaration is required, then
the registers and signals must be declared before being allocated.

A manually allocated register/signal should probably be considered volatile (see Section 2.8.2.1,
“Preferred Register Declaration Syntax” and Section 2.8.6, “Signal Declarations”), but there may
be cases (e.g. for debugging) where the volatile declaration is not needed.

Assigning two registers to the same address will result in a warning. The reason it is not considered
an error is that there may be cases were it is useful.

For compatibility with earlier releases, the existing style of register declarations will still be
supported. For example:
.areg name 4

is equivalent to:
.addr name 4 a

The instruction formats of the older style of register declarations are shown below.
.

2.11.11 Memory Allocation Directives

These directives allow you to “allocate” a block of memory from a shared resource (e.g. SRAM,
DRAM, SCRATCH). The first two directives allocate the block:

.local_mem [keyword] name region size [align]

.global_mem name region size [align]

keyword: Optionally, the keyword global may be used.

name: Name of block being defined

region: In which region is the block being allocated. This can take one of
the values: SRAMn, DRAM, SCRATCH, or LM, where n is 0, 1, 2, ... and
specifies the SRAM channel.

size: Size of region in bytes

align Required alignment (in bytes). Default is 4.

The difference between these two directives is in what happens if two or more microengines
declare a block with the same name. Any which are declared with .local_mem result in an
individual block for the ME. All which are declared with .global_mem refer to the same block.

The result within the assembler is that there is a symbolic constant, defined by name, that behaves
as if it were an imported symbol and whose value is the base address of the block.

The region LM corresponds to the microengine's local-memory and is only valid for .local_mem (it
can't be shared between microengines). For this region, the alignment must be a multiple of 4.

Instruction Format

.areg reg num

.breg reg num

.$reg reg num

.$$reg reg num
Programmer’s Reference Manual 89

Intel® IXP2400/IXP2800 Network Processor
Assembler
If two blocks are declared in the same scope, then the parameters must be "compatible", that is all
parameters must either be equal or zero. It is an error to have all of the parameters zero. For
example, a programmer could define the same block several times with sizes of 10, 10, 0, 0, 10,
and 0. But they could not define the same block with sizes of 10 and 14.

The scoping of name is the same as for the .reg directive, as modified by the global keyword (see
Section 2.8.2, “Register Declarations”)1. To reference a block defined in another module, you
should define a global block with the same name. In this case, either the sizes must match, or all but
one of the sizes must be zero.

Note that imported symbols and memory block names share the same name-space as GPR register
names. Imported symbols (and hence memory block names) take precedence over register names.
That is, if there is (in scope) a GPR with the name XXX and a memory block with the name XXX,
then references to XXX will be taken as the memory block.

2.11.12 Memory Block and Register Initialization

This directive is used to initialize part or all of a memory block or a register:

.init name[+offset] value1 value2 …

name: Name of block or register being referenced

offset: A byte offset from the start of the block. The offset must be a
multiple of 4.

valuen: Value to be stored at the designated address.

The offset can only be used if name references a memory block. If name references a register, then
the register must be declared with a global or module scope, and only one value can be specified.

Each value defines one 32-bit word. Each value can take one of four forms:

• A numeric constant

• A previously defined memory block name (either in this region or another)

• A previously defined memory block name plus a constant (e.g. “x+5”).

• A constant expression contained within parenthesis.

Note that if the register is a transfer register that is declared as both a READ and WRITE register,
then both physical registers will be initialized. When initializing a relative register, the register is
initialized for all contexts.

A register or memory block can be initialized multiple times as long as the same value is used. In
some cases, such as when the initialization value involves remote values, the assembler cannot
perform this check and the check will be deferred to the linker/loader.

The actual initialization is handled by the micro-engine loader at load-time and no code is
generated by this directive.

1. More particularly, if “.local_mem” is used, then the block name is mangled to make different references unique. If “.global_mem” or
“.local_mem global” is used, then the block name is not mangled.
90 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.11.13 Local Memory Mode Directives

.local_mem0_mode type

.local_mem1_mode type

type: Either abs or rel

This sets the mode of the specified local memory index register. If the mode is not specified, it
defaults to “rel” (relative).

If the mode is set to “abs” (absolute), then all contexts share one physical register when accessing
local memory. When set to “rel”, each context has it’s own register. Note that the two registers (0
and 1) may be set differently.

This directive may be issued multiple times for a particular register. If any of the settings conflict,
however, an error is generated.

The results of this directive are passed along to the loader so that the MEv2 CSRs may be set
correctly.

2.11.14 Number of Contexts Directive

.num_contexts n

n: Number of contexts (8 or 4)

For MEv2, if this directive is not specified, it defaults to 8.

This directive can appear any number of times throughout the module, but if any conflict, the
assembler will generate an error.

2.11.15 Initial Next Neighbor Mode Directive

.init_nn_mode mode

mode: either "self" or "neighbor"

This sets the initial NN_MODE in the CTX_ENABLE register. If two different values are
specified, an error results. If no value is specified, the default value is "neighbor".

Note that this is handled by the loader and does not generate any microcode.

2.11.16 Operand Synonym (.operand_synonym)

Note: This directive is no longer supported, and use of it will generate an error. Use #define instead. The
following description is included to assist people who wish to understand and convert old code
which uses operand_synonym.

This directive defines synonym values for operands (for example, instruction token values
specified inside square brackets ([])) may be specified. This allows multiple names to exist for a
particular register, and allows numeric constants to be described in symbolic form.
Programmer’s Reference Manual 91

Intel® IXP2400/IXP2800 Network Processor
Assembler
In the syntax example, this directive defines a synonym for new_syn_name that is defined from
this point in the file to the end. After this directive, references to operand_name are equivalent to
references to new_syn_name. Note that references to operand_name above this directive refer to a
distinct register that is different from new_syn_name.

Note: To share registers, use a local regions command rather than an operand synonym.

There is no reason to use this directive; it is mainly supported for compatibility with earlier
versions. Use different registers rather than two names for the same register and use #define to
define symbolic constants.

.

2.11.17 Structured Assembly

The goal of these directives is to allow programmers to organize the control flow of their programs
into structured blocks as opposed to a sea of goto statements. These directives begin with a period
(.), not a pound sign (#).

Several variations are described in the following sections. These reference a conditional-
expression, which is described in Section 2.11.17.5.

2.11.17.1 Conditional (.if, .elif, .else, .endif, if_unsigned, .elif_unsigned)

The if, elif, else directives generate instructions specifying that if the conditional expression is true,
then the if text-lines will be executed.

.

Instruction Format

.operand_synonym operand_name new_syn_name

.operand_synonym name value

Instruction Format

if-part [elif-part]* [else-part] endif-line

if-part:if-line text-lines

if-line:.if cond-expr

elif-part:elif-line text-lines

elif-line:.elif cond-expr

else-part:else-line text-lines

else-line:.else

endif-line:.endif

To do an unsigned comparison, one would use these alternate directive forms:
.if_unsigned cond-expr
.elif_unsigned cond-expr
92 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
2.11.17.2 Repeat Loops (.repeat, .until)

The .repeat and .until directives generate instructions specifying that the text-lines will be executed
until the conditional expression is true. The conditional expression is evaluated after the loop is
executed.

2.11.17.3 While Loops (.while, .endw)

The .while and .endw directives generate instructions specifying that the text-lines will be executed
as long as the conditional expression is true. The conditional expression is evaluated before the
loop is executed.

.

2.11.17.4 Break and Continue

The break and continue directives generate instructions that skip the remaining portions of .while
and .repeat loops. The .break directive causes the loop to terminate, and execution continues at the
code following the loop. The .continue directive will cause the next iteration of the loop to occur,
provided that the loop condition allows it. That is, for a while loop, the next iteration will begin if
the loop condition is still true. For a repeat loop, the next iteration will begin if the loop condition is
false.

2.11.17.5 Conditional Expressions

A condition-expression is used to select the path for control flow in the previous constructs. The
expression has four forms:

• A constant

• A comparison of a register with either another register or a constant

• A comparison of a function against a constant

Instruction Format

repeat-line text-lines until-line

repeat-line:.repeat

until-line:.until cond-expr

To perform an unsigned comparison, use the following directive in place of the .until
.until_unsigned cond-expr

Instruction Format

while-line text-lines endw-line

while-line:.while cond-expr

endw-line:.endw

To perform an unsigned comparison, use the following directives in place of the .while:
.while_unsigned cond-expr

Instruction Format

.break

.continue
Programmer’s Reference Manual 93

Intel® IXP2400/IXP2800 Network Processor
Assembler
• A testing of the condition codes.

In the function form, the function can either access one bit of a register, one byte of a register, the
carryout, the context, an input state, or a signal. Conditional expressions have the following form:

Syntax:

cond-expr: cc-expr

non-cc-expr

non-cc-expr:const

eq-expr

gt-expr

log-expr

gt-expr: (reg-expr reg-op const)

(const reg-op reg-expr)

(reg-expr reg-op reg)

(reg reg-op reg-expr)

reg-expr: reg

reg shift-op const

reg shift-op reg

shift-op: >>

<<

reg-op: ==

!=

>

>=

<

<=

&

eq-expr: (func func-op const)

(const func-op func)

func

func: BIT(reg,pos)

!BIT(reg,pos)

BYTE(reg,pos)

COUT()

!COUT()

CTX()

INP_STATE(state)

!INP_STATE(state)

SIGNAL(signal)

!SIGNAL(signal)

func-op: ==

!=

cc-expr: =0

!=0

0

=0

<0

<=0

log-expr: (non-cc-expr log-op non-cc-expr)

log-op: ||

&&
94 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
This defines a condition-expression, used to select the path for control flow in the previous
constructs. The expression has four forms: a constant, a comparison of a register with either
another register or a constant, a comparison of a function against a constant, or a testing of the
condition codes. In the function form, the function can either access one bit of a register, one byte
of a register, the carryout, the context, an input state, or a signal.

When a function appears by itself, it is the same as function != 0. The not operator (!) can be
applied to functions that return a boolean result. Note that the gt-expr forms result in an ALU
opcode followed by a branch opcode. Note also that all numeric constants can be replaced by
constant expressions.

The pos and const values must fall into the following ranges (Table 2-5):

2.11.17.6 Errors

If the structured assembly constructs are not followed by valid instructions, you may get an error of
the form:

ERROR: Specified label, "l000_01#", does not exist.

This is caused by an attempt to branch out to the following (non-existent) instruction. The solution
is to provide at least one valid microword after these constructs.

For example, the following program fails with the above error:
.reg reg

.if (reg==1)

.endif

However, the error goes away if there is a nop added at the end:
.reg reg

.if (reg==1)

.endif

nop

The cause of the problem and the solution should be obvious if one examines the generated .ucp
file.

Table 2-16. pos and const Values

Function Pos Const

bit 0—31 0—1

byte 0—4 0—255

cout n/a 0—1

ctx n/a 0—7

inp_state n/a 0—1

signal n/a 0—1

n/a = not applicable
Programmer’s Reference Manual 95

2.11.18 Structured Assembly Usage Considerations

The while loop trades off microwords in favor of execution speed. In particular, the condition is
instantiated at the start of the loop and then repeated at the end of the loop. This avoids an extra
branch latency at the cost of one to three microwords. For example, the code segment:

Notice that the alu[--, reg and br instructions are repeated twice.

This is not the case for the repeat/until directives. These directives generate smaller code,
important for tight loops. For example, if one were to try to loop until a signal is set using a while
loop:

.while (reg > 0)

alu[reg,reg,-,1]

.endw

Generates code of the form:

alu[--,reg,-,0]

br<=0[l000_end#]

l000_start#:

alu[reg,reg,-,1]

l000_cont#: alu[--,reg,-,0]

br>0[l000_start#]

l000_end#:

.while (!signal(sram_sig))

.endw

Generates code of the form:

br_signal[sram_sig,l000_end#]

l000_start#:

l000_cont#:

br_!signal[sram_sig,l000_start#]

l000_end#:

Intel® IXP2400/IXP2800 Network Processor
Assembler
On the other hand, if you coded it as a repeat/until loop:

2.11.19 Warning Directives

Each warning will be associated with a numeric ID and a warning-level. The level indicates the
degree of seriousness of the warning. Level-1 is the most serious. Level-4 is the least serious. The
default is level-3. Additionally, there is a warning level parameter for the program run, which
determines which warnings are generated and which are suppressed. If the warning level is set to n,
then all warnings whose level is <= n will be presented. Those >n will be suppressed.

That is to say, warnings that may be of interest to the programmer under some circumstances, but
which would just be “noise” most of the time would be level-4 warnings. So by default, these
would not appear, but the user could cause these to be visible if desired. The warning level is set
with the following command line options:

-w Same as –W0
-Wn Set the warning level to n with 0 <= n <= 4
-WX Make all warnings (at or below the level given by –Wn) errors

Note that setting the warning level to zero effectively disables all warnings. Note also that -Wn and
–WX can both appear together.

Warnings can be modified using the following directives:
#pragma warning(spec:list,…)
#pragma warning(push)
#pragma warning(push,n)
#pragma warning(pop)

spec: Warning specifier from following table

list: One or more space separated warning identifier numbers

The push and pop pragmas save and restore the warning attributes and global warning level on a
stack. The (push,n) pragma also sets the global warning level to n.

.repeat

.until (signal(sram_sig))

You get the following much cleaner code:

l002_start#:

l002_cont#: br_!signal[sram_sig,l002_start#]

l002_end#:

Spec Meaning

once Only display the listed warnings once.

default Reset the warning attributes to their default value.

1,2,3,4 Apply the indicated warning level to the listed warnings

disable Disable the listed warnings

error Treat the listed warnings as errors.
Programmer’s Reference Manual 97

Intel® IXP2400/IXP2800 Network Processor
Assembler
In the case that a warning applies to multiple lines, and these lines have different attributes, the
most conservative attributes will be used. That is, if either line treats it as an error, the warning will
be assigned to that line, otherwise the line which applies the lowest level to that warning will be
used. In short, in such cases, the only way to suppress such a warning is to suppress it at both lines.

The approximate meanings of the warning levels are:

2.12 Subroutine Definition (.subroutine, .endsub)

Define a region of code containing a subroutine. These directives do not directly affect the
generated code. They are used to correctly define the live range of registers as described in
Section 2.8.5, “Register Lifetime Details”.

2.13 Linker Directives

The following directives are passed through the assembler to the linker and are listed without
comment:

Level Meaning

1 Severe Warning: The code is probably incorrect. This is not an error because assembly can
continue and it is slightly possible that the code may not be incorrect.

2 Medium Warning: This is the default level for warnings.

3
Minor Warning: The code can probably assemble correctly, but it might contain bugs. The
programmer should probably take a look at these to be safe, but these can probably be
safely ignored.

4 Informative Warning: This is a low-level warning that may warn about possible performance
issues or other minor things that do not directly affect the correctness of the program.

Instruction Format

.subroutine

.endsub

Table 2-17. Linker Directives

Directive Description

.image_name

.entry

.page

.ucode_size

The following directives are passed through the assembler to the linker
and are listed without comment.
98 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler
100 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
MEv2 Instruction Set 3

For quick reference, the microengine instruction set is summarized and grouped by function in
Table 3-1. In the sections that follow, the instructions are defined in alphabetical order.

Table 3-1. Summary of Microengine Instructions

Instruction Description Section

General Instructions

ALU Perform an ALU operation. Section 3.2.1

ALU_SHF Perform an ALU and shift operation. Section 3.2.2

ASR Perform an arithmetic right shift on a register Section 3.2.3

BYTE_ALIGN_BE, BYTE_ALIGN_LE Concatenate data in two registers and put any four
bytes into the destination register. Section 3.2.11

CRC_LE, CRC_BE
Compute CRC_LE (Little Endian) .

Compute CRC_BE (Big Endian).
Section 3.2.21

DBL_SHF Concatenate two 32-bit words, shift the result, and
save a 32-bit word. Section 3.2.23

MUL_STEP Multiply two unsigned numbers. Section 3.2.38

FFS Determine position number of LSB set in a register. Section 3.2.26

POP_COUNT Determine the number of bits set in a register. Section 3.2.41

IMMED Load immediate 16-bit word and sign extend or
zero fill with shift. Section 3.2.29

IMMED_BO, IMMED_B1,
IMMED_B2, IMMED_B3 Load immediate byte to a field. Section 3.2.30

IMMED_WO, IMMED_W1 Load immediate 16-bit word to a field. Section 3.2.31

LD_FIELD, LD_FIELD_W_CLR Load byte(s) into specified field(s). Section 3.2.33

LOAD_ADDR Load instruction address. Section 3.2.34

LOCAL_CSR_RD, LOCAL_CSR_WR Read and write Microengine Local CSRs. Section 3.2.35,
Section 3.2.36

NOP No operation and virtual no operation Section 3.2.39

Branch and Jump Instructions

BCC Branch on condition code. Section 3.2.4

BR Branch unconditionally. Section 3.2.5

BR_BCLR, BR_BSET Branch on bit clear or bit set. Section 3.2.6

BR=BYTE, BR!=BYTE Branch on byte equal or not equal to literal. Section 3.2.7

BR=CTX, BR!=CTX Branch on current context. Section 3.2.8

BR_INP_STATE, BR_!INP_STATE Branch on event state (e.g., SRAM done). Section 3.2.9

BR_SIGNAL, BR_!SIGNAL Branch if signal deasserted. Section 3.2.10

JUMP Jump to label. Section 3.2.32

RTN Return from a branch or a jump. Section 3.2.42
Programmer’s Reference Manual 101

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
I/O and Context Swap Instructions

DRAM (Read and Write) Move data between the DRAM and the Microengine
D-Transfer registers. Section 3.2.24

DRAM (RBUF and TBUF) Move data from the R Buffer to the DRAM or from
the DRAM to the T Buffer. Section 3.2.25

CAP (Enumerated CSR Addressing) CSR Access Proxy. Access to Fast write CSRs. Section 3.2.18

CAP (Calculating Addressing) CSR Access Proxy. Access to Global CSRs and
other Microengine CSRs. Section 3.2.19

CAP (Reflect) Move data between different Microengines Transfer
Registers. Section 3.2.20

CTX_ARB Perform context swap and wake on event. Section 3.2.22

HALT
Puts the current thread to sleep without waking up
any other thread and interrupts the Intel XScale®
core.

Section 3.2.27

HASH Issue a request to Hash Unit to perform an n-bit
hash. Section 3.2.28

MSF Issue a request to the Media Switch Fabric. Section 3.2.37

PCI Issue a request to the PCI Unit. Section 3.2.40

SCRATCH (Read and Write) Move data between the Microengines and scratch
memory. Section 3.2.43

SCRATCH (Atomic Operations) Issue a reference to perform an atomic operation on
data in scratch memory Section 3.2.44

SCRATCH (Ring Operations) Issue Scratch Ring put or get commands to scratch
memory. Section 3.2.45

SRAM (Read and Write) Move data between the Microengines and SRAM Section 3.2.46

SRAM (Atomic Operations) Issue a reference to perform an atomic operation on
data in SRAM. Section 3.2.47

SRAM (CSR) Issue a reference to read or write the SRAM
channel Control and Status Registers. Section 3.2.48

SRAM (Read Queue Descriptor) Issue a memory reference to an SRAM Channel to
read the Queue Descriptor into the SRAM. Section 3.2.49

SRAM (Write Queue Descriptor) Issue a memory reference to an SRAM Channel to
move data from the Queue Descriptor into SRAM. Section 3.2.50

SRAM (Enqueue) SRAM enqueue. Section 3.2.51

SRAM (Dequeue) SRAM dequeue. Section 3.2.52

SRAM (Ring Operations) Issue an SRAM Ring put or get command to the
SRAM. Section 3.2.53

SRAM (Journal Operations) Issue an SRAM Journal command to the SRAM
Channel. Section 3.2.54

MEv2 CAM Instructions

CAM_CLEAR Clears all entries in the Microengine CAM. Section 3.2.12

CAM_WRITE_STATE Write the value for the State bits into the specified
Microengine CAM entry. Section 3.2.17

Table 3-1. Summary of Microengine Instructions (Continued)

Instruction Description Section
102 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.1 Instruction Syntax

This section describes the syntax for the MEv2 instruction set.

3.1.1 Restricted and Unrestricted Src and Dest Operands

Many instructions specify one or two source operands, and/or one destination operand. The choice
of source and destination addressing is specified for each of those instructions as either Restricted
or Unrestricted. (Table 3-2). Unrestricted indicates that there are enough bit in the instruction
encoding to support all the possible options for source and destination addressing while restricted
indicates that there are less bits and only a subset of the unrestricted options are possible

All instructions that specify a destination can also specify “No Destination” (using the -- notation).
This is typically used to set ALU condition codes for branches without modifying any registers.

CAM_READ_TAG Read the tag for the specified CAM entry into the
destination register. Section 3.2.13

CAM_READ_STATE Read the State bits for the specified CAM entry. Section 3.2.15

CAM_LOOKUP Search the Microengine CAM for the tag value. Section 3.2.13

CAM_WRITE Write a value to the tag for the specified CAM entry. Section 3.2.16

Table 3-1. Summary of Microengine Instructions (Continued)

Instruction Description Section

Table 3-2. Source/Destination Choices for Addressing Modes

Register Type Unrestricted Addressing Restricted Addressing

GPR
Context-Relative

Absolute
Context-Relative

S Transfer
Context-Relative

Indexed

Context-Relative

Indexed

D Transfer
Context-Relative

Indexed

Context-Relative

Indexed

Neighbor
Context-Relative

Indexed
Indexed

Local Memory
Indexed

Offset (0-15)

Offset (0-7)

Note 5

Other
immed

no dest “--”

immed

no dest “--”

NOTES:
1. 8-bit Immediate data can be specified as a source for both Unrestricted and Restricted with the exception

of I/O instructions which uses 7-bit immediate data.
2. When a Transfer Registers is used as source, the Read Transfer Register is used. When a Transfer

Register is used as a destination, the Write Transfer Register is written
3. The notation “--” when used as a source means no source, used for single operand instructions
4. The notation “--” when used as a destination means no destination; typically used to set Condition Codes.
5. The post increment and post decrement operations are considered index mode operations and therefore

can not be performed in the restricted address mode.
Programmer’s Reference Manual 103

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.1.1.1 Two Source Operand Selection Rules

For instruction types that specify two source operands, there are some restrictions as to which
registers can be used. Table 3-3 shows the legal combinations of A and B operands. For example,
the “No” in column 4, row 4 means that two D Transfer Registers can not be used as source
operands in an instruction.

The above can be summarized by three rules:

• Can’t use the same source as both A and B operands.

• Can’t use any of S Transfer, D Transfer and Neighbor as both A and B operands.

• Can’t use immediate as both A and B operands.

3.1.2 I/O Instruction Format

The MEv2 instruction set contains a class of instructions that are referred to as I/O instructions.
The I/O instructions include:

All these instructions generate a command that is issued to an SRAM Controller, DRAM
controller, SHAC, PCI, or MSF and all have the common properties described in this section.

3.1.2.1 Source Operands (src_op1, src_op2)

Two source operand parameters are required to form an address for the sram, dram, msf, pci,
scratch, and cap (calculated addressing) I/O instructions. The address is formed by the src_op1 +
src_op2. When the instruction specifies a reference count (ref_cnt) greater than 1,the address
specifies the first address of the burst.

The rules specified in Table 3-3 are imposed when specifying src_op1 and src_op2.

Table 3-3. Legal Combinations of Source Operands

A Source

B Source

GPR
(A Bank)

GPR
(B Bank)

S
Transfer

D
Transfer Neighbor Local

Memory Immed

GPR (A Bank) No Yes Yes Yes Yes Yes Yes

GPR (B Bank) Yes No Yes Yes Yes Yes Yes

S Transfer Yes Yes No No No Yes Yes

D Transfer Yes Yes No No No Yes Yes

Neighbor Yes Yes No No No Yes Yes

Local Memory Yes Yes Yes Yes Yes No Yes

Immediate Yes Yes Yes Yes Yes Yes No

• CAP

• DRAM

• MSF

• PCI

• SCRATCH

• SRAM

• HASH
104 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.1.2.2 Reference Count (ref_cnt)

The reference count specifies the burst size of the reference. The reference count specified in the
instruction is always 1 to 8 and counts from 1 to 16 can be specified using an indirect reference.
How this number is interpreted is dependent on the I/O instruction and the command. Table 3-4
shows the how the count value is interpreted for the I/O instructions. When Ref_cnt is interpreted
as 8-bytes words, and the data is moved to or from the ME transfer registers, two transfer registers
are used for each transfer.

3.1.2.3 Optional Tokens (opt_tok)

Most of the I/O instructions support optional tokens. The common tokens are defined in this
section and each instruction definition lists the specific token it supports. Tokens specific to an
instruction are defined in the instruction definition.

3.1.2.3.1 Indirect References

The I/O instructions supports an indirect reference optional token. When the indirect_ref optional
token is specified, the output of the ALU from the previous instruction is used to modify one or
more parameters within an instruction. The format of the indirect data is specified in the instruction
definition. All Reserved fields noted as RES, must be written to 0 else unpredictable behavior may
result.

An override bit is provided on a per-data field basis to indicate which parameter should be
modified. If OV for the field is a ‘0’, the field value is not used (and its field value has no effect). If
OV for the field is a ‘1’ the field is used in place of the information supplied in the instruction.

Table 3-4. Reference Count Sizes

Ref_cnt Increments I/O Instructions (Commands)

4 byte word CAP, PCI, SCRATCH, SRAM, DRAM (CSR), MSF (read, write)

8 byte word DRAM(read, write, tbuf_wr, rbuf_rd, MSF (read64, write64)

Table 3-5. I/O Command Token Descriptions

Token Description

ctx_swap[sig_name] Put the thread to sleep and wake it when the specified signal event (sig_name) is
asserted. Not used with sig_done.

sig_done[sig_name] Signal the ME when the reference completes using the specified signal (sig_name) and
continues executing. Not used with ctx_swap.

defer[m]
Execute “m” instruction(s) following this instruction before branching or switching
contexts. The value of “m” is dependent on the instruction and can range from 1 to 3.
Only used with ctx_swap.

indirect_ref
Use the ALU output of the previous instruction to redefine the instruction. The format of
the ALU output data of the previous instruction is dependent on the I/O instruction and is
defined in the individual I/O instruction definitions.

ignore_data _error Signal the ME thread upon completion if a data error occurs on a read operation. If this
token is not specified, the ME thread is not signalled.

ind_targets[me1,
me2, …]

Informs the assembler that the target of an IO instruction is in a different ME (me1, me2,
....). As a result, any generated signals and transfer registers are considered to be
remote and are looked up in the targets. to use this optional token, the indirect reference
must override the ME number.
Programmer’s Reference Manual 105

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
The format for the cap[fast_wr] command using the alu keyword in the data field differs from the
other formats. In this case the full 32-bits of the ALU output are used as the fast_wr data and there
are no override bits.

The following notes pertain to indirect references in general.

• ME Number, Context Number, and Transfer Register Number can all be overridden separately.

• There are two aspects of the transfer that are affected when ME Number is overridden—which
ME’s transfer register(s) is the source/destination of data, and which ME is signaled.

• When the Transfer Register Number is overridden it is treated as an absolute register number.
If Context Number is also overridden it determines where the signal is delivered, but not the
Transfer Register Number.

• When the Transfer Register Number is not overridden, and Context Number is, Context
Number specifies where the signal is delivered, as well as the Context Number of the transfer
register.

3.1.2.3.2 Changing the Ref_Cnt using Indirect References

There is an issue that concerns the assembler when redefining the ref_cnt (reference count) field
using an Indirect References. The issue is that since the indirect reference data is specified at
runtime, the assembler’s register allocator has no way of knowing how many registers will be used
for the I/O instruction. To handle this, the reference count field in the instruction parameter list can
take values of the form:

max_nn where nn is a decimal constant between 1 and 16.

The max_nn keyword is only valid if the indirect_ref optional token is specified. It allows the
programmer to manually indicate to the assembler the maximum number of 32-bit/64-bit words
that will be specified indirectly.

Note that the register allocator needs to know the maximum number of registers used so that it can
allocate the correct number of registers. A program that species a maximum number and uses fewer
registers will still work correctly. However, a program that species a maximum number and uses
more register will not work correctly and is considered a programming error.

Another issue involves the fact that the maximum reference count that can be encoded in the
instruction is 8, whereas the maximum reference count that can be specified indirectly is 16. A
count value must be specified in the instruction (stored in the control store) during assembly time
regardless of whether or not the indirect_ref optional token is specified, and since the instruction
only supports a three bit count field, the assembler will use the lesser of nn and 8.

Also, it is possible to specify the indirect_ref and not change the ref_cnt value in the indirect
reference data, however this is considered a programming error and will not be detected by the
assembler.

Note that if the maximum count is less than or equal to 8, then the programmer can still use
max_nn although there would be no difference if they used nn directly.

Additionally, the reference count field can take the value "max". This is equivalent to "max_nn",
except that the count is taken by counting how many registers follow the given register in
.xfer_order order.

The following are valid examples of this:
sram[read, $xfer, a1, a2, 6], indirect_ref
106 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
sram[read, $xfer, a1, a2, max_6], indirect_ref

sram[read, $xfer, a1, a1, max_12], indirect_ref

In these example, the reference counts encoded in the instruction are: 6, 6, 8.

The following are invalid examples:
sram[read, $xfer, a1, a2, 12], indirect_ref

sram[read, $xfer, a1, a1, max_12]

The problem with the first of these is that “12” is too large to be encoded in the instruction. The
problem with the second is that “indirect_ref” is not specified.

The REF CNT field in the indirect reference specifies the number of words to be transferred to or
from a set of Transfer Registers, where words are 8 bytes in length for DRAM transfers and 4 bytes
in length for other units transfers. Since the Transfer Registers are selected by specifying the
starting Transfer Register and a reference count it is possible to specify a REF CNT and the transfer
register that the results in a data transfer that extends beyond a thread’s relatively addressed
Transfer Register set. The programmer can ensure that a Transfer Register does not extend into the
next thread by specifying a contiguous series of transfer registers using the.xfer order directive,
specifying the first register in the series, and ensuring that the REF_CNT does not exceed the
number of registers specified in the series.

3.1.2.3.3 Indirect References to another ME

Through an indirect reference, one ME can direct the I/O operation to another ME. For example,
ME-0 can issue an sram/read operation and have the read results (and signal) go to ME-1. To do
this, the assembler must be informed as to the actual target ME. Note that it is also possible to have
multiple targets, in the case where the actual ME is selected at run-time. To do this, add the
optional token “ind_targets[me1, me2, …]” to the I/O instruction. This is only valid if the indirect-
ref token is also specified.

When the “ind_targets” token is provided, then it is assumed that the indirect reference is going to
override the ME. This causes two things to happen: Any generated signal is considered to be
remote and is looked up in the targets (if there are multiple targets, then it must have the same
address in all specified MEs). Secondly, the register specified in the I/O operation is assumed to be
remote and is similarly looked up. Even if the transfer register address is being overridden, a valid
remote register must be specified. This is needed to determine whether the remote register is an S-
xfer or D-xfer. If the transfer register address is not overridden, the transfer register used is for the
same context as the issuing context. If the issuing ME is running an odd context and the remote ME
is in 4-context mode, then the results are unpredictable. On the other hand, if the transfer register
address is overridden, then the context can be explicitly specified.

When the ind_targets token is provided, then there is no need to “complete” the I/O operation
because the I/O operation is not referencing any of the local transfer registers or signals. As such, it
is not allowed to use the ctx_swap token with targets.

It is required that the number of contexts in the remote and local ME are the same. If the number of
contexts in the remote ME is not the same as in the local ME, the behavior is undefined

For example, if ME-0 wanted to issue an SRAM read to ME-1, this would be coded:
ME-0:

.reg remote $x

.sig remote sig

#define ME 1

alu[--,--,b,(0x20 | ME), <<26]
Programmer’s Reference Manual 107

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
sram[read, $x, addr1, addr2, 1], sig_done[sig], ind_targets[ME]

; no I/O operation to complete

ME-1:

.reg visible $x

.sig visible sig

ctx_arb[sig]

; $x now has the sram value

3.1.2.4 Event Signals

The I/O instructions provide the option of having the ME signaled when data is pushed or pulled
from the transfer register. The I/O instruction/commands can be classified into types based on the
number of signals that can be requested:

• Single signal provided when data is pulled from the write transfer register

• Single signal provided when data is pushed to the read transfer register

• Two signals provided one for each case above

• No signal provide because data is neither pulled or pushed

There is an additional special type that is required only when memory channels are interleaved as is
the case for the IXP2800 DRAM channels. Although there is only one DRAM channel on the
IXP2400 network processor, two signals are used as well.

• Two signals are provided. If a burst splits between two DRAM channels, each channel will
generate a signal. If the burst does not split between two channels, a single channel will
generate both signals.

Signals are generated and tested using the instructions listed in Table 3-6.

Table 3-6. Instructions and Optional Tokens that use Signals (Sheet 1 of 2)

Option Description

Instruction Optional Token

Any I/O
Instruction

sig_done[sig_name]
1.Request Signal

2.Thread continues to execute

ctx_swap[sig_name]

1.Request Signal

2.Put thread to sleep

3.Wake when signaled and clear signal.

Although this performs the same functionality as a I/O instruction with
a sig_done optional token and a ctx_arb instruction it still only takes a
single cycles to execute the I/O instruction.

Note: ctx_swap is not used with instructions that require two signals
108 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
The assembler supports a register allocator that manages the allocation of signals for the
programmer. The programmer uses symbolic names for signals rather than explicit numbers, and
the assembler assigns one or more signal numbers from a pool of fifteen signal (1-15). The
hardware requires that I/O instructions which require two signals be assigned consecutive signals
and that the first signal is an even number. The assembler hides this restriction from the
programmer except for the special case of the br_signal and br_!signal instructions. These
instructions can only test one signal at a time so the programmer must provide two branch
instructions to test both signals. The first signal is specified by the name, the second signal is
specified as the name with a "+1" suffix (example: signal_name+1) .Table 3-7 lists the number of
signals generated for each instruction and instruction command.

This document uses the following terminology in the instruction set definitions Section 3.2) to
refer to signals names that are mapped to two signals:

• sig_name: One signal is provided

• sig_name2: Two signals are provided

For example ctx_swap[sig_name] or ctx_swap[sig_name2].

br_signal
br_!signal

1.Test Signal

2.Branch appropriately and clear signal if set.

See Note 1

ctx_arb

1.Put thread to sleep

2.Wake when signaled and clear signal.

The ctx_arb instruction supports waking on a list of signals.

See Note 1

Note 1: These instructions use signals requested by an I/O instruction that specifies the sig_done[sig_name]
optional token.

Table 3-6. Instructions and Optional Tokens that use Signals (Sheet 2 of 2)

Option Description

Instruction Optional Token

Table 3-7. Signal Restrictions for each I/O Instruction [command] (Sheet 1 of 3)

Instruction Command Valid Signals Comments

DRAM

read

write

tbuf_wr

rbuf_rd

2 to 15

Pair beginning with
even signal numbers

IXP2800: If a bursts splits between two DRAM
channels, each channel will generate a signal. If the
burst does not split between two channels a single
channel will generate both signals.

IXP2400: If a bursts splits between two DRAM
banks, the controller will generate a separate signal
when each bank operation is complete. If the burst
does not split between two banks, the controller will
generate both signals when the single bank
operation is complete.

CAP

read

write
1 to 15

fast_wr Not Used

hash_48

hash_64

hash_128

not applicable
2 to 15

Pair beginning with
even signal numbers

The “name” signal will be even and it indicates that
data has been pulled from the transfer register, while
“name” + 1 signal indicates that the hash result has
been returned to the transfer register.
Programmer’s Reference Manual 109

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
MSF

read, write,
read64, write64 1 to 15

fast_wr Not Used

PCI
read

write
1 to 15

SCRATCH

read,

write
1 to 15

incr,

decr
Not Used

swap,

test_and_set,

test_and_clr,

test_and_add,

test_and_sub

2 to 15

Pair beginning with
even signal numbers

The “name” signal will be even and it indicates that
data has been pulled from the transfer register, while
“name” + 1 signal indicates that the swapped or pre-
modified data has been returned to the transfer
register.

test_and_incr,
test_and_decr,

set,

clr,

add,

sub

1 to 15

get,

put
1 to 15

Table 3-7. Signal Restrictions for each I/O Instruction [command] (Sheet 2 of 3)

Instruction Command Valid Signals Comments
110 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.1.3 Condition Codes

There are four Condition Codes, which are modified by some instructions, and are used for branch
instructions. The Condition Codes are Negative (N), Zero (Z), Carry Out (C), and Overflow (V).
Condition Code operation for all instructions is shown with the instruction description.

Note: There is only one set of Condition Codes, not a set per Context. Therefore a Context can not count
on the Condition Code values before a context swap being available when it resumes from that

SRAM

read,

write

1 to 15

test_and_incr,
test_and_decr

set, clr, add,
1 to 15

Regular version:
test_and_set,
test_and_clr,
test_and_add,

swap

2 to 15

Pair beginning with
even signal numbers

The “name” signal will be even and it indicates that
data has been pulled from the transfer register, while
“name” + 1 signal indicates that the swapped or pre-
modified data has been returned to the transfer
register.

No-pull version
(IXP28xxRev B):
test_and_set,
test_and_clr,
test_and_add,

swap

1 to 15

incr,

decr
Not Used

csr_rd,

csr_wr
1 to 15

rd_qdesc_head,

rd_qdesc_tail,
1 to 15

wr_qdesc,

wr_qdesc_count
Not Used

enqueue

enqueue_tail
Not Used

dequeue 1 to 15

get 1 to 15

put
2 to 14

Pair beginning with
even signal numbers

The “name” signal will be even and it indicates that
data has been pulled from the transfer register, while
“name” + 1 signal indicates that the ring status word
has been returned to the transfer register.

journal 1 to 15

fast_journal Not Used

Table 3-7. Signal Restrictions for each I/O Instruction [command] (Sheet 3 of 3)

Instruction Command Valid Signals Comments
Programmer’s Reference Manual 111

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
swap, because other Contexts will change them. However, if only one Context is enabled,
Condition Codes will not be changed when that Context swaps.

3.1.4 Branch Defer (defer[n])

Any instruction that makes a branch decision may cause one or more instructions in the execution
pipeline to be aborted. An instruction that makes a branch decision does so based on the result of an
operation that occurs in either the P1, P2, P3, or P4 instruction pipeline stage. The specific pipeline
stage where the decision is made depends on the instruction.

The purpose of a deferred branch is to reduce or eliminate aborted instructions in the execution
pipeline. In a deferred branch, an instruction that follows a branch decision is allowed to execute
before the branch takes effect (i.e., the effect of the branch is “deferred” in time). If useful work can
be found to fill the wasted cycles after the branch instruction, the branch latency can be hidden.

Deferred branches are supported using the “defer” optional token within an instruction. The
Assembler’s optimizer can automatically insert the deferred token and re-arrange the instructions
or the programmer can do it manually.

Examples: Defer[n] branch taken

alu[temp2,temp1,-,temp3] ; always executed

bgt[branch_taken_label#], defer[3] ; (assume branch taken)

alu[temp,temp,+,temp2] ; always executed (would have been aborted)

alu[temp,--,B,temp2] ; always executed (would have been aborted)

alu[--,temp,-,temp3] ; always executed (would have been aborted)

alu[temp,--,B,temp1] ; not executed (brand was taken)

Table 3-8 shows the legal defer options for all branch types. The no defer column gives the number
of instruction cycles lost on a taken branch if no defer token is used. Each deferred instruction
reduces that penalty by one. The defer [n] columns indicate if that defer amount is allowed for the
given branch type.

Table 3-8. Branch Defer Summary

Branch Type

Penalty
on

Branch
Taken

with no
defer

defer allowed?

defer
[1]

defer
[2]

defer
[3]

Unconditional Branch 2 Yes Yes No

Context Swap (note) 2 Yes Yes No

Conditional Branch when condition was set earlier
than prior instruction 2 Yes Yes No

Conditional Branch when condition was set in prior
instruction 3 Yes Yes Yes

Jump 4 Yes Yes Yes
112 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.1.5 Coding Restrictions

This section lists coding restrictions.

Note: This section is not complete at this time. A more complete list will be added in future revs.

3.1.5.1 Branch or I/O Command in Defer Slot

A branch, jump, context swap or any IO command cannot be placed in a defer slot.

RTN 4 Yes Yes Yes

Branch on Input State 4 Yes Yes Yes

Branch on Signal 4 Yes Yes Yes

BR_Byte 4 Yes Yes Yes

BR_Bit 4 Yes Yes Yes

Note: Context Swap applies to I/O reference instructions that support the ctx_swap optional
token and the ctx_arb instruction. These instructions are special cases of branch instructions
since they put a thread to sleep and branch to the instruction for the next context.

Table 3-8. Branch Defer Summary

Example 3-1.

br[A#], defer[1]

br[B#] ; illegal

Example 3-2.

ctx_arb[sig_name], defer[1]

jump[offset, A#]; illegal

Example 3-3.

sram[write, $data, base, offset, 1], ctx_swap[sig_name], defer[1]

ctx_arb[sig_name] ; illegal

Example 3-4.

alu[i,i,+,1]

BEQ[A#], defer[2]

alu[i,i,+,1]

BLT[B#] ; illegal

Example 3-5.

jump[offset, A#], defer[3]

alu[i,i,+,1]

alu[i,i,+,1]

ctx_arb[1] ; illegal

Example 3-6.

ctx_arb[voluntary], defer[1]

sram[read, $data, base, offset, 1],sig_done; illegal
Programmer’s Reference Manual 113

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.1.5.2 Condition Codes after Swap

Condition Codes are not stored during a context swap.

3.1.5.3 CAM after Conditional P3 Branch

An operation that modifies any state of the CAM cannot immediately follow a conditional P3
branch. CAM state includes Tags, State bits, and LRU/MRU logic.

(Note that a CAM can be placed in the defer slot of a Conditional P3 branch.)

Example 3-7.

br[A#], defer[1]

sram[read, $data, base, offset, 1]; illegal

Example 3-1.

ctx_arb[voluntary]

BEQ[A#] ; illegal

Example 3-2.

ctx_arb[1]

BEQ[A#] ; illegal

Example 3-3.

sram[write, $data, base, offset, 1], ctx_swap[sig_1]

BEQ[A#] ; illegal

Example 3-4.

sram[write, $data, base, offset, 1], ctx_swap[sig_1]

br=byte[i,1,0x0, A#]; legal

Example 3-1.

br=byte[i,1,0x0, A#]; p3 branch

CAM_Write_State[entry , 0x2]; illegal

Example 3-2.

br=byte[i,1,0x0, A#]; p3 branch

alu[i,i,+1]

CAM_Write_State[entry , 0x2]; legal
114 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.1.5.4 Dram with Swap

A dram command cannot use a ctx_swap token.

3.1.5.5 BCC after Conditional P3 branch

Can not be execute a BCC instruction immediately after a branch conditional instruction that
makes a branch decision in ME P3 pipe stage.

Example 3-3.

br=byte[i,1,0x0, A#], defer[1]; p3 branch

CAM_Write_State[entry , 0x2]; legal

Example 3-4.

br_signal [1, A#] ; p3 branch

Lookup_CAM[status, lookup_value]; illegal

Example 3-5.

jump [offset, A#] ; p3 jump

Lookup_CAM[status, lookup_value]; legal

Example 3-1.

dram[read, $$val, base, offset, 1], ctx_swap[sig_4]; illegal

Example 3-2.

dram[read, $$val, base, offset, 1], sig_done[sig_4] ; legal

ctx_arb[sig_4, sig_6], and ; legal

Example 3-3.

sram[read, $val, base, offset, 1], ctx_swap[sig_4]; legal

Example 3-1.

br=byte[i,1,0x0, A#]; p3 branch

BNE[A#] ; illegal

Example 3-2.

br_bset[reg, bit, A#]; p3 branch

BLT[A#] ; illegal
Programmer’s Reference Manual 115

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Example 3-3.

br!signal[1,A#]; p3 branch

BEQ[A#] ; illegal

Example 3-4.

br_inp_state[state, A#]; p3 branch

BGT[A#] ; illegal

Example 3-5.

jump[offset, A#]; p3 branch

BLT[A#] ; legal

Example 3-6.

br=byte[i,0,0x0, A#]; p3 branch

br=byte[i,1,0x0, B#]; legal

br=byte[i,2,0x0, C#]; legal

br=byte[i,3,0x0, D#]; legal

Example 3-7.

br=byte[i,1,0x0, A#]; p3 branch

alu[i,i,+,1]

BEQ[A#] ; legal

Example 3-8.

br=byte[i,1,0x0, A#],defer[1]; p3 branch

alu[i,i,+,1]

BEQ[A#] ; legal

Example 3-9.

alu[i,i,+,1]

br=byte[i,1,0x0, A#]; p3 branch

nop

BEQ[A#] ; legal
116 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.1.5.6 LOCAL_CSR_RD cannot be in last defer slot.

A LOCAL_CSR_RD cannot be placed in the last defer slot of a branch, ctx_arb, ctx_swap, jump,
or rtn.

3.1.5.7 LOCAL_CSR_WR to ACTIVE_LM_ADDR, or CAM_LOOKUP

LOCAL_CSR_WR to ACTIVE_LM_ADDR, or CAM_LOOKUP (with lm_addr#[num] token)
placed in the defer slots of a CTX_ARB instruction (or command instruction with ctx_swap token)

Example 3-1.

ctx_arb[1], defer[1]

local_csr_rd[ACTIVE_LM_ADDR_0]; illegal

Example 3-2.

ctx_arb[1], defer[2]

local_csr_rd[ACTIVE_LM_ADDR_0]; legal

immed[temp, 0]

Example 3-3.

br[label#] defer[2]

alu[i,i,+,1]

local_csr_rd[NN_GET]; illegal

Example 3-4.

rtn[address], defer[3]

alu[i,i,+,1]

local_csr_rd[Active_CTX_sts]; legal

immed[temp,0]

Example 3-5.

rtn[address], defer[3]

alu[i,i,+,1]

nop

local_csr_rd[Active_CTX_sts]; illegal

Example 3-1.

ctx_arb[1], defer[1]

local_csr_wr[ACTIVE_LM_ADDR_0, value]; illegal
Programmer’s Reference Manual 117

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.1.5.8 LOCAL_CSR_RD must be followed by an IMMED op

LOCAL_CSR_WR to ACTIVE_LM_ADDR or CAM_LOOKUP (with lm_addr#[num] token)
placed in the defer slots of a CTX_ARB instruction (or command instruction with ctx_swap token)

Example 3-2.

ctx_arb[1]

local_csr_wr[ACTIVE_LM_ADDR_0, value]; legal

Example 3-3.

ctx_arb[1], defer[1]

local_csr_wr[ACTIVE_LM_ADDR_1_BYTE_INDEX, value]; illegal

Example 3-4.

ctx_arb[1], defer[1]

local_csr_wr[INDIRECT_LM_ADDR_1, value]; legal because not ACTIVE_LM_ADDR

Example 3-5.

ctx_arb[1], defer[2]

alu[i,i,+1]

local_csr_wr[ACTIVE_LM_ADDR_0, value];illegal

Example 3-6.

ctx_arb[1], defer[1]

cam_lookup[@gpr_a,@gpr_b], lm_addr0[value] ; illegal

Example 3-1.

local_csr_rd[NN_get]

local_csr_wr[NN_put, 0x2] ;illegal

Example 3-2.

local_csr_rd[ACTIVE_LM_ADDR_0]

local_csr_rd[NN_PUT] ; illegal

Example 3-3.

local_csr_rd[ACTIVE_CTX_STS]

alu[i,i,+1] ; illegal
118 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.1.5.9 I/O Command Op after LOCAL_CSR_WR

If an I/O instruction (i.e. cap, msf, scratch, dram, pci, sram, or hash) is issued within 3 instruction
cycles of a local_csr_write, the CSR should not be used or read within the 3 cycle window.

Example 3-4.

local_csr_rd[ACTIVE_CTX_STS]

immed[temp,0] ; legal

Example 3-1.

local_csr_wr[active_lm_addr_1, reg_a18]

dram[write , $$dxfer15, *l$index1, offset, ref_cnt], sig_done[sig_2] ;illegal

Example 3-2.

local_csr_wr[active_lm_addr_0, reg_a18]

immed_w1[reg_a31, 0]

sram[read , $sxfer15, *l$index0, offset, ref_cnt], ctx_swap[sig_2]; illegal

Example 3-3.

local_csr_wr[active_lm_addr_0, reg_a18]

alu [reg_a1, --, B, reg_a2]

immed_w0[reg_a2, 0]

sram[read , $sxfer15, *l$index0, offset, ref_cnt], sig_done[sig_2]; illegal

Example 3-4.

local_csr_wr[t_index, reg_a18]

immed [reg_a1, 0]

sram[read , $sxfer15, reg_a1, offset, ref_cnt], sig_done[sig_2]

alu [*$index++, --, B, reg_a10]; illegal

Example 3-5.

local_csr_wr[t_index, reg_a18]

immed [reg_a1, 0]

sram[read , $sxfer15, *$index, offset, ref_cnt], sig_done[sig_2]; illegal
Programmer’s Reference Manual 119

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.1.5.10 LOCAL_CSR_WR to CTX_WAKEUP_EVENTS

LOCAL_CSR_WR to CTX_WAKEUP_EVENTS should be directly followed by a CTX_ARB[--]
or should be inside the defer shadow of a CTX_ARB[--]

Example 3-6.

local_csr_wr[t_index, reg_a18]

immed [reg_a1, 0]

sram[read , $sxfer15, *l$index0, offset, ref_cnt], sig_done[sig_2]

local_csr_rd [t_index] ; illegal

immed [tmp, --]

Example 3-7.

local_csr_wr[active_lm_addr_0, reg_a18]

nop;

nop;

nop;

sram[read , $sxfer15, *l$index0, offset, ref_cnt], sig_done[sig_2]; legal

Example 3-8.

local_csr_wr[active_lm_addr_0, reg_a18]

alu [reg_a1, *l$index0, + reg_b1] ; legal

immed_w0[*l$index0, 0] ; legal

immed_w1[*l$index0, 1] ; legal

sram[read , $sxfer15, *l$index0, offset, ref_cnt], sig_done[sig_2]; legal

Example 3-9.

local_csr_wr[t_index, reg_a18]

immed [reg_a1, 0]

sram[read , $sxfer15, reg_a1, offset, ref_cnt], sig_done[sig_2]

nop

alu [*$index++, --, B, reg_a10] ; legal

Example 3-1.

local_csr_wr[ACTIVE_CTX_WAKEUP_EVENTS, value]

ctx_arb[--]; legal

Example 3-2.

ctx_arb[--], defer[1]

local_csr_wr[ACTIVE_CTX_WAKEUP_EVENTS, value]; legal

Example 3-3.

local_csr_wr[ACTIVE_CTX_WAKEUP_EVENTS, value]

alu[temp, temp, +, 1]; unrelated instruction

ctx_arb[--]; illegal
120 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.1.6 MEv2 Permitted Coding Sequences

The following coding sequences are permitted on MEv2. They are illustrated for clarification, as
they may have been illegal in the IXP1200 MEv1 and/or illegal in earlier versions of MEv2.

3.1.6.1 Swap after P3 Branch

P3 branches (including jumps) CAN be followed by a context swap.

3.1.6.2 Memory Command after P3 Branch

P3 branches (including jumps) CAN be followed by a command memory op.

Example 3-1. Example 1

br=byte[i,1,0x0, A#]; p3 branch

ctx_arb[1] ; legal

Example 3-2. Example 2

jump[offset, A#]; p3 branch

ctx_arb[1] ; legal

Example 3-3. Example 3

br!signal[1,A#]; p3 branch

ctx_arb[1] ; legal

Example 3-4. Example 4

br_bset[reg, bit, A#]; p3 branch

ctx_arb[1] ; legal

Example 3-1. Example 1

br_bset[reg, bit, A#]; p3 branch

sram[write, $data, base, offset, 1], ctx_swap[sig_1]; legal

Example 3-2. Example 1

jump[offset, A#] ; p3 branch

dram[write, $data, base, offset, 2]; legal
Programmer’s Reference Manual 121

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.1.6.3 Swap after Voluntary Swap.

A context swap instruction CAN immediately follow a voluntary context swap.

3.1.6.4 A LOCAL_CSR_WR in defer slot

A LOCAL_CSR_WR can be placed in the last defer slot of a branch, ctx_arb, ctx_swap, jump, or
rtn.

(NOTE: there is a separate rule whereby it is illegal to write the ACTIVE_LM_ADDR’s in any
defer slot. see Table 3.1.5.7. Also, some CSR’s like, USTORE_ERROR_STATUS are read-only.)

Example 3-1. Example 1

ctx_arb[1]

ctx_arb[2] ; legal

ctx_arb[voluntary] ; legal

ctx_arb[3] ; legal

Example 3-2. Example 2

ctx_arb[1]

ctx_arb[2] ; legal

ctx_arb[voluntary] ; legal

alu[i,i,+,1]

ctx_arb[3] ; legal

Example 3-3. Example 3

ctx_arb[voluntary]

sram[write, $data, base, offset, 1], ctx_swap[sig_1]; legal

Example 3-1. Example 1

ctx_arb[1], defer[1]

local_csr_wr[NN_get, value]; legal

Example 3-2. Example 2

ctx_arb[1], defer[2]

Alu[i,i,+,1]

local_csr_wr[NN_put, 0x0]; legal

Example 3-3. Example 3

alu[i,i,+,1]

BEQ[label#], defer[1]

local_csr_wr[Same_ME_Signal,sig_value]; legal
122 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.1.6.5 LOCAL_CSR_WR can be followed by a LOCAL_CSR_RD or
LOCAL_CSR_WR.

Example 3-4. Example 4

br[label#], defer[2]

alu[i,i,+,1]

local_csr_wr[Same_ME_Signal,sig_value]; legal

Example 3-5. Example 5

rtn[address], defer[3]

alu[i,i,+,1]

immed[temp,2]

local_csr_wr[Active_ctx_future_count,fut_count]; legal

Example 3-1. Example 1

local_csr_wr[NN_get, value]

local_csr_wr[NN_put, 0x2]; legal

Example 3-2. Example 2

local_csr_wr[Same_ME_Signal,sig_value]

local_csr_rd[NN_put] ; legal

immed[tmp,0]
Programmer’s Reference Manual 123

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2 Instruction Set

3.2.1 ALU

Perform an ALU operation on one or two source operands and deposit the result into the
destination register. Update all ALU condition codes according to the result of the operation.

Instruction Format

alu[dest, A_op, alu_op, B_op]

Parameter Descriptions

Parameter Description

dest Unrestricted destination that gets written with the result of the operation.

A_op, B_op Unrestricted source operand.

alu_op

ALU
Operation ALU operation Description

+ A operand + B operand.

+16 A operand + (0xFFFF & B). B operand truncated to the least
significant 16 bits (upper 2 bytes zeroed).

+8 A operand + (0xFF & B). B operand truncated to the least
significant 8 bits (upper 3 bytes zeroed).

+carry A operand + B operand + previous carry-in (carry-in equals
previous carry-out).

-carry A operand - B operand - inverse of carry

– A operand - B operand.

B–A B operand - A operand.

B B operand (A operand is ignored).

~B Inverted B operand (A operand is ignored).

AND A operand AND B operand (Bit-wise AND).

~AND Inverted A operand AND B operand (Bit-wise AND).

AND~ Inverted B operand AND A operand (Bit-wise AND).

OR A operand OR B operand (Bit-wise OR).

XOR A operand XOR B operand (Bit-wise exclusive OR).
124 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Condition Codes Affected

ALU
Operation N Z V C

+

Result[31] == 1 Result[31:0] == 0

Set if a signed
overflow occurs.

Note 1

Carry Out from
Adder[31]

+16

+8

+carry

-carry

–

B–A

B

Cleared Cleared

~B

AND

~AND

AND~

OR

XOR

1. Logically equivalent to Carry from Adder[31] XOR Carry from Adder[30].
Programmer’s Reference Manual 125

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.2 ALU_SHF

Perform an ALU operation on one or two operands and deposit the result into the destination
register. The B operand is shifted or rotated prior to the ALU operation.

If the programmer uses the command ALU in the place of ALU_SHF, the assembler will replace it
with ALU_SHF.

Instruction Format

alu_shf[dest, A_op, alu_op, B_op, B_op_shf]

Parameter Descriptions

Parameter Description

dest Restricted destination that gets written with the result of the operation.

A_op, B_op Restricted source operand.

alu_op

ALU
Operation ALU operation Description

B B operand (A operand is ignored).

~B Inverted B operand (A operand is ignored).

AND A operand AND B operand (Bit-wise AND).

~AND Inverted A operand AND B operand (Bit-wise AND).

AND~ Inverted B operand AND A operand (Bit-wise AND).

OR A operand OR B operand (Bit-wise OR).

B_op_shf

Shift
Operation Shift operation Description

<<n Left shift n bits, where n = 1 through 31.

<<indirect

Left shift by an amount specified in the lower 5 bits of the A
operand of the previous instruction (the previous instruction must
be one of the following ALU or ALU_SHF instructions -- A AND B,
A AND ~B, A XOR B, A OR B). The lower 5 bits of the A operand
should be n, where n is the desired left shift amount.

>>n Right shift n bits, where n = 1 through 31.

>>indirect Right shift by the amount specified in the lower 5 bits of the A
operand of the previous instruction.

<<rotn Left rotate n bits, where n = 1 through 31.

>>rotn Right rotate n bits, where n = 1 through 31.

NOTE:
1. Indirect rotates are not allowed. However, an indirect rotate can be emulated

by copying the desired register value to be rotated into a register on the
opposite bank and then performing a dbl_shf instruction.

2. There should be no spacing between the shift symbol (<< , >>) and the
variable or keyword that follows it.
126 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Condition Codes Affected

ALU Operation N Z V C

B

Result[31] == 1 Result[31:0] == 0 Cleared Cleared

~B

AND

~AND

AND~

OR
Programmer’s Reference Manual 127

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.3 ASR

Perform an arithmetic shift right on a register. This is a two-instruction sequence. The first
instruction must be a shift and/or logical instruction that puts a value in the MSB (bit 31) of the
result (this instruction must be one of the following ALU or ALU_SHF instructions -- B, ~B,
AND, ~AND, AND~, OR, XOR). The ASR instruction shifts a source register right, replicating
that MSB into vacated bit positions.

Instruction Format

asr[dest, src, shf_amt]

Parameter Descriptions

Parameter Description

dest Restricted destination that gets written with the result of the operation.

src Restricted source operand.

shf_amt
>>n Shift the src operand right by n bits. Valid values of n are 1 to 31.

>>indirect Right shift by the amount specified in the lower 5 bits of the A
operand of the previous instruction.

Condition Codes Affected

N Z V C

Result[31] == 1 Result[31:0] == 0 Cleared Cleared

Examples

Example 1: Sign extend the low byte of r0 which is 0x80. The result is 0xFFFF FF80.

immed_w0[r0,0x80]

immed_w1[r0,0x0]

alu_shf[r0, --, B, r0, <<24] ; bit 31 of result determines sign

asr[r0, r0, >>24]

Examples

Example 1: Sign extend the low byte of r0 which is 0x80 using run time shift value. The result is
0xFFFF FF80.

immed_w0[r0,0x80]

immed_w1[r0,0x0]

alu[r1, --, B, 24] ; Set up the shift amount

;

alu[--, r1, OR, 1] ; a_op of this instr is r1 = 24

alu_shf[r0, --, B, r0, <<indirect] ; Bit 31 of result determines sign

 ; Result = 0x8000 0000

alu[--, r1, OR, r0] ;a_op of this instr = r1 = 24

asr[r0, r0, >>indirect]; shift >> 24 & sign extend 0x8000 0000

; result is 0xffff ff80
128 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.4 BCC (BRANCH CONDITION CODE)

Branch to an instruction at a specified label based on the condition codes set by a previous
instruction. The condition codes supported are Sign (N), Zero (Z), Overflow (V), and Carry (C)
out.

Table 3-9 describes the supported Bcc instructions. The terms less, greater, and equal are used for
comparison of signed numbers while higher, lower, and same are used for unsigned numbers.
Subtracting two operands using the ALU instruction performs comparisons (for example A-B is
equivalent to compare A to B). A Branch if Higher function can be performed by reversing the
operands of the subtraction operation and using BLO and a Branch Lower or Same can be
performed by reversing the operands of the subtraction operation and using BHS. Since there is
more than one way to interpret a particular state of the Condition Codes, the assembler provides
more than one mnemonic for some states.

Instruction Format

bcc[label#], opt_tok

Table 3-9. Branch on Condition Code Instructions

Mnemonic
(Bcc) Description Condition Code Data Type

BEQ Br if equal Z == 1 Both

BNE Br if not equal Z == 0 Both

BMI Br sign set (minus) N == 1 Signed

BPL Br sign clear (plus) N == 0 Signed

BCS Br if carry set
C == 1

Both

BHS Br if higher or same Unsigned

BCC Br if carry clear
C == 0

Both

BLO Br if lower Unsigned

BVS Br if overflow set V == 1 Signed

BVC Br if overflow clear V == 0 Signed

BGE Br if greater or equal N == V (XNOR) Signed

BLT Br if less than N != V (XOR) Signed

BGT Br if greater than (Z == 0) AND (N == V) Signed

BLE Br if less than or equal (Z == 1) OR (N != V) Signed

Parameter Descriptions

Parameter Description

label# Symbolic label corresponding to the address of an instruction

opt_tok defer[n] (n= 1 to 3) refer to Section 3.1.4

Condition Codes Affected

N Z V C

Not Affected
Programmer’s Reference Manual 129

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.5 BR

Branch unconditionally.

Instruction Format

br[label#], opt_tok

Parameter Descriptions

Parameter Description

label# Symbolic label corresponding to the address of an instruction

opt_tok defer[n] (n= 1 to 2) refer to Section 3.1.4

Condition Codes Affected

N Z V C

Not Affected
130 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.6 BR_BCLR, BR_BSET

Branch to the instruction at the specified label when the specified bit of the register is clear or set.

Instruction Format

br_bclr[reg, bit_position, label#], opt_tok

br_bset[reg, bit_position, label#], opt_tok

Parameter Descriptions

Parameter Description

reg Restricted source operand.

bit_position A number specifying a bit position in a 32-bit word. Bit 0 is the least significant bit.
Valid bit_position values are 0 through 31.

label# Symbolic label corresponding to the address of an instruction

opt_tok defer[n] (n= 1 to 3) refer to Section 3.1.4.

Condition Codes Affected

N Z V C

Not Affected
Programmer’s Reference Manual 131

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.7 BR=BYTE, BR!=BYTE

Branch to the instruction at the specified label if a specified byte in a 32-bit word matches or
mismatches the byte_compare_value.

Instruction Format

br=byte[reg, byte_no, byte_compare_value, label#], opt_tok

br!=byte[reg, byte_no, byte_compare_value, label#], opt_tok

Parameter Descriptions

Parameter Description

reg Restricted source operand.

byte_no
A number specifying a byte in register to be compared with byte_compare_value.
Valid byte_no values are 0 through 3. A value of 0 refers to the byte in bit position
[7:0].

byte_compare
_value

Value used for comparison. Valid byte_compare_values are 0 to 255.

label# Symbolic label corresponding to the address of an instruction

opt_tok defer[n] (n= 1 to 3) refer to Section 3.1.4.

Condition Codes Affected

N Z V C

Not Affected
132 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.8 BR=CTX, BR!=CTX

Branch to the instruction at the specified label based on whether or not the current context is the
specified context number.

Instruction Format

br=ctx[ctx, label#], opt_tok

br!=ctx[ctx, label#], opt_tok

Parameter Descriptions

Parameter Description

label# Symbolic label corresponding to the address of an instruction

ctx
Context number. Valid ctx values are:
4 context mode: 0, 2, 4, 6
8 context mode: 0 through 7.

opt_tok defer[n] (n= 1 to 2) refer to Section 3.1.4.

Condition Codes Affected

N Z V C

Not Affected
Programmer’s Reference Manual 133

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.9 BR_INP_STATE, BR_!INP_STATE

Branch if the state of the specified state name is equal to 1 (BR_INP_STATE) or equal to 0
(BR_!INP_STATE). A state is information generated external to the Microengine, and sent as an
input to the Microengine.

Instruction Format

br_inp_state[state_name, label#], opt_tok

br_!inp_state[state_name, label#], opt_tok

Parameter Descriptions

Parameter State
Number

State Name Description

state_name

0 NN_Empty No valid data in NN_Ring from previous Neighbor ME.

1 NN_Full NN_Ring in the Neighbor ME is full.

2 SCR_Ring0_Status

Rev A -- Indicates if the Scratch Ring is full (above the
high water mark, which is a function of the Ring Size as
defined in Scratch_Ring_Base_# CSR.

Rev B -- Indicates either that the Scratch Ring is full (same
as Rev A) or empty, based on the setting in
Scratch_Ring_Base_#[Ring_Status_Flag].

3 SCR_Ring1_Status

4 SCR_Ring2_Status

5 SCR_Ring3_Status

6 SCR_Ring4_Status

7 SCR_Ring5_Status

8 SCR_Ring6_Status

9 SCR_Ring7_Status

10 SCR_Ring8_Status

11 SCR_Ring9_Status

12 SCR_Ring10_Status

13 SCR_Ring11_Status

14 FCI_Not_Empty. FCI FIFO not empty.

15 FCI_Full. FCI FIFO full.

label# A symbolic label corresponding to the address of an instruction

opt_tok defer[n] (n= 1 to 3) refer to Section 3.1.4.

Condition Codes Affected

N Z V C

Not Affected
134 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.10 BR_SIGNAL, BR_!SIGNAL

Branch if the specified signal (in the CTX_SIG_EVENTS register) is asserted or deasserted. If the
signal is asserted, these instructions will clear it.

Instruction Format

br_signal[signal_name, label#],opt_tok

br_!signal[signal_name, label#],opt_tok

Parameter Descriptions

Parameter Description

label# Symbolic label corresponding to the address of an instruction.

signal_name Symbolic label that specifies the signal. The two signals of a doubled signal is
specified as sig_name and sig_name with a "+1" suffix (sig_name+1) .

opt_tok defer[n] (n= 1 to 3) refer toSection 3.1.4.

Condition Codes Affected

N Z V C

Not Affected
Programmer’s Reference Manual 135

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.11 BYTE_ALIGN_BE, BYTE_ALIGN_LE

This instruction requires multiple instructions and is used to concatenate data in two registers and
put any four bytes into the destination register. The byte offset is specified by the value in the
BYTE_INDEX local CSR. The BYTE_ALIGN_BE instruction supports big endian data and the
BYTE_ALIGN_LE instruction supports little endian data.

One byte_align instruction is required to load the first four bytes from the src operand into one of
two special temporary registers (not visible to the programmer). The BYTE_ALIGN_BE
instruction uses the prev_B temporary register and the BYTE_ALIGN_LE uses the prev_A
temporary register. For the IXP28x0 Rev B, Prev_A and Prev_B are loaded only during
BYTE_ALIGN instructions.

Successive instructions use the src operand to specify the next 4 bytes, concatenate the 8 bytes, and
select the desired result that is then placed into the dest register. The src operand is then placed into
the appropriate temporary register to be used by the next byte_align instruction.

The number of cycles required to perform a byte alignment on “n” 4 byte words takes “n+2”
cycles. (which include the instruction that loads the BYTE_INDEX local CSR and initialize the
temp register).

Example 3-1. Big Endian Align - Byte Index = 2

The initial data is shown in Table 3-10 The NOP instructions are required to cover the read to use
latency.

Instruction Format

byte_align_le[dest, src]

byte_align_be[dest, src]

Parameter Descriptions

Parameter Description

dest Restricted destination that gets written with the result of the operation.

src Restricted source operand.

Condition Codes Affected

N Z V C

Result[31]==1 Result[31:0] == 0 cleared cleared

Table 3-10. Initial Register Contents

Register Byte 3
[31:24]

Byte 2
[23:16]

Byte 1
[15:8]

Byte 0
[7:0]

0 0x00 0x01 0x02 0x03

1 0x04 0x05 0x06 0x07

2 0x08 0x09 0x0A 0x0B

3 0x0C 0x0D 0x0E 0x0F
136 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Example 3-2. Little Endian Align - Byte Index = 2

The initial data is shown in Table 3-11. The NOP instructions are required to cover the read to use
latency.

Instruction Prev B A Operand B Operand Result (destx)

local_csr_wr[byte_index,2]

nop

nop

nop

Byte_align_be[--, r0] -- -- 0x00 01 02 03 --

Byte_align_be[dest1, r1] 0x00 01 02 03 0x00 01 02 03 0x04 05 06 07 0x02 03 04 05

Byte_align_be[dest2, r2] 0x04 05 06 07 0x04 05 06 07 0x08 09 0A 0B 0x06 07 08 09

Byte_align_be[dest3, r3] 0x08 09 0A 0B 0x08 09 0A 0B 0x0C 0D 0E 0F 0x0A 0B 0C 0D

NOTE: A Operand comes from Prev_B register during byte_align_be instructions.

Table 3-11. Initial Register Contents

Register Byte 3
[31:24]

Byte 2
[23:16]

Byte 1
[15:8]

Byte 0
[7:0]

0 0x03 0x02 0x01 0x00

1 0x07 0x06 0x05 0x04

2 0x0B 0x0A 0x09 0x08

3 0x0F 0x0E 0x0D 0x0C

Instruction A Operand B Operand Prev A Result

local_csr_wr[byte_index,2]

nop

nop

nop

Byte_align_le[--, r0] 0x03 02 01 00 -- --

Byte_align_le[dest1, r1] 0x07 06 05 04 0x03 02 01 00 0x03 02 01 00 0x05 04 03 02

Byte_align_le[dest2, r2] 0x0B 0A 09 08 0x07 06 05 04 0x07 06 05 04 0x09 08 07 06

Byte_align_le[dest3, r3] 0x0F 0E 0D 0C 0x0B 0A 09 08 0x0B 0A 09 08 0x0D 0C 0B 0A

NOTE: B Operand comes from Prev_A register during byte_align_le instructions.
Programmer’s Reference Manual 137

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set

)

Example 3-3. Big Endian Align using Index Address Mode to Local Memory

Another mode of operation is to use the index local CSRs with post-increment, to select the source
and destination registers. The ACTIVE_LM_ADDR_0 local CSR is used to index into local
memory and the T_INDEX_BYTE_INDEX local CSR is used to index the transfer registers and
specify the byte alignment. The data in $xfer0, to $xfer3 is shown in Table 3-10. The NOP
instructions are required to cover the read to use latency.

Instruction Prev B A Operand
(Note 2) B Operand Result (LM

alu[lm_index_byte_align, b_align, OR,
lm_index0,<<2]

-- -- -- --

local_csr_wr[ACTIVE_LM_ADDR_0_BYTE_INDEX
,lm_index_byte_align]

-- -- -- --

local_csr_wr[T_INDEX,&$xfer0] -- -- -- --

nop

nop

byte_align_be[--, *$index++] -- -- 0x00 01 02 03 --

byte_align_be[*L$index0[0],*$index++] 0x00 01 02 03 0x00 01 02 03 0x04 05 06 07 0x02 03 04 05

byte_align_be[*L$index0[1],*$index++] 0x04 05 06 07 0x04 05 06 07 0x08 09 0A 0B 0x06 07 08 09

byte_align_be[*L$index0[2],*$index++] 0x08 09 0A 0B 0x08 09 0A 0B 0x0C 0D 0E 0F 0x0A 0B 0C 0D

NOTE:
1. b_align = byte align value (2 in this example) and $xfer0 is starting register. Refer to T_INDEX,

ACTIVE_LM_ADDR_0_BYTE_INDEX local CSR description. The & is a preprocessor directive that returns the
address of the register.

2. A Operand comes from Prev_B register during byte_align_be instructions

Example 3-4. Big Endian Align using Index Address Mode to GPR

A common function is to read a L2 and L3 header into transfer registers, determine the offset of the
L3 header based on the L2 protocol field and then move the L3 header from the transfer registers to
GPRs properly aligned. This is accomplished using the T_INDEX local CSR with post-increment.
The T_INDEX_BYTE_INDEX local CSR is used to write both the T_INDEX and BYTE_INDEX
local CSRs in a single write operation.

Instruction Prev B A Operand B Operand Result

alu[reg_adr, b_align, OR,
&$xfer0,<<2]

-- -- -- --

local_csr_wr[T_INDEX_BYTE_INDEX
,reg_addr]

-- -- -- --

byte_align_be[--, *$index++] -- -- 0x00 01 02 03 --

byte_align_be[gpr0,*$index++] 0x00 01 02 03 0x00 01 02 03 0x04 05 06 07 0x02 03 04 05

byte_align_be[gpr1,*$index++] 0x04 05 06 07 0x04 05 06 07 0x08 09 0A 0B 0x06 07 08 09

byte_align_be[gpr2,*$index++] 0x08 09 0A 0B 0x08 09 0A 0B 0x0C 0D 0E 0F 0x0A 0B 0C 0D

NOTE: b_align = gpr containing byte align value (2 in this example) and $xfer0 is starting register. The & is a
preprocessor directive that returns the address of the register.
138 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.12 CAM_CLEAR

Clears all entries in the MEv2 CAM by writing 0x00000000 to the tag, clearing all the state bits,
and putting the LRU into an initial state where entry CAM 0 is LRU, ..., CAM entry 15 is MRU).

The CAM is not reset by ME reset. Software must either do a cam_clear prior to using the CAM to
initialize the LRU and clear the tags to zero, or explicitly write all entries with cam_write.

Condition Codes Affected

Instruction Format

cam_clear

N Z V C

Not Affected
Programmer’s Reference Manual 139

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.13 CAM_LOOKUP

Search the 16 entry MEv2 CAM for a 32-bit tag equal to the value specified in the src_reg. All
entries are compared in parallel, and the result of the lookup is a 9 bit value which is written into
the specified destination register in bits 11:3, with all other bits of the register zero. The result can
also optionally be written into either of the LM_Addr registers.

The 9-bit result consists of 4 State bits (dest_reg[11:8]), concatenated with a 1-bit Hit/Miss
indication (dest_reg[7]), concatenated with 4-bit entry number (dest_reg[6:3]). All other bits of
dest_reg are written with 0. Possible results of the lookup are:

• miss (0)—lookup value is not in CAM, entry number is LRU (Least Recently Used) entry
(which can be used as a suggested entry to replace), and State bits are 0000.

• hit (1)—lookup value is in CAM, entry number is entry which has matched, State bits are the
value from the entry which has matched. The entry is marked as MRU (Most Recently Used).

An optional token allows the result to also be written into either of the LM_Addr registers.

The LRU (Least Recently Used) is maintained in a time-ordered CAM entry usage list. When an
entry is loaded, or matches on a lookup, it is marked as MRU (Most Recently Used). Note that a
lookup that misses does not modify the LRU list.

Note: The following rules must be followed to when using the CAM.

1. CAM is not reset by ME reset. Software must either do a CAM_clear prior to using the CAM
to initialize the LRU and clear the tags to zero, or explicitly write all entries with CAM_write.

2. No two tags can be written to have same value. If this rule is violated, the result of a lookup
that matches that value will be unpredictable, and LRU state is unpredictable.

The value 0x00000000 can be used as a valid lookup value. However, note that CAM_clear
instruction puts 0x00000000 into all tags. So in order to not violate rule 2 after doing CAM_clear,
it is necessary to write all entries to unique values prior to doing a lookup of 0x00000000.

Instruction Format

cam_lookup[dest_reg, src], opt_tok

Parameter Descriptions

Parameter Description

dest_reg Unrestricted destination that receives the result of the CAM lookup. Refer to
Table 3-12 for result format.

src Unrestricted source operand that holds the value to lookup in the CAM.

opt_tok

lm_addr#[num] : Load the result of the lookup into LM_Addr (# = 0 or 1), as well
as dest. Bits[6:3] of CAM result go to LM_Addr[9:6]. Num specifies a 2-bit value
to load into LM_Addr[11:10]. LM_Addr[5:0] is set to zero. The write latency for
loading the LM_Addr (# = 0 or 1) is 3 cycles which is the same as if a
local_csr_wr instruction were used.
140 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-12. CAM_LOOKUP Result

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

0 state

hit/m
iss

CAM Entry
Number 0 0 0

Condition Codes Affected

N Z V C

Not Affected
Programmer’s Reference Manual 141

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.14 CAM_READ_TAG

Read the tag for the specified CAM entry into dest_reg.

Instruction Format

cam_read_tag[dest_reg, entry]

Parameter Descriptions

Parameter Description

dest_reg Unrestricted destination that receives the tag data from the CAM entry.

entry Unrestricted source operand that specifies the CAM entry number to read. Valid
values are 0 to 15.

Condition Codes Affected

N Z V C

Not Affected
142 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.15 CAM_READ_STATE

Read the State bits for the specified CAM entry. The value is placed into bits [11:8] of dest_reg,
with all other bits 0.

Table 3-13. CAM_READ_STATE Result

Instruction Format

cam_read_state[dest_reg, entry]

Parameter Descriptions

Parameter Description

dest_reg Unrestricted destination that receives the State bits from the CAM entry. Dest_Reg
gets State in bits [11:8], all other bits are 0.

entry Unrestricted source operand that specifies the CAM entry number to read. Valid
values are 0 to 15.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

0 state 0 0 0 0 0 0 0 0

Condition Codes Affected

N Z V C

Not Affected
Programmer’s Reference Manual 143

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.16 CAM_WRITE

Write a 32-bit value in src_reg to the tag of the specified CAM entry. The entry is marked as MRU
(Most Recently Used).

Note: No two tags can be written to have same value. If this rule is violated, the result of a lookup that
matches that value will be unpredictable, and LRU state is unpredictable.

Instruction Format

cam_write[entry_reg, src_reg,state_value]

Parameter Descriptions

Parameter Description

entry Unrestricted source operand that specifies the CAM entry number to write.
Valid values are 0 to 15.

src_reg Unrestricted source operand that holds the data to write to the CAM entry.

state_value Constant that specifies the State bit value.

Condition Codes Affected

N Z V C

Not Affected
144 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.17 CAM_WRITE_STATE

Write the value into the State bits for the specified MEv2 CAM entry. The Tag value is not
changed. This instruction does not modify the LRU list.

Instruction Format

cam_write_state[entry, state_value]

Parameter Descriptions

Parameter Description

entry Unrestricted source operand that specifies the CAM entry number to modify. Only
the State bits are affected.

state_value Constant that specifies the State bit value. Valid values are 0 to 0xF.

Condition Codes Affected

N Z V C

Not Affected
Programmer’s Reference Manual 145

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.18 CAP (Enumerated CSR Addressing)

Move data between the CAP CSRs and the ME. The CSR address is an enumerated constant that is
specified at assembly time. Three commands are provided: read, write and fast_wr.

A fast_wr command eliminates the need to pull data from a transfer register during a write
operation and therefore reduces the time required to complete the write operations. For read and
write commands, xfer_data specifies an Transfer register. For fast_wr commands the xfer_data is
either a 14-bit immediate (zero extended) or the keyword ALU. The keyword ALU specifies that
the fast write data is 32-bits and is taken from the ALU output of the previous instruction.

Instruction Format

cap[cmd, xfer_data, csr_addr], opt_tok

Parameter Descriptions

Parameter Cmd Description

cmd
read Read the data from the CSR into an S or D Transfer register

write Write the data to the CSR from an S Transfer register

fast_wr Write the immediate data to the CSR

xfer_data

read, An S or D Transfer Read register Note 1

write
An S Transfer Write register.

IXP28xx Rev B: An S or D Transfer Write register. Note 1

fast_wr
14-bit immediate (zero extended) data or keyword ALU. The keyword
ALU specifies that the fast write data is 32-bits and is taken from the
ALU output of the previous instruction.

csr_addr All cmds
The CAP CSR names listed in Table 3-14 defines the keywords that
are used to address the CAP CSRs. Refer to the CSR definitions for a
description of the CSR behavior.

opt_tok
read, write

ctx_swap[sig_name]
refer toSection 3.1.2.4.

sig_done[sig_name]
refer to Section 3.1.2.4.

indirect_ref
refer to Section 3.1.2.3.1.

defer[n] (n = 1 to 2) refer to
Section 3.1.4.

fast_wr indirect_ref (Only if xfer_data
is not specified as ALU.)

ind_targets[me1, me2, …]

refer to Section 3.1.2.3.3

1. In 4 context mode, only the S Transfer registers can be used

Table 3-14. Enumerated CAP CSR Registers

Register Name Comment

THD_MSG_SUMMARY_#_$ (# = {0,1}, $ = {0,1})
Where:
= ME cluster number 0 to 1

$ = register number 0 to1

THD_MSG_#_$_& (# = {0,1}, $ = {0,7 or 3}, & = {0,7}) Where:
= ME cluster number 0 to 1

$ = ME number in cluster 0 to7 (IXP28x0) or 0 to 3
(IXP2400)

& = thread number 0 to7

THD_MSG_CLR_#_$_& (# = {0,1}, $= {0,7 or 3}, & =
{0,7})

THD_MSG (Generic)

SELF_DESTRUCT_# (# = 0 -1)
146 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-15. CAP Indirect Format (Read and Write Commands)

INTERTHREAD_SIG

XSCALE_INT_# (# = A, B)

SCRATCH_RING_BASE_# (# = 0 -15)

Can not be used with fast_wr commandSCRATCH_RING_HEAD_# (# = 0 - 15)

SCRATCH_RING_TAIL_# (#= 0 - 15)

HASH_MULTIPLIER_48_# (# = 0,1)

HASH_MULTIPLIER_64_# (# = 0,1)

HASH_MULTIPLIER_128_# (# = 0,1,2,3)

PRODUCT_ID

MISC_CONTROL

IXP_RESET_0

IXP_RESET_1

CLOCK_CONTROL

STRAP_OPTIONS

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME
RES Xfer Register

Address

O
V

�

O
V

� CTX

Table 3-16. CAP Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

RES Reserved

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127). Whether the register set is the S or D is specified in the
instruction and cannot be changed using an indirect.

Reserved for the fast write command.

OV [4] Override bit for Xfer register Address field. Reserved for the fast write command.

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Table 3-14. Enumerated CAP CSR Registers

Register Name Comment
Programmer’s Reference Manual 147

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.19 CAP (Calculated Addressing)

Move data between the CAP devices and the ME. The CAP address is calculated at runtime by
adding the src_op1 and src_op2 parameters. The entire CAP address space can be accessed
including CAP CSRs, Timers, UART, PMU, SlowPort CSRs, SlowPort memory space, a remote
ME’s Local CSRs and Transfer Registers. When accessing a CSR, the ref_cnt value should be 1.

Note: This command is not supported in Rev A of the IXP2400.

Condition Codes Affected

N Z V C

Not Affected

Instruction Format

cap[cmd, xfer, src_op1, src_op2, ref_cnt],opt_tok

Parameter Descriptions

Parameter Cmd Description

cmd
read Read the data from the CSR into an S or D Transfer register

write Write the data to the CSR from an S Transfer register

xfer_data
read, An S or D Transfer Read register. Note 1

write
An S Transfer Write register.

IXP28xx Rev B: An S or D Transfer Write register. Note 1

src_op1,
src_op2

All cmds
Restricted operands that define a byte address. The address is specified
by src_op1 + src_op2. The CAP is accessed on 4 byte word boundaries
so bits[1:0] are ignored by CAP.

ref_cnt read, write Reference count in increments of 4-byte words. Valid values are 1 to 8
148 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-17 illustrates the bit encodings for the 32-bit address derived from src_op1 + src_op2.

opt_tok read, write

ctx_swap[sig_name]
refer toSection 3.1.2.4.

sig_done[sig_name]
refer to Section 3.1.2.4.

indirect_ref
refer to Section 3.1.2.3.1.

defer[n] (n = 1 to 2) refer to
Section 3.1.4.

ind_targets[me1, me2, …]

refer to Section 3.1.2.3.3

sig_remote[remote_sig_name,
me_list]

Used when addressing another
Microengines registers only.

Signal the remote ME thread when the
data has been pulled from or written to
the remote thread’s registers

The me_list is a comma separated list
that contains one or more ME numbers
of the possible targets of the reflector
operation. Valid values are 0 to 7 and
0x10 to 0x17.

The remote signal must be manually
allocated to the same address in all
microengines. If either the ctx_arb[] or
sig_done[] token has been specified,
then the local signal must also be
manually allocated to the same
address. The linker will check the
addresses for each microengine in the
list.

1. In 4 context mode, only the S Transfer registers can be used

Parameter Descriptions

Parameter Cmd Description
Programmer’s Reference Manual 149

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-18 shows a simpler way of looking at the bit encodings for the 32-bit address derived from
src_op1 + src_op2.

Table 3-17. CAP Bit Map Address Field Encoding (src_op1 + src_op2)

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

res

N
ot M

B
us (0)

res

xfer(0) M
E

(1)

M
E

 C
luster

ME
number

S
(0) ME Xfer Registers

resD
(1)

local csr(1)

M
E

 C
luster

ME
number

ME Local CSR address

res

N
ot M

bus (0)

res

APB dev
select

Table 3-18
N

ot M
E

(0)

abp(0)
APB Address

Table 3-18

res

csr(1)

CAP CSR Number

res

M
B

us (1)

ROM Address (64M)

The Slow Port controller supports two bus chip select asserted at the 32M
boundary

res

Note: S and D in bit [9] for ME transfer registers refer to the S and D transfer registers.
150 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set

Table 3-19. CAP Indirect Format (Read and Write Commands)

Table 3-18. CAP Calculated Address Field Encoding (src_op1 + src_op2)

CAP
Addressable

Devices
Address Range Comments

GPIO 0x0001 0000 | CSR address Refer to Section 5.6.6. APB dev select = 0

CAP CSRs

0xC000 4800 | CSR address Refer to Section 5.6.1 -Scratchpad CSRs

0xC000 4900 | CSR address Refer to Section 5.6.2 - Hash CSRs

0xC000 4000 | CSR address Refer toSection 5.6.3 - Fast Write CSRs

0xC000 4A00 | CSR address Refer to Section 5.6.4 - Global CSRs

ME Transfer
Registers

(Reflector)

0x0000 8000 | ME Cluster | ME
Number | Xfer address

Remote MEs Transfer Registers

Where:

[14]= ME cluster

[13:10]= ME number

[9:2]= Xfer Register address

[1:0]= ignored

ME Local CSRs

(Reflector)
0x0001 8000 | ME Cluster | ME
Number | CSR address

Where:

[14]= ME cluster

[13:10]= ME number

[9:0]= CSR address

Timers 0x0002 0000 | CSR address Refer to Section 5.6.5. APB dev select = 2

UART 0x0003 0000 | CSR address Refer to Section 5.6.7. APB dev select = 3

PMU 0x0005 0000 | CSR address Refer to Section 5.6.8. APB dev select = 5

SlowPort CSRs 0x0008 0000 | CSR address Refer to Section 5.6.9. APB dev select = 8

SlowPort
(Memory Space) 0x0400 0000–0x07ff ffff

64M address range. The Slow Port controller
generates a two Slow port bus chip select at the 32M
boundary.

Note: “|” is the bit wise OR operator

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME

O
V

� Ref_Cnt RES Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-20. CAP Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

OV [25] Override bit for Ref_Cnt field
Programmer’s Reference Manual 151

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Ref_Cnt

Overrides the ref_cnt field specified by the instruction. This field supports ref_cnts from 0 to
15 where a value of 0 indicates a transfer of 1 and 15 a transfer of 16. Note that when
specifying the Ref_cnt and Xfer Register Address, data can be written into another contexts
registers set.The max_nn optional token should be used with this token. Refer to
Section 3.1.2.3.2.

RES Reserved

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127). Whether the register set is the S or D is specified in the
instruction and cannot be changed using an indirect.

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Condition Codes Affected

N Z V C

Not Affected

Table 3-20. CAP Field Definitions

Field Description
152 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.20 CAP (Reflect)

Move data between an MEs Transfer registers and another MEs Transfer registers. The Transfer
register accepting the data can be either an S or a D. The Transfer register sourcing the data must be
an S. In the IXP28xx rev B, the transfer register sourcing the data can be either and S or a D.

Note this version of the CAP instruction used to be the reflect instruction in earlier versions of the
assembler.

Instruction Format

cap[cmd, xfer, rem_ME, rem_reg, rem_ctx, ref_cnt],opt_tok

Parameter Descriptions

Parameter Cmd Description

cmd
read Read data from the remote MEs write transfer register into this MEs read

transfer register.

write Write data from this MEs write transfer register to the remote MEs read
transfer register.

xfer

read An S or D Transfer Read register in this ME used to hold the data that is
read from the remote ME. Note 1

write
An S-Transfer Write register in this ME used to hold the data that is
written to the remote ME.

IXP28xx Rev B: An S or D Transfer Write register. Note 1

rem_ME All cmds Number of remote ME. Valid values are 0 to 7 and 0x10 to 0x17

rem_reg All cmds

A Transfer register in the remote ME. For Read, the remote register
must be an S-Transfer, For Write the remote register can be either an S
or a D register.

IXP28xx Rev B: For read, the remote register can be either nn S or D
Transfer Write register.

rem_ctx All cmds Context number of the remote transfer register. Valid values are 0 to
7.(Note 2)

ref_cnt All cmds Reference count in increments of 4 byte words. Valid values are 1 to 8.

opt_tok All cmds

ctx_swap[sig_name]
refer toSection 3.1.2.4.

sig_done[sig_name]
refer to Section 3.1.2.4.

indirect_ref
refer to Section 3.1.2.3.1.

defer[n] (n = 1 to 2) refer to
Section 3.1.4.

sig_remote[remote_sig_name]
(Note 3)

ind_targets[me1, me2, …]

refer to Section 3.1.2.3.3

1. In 4 context mode, only the S Transfer registers can be used
2. If the remote ME is in four-context mode, then the context should be given as 0, 2, 4, or 6.
3. Signal the remote ME thread when the data has been pulled from or written to the remote thread’s

registers. The remote ME is given by the instruction parameter. If either the ctx_arb[] or sig_done[] token
has been specified, the local and remote signals must be manually allocated to the same address. The
linker will verify this.
Programmer’s Reference Manual 153

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-21. CAP (Reflect) Indirect Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME

O
V

� Ref_Cnt RES Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-22. CAP (Reflect) Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME

For a read operation, it indicates the ME where the destination register resided. For a write
operations, it indicates the ME where the source register resides. It also specifies the ME
that is signaled when the sig_done (and sig_remote) optional tokens is specified. Refer to
Section 3.1.2.3.3.

OV [25] Override bit for Ref_Cnt field

Ref_Cnt

Overrides the ref_cnt field specified by the instruction. This field supports ref_cnts from 0 to
15 where a value of 0 indicates a transfer of 1 and 15 a transfer of 16. Note that when
specifying the Ref_cnt and Xfer Register Address, data can be written into another contexts
registers set. If this field is changed, the ref_cnt field in the instruction should be a keyword
max_nn (where nn = 1-16). Refer to Section 3.1.2.3.2.

RES Reserved

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127). Whether the register set is the S or D is specified in the
instruction and cannot be changed using an indirect.

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Condition Codes Affected

N Z V C

Not Affected
154 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.21 CRC_LE, CRC_BE

Enable the CRC datapath to compute a CRC. The CRC is calculated using a remainder that resides
in the CRC_Remainder Local CSR and the source data. The result is written to the
CRC_Remainder Local CSR and the unmodified source data can be written to a destination
register. This allows a CRC to be calculated and the result moved from one register to another
(example: S-transfer in to S-transfer out) in the same instruction.

The CRC_Remainder Local CSR is typically initialized prior to doing the CRC instruction(s). CRC
instruction can not be used consecutively. At least one intervening instruction must be done
between two CRC instructions, and 5 intervening instruction before reading the CRC result.
Example 3-1 shows how a CRC can be calculated over a block of data by interleaving the CRC
instructions.

The crc_le instruction (little endian) is used when the data is in little endian mode so the bytes are
swapped before the CRC is performed. The crc_be instruction (big endian) is used when the data is
in big endian format and no bytes are swapped before the CRC is performed. Refer to Example 3-1
to Example 3-4.

Instruction Format

crc_le[crc_type, dest_reg, src], opt_tok

crc_be[crc_type, dest_reg, src], opt_tok

Parameter Descriptions

Parameter Description

crc_type#

crc_ccitt CRC-CCITT polynomial is: x16+ x12+ x5+ 1

crc_32
CRC-32 polynomial is:

x32+x26+ x23+ x22+ x16+ x12+ x11+x10+ x8+ x7+ x5 + x4+ x2 + x + 1.

crc_iscsi

IXP28xx Rev B only.

CRC-iscsi polynomial is:

x32+x28+ x27+ x26+ x25+ x23+ x22+x20+ x19+ x18+ x14 + x13+ x11 + x10 + x9

+ x8 + x6 + 1.

crc_10

IXP28xx Rev B only.

CRC-10 polynomial is:

x10 + x9 + x5 + x4 + x + 1.

crc_5

IXP28xx Rev B only.

CRC-5 polynomial is:

x5 + x2 + 1.

none Moves the data from the source to the destination without performing any
CRC operation on it.

dest All crc types Unrestricted destination that gets written with the unmodified src operand.

src All crc types Unrestricted source operand.
Programmer’s Reference Manual 155

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
opt_tok

crc_ccitt

crc_32

crc_iscsi

crc_10

crc_5

One of the following tokens can be used to limit which bytes of data are
used in the computation. If no token is used, all four bytes are used. These
are used in the beginning and end of a CRC computation to skip leading
and trailing byte positions. The meaning of the token can be thought of in
two ways:

1. It specifies the bytes, in order of left to right, of the post-swapped big
endian data.

2. It specifies the bytes of the pre-swapped data in the order implied by the
endianness

opt_tok
Bytes in source used for CRC calculation

Big endian Little Endian

bytes_0_3 0,1,2,3 3,2,1,0

bytes_0_2 0,1,2,- -,2,1,0

bytes_0_1 0,1,-,- -,-,1,0

byte_0 0,-,-,- -,-,-,0

bytes_1_3 -.1,2,3 3,2,1,-

bytes_2_3 -,-,2,3 3,2,-,-

byte_3 -,-,-,3 3-,-,-

All crc types
bit_swap: Swaps the bits in each individual byte so that bit 7 is swapped
with bit 0, bit 6 is swapped with bit 1,bit 5 is swapped with bit 2, and bit 4 is
swapped with bit 3.

Condition Codes Affected

N Z V C

Result[31] == 1 Result[31:0] == 0 Cleared Cleared

Example 3-1. Loading, Calculating and Reading the CRC

; Assume data to CRC is in $s_transfer_in[3:0]

; Current remainder has been put into gpr_n

; Compute CRC while moving data to d_transfer_out[3:0]

local_csr_wr[crc_remainder, gpr_n] ;restore remainder

nop ; nops could be replaced by useful instructions

nop

nop

crc[crc_ccitt, $$d_trans_out_0, $s_trans_in_0]

nop

crc[crc_ccitt, $$d_trans_out_1, $s_trans_in_1]

nop

crc[crc_ccitt, $$d_trans_out_2, $s_trans_in_2]

nop

crc[crc_ccitt, $$d_trans_out_3, $s_trans_in_3]

nop

nop

nop

nop

nop ; five intervening instructions before reading result

local_csr_rd[crc_remainder] ;get the new remainder

immed[gpr_n, 0x0000]

Parameter Descriptions

Parameter Description
156 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Example 3-2. crc_le[] with bytes_0_1

case 1#:

;data from alu out: M L C S

crc_le[], bytes_0_1

;data after swapping: S C L M

;CRC computed on: S C

Example 3-3. crc_be[] with bytes_2_3

case 2#:

;data from alu out: M L C S

crc_be[], bytes_2_3

;data after swapping: M L C S

;CRC computed on: C S

Example 3-4. crc_le[] with bytes_2_3

case 3*:

;data from alu out: M L C S

crc_le[], bytes_2_3

;data after swapping: S C L M

;CRC computed on: L M

Example 3-5. crc_be[] with bytes_0_1

case 4#:

;data from alu out: M L C S

crc_be[], bytes_0_1

;data after swapping: M L C S

;CRC computed on: M L
Programmer’s Reference Manual 157

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.22 CTX_ARB

Swap the currently running context out to let another context execute. Wake up the swapped out
context when the specified signal(s) is activated.

Instruction Format

ctx_arb[Event_Signal_Mask], op_tok

Parameter Descriptions

Parameter Mask
option Description

Event_
Signal_
Mask

signal list A list of signal names separated by commas. The thread is put to sleep and
woken based on the state of the signals and the ANY and ALL optional tokens.

Voluntary Voluntary is a keyword that indicates that the thread should be put to sleep and
woken when all the other threads have had a change to run.

Kill Kill is a keyword that indicates the current thread should be put to sleep and
never woken.

bpt

bpt is a keyword that indicates the current thread should be put to sleep, no
thread should be woken, and the Intel XScale® core should be interrupted. This
is typically used for breakpoints. The actions taken are as follows:

-Clear the CTX_Enable for all contexts in the ME.

-Put the currently executing Context into Sleep state.

-Sets the CTX_Enable[Breakpoint] bit in the ME local CSR, which will cause the
attn bit to assert in the {IRQ,FIQ}ATTN_STATUS Intel XScale® core Local CSR.

Note that the CTX_WAKEUP_EVENTS is cleared for the context that is running
so the Intel XScale® or PCI Host software must set the voluntary bit to restart
the context.

--

The value "--" indicates that the instruction does not contain a list of Event
Signals; that list must instead be loaded using the instruction
local_csr_wr[CTX_Wakeup_Events, src]. This can be the instruction that
immediately precedes the ctx_arb[--] instruction, or in the defer shadows of the
ctx_arb instruction. The local_CSR_wr can be to either
CTX_Wakeup_Events_Active or CTX_Wakeup_Events_Indirect CSRs.

opt_tok

All mask
options defer[n] (n = 1 to 2)

signal list,

--

ALL: Activate the context when all of the listed signal(s) is received. This also
clears the contexts sig_events and wakeup_events when the context is woken.
If no token is used, ALL is assumed. ALL and ANY are mutually exclusive.

ANY: Activate the context when any of the listed signal(s) is received. This also
clears the context wakeup_events when the context is put in Ready state, but
leave the contexts sig_events unchanged. The thread can then use the
br_signal or br_!signal to determine which signal event woke it. ANY and ALL
are mutually exclusive.

signal list,
-- ,

Voluntary

br[label#] - Resume execution at the address specified by the label when the
context wake up. If this token is not used executions resumes at the next
sequential instruction. The defer optional token can be used with this token.
158 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Example 3-1. CTX_ARB

;example 1: signal list mask option with optional token = any

ctx_arb[test1, test2], any

;example 2: -- mask option

ctx_arb[--],defer[1]

local_csr_wr[ACTIVE_CTX_WAKEUP_EVENTS, 0x2] ; wake on signal 1

;example 3: branch optional token with --

ctx_arb[--],br[label#],defer[1]

local_csr_wr[ACTIVE_CTX_WAKEUP_EVENTS, 0x2] ; wake on signal 1

;example 4: Voluntary mask option

ctx_arb[voluntary]
Programmer’s Reference Manual 159

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.23 DBL_SHF

Load a destination register with a 32-bit word that is formed by concatenating the A operands and
B operands together (A is most significant, B is least significant), right shifting the 64-bit quantity
by the specified amount, and then storing the lower 32 bits.

\

Instruction Format

dbl_shf[dest, A_op, B_op, shf_cntl]

Parameter Descriptions

Parameter Description

dest Restricted destination that gets written with the result of the operation.

A_op, B_op Restricted source operand.

shf_cntl

>>1 through >>31: (Right shift 1) through (Right shift 31)

>>indirect : Right shift by the indirect value. The indirect value is specified by the
previous instruction which must be an ALU or ALU_SHF and the shift amount is
specified in the lower 5 bits of the A_op parameter (which must be a register - not a
constant).

Condition Codes Affected

N Z V C

Result[31]==1 Result[31:0] == 0 cleared cleared

Example 3-1. DBL_SHF >>value

If a = 0x87654321 and b = 0xFEDCBA98, then

dbl_shf[c, a, b, >>12]

saves 0x321FEDCB in c.

Example 3-2. DBL_SHF >>indirect

If a = 0x87654321, b = 0xFEDCBA98, shf_value = 12, any_reg = any value (it’s not
used) then

alu[--,shf_value,OR,any_reg]

dbl_shf[c, a, b, >>indirect]

saves 0x321FEDCB in c.
160 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.24 DRAM (Read and Write)

Move data between DRAM and the ME Transfer registers.

Table 3-23. DRAM Indirect Format

Instruction Format

dram[cmd, xfer, src_op1, src_op2, ref_cnt],opt_tok

Parameter Descriptions

Parameter Cmd Description

cmd
read Read from DRAM to S or D Transfer registers.

write Write to DRAM from D Transfer registers.

xfer
read A S or D Transfer Read register. Note 1

write
A D-Transfer Write register.

IXP28xx Rev B: An S or D Transfer Write register. Note 1

src_op1,
src_op2

All cmds

Restricted source operands that define the DRAM byte address.
The address is specified by src_op1 + src_op2. The DRAM address
begins at 0 and ends at the max memory installed in the system.
DRAM is always accessed on 8-byte word boundaries and
therefore the low three bits of the byte address are ignored by the
DRAM channel.

ref_cnt All cmds Reference count in 8-byte words. Valid values are 1-8.

opt_tok
All cmds

sig_done[sig_name2]
refer to Section 3.1.2.4.

ind_targets[me1, me2, …]

refer to Section 3.1.2.3.3

indirect_ref
refer to Section 3.1.2.3.1.

read ignore_data _error

1. In 4 context mode, only the D Transfer registers can be used

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME

O
V

� Ref Cnt

O
V

� Byte Mask Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-24. DRAM Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

OV [25] Override bit for Ref_Cnt field.

Ref_Cnt

Overrides the ref_cnt field specified by the instruction. This field supports ref_cnts from 0 to
15 where a value of 0 indicates a transfer of 1 and 15 a transfer of 16. Note that when
specifying the Ref_cnt and Xfer Register Address, data can be written into another contexts
registers set. If this field is changed, the ref_cnt field in the instruction should be a keyword
max_nn (where nn = 1-16). Refer to Section 3.1.2.3.2.

OV [20] Override bit for Byte Mask field
Programmer’s Reference Manual 161

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Byte Mask

This field should only be used when ref_cnt is set to a transfer of 1. It selects which bytes
will be written to DRAM memory during a write operation. A “1” signifies the byte will be
written where bit 12 corresponds to bits 7:0 and bit 19 corresponds to bits 63:56. Note that
this may result in a read modify write operation that is performed at the DRAM channel.

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127). Whether the register set is the S or D is specified in the
instruction and cannot be changed using an indirect.

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Condition Codes Affected

N Z V C

Not Affected

Table 3-24. DRAM Field Definitions

Field Description
162 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.25 DRAM (RBUF and TBUF)

Move data from the Rbuf to DRAM or from DRAM to the Tbuf.

Table 3-25. DRAM RBUF_RD & TBUF_WR Indirect Format

Instruction Format

dram[cmd, --, src_op1, src_op2, ref_cnt], tok, opt_tok

Parameter Descriptions

Parameter Cmd Description

cmd
rbuf_rd Read from RBUF to DRAM. Always requires an indirect_ref

optional token.

tbuf_wr Write to transmit FIFO from DRAM. Always requires an indirect_ref
optional token.

-- All cmds This parameter must be “--”

src_op1,
src_op2

All cmds

Restricted source operands that define the DRAM byte address.
The address is specified by src_op1 + src_op2. The DRAM
address begins at 0 and ends at the max memory installed in the
system. DRAM is always accessed on 8-byte word boundaries and
therefore the low three bits of the byte address are ignored by the
DRAM channel.

ref_cnt All cmds Reference count in 8-byte words.

tok All cmds
indirect_ref: This is required to specify the RBUF and TBUF
address. The other fields in the indirect reference optional. Refer to
Section 3.1.2.3.1.

opt_tok
All cmds

sig_done[sig_name2]
refer to Section 3.1.2.4.

ind_targets[me1, me2, …]

refer to Section 3.1.2.3.3

tbuf_wr ignore_data _error

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME

O
V

� Ref Cnt

R
E

S

RBUF/TBUF Byte Address

bits [7:5] are ignored by MSF

Refer toTable 3-33 to Table 3-35.

O
V

�

O
V

� CTX

Table 3-26. DRAM RBUF_RD & TBUF_WR Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

OV [25] Override bit for Ref_Cnt field

Ref_Cnt

Overrides the ref_cnt field specified by the instruction. This field supports ref_cnts from 0 to
15 where a value of 0 indicates a transfer of 1 and 15 a transfer of 16. If this field is
changed, the ref_cnt field in the instruction should be a keyword max_nn (where nn = 1-16).
Refer to Section 3.1.2.3.2.
Programmer’s Reference Manual 163

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
RBUF/TBUF
Byte Address

This is required to specify the RBUF and TBUF address. The other fields are optional
(except the override bit for this field). The TBUF and RBUF are mapped to the same 8K
addresses. TBUF is accessed by a write while the RBUF is accessed by a read. The 8k
address range specified in the indirect begins at 0x2000 and ends at 0x3FFF. The TBUF
and RBUF can only be read on 8 byte word boundaries and therefore the low three bits of
the address are ignored.

OV [4] Override bit for RBUF/TBUF Byte Address field and must always be set

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Condition Codes Affected

N Z V C

Not Affected

Table 3-26. DRAM RBUF_RD & TBUF_WR Field Definitions

Field Description
164 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.26 FFS

Find First bit set in the src register beginning at the LSB. Dest[4:0] gets the encoded value from 0
to 31 indicating the least significant ’1’ bit, in the src. If there are no bits set, the Z condition code is
set; otherwise the Z condition code is cleared.

Instruction Format

ffs[dest, src]

Parameter Descriptions

Parameter Description

dest

Unrestricted destination that receives the result of the operation. Dest[4:0] receives a
value from 0 to 31 indicating first bit found starting at the LSB in the src. If there are
no bits set, the Z condition code is set; otherwise the Z condition code is cleared. All
other bits of dest receive ‘0’.

src Unrestricted operand for the operation (B operand).

Condition Codes Affected

N Z V C

Cleared
Set if

B == 0
Cleared Cleared
Programmer’s Reference Manual 165

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.27 HALT

This instruction puts the current thread to sleep without waking up any other thread and interrupts
the Intel XScale® core. This instruction is equivalent to instruction "ctx_arb[bpt]". The actions
taken are as follows:

• Clear the CTX_Enable for all contexts in the ME.

• Put the currently executing Context into Sleep state.

• Sets the CTX_Enable[Breakpoint] bit in the ME local CSR, which will cause the attn bit to
assert in the {IRQ,FIQ}ATTN_STATUS in the Intel XScale® core Local CSR.

Note that the CTX_WAKEUP_EVENTS is cleared for the context that is running so the Intel
XScale® core or PCI Host software must set the voluntary bit to restart

Instruction Format

HALT
166 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.28 HASH

Issue a command to the Hash Unit requesting that the data in the transfer registers be moved to the
hash unit, a hash operation performed on the data, and the result returned back to the transfer
registers. Three variations of the instruction allow the hash data to be 48, 64 or 128 bits long. The
ref count specifies the number of hash operations to be perform. Data should be placed into the
transfer registers as shown in Table 3-30. The Hash unit uses a multiplier to generate the hash data.
The multiplier is set via the CAP CSRs HASH_MULTIPLIER_$$_# (where $$ = 48, 64 or 128,
and # is the register number).

Instruction Format

hash_48 [xfer, ref_cnt],opt_tok

hash_64 [xfer, ref_cnt],opt_tok

hash_128 [xfer, ref_cnt],opt_tok

Parameter Descriptions

Parameter Instruction Description

Instruction
hash_48 Perform 1 to 3 hash operations on 48 bits of data

hash_64 Perform 1 to 3 hash operations on 64 bits of data

hash_128 Perform 1 to 3 hash operation on 128 bits of data

xfer All instructions

Specifies both are read and write S-Transfer register. The write
S-Transfer register is used to hold the data to be hashed while
the result is placed into the read S-Transfer register. Table 3-27
shows the number of S-Transfer registers used for each
instruction for each ref_cnt

IXP28xx Rev B: An S or D Transfer Write register can be used
Note 1

ref_cnt All instructions Specifies the number of hash operations to perform. Valid
values are 1-3.

opt_tok All instructions

sig_done[sig_name2]
refer to Section 3.1.2.4.

ind_targets[me1, me2, …]
refer to Section 3.1.2.3.3

indirect_ref

refer to Section 3.1.2.3.1.

1. In 4 context mode, only the S Transfer registers can be used

Table 3-27. Number of S-Transfer Registers Used by Hash Instruction

ref_cnt

Instruction 1 2 3

Hash_48
2 read

2 write

4 read

4write

6 read

6write

Hash_64
2 read

2 write

4 read

4write

6 read

6 write

Hash_128
4 read

4write

8 read

8write

12 read

12 write
Programmer’s Reference Manual 167

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-28. Hash Indirect Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME

O
V

�

R
E

S

ref_cnt

RES Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-29. Hash Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

OV [25] Override bit for Ref_Cnt field

REF_CNT

Overrides the ref_cnt field specified by the instruction. Valid values are:

1 = one hash operation

2 = two hash operation,

3 = three hash operation

RES Reserved

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the S transfer registers (0-127).

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Condition Codes Affected

N Z V C

Not Affected

Table 3-30. Data Format in Transfer Registers

31 0
transfer
register 31 0

transfer
register

don’t care hash 3[47:32] $xfer n+5 hash 3[127:96] $xfer n+11

hash 3[31:0] $xfer n+4 hash 3[95:64] $xfer n+10

don’t care hash 2[47:32] $xfer n+3 hash 3[63:32] $xfer n+9

hash 2[31:0] $xfer n+2 hash 3[31:0] $xfer n+8

don’t care hash 1[47:32] $xfer n+1 hash 2[127:96] $xfer n+7

hash 1 [31:0] $xfer 0 hash 2[95:64] $xfer n+6

48 bit Hash hash 2[63:32] $xfer n+5

31 0 hash 2[31:0] $xfer n+4

hash 3[63:32] $xfer n+5 hash 1[127:96] $xfer n+3

hash 3[31:0] $xfer n+4 hash 1[95:64] $xfer n+2

hash 2[63:32] $xfer n+3 hash 1[63:32] $xfer n+1

hash 2[31:0] $xfer n+2 hash 1[31:0] $xfer 0
168 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
hash 1[63:32] $xfer n+1 128 bit Hash

hash 1[31:0] $xfer 0

64 bit Hash

Table 3-30. Data Format in Transfer Registers

31 0
transfer
register 31 0

transfer
register
Programmer’s Reference Manual 169

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.29 IMMED

Load immediate 16-bits into the specified register. The immediate data must be specified having
the upper 16-bits equal to either all zeros or ones. As in Figure 3-1, the immediate data can be
stored in the 32-bit word aligned on an 8-bit boundary based on the optional shift parameter. The
fill data is either all zeros or ones and is based on the specified upper 16-bits.

.

\

Figure 3-1. Load Immediate

Instruction Format

immed[dest, immed_data, shf_cntl]

Parameter Descriptions

Parameter Description

dest Unrestricted operand. If the register is specified as a transfer register the result is
always placed into the transfer out register.

immed_data 32-bit data having the upper bits all zeroes or all ones and the lower 16-bits user
defined.

shf_cntl
0, <<0, or, no character : No shift.

<<8 : Left shifts one byte.

<<16: Left shifts two bytes.

Condition Codes Affected

N Z V C

Not Affected

Example 3-1. IMMED

;Negative number (-25610 = 0xFFFF FF00)

immed[dest_reg10, -256, <<0];Result: 0xffff ff00

immed[dest_reg11, -256, <<8];Result: 0xffff 00ff

immed[dest_reg12, -256, <<16];Result: 0xff00 ffff

Example 3-2. IMMED

;Hexadecimal number - zero fill

immed[dest_reg04, 0xff00, <<0] ;Result: 0x0000 ff00

immed[dest_reg05, 0xff00, <<8] ;Result: 0x00ff 0000

immed[dest_reg06, 0xff00, <<16] ;Result: 0xff00 0000

16-bit fill 16-bit immed

16-bit fill 16-bit immed

8-bit fill 16-bit immed

16-bit fill16-bit immed

8-bit fill

Input Value Result Register

Shift Value = <<0

Shift Value = <<8

Shift Value = <<16
170 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Example 3-3. IMMED

;;Hexadecimal number - one fill

immed[dest_reg07, 0xffffff00, <<0];Result 0xffff ff00

immed[dest_reg08, 0xffffff00, <<8];Result 0xffff 00ff

immed[dest_reg09, 0xffffff00, <<16];Result 0xff00 ffff

Example 3-4. IMMED

;Negative number (-25610 = 0xFFFF FF00)

immed[dest_reg10, -256, <<0];Result: 0xffff ff00

immed[dest_reg11, -256, <<8];Result: 0xffff 00ff

immed[dest_reg12, -256, <<16];Result: 0xff00 ffff
Programmer’s Reference Manual 171

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.30 IMMED_B0, IMMED_B1, IMMED_B2, IMMED_B3

The specified dest_reg is read as a source, one byte of immediate data is loaded into the specified
byte, and the result is written into the destination, while preserving all the other bits of the source
value. These instructions perform a read-modify-write operation on a specified destination register.

If a Transfer register is specified as the dest_reg, these instructions perform a read and modify from
a read transfer register and write the result into a transfer out register.

If a Neighbor register is specified, the Microengines Next Neighbor register is read, modified and
then stored into the Next Neighbor Microengine.

B0 refers to the least significant byte.

Instruction Format

immed_b0[dest_reg, byte_data]

immed_b1[dest_reg, byte_data]

immed_b2[dest_reg, byte_data]

immed_b3[dest_reg, byte_data]

Parameter Descriptions

Parameter Description

dest_reg Unrestricted operand that receives the result of the operation.

immed_data Immediate byte to be loaded into dest_reg.

Condition Codes Affected

N Z V C

Not Affected
172 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.31 IMMED_W0, IMMED_W1

The specified dest_reg is read as a source, one word of immediate data is loaded into the specified
word, and the result is written into the destination, while preserving all the other bits of the source
value. These instructions perform a read-modify-write operation on a specified destination register.

If a Transfer register is specified as the dest_reg, these instructions perform a read and modify from
a read transfer register and writes the result into a write transfer register.

If a Neighbor register is specified, the Microengine’s Next Neighbor register is read, modified and
then stored into the Next Neighbor Microengine.

W0 refers to the least significant word. W1 refers to the most significant word.

Instruction Format

immed_w0[dest_reg, immed_data]

immed_w1[dest_reg, immed_data]

Parameter Descriptions

Parameter Description

dest_reg Unrestricted operand that receives the result of the operation.

immed_data Immediate 2 bytes to be loaded into dest_reg. Valid immed_data values are
0 to 0xFFFF

Condition Codes Affected

N Z V C

Not Affected
Programmer’s Reference Manual 173

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.32 JUMP

Unconditional branch to an address that is formed during runtime execution by the addition of the
register and label# values.

Instruction Format

jump[src, label#], opt_tok

Parameter Descriptions

Parameter Description

src Unrestricted operand that holds the offset into the jump table. Immediate data is not
supported.

label# Symbolic label corresponding to the base address of a jump table.

opt_tok

defer[n] (n= 1 to 3) refer to Section 3.1.4.

targets [label1, label2, ...labeln]

This is always required. It is a list of labels that represents all possible locations to
which the jump could occur. All possible targets must be specified in the target list,
otherwise the code produced by the assembler may not run as expected.

Condition Codes Affected

N Z V C

Not Affected

Example 3-1. Jump

;Possible Results:

;if offset = 0, result = 1

;if offset = 2, result = 2

;if offset = 4, result = 3

immed[offset, 2]

jump[offset, base0#], targets [base0#, base1#, base2#]
continue#:

br[continue#]
base0#:;base0 + 0

immed[result, 1]

br[continue#]
base1#:;base0 + 2

immed[result, 2]

br[continue#]
base2#:;base0 + 4

immed[result, 3]

br[continue#]
174 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.33 LD_FIELD, LD_FIELD_W_CLR

Load one or more bytes positions within a register with the shifted value of another operand. Data
in the bytes that are not loaded remain unchanged or are cleared. LD_FIELD performs a read-
modify-write on a destination register. LD_FIELD_W_CLR performs a write to a destination
register.

If a Transfer register is specified as the dest_reg for LD_FIELD, these instructions perform a read
and modify from a read transfer register and writes the result into a write transfer register.

If a Neighbor register is specified for LD_FIELD, the Microengine’s Next Neighbor register is
read, modified and then stored into the Next Neighbor Microengine.

Instruction Format

ld_field[dest_reg, byte_enables, src_op, opt_shf_cntl], op_tok

ld_field_w_clr[dest_reg, byte_enables, src_op, opt_shf_cntl],
op_tok

Parameter Descriptions

Parameter Description

dest_reg
Restricted operand that receives the result of the operation. Note that this
operand is also used as a source. Note that *n$index++ can not be used as
destination for ld_field_w_clr instruction.

byte_ld_enables

A 4-bit mask that specifies which byte(s) are affected by the instruction. Each
set bit enables the corresponding byte of the destination operand 32-bit word
to be loaded or cleared. There must be at least 1 set bit in this mask. For
example, 0101 loads the 1st and 3rd bytes while the other bytes remain
unchanged.

src_op Restricted source. If a GPR, this register must be on the opposite bank as the
destination register. Refer to Table 3-3 for source register selection rules.

opt_shf_cntl

Shift or rotate the source_op contents using the syntax shown below.

<<n: Left shift n bits, where n = 1 through 31.

<<indirect: Left shift by an amount specified in the lower 5 bits of the A
operand of the previous instruction (the previous instruction
must be one of the following ALU or ALU_SHF instructions -- A
AND B, A AND ~B, A XOR B, A OR B). The lower 5 bits of the
A operand should be n, where n is the desired left shift amount.

>>n: Right shift n bits, where n = 1 through 31.

>>indirect: Right shift by the amount specified in the lower 5 bits of the A
operand of the previous instruction.

<<rotn: Left rotate n bits, where <<rot is a keyword and n = 1 to 31.

>>rotn : Right rotate n bits, where >>rot is a keyword and n = 1 to 31.

opt_tok load_cc :. Load ALU condition codes based on result formed

Condition Codes Affected

Optional token N Z V C

load_cc Result[31] == 1 Result[31:0] == 0 Cleared Cleared

not load_cc Not Affected
Programmer’s Reference Manual 175

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.34 LOAD_ADDR

Load a register with an address of the location specified by label#.

Instruction Format

load_addr[dest, label#]

Parameter Descriptions

Parameter Description

dest Restricted destination that receives the result of the operation.

label# Symbolic label corresponding to the address of an instruction.

Condition Codes Affected

N Z V C

Not Affected
176 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.35 LOCAL_CSR_RD

Read the specified Microengine CSR register. The read data is accessed by replacing the immediate
data source operand of the next immed instruction with the Microengine CSR read data. If the very
next instruction does not contain an immediate data source operand field, then the opportunity to
access the CSR data read from the previous instruction is lost.

.

Instruction Format

local_csr_rd[local_csr]

Parameter Descriptions

Parameter Description

local_csr

Specifies the Local CSR. See Section 5.2, “Microengine Local CSRs” for a
description of the CSRs.

CSR Names

USTORE_ADDRESS INDIRECT_LM_ADDR_1

ALU_OUT INDIRECT_LM_ADDR_1_BYTE_INDEX

CTX_ARB_CNTL ACTIVE_LM_ADDR_1

CTX_ENABLES ACTIVE_LM_ADDR_1_BYTE_INDEX

CC_ENABLE BYTE_INDEX

CSR_CTX_POINTER T_INDEX

 INDIRECT_CTX_STS T_INDEX_BYTE_INDEX

ACTIVE_CTX_STS INDIRECT_FUTURE_COUNT_SIGNAL

ACTIVE_CTX_SIG_EVENTS ACTIVE_FUTURE_COUNT_SIGNAL

INDIRECT_CTX_SIG_EVENTS NN_PUT

INDIRECT_CTX_WAKEUP_EVENTS NN_GET

ACTIVE_CTX_WAKEUP_EVENTS TIMESTAMP_HIGH, TIMESTAMP_LOW

INDIRECT_CTX_FUTURE_COUNT CRC_REMAINDER

ACTIVE_CTX_FUTURE_COUNT PROFILE_COUNT

INDIRECT_LM_ADDR_0 PSEUDO_RANDOM_NUMBER

INDIRECT_LM_ADDR_0_BYTE_INDEX LOCAL_CSR_STATUS

ACTIVE_LM_ADDR_0

ACTIVE_LM_ADDR_0_BYTE_INDEX

Condition Codes Affected

N Z V C

Not Affected

Example 3-1. LOCAL_CSR_RD

Here is an example of how to access the read data:
local_csr_rd[timestamp_low]

immed[gpr_n,0]
Programmer’s Reference Manual 177

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.36 LOCAL_CSR_WR

Write specified Microengine CSR register with the data in the specified source register. There is
always a 3 cycle delay between local_csr_wr and the value changed.

.

Instruction Format

local_csr_wr[local_csr, src]

Parameter Descriptions

Parameter Description

local_csr

Specifies the Local CSR. See Section 5.2, “Microengine Local CSRs” for a
description of the CSRs.

CSR Names

CTX_ARB_CNTL BYTE_INDEX

CTX_ENABLES T_INDEX

CC_ENABLE T_INDEX_BYTE_INDEX

CSR_CTX_POINTER INDIRECT_FUTURE_COUNT_SIGNAL

INDIRECT_CTX_STS ACTIVE_FUTURE_COUNT_SIGNAL

ACTIVE_CTX_STS NN_PUT

INDIRECT_CTX_SIG_EVENTS NN_GET

ACTIVE_CTX_SIG_EVENTS TIMESTAMP_HIGH, TIMESTAMP_LOW

INDIRECT_CTX_WAKEUP_EVENTS NEXT_NEIGHBOR_SIGNAL

ACTIVE_CTX_WAKEUP_EVENTS PREV_NEIGHBOR_SIGNAL

INDIRECT_CTX_FUTURE_COUNT SAME_ME_SIGNAL

ACTIVE_CTX_FUTURE_COUNT CRC_REMAINDER

INDIRECT_LM_ADDR_0 PROFILE_COUNT

INDIRECT_LM_ADDR_0_BYTE_INDEX PSEUDO_RANDOM_NUMBER

ACTIVE_LM_ADDR_0

ACTIVE_LM_ADDR_0_BYTE_INDEX

INDIRECT_LM_ADDR_1

INDIRECT_LM_ADDR_1_BYTE_INDEX

ACTIVE_LM_ADDR_1

ACTIVE_LM_ADDR_1_BYTE_INDEX

src Unrestricted source operand for the operation.

Condition Codes Affected

N Z V C

Not Affected
178 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.37 MSF (Media Switch Fabric)

Move data between the MSF and the ME. The MSF contains the MSF CSRs, RBUF, and TBUF.

Five command types are provided. The read,write commands perform the same function as the
read64,and write64 and differ only in how the ref_cnt is interpreted at the MSF unit. The
read64,and write64 commands are provided to allow all 16 context relative transfer registers to be
filled or emptied using a single read or write instruction. This is useful when moving data between
the RBUF/TBUF and the ME. The fast_wr command eliminates the need to pull data from a
transfer register during a write operation and therefore reduces the time required to complete the
write operations. The data written are bits[31:16] = 0 and bits[15:0] = User Data specified by
operands src_opA + src_opB. The intent of the fast_wr command is to quickly write the
RBUF_Element_Done and Rx_Thread_Freelist_# CSRs.

Instruction Format

msf[cmd, xfer, src_op1, src_op2, ref_cnt],opt_tok

Parameter Descriptions

Parameter Cmd Description

cmd

read Read from MSF to a Transfer register. The ref_cnt field is specified in
4-byte words

write Write to MSF from a Transfer register. The ref_cnt field is specified in
4-byte words

read64 Read from MSF to a Transfer register. The ref_cnt field is specified in
8-byte words

write64 Write to MSF from a Transfer register. The ref_cnt field is specified in
8-byte words

fast_wr Write the 16 bit data derived from src_op1 and src_op2 rather than the
transfer registers.

xfer

read, read64 An S or D Transfer register. Note 1

write, write64
An S Transfer register.

IXP28xx Rev B: An S or D Transfer Write register. Note 1

fast_wr Not used and should always be “--”.

src_op1,
src_op2

read, write, read64,
write64

Restricted operands that define a byte address. The address is
specified by src_op1 + src_op2. When the read or write instruction is
used, access occur on 4-byte word boundaries so bits[1:0] are ignored
by the MSF. When the read64 or write64 instruction is used, access
occur on 8-byte word boundaries so bits[2:0] are ignored by the MSF.

Refer to Section 5.7 (IXP2800) or Section 5.8 (IXP2400) for a list of
MSF registers and their addresses.

The RBUF is accessed using a read or read64 command and base
address of 0x2000. Refer to Tables 3-36 through 3-38.

The TBUF is accessed using a write or write64 command and base
address of 0x2000. Refer to Tables 3-36 through 3-38.

fast_wr

Restricted operands that define the byte address of the CSR and the
fast_wr data. The address and data is specified by src_op1 + src_op2.
The CSR address is in bits 15:0, and the data in bits 31:16. Refer to
Section 5.7 (IXP2800) or Section 5.8 (IXP2400) for a list of registers
and their addresses.

ref_cnt
read and write, Reference count in increments of 4-byte words. Valid values are 1 to 8

read64 and write64, Reference count in increments of 8-byte words. Valid values are 1 to 8

fast_wr Not used and should be omitted from the parameter list.
Programmer’s Reference Manual 179

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-31. MSF Indirect Format

opt_tok
read, write, read64,
write64

ctx_swap[sig_name]
refer toSection 3.1.2.4.

sig_done[sig_name]
refer to Section 3.1.2.4.

indirect_ref
refer to
Section 3.1.2.3.1.

defer[n] (n = 1 to 2)
refer to Section 3.1.2.3.1.

ordered

Ensure that the MSF instructions with the
order token are completed in order that
they are executed. This token is used by
the assembler and not by hardware.

ind_targets[me1, me2,
…]

refer to Section 3.1.2.3.3

fast_wr none

1. In 4 context mode, only the S Transfer registers can be used

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME

O
V

� Ref_Cnt RES Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-32. MSF Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

OV [25] Override bit for Ref_Cnt field

Ref_Cnt

Overrides the ref_cnt field specified by the instruction. This field supports ref_cnts from 0 to
15 where a value of 0 indicates a transfer of 1 and 15 a transfer of 16. Note that when
specifying the Ref_cnt and Xfer Register Address, data can be written into another contexts
registers set. If this field is changed, the ref_cnt field in the instruction should be a keyword
max_nn (where nn = 1-16). Refer to Section 3.1.2.3.2.

For IXP2400, the maximum number of transfer registers that can be accessed using the
read64 and write64 commands is 16. As a result, the valid range of values for ref_cnt for
read64 and write64 is 0 to 7 instead of 0 to 15.

RES Reserved

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127). Whether the register set is the S or D is specified in the
instruction and cannot be changed using an indirect.

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Condition Codes Affected

N Z V C

Not Affected

Parameter Descriptions
180 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
The 8K RBUF and TBUF can be configured to support different size elements which effects the
number of elements in the RBUF and TBUF. The following tables show how the addresses can be
interpreted as element numbers an offsets into the elements. Two tables are provided for each
configuration since the offsets size depends on the instruction and command. Bits [12:0] can be
viewed as a byte address and the ignored field represent the byte offset which is ignored by the
MSF.

Table 3-33. RBUF / TBUF Offset Address 128 64-Byte Elements

Table 3-34. RBUF / TBUF Offset Address 64 128-Byte Elements

Table 3-35. RBUF / TBUF Offset Address 32 256-Byte Elements

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0 1

5
1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

0 0 1 Element number

4-byte
aligned

offset into
element

ignored

0 0 1 Element number

8-byte aligned

offset into

elem
ent

ignored

read/write Instruction
read64/write64 command

or dram[rbuf_rd]/dram[tbuf_wr] instruction

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0 1

5
1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

0 0 1 Element number
4-byte aligned

offset into
element

ignored

0 0 1 Element number

8-byte
aligned

offset into

element

ignored

read/write command
read64/write64 command

or dram[rbuf_rd]/dram[tbuf_wr] instruction

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0 1

5
1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

0 0 1 Element
number

4-byte aligned
offset into
element

ignored

0 0 1 Element
number

8-byte aligned

offset into

element

ignored

read/write command
read64/write64 command

or dram[rbuf_rd]/dram[tbuf_wr] instruction
Programmer’s Reference Manual 181

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.38 MUL_STEP

Used in a multi-instruction operation to multiply two unsigned numbers. Multiplication is done 8-
bits per step. Example 3-1 through Example 3-4 show the sequence to use to multiply different size
operands. Operands of less than 32 bits must have 0’s into unused leading bits. Note that the final
add sets the Condition Codes.

Instruction Format

mul_step[A_op, B_op], tok

mul_step[dest, --], tok

Parameter Descriptions

Parameter Description

A_op Unrestricted source operand (multiplicand). Used when one of the “step” or “start”
tokens are specified.

B_op Unrestricted source operand (multiplier).Used when one of the “step” or “start”
tokens are specified.

dest Unrestricted destination operand. Used when one of the “last” tokens are specified.
Note that *n$index++ can not be used as destination.

-- Must always be “--” when the “Last” tokens are specified

tok

24X8_start

16X16_start

32x32_start

Indicates the beginning of a new multiply sequence. Load the
a_source and b_source into the multiplier array. A separate token
is provided for each type of multiply; 24x8, 16x16, or 32x32.

24X8_step1

16x16_step1

16x16_step2

32x32_step1

32x32_step2

32x32_step3

32x32_step4

Number of the step. 1 step for 24x8, 2 steps for 16x16, 4 steps
for 32x32.

24X8_last

16X16_last

32x32_last

Final add to produce the low 32-bits of the product.

32x32_last2 Final add to produce the upper 32-bits of a 64-bit product.

Condition Codes Affected

Optional token N Z V C

Last Result[31] == 1 Result[31:0] == 0 Set if signed
overflow
occurs

Carry out from
adder[31]Last2

Others Not Affected

Example 3-1. 8 x 24 multiply (8 bit number is multiplier)

mul_step[multiplicand,multiplier], 24x8_start

mul_step[multiplicand,multiplier], 24x8_step1

mul_step[dest,--], 24x8_last
182 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Example 3-2. 16 x 16 multiply

mul_step[multiplicand,multiplier], 16x16_start

mul_step[multiplicand,multiplier], 16x16_step1

mul_step[multiplicand,multiplier], 16x16_step2

mul_step[dest,--], 16x16_last

Example 3-3. 32 x 32 multiply with 32 bit result

mul_step[multiplicand,multiplier], 32x32_start

mul_step[multiplicand,multiplier], 32x32_step1

mul_step[multiplicand,multiplier], 32x32_step2

mul_step[multiplicand,multiplier], 32x32_step3

mul_step[multiplicand,multiplier], 32x32_step4

mul_step[dest,--], 32x32_last

NOTE: Note that overflow above 32 bit result will not be detected; if the programmer is not ensured of that
based on input operands, use the 64 bit version in next Example.

Example 3-4. 32 x 32 multiply with 64 bit result

mul_step[multiplicand,multiplier], 32x32_start

mul_step[multiplicand,multiplier], 32x32_step1

mul_step[multiplicand,multiplier], 32x32_step2

mul_step[multiplicand,multiplier], 32x32_step3

mul_step[multiplicand,multiplier], 32x32_step4

mul_step[dest_low,--], 32x32_last

mul_step[dest_high,--], 32x32_last2
Programmer’s Reference Manual 183

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.39 NOP

Consume one microcycle without performing any operation and without setting any microengine
state.

Instruction Format

nop

Condition Codes Affected

N Z V C

Not Affected
184 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.40 PCI

Move data between the MEs and the PCI CSRs or PCI Bus.

Instruction Format

pci [cmd, xfer, src_op1, src_op2, ref_cnt],opt_tok

Parameter Descriptions

Parameter Description

cmd
read Read from PCI CSR or PCI Bus to the Transfer registers

write Write from the Transfer registers to the PCI CSR or PCI Bus.

xfer
read An S or D Transfer Read register. Note 1

write
An S Transfer Write register.

IXP28xx Rev B: An S or D Transfer Write register. Note 1

src_op1,
src_op2

All cmds
Restricted source operands that define the PCI byte address.
The address is specified by src_op1 + src_op2. There are six
address spaces that are mapped as shown in Table 3-36.

ref_cnt All cmds
Reference count in increments of 4 byte words. Valid values are
1 to 8 for the PCI memory space and 1 for all other address
spaces.

opt_tok All cmds

ctx_swap[sig_name]
refer to Section 3.1.2.4.

sig_done[sig_name]
refer to Section 3.1.2.4.

indirect_ref
refer to Section 3.1.2.3.1.

defer[n] (n = 1 to 2)
refer to Section 3.1.2.3.1.

ind_targets[me1, me2, …]

refer to Section 3.1.2.3.3

1. In 4 context mode, only the S Transfer registers can be used

Table 3-36. PCI Address Space

Address Space Byte Address Range1 Max Ref_cnt
size

PCI Memory Space2 0x2000 0000 0x3FFF FFFF 8

PCI Controller Config3 0x0600 0000 0x06FF FFFF 1

PCI Controller CSRs3 0x0700 0000 0x07FF FFFF 1

PCI IACK (reads)
0x0400 0000 0x05FF FFFF

1

Special Cycles (writes) 1

PCI Configuration Cycles (Type 1) 0x0300 0000 0x03FF FFFF 1

PCI Configuration Cycles (Type 0) 0x0200 0000 0x02FF FFFF 1

PCI I/O Cycles2 0x0000 0000 0x01FF FFFF 1

Note 1: All addresses are specified as byte addresses however the PCI Controller ignores bits[1:0] to create
an address on a 4-byte word boundary.

Note 2: The address places on the PCI bus is derived from the PCI_ADDR_EXT register concatenated with
the address specified in the src_op1 + src_op2.

Note 3: The CSR are defined in Section 5.9.
Programmer’s Reference Manual 185

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-37. PCI Indirect Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME

O
V

� Ref_Cnt

O
V

� RES Byte Mask Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-38. PCI Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

OV [25] Override bit for Ref_Cnt field

Ref_Cnt

Overrides the ref_cnt field specified by the instruction. This field supports ref_cnts from 0 to
15 where a value of 0 indicates a transfer of 1 and 15 a transfer of 16. Note that when
specifying the Ref_cnt and Xfer Register Address, data can be written into another contexts
registers set. If this field is changed, the ref_cnt field in the instruction should be a keyword
max_nn (where nn = 1-16). Refer to Section 3.1.2.3.2.

OV [20] Override bit for Byte Mask field

Byte Mask Selects which bytes will be written to PCI Bus during a write operation. A “1” signifies the
byte will be written. This field is only valid when Ref_Cnt is set to transfer of 1.

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127). Whether the register set is the S or D is specified in the
instruction and cannot be changed using an indirect.

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Condition Codes Affected

N Z V C

Not Affected
186 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.41 POP_COUNT

Find number of ‘1’ bits in the src register. To find the number of ‘1’s in a partial field, precede the
pop_count instruction with an ALU AND instruction to mask off undesired bits. If there are no bits
set, the Z condition code is set; otherwise the Z condition code is cleared. This function is
implemented in three consecutive instructions, pop_count1, pop_count 2, and pop_count3 that
must be executed consecutively, with each specifying the same source operand and only the third
instruction specifying the destination operand. This instruction is available for The IXP28xx Rev B
only.

Instruction Format

pop_count1[src]

pop_count2[src]

pop_count3[dest, src]

Parameter Descriptions

Parameter Description

dest

Unrestricted destination that receives the result of the operation. dest[5:0] receives a
value from 0 to 32 indicating the number of ‘1’ bits in the src. If there are no bits set,
the Z condition code is set; otherwise the Z condition code is cleared. All other bits of
dest receive ‘0’.

src Unrestricted operand for the operation (B operand). The source has to be the same
for all three instructions

Condition Codes Affected

N Z V C

Cleared
Set if

src == 0
Cleared Cleared
Programmer’s Reference Manual 187

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.42 RTN

Unconditional branch to the address contained in the lower 12 bits of the specified register.
Typically used to return from a branch or jump instruction. For subroutine definitions refer to
Section 2.12 and for register lifetime details refer to Section 2.8.5.

Instruction Format

rtn[reg], opt_tok

Parameter Descriptions

Parameter Description

reg Unrestricted source that contains the return address. The return address is
typically loaded into the register using the load_addr instruction.

opt_tok defer[n] (n= 1 to 3) refer to Section 3.1.4.

Condition Codes Affected

N Z V C

Not Affected

Example 3-1. jump and rtn

load_addr[rtn_reg, rtn_label#]

br[sub_routine#]

rtn_label#:

.subroutine

sub_routine#:

; ------ do some work here

rtn[rtn_reg]

.endsub
188 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.43 SCRATCH (Read & Write)

Move data between the MEs and scratch memory.

Table 3-39. Scratch (Read and Write) Indirect Format

Instruction Format

scratch[cmd, xfer, src_op1, src_op2, ref_cnt],opt_tok

Parameter Descriptions

Parameter Description

cmd
read Read scratch memory starting at the specified address into

the specified transfer registers.

write Write scratch memory starting at the specified address from
the specified transfer registers.

xfer
read S or D Transfer Read register. Note 1

write
S-Transfer Write register.

IXP28xx Rev B: An S or D Transfer Write register. Note 1

src_op1,
src_op2

All cmds

Restricted operands that define the byte address. The
address is specified by src_op1 + src_op2. The scratch
memory controller accepts a 32-bit address, however only the
low 14-bits are used to address the 16Kbytes of physical
memory (address 0x0 to 0x3FFF).

Note that Scratch memory is always accessed on 4-byte word
boundaries and the scratch memory controller ignores
bits[1:0] of the address.

ref_cnt All cmds Reference count in increments of 4 byte words. Valid values
are 1 to 8.

opt_tok read, write

ctx_swap[sig_name]
refer to Section 3.1.2.4.

sig_done[sig_name]
refer to Section 3.1.2.4.

indirect_ref
refer to Section 3.1.2.3.1.

defer[n] (n = 1 to 2)
refer to Section 3.1.2.3.1.

ind_targets[me1, me2, …]

refer to Section 3.1.2.3.3

1. In 4 context mode, only the S Transfer registers can be used

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME

O
V

� Ref Cnt RES Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-40. Scratch (Read and Write) Indirect Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

OV [25] Override bit for Ref_Cnt field
Programmer’s Reference Manual 189

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Ref_Cnt

Overrides the ref_cnt field specified by the instruction. This field supports ref_cnts from 0 to
15 where a value of 0 indicates a transfer of 1 and 15 a transfer of 16. Note that when
specifying the Ref_cnt and Xfer Register Address, data can be written into another contexts
registers set. If this field is changed, the ref_cnt field in the instruction should be a keyword
max_nn (where nn = 1-16). Refer to Section 3.1.2.3.2.

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127). Whether the register set is the S or D is specified in the
instruction and cannot be changed using an indirect.

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Condition Codes Affected

N Z V C

Not Affected

Table 3-40. Scratch (Read and Write) Indirect Field Definitions

Field Description
190 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.44 SCRATCH (Atomic Operations)

Issue a reference to perform an atomic operation on data in Scratch memory. An atomic operation
is one in which a read, modify, and write operation is performed on the memory location and it is
assured that another operation will not be allowed to access the data while the atomic operation is
in progress.

Instruction Format

scratch[cmd, xfer, src_op1, src_op2],opt_tok

Parameter Descriptions

Parameter Cmd Description

cmd

swap Swap the contents of a transfer register with the data at the address.

set Set the bit(s) at the specified address according to a bit mask
provided in the transfer register.

clr Clear the bit(s) at the specified address according to a bit mask
provided in the transfer register.

incr
Increment the value of the data at a the specified address by 1. The
value in memory rolls over to 0 after 0xFFFF FFFF. The transfer
register is not used and should be --.

decr
Decrement the value of the data at the specified address by 1. The
value in memory saturates at 0x0000 0000. The transfer register is
not used and should be --.

add Add the value in the transfer register to the data at the specified
address. Results > 0xFFFF FFFF will roll over.

sub Subtract the value in the transfer register to the data at the specified
address. Results < 0 will saturate at 0x0000 0000.

test_and_set Same as the set instruction, but also return the premodified value to
the transfer register that contained the bit mask.

test_and_clr Same as the clr instruction, but also return the premodified value to
the transfer register that contained the bit mask.

test_and_incr Same as the incr instruction, but also return the premodified value to
the transfer register that contained the incr value.

test_and_decr Same as the decr instruction, but also return the premodified value to
the transfer register that contained the decr value.

test_and_add Same as the add instruction, but also return the premodified value to
the transfer register that contained the add value.

test_and_sub Same as the sub instruction, but also return the premodified value to
the transfer register that contained the add value.

xfer

incr, decr Not used and should be “--”.

incr_and_test,
decr_and_test

An S or D Transfer Read register that holds the premodified data.
Note 1

Swap & all other
test cmds

S-Transfer Write register that holds the data modifier and the S-
Transfer Read register that holds the premodified data.

IXP28xx Rev B: An S or D Transfer Write and Read register. Note 1

set, clr, add,sub,
An S-Transfer Write register that holds the data modifier.

IXP28xx Rev B: An S or D Transfer Write register. Note 1

src_op1,
src_op2

All cmds

Restricted operands that define the byte address. The address is
specified by src_op1 + src_op2. The scratch memory controller
accepts a 32-bit address, however only the low 14-bits are used to
address the 16Kbytes of physical memory (address 0x0 to 0x3FFF).

Note that Scratch memory is always accessed on 4-byte word
boundaries and the scratch memory controller ignores bits[1:0] of the
address.
Programmer’s Reference Manual 191

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-41. Scratch (Atomic Operations) Indirect Format

opt_tok

incr, decr indirect_ref refer to Section 3.1.2.3.1.

swap,

test_and_set,

test_and_clr,

test_and_add,

test_and_sub

sig_done[sig_name2]
refer to Section 3.1.2.4 and Note1

ind_targets[me1, me2, …]
refer to Section 3.1.2.3.3

indirect_ref
refer to Section 3.1.2.3.1.

test_and_incr,
test_and_decr

set, clr, add, sub

sig_done[sig_name]
refer to Section 3.1.2.4.

ctx_swap[sig_name]
refer toSection 3.1.2.4

indirect_ref
refer toSection 3.1.2.3.1.

defer[n] (n = 1 to 2)
refer to Section 3.1.4.

ind_targets[me1, me2, …]

refer to Section 3.1.2.3.3

1. In 4 context mode, only the S Transfer registers can be used

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME RES Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-42. Scratch (Atomic Operations) Indirect Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

RES Reserved

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127).

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Condition Codes Affected

N Z V C

Not Affected

Parameter Descriptions

Parameter Cmd Description
192 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.45 SCRATCH (Ring Operations)

Issue SCRATCH Ring put or get command to SCRATCH Memory. Sixteen Scratch Rings are
supported and are configured via CAP CSRs. The put command puts data onto the Ring while the
Get command gets data from the Ring. The number of 4-byte words moved between the ME and
the Ring is specified by the ref_cnt field. If there is not enough data on the ring to satisfy the
ref_cnt, only one 4-byte word will be returned, regardless of the value of the ref_cnt field, and its
value will be all zeroes.

The first 12 rings (0 -11) support a full input state that is set when the ring is full. The MEs should
test the state using the br_inp_state or br_!inp_state instructions prior to putting anything on the
Ring. The other four rings do not support a full input state and must use another method to indicate
there is room available in the Ring, for example an ack signal from the thread that removes data, or
a credit counter scheme.

Instruction Format

scratch[cmd, xfer, src_op1, src_op2, ref_cnt],opt_tok

Parameter Descriptions

Parameter Cmd Description

cmd
get Get the data from the ring specified in the address and return it to

the specified transfer registers

put Put the data onto the ring specified in the address from the
specified SRAM transfer registers

xfer
get S or D Transfer Read register. Note 1

put
S Transfer Write register.

IXP28xx Rev B: An S or D Transfer Write register. Note 1

src_op1,
src_op2

All Cmds
Restricted operands that are added (src_op1 + src_op2) to define
the Scratch ring address (0-15). Bits[1:0] are ignored. Refer to
Table 3-43 for valid Ring number encodings.

ref_cnt All Cmds Reference count. Specifies the number of transfers (1 to 8) in
increments of 4 byte words. valid values are 1-8.

opt_tok
All Cmds

ctx_swap[sig_name]
refer to Section 3.1.2.4.

sig_done[sig_name]
refer to Section 3.1.2.4.

indirect_ref
refer to Section 3.1.2.3.1.

defer[n] (n = 1 to 2) refer to
Section 3.1.4.

ind_targets[me1, me2, …]

refer to Section 3.1.2.3.3

get ignore_data_error

1. In 4 context mode, only the S Transfer registers can be used

Table 3-43. SCRATCH Ring Number Encoding (src_op1 + sr_op2)

Ring
Number

addr
value

Ring
Number

addr
value

Ring
Number

addr
value

Ring
Number

addr
value

0 0 4 0x10 8 0x20 12 0x30

1 4 5 0x14 9 0x24 13 0x34

2 8 6 0x18 10 0x28 14 0x38

3 0xc 7 0x1c 11 0x2c 15 0x3c
Programmer’s Reference Manual 193

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-44. SCRATCH Ring Indirect Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME

O
V

� Ref Cnt RES Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-45. SCRATCH Ring Indirect Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

OV [25] Override bit for Ref_Cnt field

Ref_Cnt

Overrides the ref_cnt field specified by the instruction. This field supports ref_cnts from 0 to
15 where a value of 0 indicates a transfer of 1 and 15 a transfer of 16. Note that when
specifying the Ref_cnt and Xfer Register Address, data can be written into another contexts
registers set.

RES Reserved

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127). Whether the register set is the S or D is specified in the
instruction and cannot be changed using an indirect.

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.
194 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.46 SRAM (Read & Write)

Move data between the MEs and SRAM memory

Table 3-46. SRAM (Read and Write) Indirect Format

Instruction Format

sram[cmd, xfer, src_op1, src_op2, ref_cnt],opt_tok

Parameter Descriptions

Parameter Cmd Description

cmd
read Read sram memory starting at the specified address into

the specified transfer registers.

write Write sram memory starting at the specified address from
the specified transfer registers.

xfer
read S or D Transfer Read register. Note 1

write
S Transfer Write register.

IXP28xx Rev B: An S or D Transfer Write register. Note 1

src_op1,
src_op2

All cmds

Restricted operands that define the byte address. The
address is specified by src_op1 + src_op2. Bits[1:0] of the
address is ignored by the SRAM channels

The base addresses of the SRAM channels are

Channel 0: 0x0000 0000

Channel 1: 0x4000 0000

Channel 2: 0x8000 0000

Channel 3: 0xc000 0000

(Channels 2 & 3 are
Reserved on IXP2400)

ref_cnt All cmds Reference count n increments of 4 byte words. Valid
values are 1 to 8.

opt_tok

read ignore_data_error

All cmds

ctx_swap[sig_name]
refer to Section 3.1.2.4.

sig_done[sig_name]
refer to Section 3.1.2.4.

indirect_ref
refer to Section 3.1.2.3.1.

defer[n] (n = 1 to 2) refer to
Section 3.1.4.

ind_targets[me1, me2, …]

refer to Section 3.1.2.3.3

1. In 4 context mode, only the S Transfer registers can be used

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME

O
V

� Ref Cnt

O
V

� RES Byte Mask Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-47. SRAM (Read and Write) Indirect Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

OV [25] Override bit for Ref_Cnt field
Programmer’s Reference Manual 195

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Ref_Cnt

Overrides the ref_cnt field specified by the instruction. This field supports ref_cnts from 0 to
15 where a value of 0 indicates a transfer of 1 and 15 a transfer of 16. Note that when
specifying the Ref_cnt and Xfer Register Address, data can be written into another contexts
registers set. If this field is changed, the ref_cnt field in the instruction should be a keyword
max_nn (where nn = 1-16). Refer to Section 3.1.2.5

OV [20] Override bit for Byte Mask field

Byte Mask
Selects which bytes will be written to SRAM memory during a write operation. A “1” signifies
the byte will be written where bit 12 corresponds to bits 7:0 and bit 15 corresponds to bits
31:24. The Byte Mask field is valid only when Ref_cnt is set to a transfer of 1.

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127). Whether the register set is the S or D is specified in the
instruction and cannot be changed using an indirect.

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Condition Codes Affected

N Z V C

Not Affected

Table 3-47. SRAM (Read and Write) Indirect Field Definitions

Field Description
196 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.47 SRAM (Atomic Operations)

Issue a memory reference to perform an atomic operation on data in SRAM memory. An atomic
operation is one in which a read, modify, and write operation is performed on the memory location
and it is assured that another atomic operation will not be allowed to access the data while the
atomic operation is in progress. Note that non-atomic operations, such as a sram[read], can occur in
the middle of a atomic operation.

The IXP28xx Rev B supports no_pull atomic operations for the swap, set, clr, add, test_and_set,
test_and_clr, and test_and_add commands. The no_pull version is specified by using the no_pull
and the indirect_ref tokens. The indirect reference also provides the write data, which is normally
“pulled” from the write transfer register. Also, the no_pull version of the instructions use one less
signal.

By not using a transfer register for the data modifier, the SRAM unit does not have to pull any data
from the Microengine, which in turn speeds up the execution of the no_pull atomic operations in
the SRAM unit.

Instruction Format

sram[cmd, xfer, src_op1, src_op2],opt_tok

Parameter Descriptions

Parameter Cmd Description

cmd

swap Swap the contents of a transfer register with the data at the
address. Note 2

set
Set the bit(s) at the specified address according to a bit mask
provided in the transfer register.A one in the bit position of the
bit mask signifies that the bit should be set.

clr
Clear the bit(s) at the specified address according to a bit
mask provided in the transfer register. A one in the bit position
of the bit mask signifies that the bit should be cleared.

incr Increment the value of the data at a the specified address by
1. The value in memory rolls over to 0 after 0xFFFF FFFF.

decr Decrement the value of the data at the specified address by 1.
The value in memory saturates at 0x0000 0000.

add

Add the 2s complement value in the transfer register to the
data at the address, which is treated as an unsigned number.
Negative number addition whose results is < 0 will saturate
the result in the value in memory at 0x0000 0000. Positive
number addition whose results is > 0xFFFF FFFF will roll over.

test_and_set
Same as the set instruction, but also return the premodified
value to the transfer register that contained the bit mask.
Note 2

test_and_clr
Same as the clr instruction, but also return the premodified
value to the transfer register that contained the bit mask.
Note 2

test_and_incr
Same as the incr instruction, but also return the premodified
value to the transfer register that contained the incr value.The
premodified value can be used to test for saturation.

test_and_decr
Same as the decr instruction, but also return the premodified
value to the transfer register that contained the decr value.
The premodified value can be used to test for saturation.

test_and_add
Same as the add instruction, but also return the premodified
value to the read transfer register specified.The premodified
value can be used to test for saturation. Note 2
Programmer’s Reference Manual 197

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
no_pull cmd

Note 1

swap

Replace the data at the address with the sign extended
contents of the data field from the no_pull indirect reference
(Table 3-50). The original data at the address is placed in the
read transfer register.

set
Set one bit at the specified address. The bit to set is in the
data field [4:0] specified in the no_pull indirect reference.
(Table 3-50). Data field [10:5] is ignored.

clr
Clear one bit at the specified address. The bit to clear is in the
data field [4:0] specified in the no_pull indirect reference
(Table 3-50). Data field [10:5] is ignored.

add

Add the sign extended value in the data field of the no_pull
indirect reference (Table 3-50) to the data at the address.
Saturates at 0x00000000 if the data field is negative number
and the addition results is <0 . If the data field is a positive
number, then addition results > 0xFFFFFFFF will roll over.

test_and_set Same as the set instruction, but also return the premodified
value to a read transfer register.

test_and_clr Same as the clr instruction, but also return the premodified
value to a read transfer register.

test_and_add Same as the add instruction, but also return the premodified
value to the read transfer register.

xfer

incr, decr Not used and should be “--”.

incr_and_test,
decr_and_test

An S or D Transfer Read register that holds the premodified
data. Note 3

swap & all other test
cmds

S-Transfer Write register that holds the data modifier and the
S-Transfer Read register that hold the premodified data.

IXP28xx Rev B: An S or D Transfer Write and Read register.
Note 3

set, clr, add
An S-Transfer Write register that holds the data modifier.

IXP28xx Rev B: An S or D Transfer Write register. Note 3

set, clr, add, with
no_pull opt_tok
(IXP28xx Rev B)

Not used and should be “--”.

swap,

test_and_set,
test_and_clr,
test_and_add

with no_pull opt_tok
(IXP28xx Rev B)

An S or D Transfer Read register to hold the premodified data.
Note 3

src_op1,
src_op2

All cmds

Restricted operands that define the byte address. The
address is specified by src_op1 + src_op2. Bits[1:0] of the
address is ignored by the SRAM channels

The base addresses of the SRAM channels are

Channel 0: 0x0000 0000

Channel 1: 0x4000 0000

Channel 2: 0x8000 0000

Channel 3: 0xc000 0000

(Channels 2 & 3 are Reserved
on IXP2400)

Parameter Descriptions

Parameter Cmd Description
198 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-48. SRAM Indirect Format (IXP28xx Rev A: all Atomics; IXP28xx Rev B: Pull Atomics)

opt_tok

test_and_incr,
test_and_decr

set, clr, add,

sig_done[sig_name]
refer to Section 3.1.2.4.

ctx_swap[sig_name]
refer to Section 3.1.2.4.

indirect_ref
refer to Section 3.1.2.3.1.

defer[n] (n = 1 to 2) refer to
Section 3.1.4.

ind_targets[me1, me2, …]

refer to Section 3.1.2.3.3

test_and_set,
test_and_clr,
test_and_add,

swap,

sig_done[sig_name2]
refer to Section 3.1.2.4.

ind_targets[me1, me2, …]
refer to Section 3.1.2.3.3

indirect_ref
refer to Section 3.1.2.3.1.

incr, decr
indirect_ref
refer to Section 3.1.2.3.1.

ind_targets[me1, me2, …]

refer to Section 3.1.2.3.3

set, clr, add,

with no_pull opt_tok
(IXP28xx Rev B)

no_pull (required)
indirect_ref (required)
refer to Section 3.1.2.3.1.

ind_targets[me1, me2, …]
refer to Section 3.1.2.3.3

swap, test_and_set,
test_and_clr,
test_and_add,

with no_pull opt_tok
(IXP28xx Rev B)

no_pull (required)
indirect_ref (required)
refer to Section 3.1.2.3.1.

ind_targets[me1, me2, …]
refer to Section 3.1.2.3.3

sig_done[sig_name]
refer to Section 3.1.2.4.

ctx_swap[sig_name]
refer to Section 3.1.2.4.

1. The B0 revision of the IXP28x0 supports a “no_pull” version of these commands. The no_pull version is
specified by the indirect reference token no_pull. The indirect reference also provides the write data,
which is normally “pulled” from the write transfer register. The no_pull commands do not require a write
transfer register.

2. Two signals are required and this affects how the BR_SIGNAL, BR_!SIGNAL instructions are used. Refer
to the BR_SIGNAL, BR_!SIGNAL instructions for details.

3. In 4 context mode, only the S Transfer registers can be used

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME RES

O
V

� RES Byte Mask Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-49. SRAM Indirect Field Definitions (IXP28xx Rev A: all Atomics; IXP28xx Rev B: Pull
Atomics)

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

RES Reserved and must be zero

OV [20] Override bit for Byte Mask field

Parameter Descriptions

Parameter Cmd Description
Programmer’s Reference Manual 199

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-50. SRAM Indirect Format (IXP28xx Rev B: no_pull Atomics)

Byte Mask Selects which bytes will be written to SRAM memory during a write operation. A “1” signifies
the byte will be written.

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127).

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME

O
V

�

upper
no-pull
data

O
V

� lower no-pull data Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-51. SRAM Indirect Field Definitions (IXP28xx Rev B: no_pull Atomics)

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

OV [25:24] Override bits for no-pull mode. Both bits and bit [20] must be set to enable the no-pull mode.

upper
no_pull data Bits[10:8] of the no_pull data field.

OV [20] Override bit for no-pull mode. This bit and bits [25:24] must be set to enable the no-pull
mode.

Lower
no_pull data Bits[7:0] of the no_pull data field.

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127).

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Condition Codes Affected

N Z V C

Not Affected

Table 3-49. SRAM Indirect Field Definitions (IXP28xx Rev A: all Atomics; IXP28xx Rev B: Pull
Atomics)

Field Description
200 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.48 SRAM (CSR)

Issue a reference to read or write the SRAM channel Control and Status Registers.

Table 3-52. SRAM CSR Indirect Format

Instruction Format

sram[cmd, xfer, src_op1, src_op2],opt_tok

Parameter Descriptions

Parameter Cmd Description

Command
csr_rd Read the SRAM CSR specified by the address and put the

data into the specified transfer register.

csr_wr Write the SRAM CSR specified by the address with the data
in the specified transfer register.

xfer
csr_rd S or D Transfer Read register. Note 1

csr_wr
S Transfer Write register.

IXP28xx Rev B: An S or D Transfer Write register. Note 1

src_op1,
src_op2

All cmds

Restricted operands that define the byte address. The
address is specified by src_op1 + src_op2. Bits[1:0] of the
address is ignored by the SRAM channels

The offsets to the CSRs are shown in Table 5-16.

The base address for the SRAM channels are:

Channel 0: 0x0000 0000

Channel 1: 0x4000 0000

Channel 2: 0x8000 0000

Channel 3: 0xC000 0000

(Channels 2 & 3 are Reserved on IXP2400)

opt_tok All cmds

ctx_swap[sig_name]
refer to Section 3.1.2.4.

sig_done[sig_name]
refer to Section 3.1.2.4

indirect_ref
refer to Section 3.1.2.3.1.

defer[n] (n = 1 to 2) refer to
Section 3.1.4.

ind_targets[me1, me2, …]

refer to Section 3.1.2.3.3

1. In 4 context mode, only the S Transfer registers can be used

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME RES Xfer Register
Address

O
V

�

O
V

� CTX
Programmer’s Reference Manual 201

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-53. SRAM CSR Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

RES Reserved

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127). Whether the register set is the S or D is specified in the
instruction and cannot be changed using an indirect.

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Condition Codes Affected

N Z V C

Not Affected
202 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.49 SRAM (Read Queue Descriptor)

Issue a memory reference to an SRAM Channel to read the Queue descriptor into the SRAM
Queue Array (seeFigure 3-2. Three commands are provided to read the head and q_count, the tail
and q_count, or the other (which reads the head if it is not currently in the array or the tail if it is
currently not in the array). Optionally, additional data (as defined by the application) that begins at
the specified address + 3 can be read from the SRAM into the ME transfer registers.

Instruction Format

sram[cmd, xfer, src_op1, src_op2, ref_cnt], opt_tok

Parameter Descriptions

Parameter Cmd Description

cmd

rd_qdesc_head

This command is used to partially load a new queue_descriptor into the
queue_array at an assigned entry number. Dequeues can be performed
once the head is loaded. Follow rd_qdesc_head with rd_qdesc_other to
completely load the queue_array entry. Refer toFigure 3-2for a
description of fields moved between the queue descriptor, SRAM Queue
Array and ME

rd_qdesc_tail

This command is used to partially load a new queue_descriptor into the
queue_array at an assigned entry number. Enqueues can be performed
once the tail is loaded. Follow rd_qdesc_tail with rd_qdesc_other to
completely load the queue_array entry. Refer to Figure 3-2 for a
description of fields moved between the queue descriptor, SRAM Queue
Array and ME

rd_qdesc_other

This command is used to finish loading a new queue_descriptor into the
queue_array at an assigned entry number. This command should only be
used when either the head or tail is valid in the same queue_array entry.
Refer to Figure 3-2 for a description of fields moved between the queue
descriptor, SRAM Queue Array and ME

xfer
rd_qdesc_head
rd_qdesc_tail

S or D Transfer Read register where the q_count and optional data is
returned. Note 1

rd_qdesc_other Must be --

src_op1,
src_op2

All Cmd

Restricted operands that are added (src_op1 + src_op2) to define the
following:

[31:30] SRAM Channel

[29:24] Queue Array Entry Number

[23:0] Queue Descriptor data block

The Address of Queue Descriptor block specifies a 4-byte
word address (not a byte address) that must be the start of
the 16-byte aligned address of the Queue descriptor (i.e bits
[1:0] should always be 0). The queue descriptor consists of
the head, tail, q_count and optional data.

ref_cnt
rd_qdesc_head

rd_qdesc_tail

Reference count n increments of 4 byte words. Valid values are 2 to 8.

The number of words returned to transfer registers is one less than the
ref_cnt specified. For example, if the ref_cnt were “3”, then three words
would be read from sram, the first would be used by the SRAM Queue
Array hardware, and the last two (q_count and optional word) would be
returned to transfer registers.

rd_qdesc_other Not required and must be omitted from the parameter list
Programmer’s Reference Manual 203

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
opt_tok

All Cmds indirect_ref refer
toSection 3.1.2.3.1.

ind_targets[me1, me2, …]

refer to Section 3.1.2.3.3

rd_qdesc_head

rd_qdesc_tail

sig_done[sig_name]
refer to Section 3.1.2.4.

ctx_swap[sig_name]
refer to Section 3.1.2.4.

defer[n] (n = 1 to 2)

refer to Section 3.1.2.3.1.
ignore_data_error

1. In 4 context mode, only the S Transfer registers can be used

Parameter Descriptions

Parameter Cmd Description
204 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Figure 3-2. Read Queue Descriptor Commands

E S seg_cnt head_ptr
tail_ptr
q_count

optional info

xxxxVh head_ptrE S Vt q_countseg_cnt

Address
Address+1
Address+2
Address+3...n

Queue Descriptor

SRAM Controller

Head Command

True

$xfer m..n

False

SRAM Memory
ME Transfer Registers

Queue Array entry

E S seg_cnt head_ptr
tail_ptr
q_count

optional info

tail_ptrxxxxx q_countxxxx

Address
Address+1
Address+2
Address+3...n

Queue Descriptor

SRAM Controller

Tail Command

True

$xfer m..n

False

SRAM Memory
ME Transfer Registers

Queue Array entry

E S seg_cnt head_ptr
tail_ptr
q_count

optional info

uuuuuuuuu uuuu

Address
Address+1
Address+2
Address+3...n

Queue Descriptor

SRAM Controller

Other Command with Head Valid

True

$xfer m..n

SRAM Memory
ME Transfer Registers

Queue Array entry

E S seg_cnt head_ptr
tail_ptr
q_count

optional info

uuuuhead_ptrE S uuuuseg_cnt

Address
Address+1
Address+2
Address+3...n

Queue Descriptor

Other Command with Tail Valid

True

$xfer m..n

SRAM Memory
ME Transfer Registers

The optional info is
provided only when the
ref_cnt is greater than 2.

Notes:

“Vt” = Tail Valid
“E” = EOP
“S” = SOP

“Vh” = Head valid

Vh Vt

u Vt

Vh u

x

u tail_ptr

“x” = indeterminant
“u” = Unchanged

Queue Descriptor
Address

[30] - SOP
[29:24] - seg_cnt
[23:0] - head_ptr

[31] - EOP

Address+1
[31:24] reserved
[23:0] tail pointer

Address+2
[31:24] user data*
[23:0] q_count

*The user data field is written when
the queue descriptor is initialized.
The queuing hardware will read
this value and return it to the ME
when a rd_descr instruction is
performed, however this field is
never written when a wr_descr
instruction is performed. It should
be considered read-only user data.
Programmer’s Reference Manual 205

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-54. SRAM (Read Queue Descriptor) Indirect Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME

O
V

� Ref Cnt RES Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-55. SRAM (Read Queue Descriptor) Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

OV [25] Override bit for Ref_Cnt field

Ref_Cnt

Overrides the ref_cnt field specified by the instruction. This field supports ref_cnts from 1 to
15 (0 not legal) where a value of 1 indicates a transfer of 1 (q_count) to the ME and 15 a
transfer of 15 (q_count and 14 x 4 bytes of optional data). Note that when specifying the
Ref_cnt and Xfer Register Address, data can be written into another contexts registers set.

RES Reserved and must be ZERO

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127). Whether the register set is the S or D is specified in the
instruction and cannot be changed using an indirect.

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Condition Codes Affected

N Z V C

Not Affected
206 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.50 SRAM (Write Queue Descriptor)

Issue a memory reference to an SRAM Channel to move data from the SRAM Queue Array into
SRAM.

Instruction Format

sram[cmd, --, src_op1, src_op2]

Parameter Descriptions

Parameter Description

cmd

wr_qdesc

This command is used to evict an entry in the SRAM Q_array
and returns its contents to SRAM memory. Only the fields that
are valid in the Q_descriptor are written in order minimize
SRAM bandwidth utilization.

If the head valid bit is set in the Q_array, the head, seg_cnt,
SOP, EOP, and q_count fields are returned to SRAM.

If the tail valid bit is set in the Q_array, the tail, and q_count
fields are returned to SRAM.

If head and tail are valid, the head, seg_cnt, SOP, EOP, tail, and
q_count fields are returned to SRAM.

If neither the head and tail are valid, nothing is returned to
SRAM.

Refer to Figure 3-3 for a description of fields moved between
the Q_array and the SRAM

wr_qdesc_count

This command is used to evict the q_count entry in the SRAM
Q_array and return its contents to SRAM memory.

Refer to Figure 3-3 for a description of fields moved between
the Q_array and the SRAM

-- All Cmds Must always be “--”

src_op1,
src_op2

All Cmds

Restricted operands that are added (src_op1 + src_op2) to
define the following:

[31:30] SRAM Channel

[29:24] Queue Array Entry Number

[23:0] Queue Descriptor data block

The Address of Queue Descriptor block specifies a
4-byte word address (not a byte address) that must
be the start of the 16-byte aligned address of the
Queue descriptor (i.e bits [1:0] always should be 0).
The queue descriptor consists of the head, tail,
q_count and optional data.

Condition Codes Affected

N Z V C

Not Affected
Programmer’s Reference Manual 207

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Figure 3-3. Write Queue Descriptor Commands

E S seg_cnt head_ptr
tail_ptr
q_count

optional info

xxxxVh head_ptrE S Vt q_countseg_cnt

Address
Address+1
Address+2
Address+3...n

Queue Descriptor

SRAM Controller

Wr_qdesc Command with Head Valid

SRAM Memory

Queue Array entry

E S seg_cnt head_ptr
tail_ptr
q_count

optional info

tail_ptrxxxxx q_countxxxx

Address
Address+1
Address+2
Address+3...n

Queue Descriptor

SRAM Controller

SRAM Memory

Queue Array entry

E S seg_cnt head_ptr
tail_ptr
q_count

optional info

q_countHeadE seg_cnt

Address
Address+1
Address+2
Address+3...n

Queue Descriptor

SRAM Controller

Other Command with Head and Tail Valid

SRAM Memory

Queue Array entry

E S seg_cnt head_ptr
tail_ptr
q_count

optional info

q_countxxxxx x xxxxxxxx

Address
Address+1
Address+2
Address+3...n

Queue Descriptor

Wr_descr_count Command

SRAM Memory

Notes:

“Vt” = Tail Valid
“E” = EOP
“S” = SOP

“Vh” = Head valid

Vh Vt

Vh Vt

x x

x

S tail_ptr

Wr_qdesc Command with Tail Valid

Queue Descriptor
Address

[30] - SOP
[29:24] - seg_cnt
[23:0] - head_ptr

Address+1
[31:24] reserved
[23:0] tail pointer

Address+2
[31:24] user data*
[23:0] q_count

[31] - EOP

*The user data field is written when
the queue descriptor is initialized.
The queuing hardware will read
this value and return it to the ME
when a rd_descr instruction is
performed, however this field is
never written when a wr_descr
instruction is performed. It should
be considered read-only user data.
208 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.51 SRAM (Enqueue)

Two commands are provided for performing enqueue operations. The enqueue command is used to
enqueue to a queue structure that supports a single buffer per packet (refer to Figure 3-4). The
enqueue_tail (enqueue tail) command is used with the enqueue command for queue structures that
support multiple buffers per packet (refer to Figure 3-4 and Figure 3-5). In this case the enqueue
command links the first buffer to the queue array and the enq_tail command updates the tail pointer
in the SRAM Queue Array. The default is to set the segment count (seg_cnt) to 0 and set the SOP
and EOP bits. This can be overridden using the indirect reference optional token.

This instruction uses src_op1 and src_op2 parameters to select the SRAM channel and SRAM
Queue Array entry as well as to pass the address of the buffer descriptor to the SRAM Queue
Array. The indirect reference is used to set the EOP, SOP, and seg_cnt fields.

Note:

1. When performing SRAM Enqueues from the Intel XScale® core, the EOP, SOP, & Segment
Count fields are always written with values EOP = 1, SOP = 1, & Segment Count = 0.

2.The Intel XScale® core cannot perform enqueue operations if the queue controller is in Mode 3
since a Segment Count of zero on enqueue is illegal in this mode. Refer to Section 3.2.52, “SRAM
(Dequeue)” for a description of Mode 3.

Instruction Format

sram[cmd, --, src_op1, src_op2],opt_tok

Parameter Descriptions

Parameter Command Description

cmd

enqueue

This command is used to add a single buffer to the queue or to
add the Start-of-Packet buffer of a multi-buffer frame to the queue.
It adds a buffer to the queue contained in the Q-array entry, and
sets the tail to point to the buffer. If necessary, a link is established
from the old tail buffer to the new buffer.

If SRAM_CONTROL[QC_IGN_EOP] is set, the value of seg_cnt
is added to q_count. Otherwise the q_count is incremented.

enqueue_tail

This command updates the tail pointer only. This command must
be proceeded by an enqueue command to the same entry. This
adds the End-of-Packet buffer of a multi-buffer frame to the
queue.

There must be no intervening commands to a queue array entry
between an enqueue and enqueue_tail command.

-- All Cmd Must always be “--”

src_op1,
src_op2

All Cmd

Restricted operands that are added (src_op1 + src_op2) to define
the following:

[31:30] SRAM Channel

[29:24] Queue Array Entry Number

[23:0] Q_link Pointer

The Q_link Pointer must be a 4-byte word address.

opt_tok All Cmds indirect_ref refer to Section 3.1.2.3.1.
Programmer’s Reference Manual 209

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-56. SRAM (Enqueue) Indirect Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RES

O
V

�

E
O

P

S
O

P

SEG_CNT
RES

Table 3-57. SRAM (Enqueue) Field Definitions

Field Description

RES Reserved and must be zero

OV [20] Override bit for the EOP, SOP, and SEG_CNT fields

EOP This sets the EOP bit in the Q_link.

SOP This sets the SOP bit in the Q_link.

SEG_CNT

This sets the segment count in the Q_link.

When the Queue Array HW set to Mode 0 and 1, the segment count encoding is as
follows:

0x00 = 1 segment

0x01 = 2 segment

0x02 = 3 segment

0x03 = 4 segment

to...

0x3E = 63 segment

When the Queue Array HW set to Mode 3, the segment count encoding is as follows:

0x1 = add 1 buffer to the queue count

to...

0x3E = add 62 buffers to the queue count.

Notes:

1. When an indirect ref is not specified, the parameters delivered to the SRAM controller are SOP =1,
EOP =1, and SEG_CNT = 0x3F (which is translated by the SRAM controller as a SEG_CNT of 0).

2. If in Queue Array HW is in Mode 1, the segment count field is not used by hardware and can be
used by software as a message field between the enqueuer and dequeuer.

3. If in Queue Array HW is in Mode 3, a segment count of 0 is illegal and is considered a
programming error if used.

Condition Codes Affected

N Z V C

Not Affected
210 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Figure 3-4. Enqueue One Buffer at a Time using the Enqueue Command

No Link

A: B: C: D:

ZDCB

Z:

E S seg_cnt head_ptr (A)

q_count (5)

Queue Array Entry

tail_ptr (Z)
user defined

No Link

A: B: C: D:

No LinkDCB

Z:

E S seg_cnt head_ptr (A)

q_count (4)

Queue Array Entry

tail_ptr (D)
user defined

Before:

After:

 q_links are shown as boxes

E S seg_cnt next_ptr

q_link format
to simplify the drawing
Programmer’s Reference Manual 211

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Figure 3-5. Enqueue a String of Buffers to a Queue

No LinkU V W

A: B: C: D:

B C D T

T: U: V: W:

E S seg_cnt head_ptr (A)

q_count (5)

Queue Array Entry

tail_ptr (T)
user defined

A: B: C: D:

No LinkDCBE S seg_cnt head_ptr (A)

q_count (4)

Queue Array Entry

tail_ptr (D)
user defined

First Step to Enqueue a String of Buffers to a Queue (sram[enqueue])

No LinkU V W

A: B: C: D:

B C D T

T: U: V: W:

E S seg_cnt head_ptr (A)

q_count (5)

Queue Array Entry

tail_ptr (W)
user defined

Second Step to Enqueue a String of Buffers to a Queue (sram[enqueue_tail])

No LinkU V W

T: U: V: W:

Initial state of the Queue

Note: The buffer string T,U,V,W was linked by an ME using software (rather than the Queue Array)
212 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.52 SRAM (Dequeue)

The SRAM_CONTROL[QC_IGN_EOP:QC_IGN_SEG_CNT] register bits support the following
three modes that determine the behavior of the dequeue command (Mode 2 is not supported). Refer
to Figure 3-7 for examples of these modes.

Mode 0: Dequeue Segments & Count Packets

The seg_cnt is decremented for each sram[dequeue] command. Only when seg_cnt equals 0 is
the q_link removed from the linked list. The EOP is used by hardware to determine if it should
decrement the q_count, therefore it must be set on the last buffer of a packet for software
designs that support multiple buffers per packet or on all buffers for software designs that
support a single buffer per packet. The state of the EOP bit is returned with the data for each
dequeue command. The state of the SOP bit is returned only with the data for the first dequeue
command to a buffer. The SOP bit is clear for subsequent dequeue commands to the buffer.

Mode 1: Dequeue Buffers & Count Packets

The seg_cnt is ignored in this mode so a q_link is removed from the linked list for each
sram[dequeue] command. The EOP and SOP bits are treated the same as mode 0. The seg_cnt
is returned unchanged on each dequeue.

Mode 3: Dequeue Buffers & Count Buffers

The seg_cnt is ignored in this mode so a q_link is removed from the linked list for each
sram[dequeue] command. The EOP bit is also ignored by hardware so the q_count is always
decremented for each dequeue command. Note: In this mode the seg_cnt is added to the
q_count on every enqueue. A seg_cnt value of 0 is illegal for enqueue commands.

Instruction Format

sram[cmd, xfer, src_op1, src_op2], opt_tok

Parameter Descriptions

Parameter Command Description

cmd dequeue

This command is used to remove a q_link from the queue.

If the q_count is zero (nothing on the queue), the value of zero is returned.

If the q_count is NOT zero (something on the queue), and the seg_cnt is 0 in
the head q_link (buffer only has one segment), then the q_link is removed from
the linked list and it is returned.

If the q_count is NOT zero (something on the queue), and the seg_cnt is NOT
0 in the head q_link (buffer holds multiple segments), then the seg_cnt is
decremented and the q_link NOT is removed from the linked list.

If the q_count is not 0 then the entire q_link is returned.

xfer All cmds S or D Transfer Read register where the q_link is returned. Note 1

src_op1,
src_op2

dequeue

Restricted operands that are added (src_op1 + src_op2) to define the
following:

[31:30] SRAM Channel

[29:24] Queue Array Entry Number

[23:0] ignored
Programmer’s Reference Manual 213

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-58. SRAM (dequeue) Indirect Format

opt_tok dequeue

indirect_ref

refer to Section 3.1.2.3.1.

defer[n]

refer to Section 3.1.4.

ctx_swap[sig_name]
refer to Section 3.1.2.4.

sig_done[sig_name]
refer to Section 3.1.2.4.

ind_targets[me1, me2, …]
refer to Section 3.1.2.3.3

1. In 4 context mode, only the S Transfer registers can be used

Figure 3-6. Dequeue Buffer

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME RES Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-59. SRAM (dequeue) Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

RES Reserved

Xfer Register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127). Whether the register set is the S or D is specified in the
instruction and cannot be changed using an indirect.

Parameter Descriptions

Parameter Command Description

A: B: C: D:

ZDCBE S seg_cnt head_ptr (A)

q_count (4)

Queue Array Entry

tail_ptr (D)
user defined

Before:

After:

 q_links are shown as boxes

E S seg_cnt next_ptr

q_link format
to simplify the drawing

A:

B: C: D:

ZDC

B

E S seg_cnt head_ptr (A)

q_count (3)

Queue Array Entry

tail_ptr (C)
user defined

This picture assumes seg_cnt = 0.

The value A is return to the ME transfer register
214 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
OV [4] Override bit for Xfer Register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Condition Codes Affected

N Z V C

Not Affected

Figure 3-7. Example of the Three Dequeue Modes

Table 3-59. SRAM (dequeue) Field Definitions

Field Description

seg 4

seg 3

seg 2

seg 1

Example: One Packet in 2 buffers occupying 6 segments

Mode 0: Dequeue Segments & Count Packets

empty

empty

seg6

seg 5
Q_link 1: seg_cnt = 4, decremented each dequeue

Q_link 2: seg_cnt = 2, decremented each dequeue

Buffer 1 Buffer 2

SOP = 1, cleared on first dequeue

EOP = 1, q_count decremented when seg_cnt = 0

Example: One Packet in 2 buffers

Mode 1: Dequeue Buffers & Count Packets Q_link 1: seg_cnt is ignored

Q_link 2: seg_cnt is ignored

Buffer 1 Buffer 2

SOP = 1
EOP = 0, q_count not decremented

SOP = 0
EOP = 1, q_count decremented

Example: One Packet in 2 buffers

Mode 3: Dequeue Buffers & Count Buffers Q_link 1: seg_cnt = 2, this is added to the current q_count

Q_link 2: seg_cnt is ignored
Buffer 1 Buffer 2

SOP = 1
EOP = ignored, q_count decremented

EOP = ignored, q_count decremented
SOP = 0

SOP = 0

EOP = 0, q_count not decremented

data data

data data

q_count is incremented each enqueue (not enqueue_tail)

during the enqueue (not enqueue_tail) to indicate
that two buffers are being enqueued. It is ignored
on dequeue.

Q_link is removed when seg_cnt = 0 (4 dequeues)

Q_link is removed when seg_cnt = 0 (2 dequeues)

Q_link is removed on each dequeue

q_count is incremented each enqueue (not enqueue_tail)

Q_link is removed on each dequeue
Programmer’s Reference Manual 215

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
3.2.53 SRAM (Ring Operations)

Issue an SRAM Ring put or get command to the SRAM. Each Rings uses one of the 64 SRAM
Queue Array Entries in the SRAM controller. Note that the maximum number of SRAM rings is
equal to 64 x the number of SRAM channels supported by the Network Processor.Also, note that
the ring descriptor must be read from SRAM using the Read Queue Descriptor command before
issuing any put or get operations to it. The format of the ring descriptor is shown in table
Table 3-60.

Journals and Rings can be configured to be one of eight sizes, as shown in Table 3-61.

The put command puts data onto the Ring while the Get command gets data from the Ring. The
number of 4-byte words moved between the ME and the Ring is specified by the ref_cnt field. For
the Put command, a 4-byte Status word is returned that indicates the current number of 4-byte
words on the Ring and whether the put was successful. The put command will be unsuccessful if
there are 16 or less free entries on the ring for Rev A and 64 or less free entries for Rev B. The
Status word is written to read transfer register specified by xfer field. If the Put operation is
unsuccessful, the data is dropped (not put onto the ring) and the ME should retry the put command.

The ring area will always starts at an address aligned to the ring size (example if the size is 1K the
ring area will start on a 1K address boundary).

The sram[rd_qdesc] commands must be used to initialize the queue array entry before the Ring can
be used.

Table 3-60. SRAM Ring Descriptor Format

Name Longword # Bit # Definition

Ring/Journal Size 0 31:29 See Table 3-61 for size encoding.

Head 0 23:0 Get pointer

Tail 1 23:0 Put pointer

Ring Count 2 23:0 Number of longwords on the ring

NOTE: For Ring/Journal, Head and Tail must be initialized to the same address

Table 3-61. SRAM Ring Size Encoding

Ring Size Encoding Size of Journal/Ring Area Head/Tail Field Base Head and Tail Field Increment

000 512 Longwords 23:9 8:0

001 1K 23:10 9:0

010 2K 23:11 10:0

011 4K 23:12 11:0

100 8K 23:13 12:0

101 16K 23:14 13:0

110 32K 23:15 14:0

111 64K 23:16 15:0

Instruction Format

sram[cmd, xfer, src_op1, src_op2, ref_cnt],opt_tok
216 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-62. SRAM Ring Indirect Format

Parameter Descriptions

Parameter Cmd Description

cmd
get Get the data from the ring specified in the address and return it to

the specified transfer registers

put Put the data into the ring specified in the address from the
specified transfer registers

xfer

get S or D Transfer Read register.Note 1

put

S-Transfer register. The write transfer registers holds the data that
is put onto the ring, the read transfer register holds the Full Status
word which has the format:

[31] Success = 1, Fail = 0

[30:16] Always 0

[15:0] Number of 4-byte words on the Ring before the PUT
operation

IXP28xx Rev B: An S or D Transfer Write register. Note 1

src_op1,
src_op2

All Cmds

Restricted operands that are added (src_op1 + src_op2) to define
the following:

[31:30] SRAM Channel

[29:8] ignored

[7:2] Ring Number

[1:0] ignored

ref_cnt All Cmds

Reference count. Specifies the number of transfers (1 to 8) in
increments of 4 byte words. If the indirect_ref token is specified,
ref_cnt can be a keyword max_nn (where nn = 1-16). Refer to
Section 3.1.2.3.2.

opt_tok

put sig_done[sig_name2]
refer to Section 3.1.2.4.

indirect_ref
refer to Section 3.1.2.3.1.

get

sig_done[sig_name]
refer to Section 3.1.2.4.

ctx_swap[sig_name]
refer to Section 3.1.2.4.

defer[n]
refer to Section 3.1.4

indirect_ref
refer to Section 3.1.2.3.1.

1. In 4 context mode, only the S Transfer registers can be used

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME

O
V

� Ref Cnt RES Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-63. SRAM Ring Indirect Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME
Specifies the Microengine where the result will be written and signaled upon completion

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

OV [25] Override bit for Ref_Cnt field

Ref_Cnt

Overrides the ref_cnt field specified by the instruction. This field supports ref_cnts from 0 to
15 where a value of 0 indicates a transfer of 1 and 15 a transfer of 16. Note that when
specifying the Ref_cnt and Xfer Register Address, data can be written into another contexts
registers set.
Programmer’s Reference Manual 217

3.2.54 SRAM (Journal Operations)

Issue an SRAM Journal command to the SRAM channel. A Journal is similar to a Ring except that
only the put operation is supported and the data written to the journal ring will wrap to the
beginning when the Journal Ring fills. Data is read from the Ring using a standard sram read
instruction. Each Journal Ring uses one of the 64 SRAM Queue Array Entries in the SRAM
controller. Note that the maximum number of Journal rings is equal to 64 times the number of
SRAM channels supported by the Network Processor. Also, note that the journal descriptor must
be read from SRAM using the Read Queue Descriptor command before issuing any journal
operations to it. The format of the journal descriptor is similar to that of the ring descriptor shown
in table Table 3-60.

The journal command puts data onto the Journal Ring from the transfer registers. The number of 4-
byte words put onto the Journal Ring is specified by the ref_cnt field. The fast_journal command
puts immediate data onto the Journal Ring. The fast_journal command always writes a tag that tells
the SRAM Channel to insert the Cluster, ME and thread numbers into bits [31: 24] of the data. (ME
Cluster bit[31], ME number bits [30: 27] and thread number bits [26: 24]).

The journal area will always start at an address aligned to the journal size (example if the size is 1K
the journal area will start on a 1K address boundary).

The sram[rd_qdesc] commands must be used to initialize the queue array entry before the Journal
can be used.

An example use for the journal is for debug:

• The ME threads write to the journal area at specific points in the code. Examples of
information written to the journal area might be packet header/timestamp/buffer pointer,
tagged with ME name.

• An ME hits a breakpoint based on a error and all the MEs are stopped. For example, when it
receives an illegal buffer_pointer.

• The breakpoint routine results in all the MEs to be stopped.

• The user reads the journal area to help unravel what went wrong.

Xfer register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127).

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX Specifies the context where the result will be written and signaled upon completion.

Table 3-63. SRAM Ring Indirect Field Definitions

Field Description

Instruction Format

sram[cmd, xfer, src_op1, src_op2, ref_cnt],opt_tok

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Parameter Descriptions

Parameter Cmd Description

cmd

journal Put the data in the specified transfer registers onto the
specified journal ring.

fast_journal

Put the data along with a tag onto the specified journal ring.
The data has the following format.

[31:27] ME number (tag)

[26:24] Context number (tag)

[23:0] Journal data

The ME and context number is that which wrote the data or if
the indirect option is used it is the ME and context specified by
the fields in the indirect reference.

Journal data is specified by src_op1 + src_op2.

Note that the journal data is provided with the command and
no pull operation is required on the pull bus.

xfer
journal

S-Transfer Write register the specifies the first of a contiguous
set of registers that hold the data that is to be put onto the
journal ring.

IXP28xx Rev B: An S or D Transfer Write register. Note 1

fast_journal Not required and should be “--”

src_op1,
src_op2

journal

Restricted operands that are added (src_op1 + src_op2) to
define the following:

[31:30] SRAM Channel

[29:24] Queue Array Entry (journal number)

[23:0] not used

fast_journal

Restricted operands that are added (src_op1 + src_op2) to
define the following:

[31:30] SRAM Channel

[29:24] Queue Array Entry (journal number)

[23:0] Journal data

ref_cnt
journal

Reference count. Specifies the number of transfers (1 to 8) in
increments of 4 byte words. If the indirect_ref token is
specified, ref_cnt can be a keyword max_nn (where nn = 1-
16). Refer to Section 3.1.2.3.2.

fast_journal Not required and should be omitted from the parameter list

opt_tok
journal

ctx_swap[sig_name]
refer to Section 3.1.2.4.

defer[n] (n = 1 to 2) refer to
Section 3.1.4

sig_done[sig_name]
refer to Section 3.1.2.4.

indirect_ref

refer to Section 3.1.2.3.1.

fast_journal
indirect_ref

refer to Section 3.1.2.3.1.

1. In 4 context mode, only the S Transfer registers can be used
Programmer’s Reference Manual 219

Intel® IXP2400/IXP2800 Network Processor
MEv2 Instruction Set
Table 3-64. SRAM Journal Indirect Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

O
V

� ME

O
V

� Ref Cnt RES Xfer Register
Address

O
V

�

O
V

� CTX

Table 3-65. SRAM Journal Indirect Field Definitions

Field Description

OV [31] Override bit for Microengine field

ME

For the journal command this specifies the Microengine where the journal data is read from
and signaled upon completion.

For the fast_journal command, this is the ME number that is written into journal area as part
of the tag.

[30] = ME Cluster, [29] = RES, [28:26] = ME number. Refer to Section 3.1.2.3.3.

OV [25] Override bit for Ref_Cnt field

Ref_Cnt

Overrides the ref_cnt field specified by the instruction. This field supports ref_cnts from 0 to
15 where a value of 0 indicates a transfer of 1 and 15 a transfer of 16. Note that when
specifying the Ref_cnt and Xfer Register Address, data can be written into another contexts
registers set.

RES Reserved

Xfer Register
Address

Overrides the xfer field specified by the instruction. This field specifies the absolute address
of the transfer registers (0-127).

OV [4] Override bit for Xfer register Address field

OV [3] Override bit for CTX field

CTX

For the journal command this specifies the context from where the journal data is read from
and signaled upon completion.

For the fast_journal command, this is the context number that is written into journal area as
part of the tag.
220 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Address Maps
Address Maps 4

4.1 Intel XScale Address Map

The 4 GB (32 bit address) Intel XScale address space is divided among the various targets as
shown in Figure 4-1. The details of the sub-regions are described in the following subsections.
Users should not access address ranges that are not used with respect to the definition in this
section.

Figure 4-1. Four GB (32 bit) Intel XScale Address Space Divided among Various Targets

IXP PCI Config Regs (32M)
PCI Spec/IACK (32M)

PCI CFG (32M)

PCI I/O - (low 64K of 32M)

Reserved (32MB)

MSF (32MB)

Scratch (32MB)

CAP-CSRs(32MB)

Reserved
(64M)

SlowPort (Flash ROM)
(64MB)

PCI MEM
(1/2GB)

Other
(1/2GB)

SRAM
(1GB)

DRAM
and

SlowPort/FLASH
ROM
(2GB)

0xE000 0000
0xDFFF FFFF

0xc000 0000
0xBFFF FFFF

0x8000 0000
0x7FFF FFFF

0x0000 0000

3.5GB

3.0GB

0xFFFF FFFF

SRAM CSRs &
Queue Array (64MB)

*Note --
PCI CFG Type 0 0xDA00 0000
PCI CFG Type 1 0xDB00 0000

PCI Controller CSRs (32M)

DRAM CSRs (32MB)

XScale Local CSRs (32MB)

0xDE00 0000

0xDC00 0000

0xDA00 0000*

0xD800 0000

0xCE00 0000

0xCC00 0000

0xCa00 0000

0xC800 0000

0xC400 0000

0xC000 0000

0xD600 0000

0xD000 0000

0xC200 0000

0xDF00 0000
Programmer’s Reference Manual 221

Intel® IXP2400/IXP2800 Network Processor
Address Maps
4.1.1 DRAM Memory and Intel XScale Core Flash ROM (2GB)

DRAM Memory typically appears in the lower 2GB address space except when the Intel XScale
core is expected to boot the system from Flash ROM. In this case a strap pin aliases the Flash ROM
to address 0 and the Intel XScale software can disable the alias via a CSR bit after it has booted
the system. Table 4-1 shows the conditions that cause the Flash ROM to appear at address 0.

In the case of the IXP2800 network processor, the three DRAM channels are interleaved in
hardware on 128 byte boundaries to improve concurrency and bandwidth utilization. On the other
hand, the IXP2400 network processor supports only one DRAM channel. The mapping of
addresses to channels is completely transparent to software, so software deals with physical
contiguous addresses in DRAM space. If less than 2 GB of memory is present, the upper part of the
address space is not used. Accessing an address above the amount of DRAM populated will cause
unpredictable results. Channel interleaving is always performed when either two or three DRAM
channels are enabled.

4.1.2 SRAM Memory (1GB)

This address space is used to access SRAM read, write, and the atomic operation functions. The
SRAM Queue Array and SRAM CSRs are accessed using SRAM CSR and Queue Array address
space (refer to Section 4.1.7).

Table 4-2 shows the details of the SRAM address map. Each SRAM channel is accessed in a
different region of the 1GB SRAM Memory address space as shown.

In the case of IXP2400 network processor, only channel 0 and channel 1 are available. The address
ranges that channel 2 and channel 3 occupy are Reserved and must not be used. Otherwise, the
behavior is undefined.

Each Command (read, write, and the atomic commands) are accessed by the Intel XScale core
using aliases of the address space. For example a write is done to address 0 in Channel 0 at address
0x800000000, while an atomic bit-set is done to address 0 in channel 0 at address 0x84000000.

In order for SRAM atomic and ring commands from Intel XScale core to be executed properly
the page attribute bits have to be set for buffering but no coalescing (xcb = 101).

Software should not generate addresses to SRAM space larger than the amount of SRAM actually
present on a channel.

Byte and halfword (2-byte) writes using the Intel XScale core STRB or STRH instructions result
in a masked write operation on the SRAM bus (as opposed to a read-modify-write operation).

Table 4-1. Flash ROM - DRAM Mapping

MISC_CONTROL
[Flash Alias Disable]

CAP CSR

What is accessed at address...

0x0000 0000 0xc4000 0000

0 Flash ROM Flash ROM

1 DRAM Flash ROM
222 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Address Maps
4.1.3 CAP-CSRs (32MB)

The CSR Access Proxy (CAP) are used to access four memory spaces:

• ME Transfer and Local CSRs via the reflector (Section 4.1.3.1)

• Peripherals via the internal APB bus (Section 4.1.3.2)

Table 4-2. SRAM Address Map for the Intel XScale Core

Command
Intel XScale

Core
Instruction

Channel 0
Base Address

Channel 1
Base Address

Channel 2
Base Address
(Reserved on
IXP2400)

Channel 3
Base Address
(Reserved on
IXP2400)

Read load

0x8000 0000 0x9000 0000 0xA000 0000 0xB000 0000Write store

Swap swap

Bit Set store
0x8400 0000 0x9400 0000 0xA400 0000 0xB400 0000

Bit Test and Set swap

Bit Clear store
0x8800 0000 0x9800 0000 0xA800 0000 0xB800 0000

Bit Test and Clear swap

Add store
0x8C00 0000 0x9C00 0000 0xAC00 0000 0xBC00 0000

Test and Add swap

Get (Note 2,3) load
0xCE00 0000 0xCE40 0000 0xCE80 0000 0xCEC0 0000

Put (Note 2,3) swap

Deq (Note 2,4) load
0xCC00 0100 0xCC40 0100 0xCC80 0100 0xCCC0 0100

Enq (Note 2,4,5) store

SRAM csr read load
0xCC01 0000 0xCC41 0000 0xCC81 0000 0xCCC1 0000

SRAM csr write store

NOTE:
1. Value is the Base Address of each region. Each region for Read/Write, Bit Set, Bit Clear, Add is 64MB to

allow for maximum populated SRAM, however, software must not accesses addresses larger than
populated SRAM. Each region for Get/Put and csr read/write is 32 MB. IXP2400 supports channels 0 and 1
only. If addressed ring is configured to return a success/fail code, a swap instruction must be used.

2. Each SRAM Controller supports 64 Queue Array Elements that can be used as a Ring or a Queue. The first
Queue Array Element is accessed at the base address shown in the table and the other rings are
addressed at the next contiguous 4-byte addresses (ring 2 is at base + 4, ring 3 is at base + 8, etc).

3. Put operations to Rings use a swap instruction and the data returned to the Intel XScale core is the status
word that indicates whether or not the Put operation was successful. A load multiple instruction can be
used to put multiple 4-byte words on a ring, however the swap instruction only support one 4-byte words for
Get operations.

4. When an Enqueue operation is performed, the data written to memory is a byte address that specifies the
address that is placed onto the queue, however the address stored in physical SRAM is a 4-byte addresses
(i.e. a byte address shifted right by 2 bits). When a dequeue operation is performed, the 4-byte address is
returned to the the Intel XScale core.

5. When performing SRAM Enqueues from the Intel XScale core, the EOP, SOP, & Segment Count fields
are always written with values EOP = 1, SOP = 1, & Segment Count = 0.

6. the Intel XScale core cannot perform enqueue operations if the queue controller is in Mode 3 since a
Segment Count of zero on enqueue is illegal in this mode. Refer to Section 3.2.52 for a description of Mode
3.
Programmer’s Reference Manual 223

Intel® IXP2400/IXP2800 Network Processor
Address Maps
• CAP CSRs via internal CAP CSR bus (Section 4.1.3.3)

• SlowPort Interface

Although the SlowPort interface is accessed via CAP is has a separate address range. Refer to
Section 4.1.4.

This address space is not byte writeable, and should be not be written by the Intel XScale core
with STRB or STRH instructions, otherwise results of the write are unpredictable.

4.1.3.1 ME Transfer and Local CSRs

The Intel XScale core can:

• Read the S write transfer registers of an ME

• Write the S or D read transfer registers of an ME

The Intel XScale core cannot:

• Read the D write transfer registers of an ME

• Read the S or D read transfer registers of an ME

• Write the S or D write transfer registers of an ME

One address is provided for each read/write transfer register pair so reading an address reads the
write transfer register and writing to the same address writes a read transfer registers.

The Intel XScale core can also read and write the ME’s Local CSRs.

Table 4-3. ME Transfer register and Local CSR Address Map for the Intel XScale Core

ME Register Base Address Comments

ME Transfer
Registers 0xC000 8000

Where

[14]= ME cluster

[13]= reserved

[12:10]= ME number

[9] = S or D Transfer Register

[8:2]= Xfer Register address (Refer to Table 4-4).

ME Local CSR 0xC001 8000

Where

[14]= ME cluster

[13] = reserved

[12:10]= ME number

[9:0]= CSR address (refer to Table 5-4 for CSRs addresses).
224 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Address Maps
4.1.3.2 Peripherals

The peripherals can be accessed using the memory spaces shown in Table 4-5

4.1.3.3 CAP CSRs

The Global CSRs can be accessed using the memory spaces shown in Table 4-6

Table 4-4. ME Transfer Register Addresses

Number of
Contexts

Context
Number

Transfer
register

Number of
Contexts

Context
Number

Transfer
register

8

0 0-15

4

0 0-31

1 16-31 2 32-63

2 32-47 4 64-95

3 48-63 6 96-127

4 64-79

5 80-95

6 96-111

7 112-127

Table 4-5. Peripherals Address Map for the Intel XScale Core

 Peripheral Address Range Comments

GPIO 0xC001 0000 - 0xC001 FFFF Refer to Section 5.6.6 for specific CSR addresses.

Timers 0xC002 0000 - 0xC002 FFFF Refer to Section 5.6.5 for specific CSR addresses.

UART 0xC003 0000 - 0xC003 FFFF Refer to Section 5.6.7 for specific CSR addresses.

PMU 0xC005 0000 - 0xC005 FFFF Refer to Section 5.6.8 for specific CSR addresses.

Slow Port
Registers 0xC008 0000 - 0xC008 FFFF Refer to Section 5.6.9 for specific CSR addresses).

Table 4-6. CAP CSR Address Map for the Intel XScale Core

Global CSR Base Address Comments

Global 0xC000 4A00 Miscellaneous system level GPRs. Refer to Section 5.6.4 for
specific CSR addresses).

Hash Configuration 0xC000 4900 Refer to Section 5.6.2 for specific CSR addresses.

Scratchpad Configuration 0xC000 4800 Refer to Section 5.6.1 for specific CSR addresses.

“Fast Write” CSRs 0xC000 4000
The Intel XScale core can read and write these registers but
the fast write capability is not supported. Refer to Section 5.6.3
for specific CSR addresses.
Programmer’s Reference Manual 225

Intel® IXP2400/IXP2800 Network Processor
Address Maps
4.1.4 SlowPort - Flash ROM (64M)

The total address space is 64MB, which is further divided into two 32MB segments. Each segment
generates a SlowPort Chip select signal. If the devices on the SlowPort have a density of 256Mbit
(32MB) each, all the address space is going to be filled like a contiguous address space. However,
if a small capacity device is used, like 4MB, 8MB, 16MB, there will be a memory ‘hole’ left in
between these two devices. The holes should not be accessed.

4.1.5 MSF (32M)

The Media Switch Fabric (MSF) Unit can be accessed using the memory space 0xC800 0000 to
0xC800 FFFF. The Intel XScale core can perform read and write operations to MSF, but it can not
perform fast write operations

This address space is not byte writeable, and should be not be written by the Intel XScale core
with STRB or STRH instructions, otherwise results of the write are unpredictable.

The 8K RBUF and TBUF can be configured to support different size elements which effects the
number of elements in the RBUF and TBUF. The following tables show how the addresses can be
interpreted as element numbers an offsets into the elements. Bits [12:0] can be viewed as a byte
address and the ignored field represent the byte offset which is ignored by the MSF.

Table 4-7. Slow Port Address Map for the Intel XScale Core

Global CSR Address Range Comments

Slow Port Device 0 0xC400 0000 - 0xC5FF FFFF
This 32M address range asserts the chip select signal
SP_CS_L[0] provided by the IXP2800. This space is
typically used for Flash ROM.

Slow Port Device 1
0xC600 0000 - 0xC7FF FFFF

This 32M address range asserts the chip select signal
SP_CS_L[1] provided by the IXP2800. This space is
typically used for Flash ROM or control port for Media
devices.

Table 4-8. MSF Address Map for the Intel XScale Core

Global CSR Address Range Comments

MSF CSRs 0xC800 0000 - 0xC800 1FFF Refer to Section 5.7 and Section 5.8.

RBUF 0xC800 2000 - 0xC800 3FFF Read only. The RBUF can not be written by the Intel
XScale core.

TBUF 0xC800 2000 - 0xC800 3FFF Write only. The TBUF can not be read by the Intel
XScale core

IXP2800

RCOMP CSRs
0xC800 8008 - 0xC800 800C Refer to Section 5.7.
226 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Address Maps
Table 4-9. RBUF/ TBUF Offset Address 128 64-Byte Elements

Table 4-10. RBUF/ TBUF Offset Address 64 128-Byte Elements

Table 4-11. RBUF/ TBUF Offset Address 32 256-Byte Elements

4.1.6 Scratch (32M)

Table 4-12 shows the details of the Scratch address map. The Intel XScale core maps various
read-modify-write operations to Scratch memory using alias addresses.

The scratch rings are configured via CSRs that reside in the CAP memory space (Refer to
Section 4.1.3). The Scratch Ring Full signals can be accessed via the Intel XScale core Interrupt
Controller which is accessed using the Intel XScale core Local CSRs (Refer to Section 4.1.9)

In order for Scratch atomic and ring commands from Intel XScale core to be executed properly
the page attribute bits have to be set for buffering but no coalescing (xcb = 101).

Scratch memory is not byte writeable, and should be not be written by Intel XScale core with
STRB or STRH instructions, otherwise results of the write are unpredictable.

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

0 0 1 Element number

4-byte
aligned

offset into
element

ignored

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

0 0 1 Element number
4-byte aligned

offset into
element

D
on’t care

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

0 0 1 Element
number

4-byte aligned
offset into
element

D
on’t care
Programmer’s Reference Manual 227

Intel® IXP2400/IXP2800 Network Processor
Address Maps
4.1.7 SRAM CSRs and Queue Array (64MB)

The Intel XScale core can access the SRAM CSRs as well as some of the functionality of the
SRAM controller’s SRAM Queue Array. Table 4-13 shows the address mapping.

Table 4-12. Scratch Address Map

Command Instruction Address Range

Read load

 0xCA00 3FFF - 0xCA00 0000Write store

Swap swap

Bit Set store
0xCA40 3FFF - 0xCA40 0000

Bit Test and Set swap

Bit Clear store
0xCA80 3FFF - 0xCA80 0000

Bit Test and Clear swap

Add store
0xCAC0 3FFF - 0xCAC0 0000

Test and Add swap

Subtract store
0xCB00 3FFF - 0xCB00 0000

Test and Subtract swap

Get load
There are 16 rings and the Ring Number is specified in bits
[5:2] of the base address 0xCB40 00xx. Therefore “xx” in the
base address for the 16 rings are as follows:

Put store Rings 0 - 0x00

Rings 1 - 0x04

Rings 2 - 0x08

Rings 3 - 0x0C

Rings 4 - 0x10

Rings 5 - 0x14

Rings 6 - 0x18

Rings 7 - 0x1C

Rings 8 - 0x20

Rings 9 - 0x24

Rings 10 - 0x28

Rings 11- 0x2C

Rings 12 - 0x30

Rings 13 - 0x34

Rings 14 - 0x38

Rings 15 - 0x3C
228 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Address Maps
This address space is not byte writeable, and should be not be written by Intel XScale core with
STRB or STRH instructions, otherwise results of the write are unpredictable.

4.1.8 DRAM CSRs (32M)

The CSRs for each of the DRAM controllers can be accessed using the memory spaces shown in
Table 4-14. This address space is not byte writeable, and should be not be written by Intel XScale
core with STRB or STRH instructions, otherwise results of the write are unpredictable.

Table 4-13. SRAM Queue Array Address for the Intel XScale Core

Operation Command

Intel
XScale

Core
Instruction

Base address Comments

Enqueue
enqueue Store

CH0: 0xCC00 0100

CH1: 0xCC40 0100

CH2: 0xCC80 0100

CH3: 0xCCC0 0100

(CH2 & CH3 are
Reserved on
IXP2400)

Each address space supports 64
4-byte word addresses, one for
each SRAM Queue Array Entry.

The Queue Array Entries (0 to 63)
are selected using bits[7:2]

enqueue_tail not supported

Dequeue dequeue Load

Read
Descriptor

rd_qdesc_head
rd_qdesc_tail
rd_qdesc_other

not supported

Write
Descriptor

Write_desc
wr_qdesc_count not supported

Ring

get Load
CH0: 0xCE00 0000

CH1: 0xCE40 0000

CH2: 0xCE80 0000

CH3: 0xCEC0 0000

(CH2 & CH3 are
Reserved on
IXP2400)

Note 1: The put operation requires
a swap instruction and can only be
used to get one 4-byte word from
the ring. The put data is placed
onto the ring and the swap data is
the status word indicating whether
or not the data was placed onto
the Ring.

The Queue Array Entries (0 to 63)
are selected using bits[7:2]

put swap (Note 1)

Journal jour not supported

csr read csr_rd Load CH0: 0xCC01 0000

CH1: 0xCC41 0000

CH2: 0xCC81 0000

CH3: 0xCCC1 0000

(CH2 & CH3 are
Reserved on
IXP2400)

Refer to Section 5.6 for CSR
offsets and descriptions.

csr write csr_wr Store

Table 4-14. DRAM CSRs

DRAM Channel Base address Comments

Channel 0 0xD000 9000 Refer to Section 5.3 for CSR
offsets and descriptions.

Channel 1 and Channel 2 are for
IXP2800 only.

Channel 1 0xD000 A000

Channel 2 0xD000 B000
Programmer’s Reference Manual 229

Intel® IXP2400/IXP2800 Network Processor
Address Maps
4.1.9 Intel XScale Core Local CSRs (32M)

These registers are local to the Intel XScale core and can only be accessed by the Intel XScale
core. This address space is not byte writeable, and should be not be written by Intel XScale core
with STRB or STRH instructions, otherwise results of the write are unpredictable.

4.1.9.1 Hash Operations

The Intel XScale core initiates a hash operation by writing a set of memory-mapped Hash Data
Registers with the data to be used to generate the hash index. There are a separate set of registers
for 48-bit, 64-bit, and 128-bit hash registers, as shown in the Table 4-16. Only one hash operation
of each type can be performed at a time. Data write order is 3-2-1-0(for hash_128), 1-0(for hash_48
or hash_64). Writing to register 0 in a set initiates the write operation to the Hash Unit.

The Intel XScale core reads the results from the Hash Data Registers. Because of queuing delays
at the Hash Unit, the time to complete an operation is not fixed. The Intel XScale core polls the
Hash Done Register to determine when the hash result has been returned. This register is cleared
when the Hash Data Registers are written to the Hash Unit. Bit [0] of Hash Done Register is set
when the Hash Data Registers get the return result from the Hash Unit (when the last word of the
result is returned). The Intel XScale software can poll on Hash Done, and read Hash Result when
Hash Done is equal to 0x00000001

Table 4-15. Intel XScale Core CSRs

SRAM Channel Base address Comments

Interrupt Controller 0xD6FF FFFF - 0xD600 0000 Refer to Section 5.10.1 for CSR offsets and
descriptions.

Hash Operations
0xD7FF FFFF - 0xD700 0000

Refer to Section 4.1.9.1 for description on how to
access. Refer to Section 5.6.2 for CSR offsets
and descriptions.

Break Point Refer to Section 5.10.3 for CSR offsets and
descriptions.

Table 4-16. Intel XScale Core Hash Operand and Results Registers

Operation Register Name Register Address

48-Bit Hash

hash [31:0] HASH_OP_48_0 0xD700 0000

Don’t care hash [47:32] HASH_OP_48_1 0xD700 0004

64-Bit Hash

hash [31:0] HASH_OP_64_0 0xD700 0010

hash [63:32] HASH_OP_64_1 0xD700 0014

128-Bit Hash

hash [31:0] HASH_OP_128_0 0xD700 0020

hash [63:32] HASH_OP_128_1 0xD700 0024

hash [64:95] HASH_OP_128_2 0xD700 0028
230 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Address Maps
4.1.10 PCI IO (32M)

Reading or writing this memory space will cause a read or a write on the PCI bus using the PCI I/O
commands. Although the memory block is 32M, only the lowest 64K generates I/O cycles.

For IXP2400 and IXP2800 rev A, PCI read transactions which are originated from the integrated
Intel XScale core are always 32-bit. In other words, when the integrated the Intel XScale core
generates a read transaction that accesses less than 32-bit of data in the PCI address space, the read
transaction on the PCI bus will be a 32-bit read transaction aligned to the 32-bit aligned address.
PCI write transactions or PCI transactions that originate from micro-engines are not subject to this
restriction.

4.1.11 PCI CFG (32M)

PCI supports two types of configuration transactions: Type 0 and Type 1. The IXP2800 and
IXP2400 support both types using two memory spaces. Reading or writing these memory spaces
will cause a read or a write on the PCI bus using the PCI configuration command.

.

hash [127:96] HASH_OP_128_3 0xD700 002C

Poll for hash result HASH_DONE 0xD700 0030

1. Data written to the hash register addresses will be hashed

2. Data read from the hash register addresses will be the hash result

Table 4-16. Intel XScale Core Hash Operand and Results Registers

Operation Register Name Register Address

Table 4-17. PCI I/O Space

Command Type Address Range

PCI I/O 0xD900 FFFF - 0xD800 0000

Table 4-18. PCI Configuration Space

Command Type Address Range

PCI Configuration Type 0 0xDAFF FFFF - 0xDA000000

PCI Configuration Type 1 0xDBFF FFFF - 0xDB000000
Programmer’s Reference Manual 231

Intel® IXP2400/IXP2800 Network Processor
Address Maps
4.1.12 PCI Special Cycles / IACK (32M)

Reading or writing this memory space will cause a read or a write on the PCI bus using the PCI
Special or IACK commands.

4.1.13 PCI Configuration Registers (32M)

The Intel XScale core can access the IXP2400/IXP2800 PCI Configuration registers using this
memory space. Access to this space is local to the IXP2400/IXP2800 and does not result in a PCI
bus transaction. This address space is not byte writeable, and should be not be written by the Intel
XScale core with STRB or STRH instructions, otherwise results of the write are unpredictable.

4.1.14 PCI Controller CSRs

The Intel XScale core can access the IXP2400/IXP2800 PCI Controllers CSRs using this memory
space. Access to this space is local to the IXP2400/IXP2800 and does not result in a PCI bus
transaction. This address space is not byte writeable, and should be not be written by the Intel
XScale core with STRB or STRH instructions, otherwise results of the write are unpredictable.

4.1.15 PCI Memory (1/2GB)

Reading or writing this memory space will cause a read or a write on the PCI bus using the PCI
Memory command.

For IXP2400 and IXP2800 rev A, PCI read transactions which are originated from the integrated
Intel XScale core are always 32-bit. In other words, when the integrated Intel XScale core
generates a read transaction that accesses less than 32-bit of data in the PCI address space, the read
transaction on the PCI bus will be a 32-bit read transaction aligned to the 32-bit aligned address.
PCI write transactions or PCI transactions that originate from micro-engines are not subject to this
restriction.

Table 4-19. PCI Configuration Space

Command Type Address Range Comments

PCI Special Cycles

0xDDFF FFFF - 0xDC00 0000

Reading this memory space will result in an IACK
command on the PCI bus.

PCI IACK Writing this memory space will result in an Special
Cycle command on the PCI bus.

Table 4-20. IXP2400/IXP2800 PCI Configuration Space

Command Type Address Range Comments

IXP2400/IXP2800 PCI
Configuration registers 0xDEFF FFFF - 0xDE000000 Refer to Section 5.9.1 for CSR offsets

and descriptions.

Table 4-21. IXP2400/IXP2800 PCI Controller CSR Space

Command Type Address Range Comments

IXP2400/IXP2800 PCI
Controller CSRs 0xDFFF FFFF - 0xDF000000 Refer to Section 5.9.2 for

register descriptions and offsets
232 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Address Maps
4.2 PCI Address Map

The IXP2400/IXP2800 can be mapped into three different memory spaces within the 4 GB (32 bit
address) PCI address space. These three spaces are configured via Base Address Registers (BAR)
visible via the PCI configuration space.

If the system is booted using the Intel XScale processor, the BAR registers are configured by the
Intel XScale core writing to the BAR.

In the case of the IXP2400 network processor, there are only 2 SRAM channels. Nevertheless, the
SRAM BAR configuration still assumes 4 channels. The address ranges that are mapped to channel
2 and channel 3 are Reserved. Transactions must not target these address ranges. Otherwise, the
behavior is undefined.

In the case of IXP2400 network processor, there is only 1 DRAM channel. As a result, there is no
channel interleave effect, and the whole DRAM address range is mapped onto the single channel.

Table 4-22. IXP2400/IXP2800 PCI Configuration Space

Command Type Address Range Comments

PCI Memory Space 0xFFFF FFFF - 0xE000 0000
Programmer’s Reference Manual 233

Intel® IXP2400/IXP2800 Network Processor
Address Maps
4.2.1 DRAM Memory Space

If the Intel XScale core boots from the system, the DRAM_BASE_ADDR_MASK register
determines the window size. If the system boots from PCI, the PCI_SWIN strap pins determine the
window size. The window always starts at DRAM address 0x0000 0000. The DRAM CSRs are
accessed using PCI CSR Memory space (refer to Section 4.2.3).

Figure 4-2. Four GB (32 bit) PCI Address Space

Base address set via
PCI_SRAM_BAR

PCI SRAM
Memory
Space

0 B
256 KB
512 KB

1 MB
2MB

4 MB

8 MB
16 MB
32 MB
64 MB

128 MB
256 MB

0 MB
1 MB
2 MB
4 MB
8 MB

16 MB

32 MB
64 MB

128 MB
512 MB

1 GB

Base address set via
PCI_DRAM_BAR

Base address set via
PCI_CSR_BAR

Possible Window Sizes

Window size
Fixed at 1 MB

4 GB

0 B

PCI DRAM
Memory
Space

PCI CSR
Space

Possible Window Sizes

DRAM CSRs
SRAM CSRs
CAP CSRs
-ME Xfer Registers
-ME Local CSRs
-SRAM peripherials

SRAM CH0

SRAM CH1

SRAM CH2

SRAM CH3

DRAM CH0
DRAM CH1

DRAM CH2
DRAM CH0
DRAM CH1

DRAM CH2

DRAM CH0
DRAM CH1

DRAM CH2

o
o
o

DRAM Channel Interleaving

Address

to channel
relative

0

0

0

0

size/4

size/4

size/4

size/4
234 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Address Maps
4.2.2 SRAM Memory Space

If the Intel XScale core boots from the system, the SRAM_BASE_ADDR_MASK register
determines the window size. If the system boots from PCI, the PCI_SWIN strap pins determine the
window size.

PCI only has access to the SRAM read and write operations; the SRAM Queue Array, and Atomic
operations are not supported for PCI. The SRAM CSRs are accessed using PCI CSR Memory
space (refer to Section 4.2.3).

The four SRAM Controllers are divided into the window size such that each controller gets an
equal share of the window space. The window always starts at the low addresses in the SRAM
Controller.

In the case of the IXP2400 network processor, the address ranges that map to Controllers 2 and 3
are Reserved.

Table 4-23. PCI Address Offset vs SRAM Controller

Window Size
in SRAM BAR

PCI Address Offset Total Size for each
Memory Controller
starting at address
0 relative to the
SRAM Controller

Controller 0 Controller 1
Controller 2
(Reserved on
IXP2400)

Controller 3
(Reserved on
IXP2400)

0 SRAM Memory is not visible to PCI

256K 0x0000 FFFF-
0x0000 0000

0x0001 FFFF-
0x0001 0000

0x0002 FFFF-
0x0002 0000

0x0003 FFFF-
0x0003 0000 64K

512K 0x0001 FFFF-
0x0000 0000

0x0003 FFFF-
0x0002 0000

0x0005 FFFF-
0x0004 0000

0x0007 FFFF-
0x0006 0000 128K

1MB 0x0003 FFFF-
0x0000 0000

0x0007 FFFF-
0x0004 0000

0x000B FFFF-
0x0008 0000

0x000F FFFF-
0x000C 0000 256K

2MB 0x0007 FFFF-
0x0000 0000

0x000F FFFF-
0x0008 0000

0x0017 FFFF-
0x0010 0000

0x001F FFFF-
0x0018 0000 512K

4MB 0x000F FFFF-
0x0000 0000

0x001F FFFF-
0x0010 0000

0x002F FFFF-
0x0020 0000

0x003F FFFF-
0x0030 0000 1MB

8MB 0x001F FFFF-
0x0000 0000

0x003F FFFF-
0x0020 0000

0x005F FFFF-
0x0040 0000

0x007F FFFF-
0x0060 0000 2MB

16MB 0x003F FFFF-
0x0000 0000

0x007F FFFF-
0x0040 0000

0x00BF FFFF-
0x0080 0000

0x00FF FFFF-
0x00C0 0000 4MB

32MB 0x007F FFFF-
0x0000 0000

0x00FF FFFF-
0x0080 0000

0x017F FFFF-
0x0100 0000

0x01FF FFFF-
0x0180 0000 8MB

64MB 0x00FF FFFF-
0x0000 0000

0x01FF FFFF-
0x0100 0000

0x02FF FFFF-
0x0200 0000

0x03FF FFFF-
0x0300 0000 16MB

128MB 0x01FF FFFF-
0x0000 0000

0x03FF FFFF-
0x0200 0000

0x05FF FFFF-
0x0400 0000

0x07FF FFFF-
0x0600 0000 32MB

256MB 0x03FF FFFF-
0x0000 0000

0x07FF FFFF -
0x0400 0000

0xBFFF FFFF -
0x0800 0000

0x0FFF FFFF -
0x0C00 0000 64MB
Programmer’s Reference Manual 235

Intel® IXP2400/IXP2800 Network Processor
Address Maps
4.2.3 CSR Memory Space

The PCI CSR memory space has a fixed window size of 1MB. Table 4-24 shows what can be
accessed using this address space.

Table 4-24. CSR Memory Space for PCI

Global CSR Address Range Size
Allocated

Comments

PCI Controller CSR 0xF FFFF - 0xF E000 8KB Refer to Section 5.9.2 for register descriptions
and offsets

Reserved 0xF DFFF - 0xF D800 2KB

DRAM CSR CH2 0xF D7FF - 0xF D000 2KB Refer to Section 5.4.2 for CSR offsets and
descriptions.

CH1 and CH2 are Reserved on IXP2400.
DRAM CSR CH1 0xF CFFF - 0xF C800 2KB

DRAM CSR CH0 0xF C7FF - 0xF C000 2KB

Reserved 0xF BFFF - 0xF A000 8KB

SRAM CSR CH3 0xF 9FFF - 0x F9C00 1KB

Refer to Section 5.5.1 for CSR offsets and
descriptions.

CH2 and CH3 are Reserved on IXP2400.

SRAM CSR CH2 0xF 9BFF - 0xF 9800 1KB

SRAM CSR CH1 0xF 97FF - 0xF 9400 1KB

SRAM CSR CH0 0xF 93FF - 0xF 9000 1KB

Reserved 0xF 8FFF - 0xF 8000 4KB

MSF CSRs 0xF 5FFF - 0xF 4000 8KB Refer to Section 5.7.

MSF RBUF
0xF 7FFF - 0xF 6000 8KB

Read only

MSF TBUF Write only

Scratch Memory 0xF 3FFF - 0xF 0000 16KB

CAP CSRs 0xE FFFF - 0x0 0000 983 KByte See Table 4-25 for a breakdown of this address
space.
236 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Address Maps
Table 4-25. CAP CSR Memory Space Breakdown for PCI

Global CSR Base Address Size
Allocated

Comments

ME Transfer
Registers

0x0 8000 983 KByte Where

[14]= ME cluster

[13]= reserved

[12:10]= ME number

[9] = S or D Transfer Register

[8:2]= Xfer Register address (Refer to
Table 4-4).

The PCI Host can read the write transfer
register of an ME and it can write the read
transfer registers of an ME. It is not possible to
write the write transfer registers or read the
read transfer registers. Reading an address
reads the write transfer register and writing to
the same address writes a read transfer
registers. It is not possible to write the write
transfer registers or read the read transfer
registers.

ME Local CSR 0x1 8000 Where

[14]= ME cluster

[13]= reserved

[12:10]= ME number

[9:0]= CSR address (refer to Table 5.2 for CSR
addresses).

SlowPort CS0 not supported This 32M address range asserts the chip select
signal SP_CS_L[0] provided by the IXP2800.
This space is typically used for Flash ROM.

SlowPort CS1 not supported This 32M address range asserts the chip select
signal SP_CS_L[1] provided by the IXP2800.
This space is typically used for Flash ROM or
control port for Media devices.

GPIO 0x1 0000 Refer to Section 5.6.6 for specific CSR
addresses.

Timers 0x2 0000 Refer to Section 5.6.5 for specific CSR
addresses.

UART 0x3 0000 Refer to Section 5.6.7 for specific CSR
addresses.

PMU 0x5 0000 Refer to Section 5.6.8

Slow Port Registers 0x8 0000 Refer to Section 5.6.9 for specific CSRs
addresses.

Global 0X0 4A00 Miscellaneous system level GPRs. Refer to
Section 5.6.4 for specific CSRs addresses).

Hash Configuration 0X0 4900 Refer to Section 5.6.2 for specific CSR
addresses.

Scratch Configuration 0X0 4800 Refer to Section 5.6.1 for specific CSR
addresses.

Fast Write CSRs 0X0 4000 The PCI Host can read and write these
registers but the fast write capability is not
supported. Refer to Section 5.6.3 for specific
CSR addresses.
Programmer’s Reference Manual 237

Intel® IXP2400/IXP2800 Network Processor
Address Maps
4.3 Microengine Address Map

The MEs support command that allow access to various functionality listed in Figure 4-26.

Table 4-26. ME I/O Access

Unit Functionality Instruction/
Commands Comments

CAP

Intel XScale UART

Intel XScale Timers

Intel XScale GPIO

Intel XScale SlowPort
Interface

IXP Global CSRs

Scratch CSRs

Hash CSRs

PMU CSRs

Slow Port CSRs

Slow Port Memory

CAP[read]

CAP[write]

The calculated addressing version of the
instruction must be used. Refer to
Section 3.2.19 for addresses.

Fast Write CSRs

CAP[fast_wr]

CAP[read]

CAP[write]

Either the enumerated CSR addressing or
calculated addressing version of the
instruction can be used for read and write.
Refer toSection 3.2.18 and Section 3.2.19
for addresses.

ME

MEs Own Local CSRs LOCAL_CSR_RD
LOCAL_CSR_WR

CSR names are used to specify the CSRs.
Refer to the LOCAL_CSR_RD and
LOCAL_CSR_WR instructions for a list of
supported CSR names.

Other ME

Transfer Registers

CAP[] (Reflect and
Calculated addressing
versions)

When the Reflect version is used,Transfer
Register names are supported (Refer to
Section 3.2.20). Refer to Section 3.2.19 for
Calculated addresses.

Other ME Local CSRs CAP[] (Calculated
addressing version) Refer to Section 3.2.19 for addresses.

Other ME GPRs No Access

MSF

RBUF (read only)
MSF[read]

MSF[read64]

The RBUF is accessed using a read or
read64 command and base address of
0x2000.

TBUF (write only)
MSF[write]

MSF[write64]

The TBUF is accessed using a write or
write64 command and base address of
0x2000.

MSF CSRs

MSF[read]

MSF[read]

MSF[fast_wr]

MSF CSRs are accessed using addresses
between 0 and 0x1FFF. Refer to the MSF
instruction for a list of supported CSRs and
their addresses.
238 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Address Maps
PCI

PCI Memory Space

PCI[read]

PCI[write]

Use address range:

0x2000 0000 to 0x3FFF FFFF

PCI I/O
Use address range:

0x0000 0000 to 0x0000 FFFF

PCI CFG Type 0
Use address range:

0x0200 0000 to 0x02FF FFFF

PCI CFG Type 1
Use address range:

0x0300 0000 to 0x03FF FFFF

PCI Controller CSRs
Use address range:

0x0600 0000 to 0x07FF FFFF

PCI Special PCI[write] Use address range:

0x0400 0000 to 0x05FF FFFFPCI IACK PCI[read]

Scratch
Memory

scratch[read]

scratch[write]

scratch[swap

scratch[set]

scratch[clr]

scratch[incr]

scratch[decr]

scratch[add]

scratch[sub]

scratch[test_and_set]

scratch[test_and_clr]

scratch[test_and_incr]

scratch[test_and_decr]

scratch[test_and_add]

scratch[test_and_sub]

scratch[get]

scratch[put]

Use address range:

0x0000 0000 to 0x0000 3FFF

Table 4-26. ME I/O Access

Unit Functionality Instruction/
Commands Comments
Programmer’s Reference Manual 239

Intel® IXP2400/IXP2800 Network Processor
Address Maps
SRAM

SRAM CSRs
sram[csr_rd]

sram[csr_wr]

SRAM Memory

sram[read]

sram[write]

sram[swap

sram[set]

sram[clr]

sram[incr]

sram[decr]

sram[add]

sram[test_and_set]

sram[test_and_clr]

sram[test_and_incr]

sram[test_and_decr]

sram[test_and_add]

The base addresses of the SRAM channels
are:

Channel 0: 0x0000 0000

Channel 1: 0x4000 0000

Channel 2: 0x8000 0000

Channel 3: 0xc000 0000

Channels 2 & 3 are Reserved on IXP2400.

The size of the memory installed determines
the upper bound of the address.

SRAM Queue Array

sram[rd_qdesc_head]

sram[rd_qdesc_tail]

sram[rd_qdesc_other]

sram[wr_qdesc]

sram[wr_qdesc_count]

sram[enqueue]

sram[enqueue_tail]

sram[dequeue]

sram[get]

sram[put]

sram[journal]

sram[fast_journal]

The Queue Array entry and SRAM Channel
and SRAM address is determined by
src_opA + src_opB. Refer to the instruction
definition for more details.

DRAM

 CSRs No Access

DRAM Memory
DRAM[read]

DRAM[write]

DRAM begins at address 0x0000 0000 and
the size of the memory installed determines
the upper bound of the address. For the
IXP2800, the three channels are interleaved.

HASH Hash operations

hash_48[]

hash_64[]

hash_128[]

Intel
XScale
Core Local
CSRs

Interrupt Controller

Scratch Ring Full
Status

Intel XScale core
Hash Result Register

No Access

Note 1: The address of the registers is identical to that used by PCI as shown in Table 4-25 without the base
address shown in Table 4-24

Table 4-26. ME I/O Access

Unit Functionality Instruction/
Commands Comments
240 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Control and Status Registers (CSRs) 5

5.1 Introduction

This chapter describes the internal registers of the IXP2800 and IXP2400. In addition, there is a
section that summaries the differences between IXP2400 and IXP2800 in terms of configuring and
programming the Media and Switch Fabric Interface unit (MSF).

5.1.1 IXP2800 and IXP2400 CSR Summary

The registers in this chapter are divided into the sections based on the functional unit in which the
register resided.The CSRs can be found in the sections as shown in Table 5-1.

Table 5-1. CSR Summary

Unit CSRs Section

Microengine Local CSRs Section 5.2

RDR DRAM
(IXP2800) IXP2800 RDR DRAM CSRs Section 5.3

DDR DRAM
(IXP2400) IXP2400 DDR DRAM CSRs Section 5.4

SRAM SRAM CSRs Section 5.5

CSR Access Proxy
(CAP)

Scratch CSRs Section 5.6.1

Hash CSRs Section 5.6.2

Intel XScale Core Timers Section 5.6.5

Intel XScale Core GPIO Section 5.6.6

Intel XScale Core UART Section 5.6.7

PMU (Performance Monitor Unit) Section 5.6.8

Intel XScale Core SlowPort Interface Section 5.6.9

Fast Write CSRs Section 5.6.3

IXP Global CSRs Section 5.6.4

MSF
(IXP2800)

RBUF

TBUF

IXP2800 MSF CSRs

Section 5.7

MSF (IXP2400)

RBUF

TBUF

IXP2400 MSF CSRs

Section 5.8

PCI
PCI Configuration Section 5.9.1

PCI Controller Section 5.9.2
Programmer’s Reference Manual 241

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.1.2 Register Notation Conventions

The register descriptions that follow use the following notation conventions:

5.1.3 Reserved Fields

All the reserved bits are read zero and have no effect for write access. Since all the reserved bits are
read zero, the individual register descriptions state that the reset value of reserved bits are “0”.

Intel reserves the right to change the usage of these bits in the future. When new functionality is
added, and when possible, Intel will require a “1” be written to enable the new functionality.

Intel XScale“ Core
Local CSRs

Interrupt Controller and Scratch Ring Full Status Section 5.10.1

Intel XScale core Hash Result Register Section 5.10.2

Breakpoint Section 5.10.3

Intel XScale core
Co-Processor

Co-Processor 14

Co-Processor 15
Section 5.11

Table 5-1. CSR Summary

Unit CSRs Section

Table 5-2. Register Notation Conventions

RW Field

Notation Description

RO Read only. Write may result in unpredictable behavior.

RW Read and Write

RW1C Read and Write 1 to Clear

RC Clear on Read

WO Write only. Read may result in unpredictable behavior.

W1C Write 1 to clear

W1S Write 1 to set

WRC Write and Clear on Read

Reset Field

Notation Description

undef Undefined. For read, indeterminate data is returned.

0x Specifies that the number is in hexadecimal format.

dep Dependent on an external source such as a external pin state. Refer to the
description for details.

-- In context of the RW field, Write data is ignored.
242 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
To increase the likelihood of software backward compatibility, it is highly recommended that
software treat reserved bits as undefined during read operations (that is, software should read the
register and mask all reserved bits to zero), and always write “0” to reserved bits during write
operations.

Software must not access register locations that are not defined in this document. Such accesses
may result in unpredictable behavior.

5.2 Microengine Local CSRs

Table 5-3 shows the offset addresses of the ME Local CSRs. Refer to Chapter 4, “Address Maps”
for the base address and details on how they are accessed. These CSRs can be accessed from the
Intel XScale core, PCI, and a remote MEs via CAP. An ME can accesses its own Local CSRs
using the local_csr_write and local_csr_read instructions.

Some local CSRs listed in the table are actually 8 register: one for each ME context. These registers
are accessed using a common address and an indirection pointer what specifies the context. The
indirect pointer is set via the CSR_CTX_POINTER Local Registers (Section 5.2.20). When a
context starts executing, the per-context-register is copied into a working (or active) register and
when it stops executing (swaps out) the working register is saved back into the per-context-register.

Register fields that are not cleared by hardware reset are listed as “Undef”. This specifically means
that they are not changed by reset, and can be read for debug after the Microengine has been reset.

Table 5-3. Microengine Local CSR Summary (Sheet 1 of 3)

Register Name
CSR
Addr
offset

Comment Section

USTORE_ADDRESS 0x00 These addresses only apply to external
accesses (from the Intel XScale
core). These registers are not
accessible by local_csr_rd and
local_csr_wr.

Section 5.2.1

USTORE_DATA_LOWER 0x04 Section 5.2.2

USTORE_DATA_UPPER 0x08 Section 5.2.2

USTORE_ERROR_STATUS 0x0C Section 5.2.3

ALU_OUT 0x10 Section 5.2.4

CTX_ARB_CNTL 0x14 Section 5.2.17

CTX_ENABLES 0x18 Section 5.2.18

CC_ENABLE 0x1C Section 5.2.19

CSR_CTX_POINTER 0x20 Section 5.2.20

INDIRECT_CTX_STS 0x40 Section 5.2.16

ACTIVE_CTX_STS 0x44 Section 5.2.15
Programmer’s Reference Manual 243

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
INDIRECT_CTX_SIG_EVENTS 0x48

Indirect address accesses register
selected by the value in the
CSR_CTX_POINTER[2:0]. Active
address accesses the register selected
by ACTIVE_CTX_STS[2:0].

Section 5.2.22

ACTIVE_CTX_SIG_EVENTS 0x4C Section 5.2.21

INDIRECT_CTX_WAKEUP_EVENTS 0x50 Section 5.2.24

ACTIVE_CTX_WAKEUP_EVENTS 0x54 Section 5.2.23

INDIRECT_CTX_FUTURE_COUNT 0x58 Section 5.2.7

ACTIVE_CTX_FUTURE_COUNT 0x5C Section 5.2.6

INDIRECT_LM_ADDR_0, 0x60 Access LM_ADDR_0 selected by the
value in the CSR_CTX_Pointer[2:0]. Section 5.2.27

ACTIVE_LM_ADDR_0, 0x64 Access working copy LM_ADDR_0. Section 5.2.25

INDIRECT_LM_ADDR_1 0x68 Access LM_ADDR_1 selected by the
value in the CSR_CTX_Pointer[2:0]. Section 5.2.28

ACTIVE_LM_ADDR_1 0x6C Access working copy LM_ADDR_1. Section 5.2.26

BYTE_INDEX 0x70 Access BYTE_INDEX. Section 5.2.29

ACTIVE_LM_ADDR_0_BYTE_INDEX 0xE4 Access LM_ADDR_0_INDIRECT[11:2]
concatenated to BYTE_INDEX[1:0]. Section 5.2.34

INDIRECT_LM_ADDR_0_BYTE_INDEX 0xE0
Access working copy
LM_ADDR_0[11:2] concatenated to
BYTE_INDEX[1:0].

Section 5.2.32

INDIRECT_LM_ADDR_1_BYTE_INDEX 0xE8 Access LM_ADDR_1_INDIRECT[11:2]
concatenated to BYTE_INDEX[1:0]. Section 5.2.33

ACTIVE_LM_ADDR_1_BYTE_INDEX 0xEC
Access working copy
LM_ADDR_1[11:2] concatenated to
BYTE_INDEX[1:0].

Section 5.2.35

T_INDEX_BYTE_INDEX 0xF4 Access T_INDEX[8:2] concatenated to
BYTE_INDEX[1:0]. Section 5.2.31

T_INDEX 0x74 Section 5.2.30

INDIRECT_FUTURE_COUNT_SIGNAL 0x78
Indirect address accesses register
selected by the value in the
CSR_CTX_POINTER[2:0].

Section 5.2.9

ACTIVE_FUTURE_COUNT_SIGNAL 0x7C Section 5.2.8

NN_PUT 0x80 Section 5.2.36

NN_GET 0x84 Section 5.2.37

TIMESTAMP_LOW 0xC0 Section 5.2.5

TIMESTAMP_HIGH 0xC4 Section 5.2.5

RESERVED 0xC8

NEXT_NEIGHBOR_SIGNAL 0x100 Section 5.2.12

PREV_NEIGHBOR_SIGNAL 0x104 Section 5.2.13

SAME_ME_SIGNAL 0x108 Section 5.2.14

CRC_REMAINDER 0x140 Section 5.2.38

PROFILE_COUNT 0x144 Section 5.2.10

PSEUDO_RANDOM_NUMBER 0x148 Section 5.2.11

Table 5-3. Microengine Local CSR Summary (Sheet 2 of 3)

Register Name
CSR
Addr
offset

Comment Section
244 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
There are three latencies associated with a local_CSR_Write operations and these latencies and
they vary depending on the local CSR as shown in Table 5-4.

• Write Latency: The number of instructions from local_csr_wr to when the Local CSR is
actually written.

• Read Latency: The number of instructions between a local_csr_wr to a local_csr_rd of the
same register, in order to get the newly written value.

• Usage Latency: The number of instructions between a local_csr_wr to when a function is
performed by the hardware.

RESERVED
0x14C

to

0x17C

LOCAL_CSR_STATUS 0x180

This address only applies to external
reads (from the Intel XScale core).
This register is not accessible by
local_csr_rd. It is a read-only register,
so local_csr_wr does not apply.

Section 5.2.39

RESERVED 0x3FC

This address is reserved. No register is
accessed. This address can always be
used and no register will be written. It
can be used to deliver an Event Signal
on without changing any registers.

Table 5-3. Microengine Local CSR Summary (Sheet 3 of 3)

Register Name
CSR
Addr
offset

Comment Section

Table 5-4. Microengine Local CSR Latencies (Sheet 1 of 2)

Register Name
 Latency

Usage Latency Comments
Write Read Usage

USTORE_ADDRESS NA NA NA

USTORE_DATA_LOWER NA NA NA

USTORE_DATA_UPPER NA NA NA

USTORE_ERROR_STATUS NA NA NA

ALU_OUT NA NA NA

CTX_ARB_CNTL 4 3 NA

CTX_ENABLES 4 3 8

A ctx_arb instruction should be issued 8
cycles after an instruction is issued to
clear the context-enable bits to ensure
that the disabled contexts will not run.
NOTE -- This latency may change in
future versions of the ME.

CC_ENABLE 4 3 1 Must wait 1 cycle before issuing
instruction that modifies CC’s

CSR_CTX_POINTER 3 2 3 Must wait 3 cycles before issuing
instruction that uses CSR_CTX_Pointer

INDIRECT_CTX_STS 4 3 NA

ACTIVE_CTX_STS 4 3 NA
Programmer’s Reference Manual 245

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
INDIRECT_CTX_SIG_EVENTS 4 3 NA

ACTIVE_CTX_SIG_EVENTS 4 3 NA

INDIRECT_CTX_WAKEUP_EVENTS 4 3 NA

ACTIVE_CTX_WAKEUP_EVENTS 4 3 NA

INDIRECT_CTX_FUTURE_COUNT 4 3 NA

ACTIVE_CTX_FUTURE_COUNT 4 3 NA

INDIRECT_LM_ADDR_0, 3 3

3 Must wait 3 cycles before issuing
instruction that uses the LM_ADDR

ACTIVE_LM_ADDR_0, 3 2

INDIRECT_LM_ADDR_1 3 3

ACTIVE_LM_ADDR_1 3 2

BYTE_INDEX 3 2

3
Must wait 3 cycles before issuing
instruction that uses the

LM_ADDR, BYTE_INDEX, or T_INDEX

ACTIVE_LM_ADDR_0_BYTE_INDEX 3 2

INDIRECT_LM_ADDR_0_BYTE_INDEX 3 3

INDIRECT_LM_ADDR_1_BYTE_INDEX 3 3

ACTIVE_LM_ADDR_1_BYTE_INDEX 3 2

T_INDEX_BYTE_INDEX 3 2

T_INDEX 3 2

INDIRECT_FUTURE_COUNT_SIGNAL 4 3 NA

ACTIVE_FUTURE_COUNT_SIGNAL 4 3 NA

NN_PUT 3 2
3

Must wait 3 cycles before issuing
instruction that uses the NN_GET or
NN_PUT pointer.NN_GET 3 2

TIMESTAMP_LOW 4 3 NA

TIMESTAMP_HIGH 4 3 NA

NEXT_NEIGHBOR_SIGNAL 3 2

12

If the ME writes to this CSR and the
Next or Previous Neighbor is swapped
out, it will wake in 12 cycles. Refer to
Note 1.

PREV_NEIGHBOR_SIGNAL 3 2

SAME_ME_SIGNAL 3 2 8 The same ME will be signaled 8 cycles
after the CSR write.

CRC_REMAINDER 3 2 0 Can issue CRC ops immediate after
local_csr_wr

PROFILE_COUNT NA NA NA

PSEUDO_RANDOM_NUMBER 3 2 3

When the CTX_ENABLES[PRN_MODE]
bit is set to update on a read, the new
PSN will be generated 3 cycles after
issuing local_csr_write of PSN.

LOCAL_CSR_STATUS NA NA NA

Note 1: A write to the NEXT_NEIGHBOR_SIGNAL CSR can immediately follow a next Neighbor put or context
relative write operation and the data will be guaranteed to arrive at the Next Neighbor before the signal.

Table 5-4. Microengine Local CSR Latencies (Sheet 2 of 2)

Register Name
 Latency

Usage Latency Comments
Write Read Usage
246 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.1 USTORE_ADDRESS

Used to load programs into the Control Store. This register and the USTORE_DATA_LOWER and
USTORE_DATA_UPPER registers are used to program the Microengine while all Contexts are in
Inactive state. The Intel XScalecore writes the Control Store address to this register and follows it
with reads or writes to the USTORE_DATA_UPPER and USTORE_DATA_LOWER registers.

Note: For IXP2800 Rev A only -- Before loading the Control Store write a ‘1’ to bit 10 of Local CSR
0x154, and then write a ‘0’ to bit 10 of Local CSR 0x154. This register is only used for
manufacturing test and must be initialized prior to use.

After a write to this register, the data from the Control Store at the UADR location can be read by
reading the USTORE_DATA registers.

To write the Control Store do the following (Note that ME reset signal must be deasserted before
this):

1. Write the address to be written into Ustore_Address[Uadr]. Note that the ECS bit must be a ‘1’
to write the Control Store.

2. Write the data for bits [31:0] into Ustore_Data_Lower.

3. Write the data for bits [39:32] into Ustore_Data_Upper. The write to Ustore_Data_Upper also
causes the write into the Control Store, and Ustore_Addr[Uadr] to increment.

4. If writing consecutive addresses of the Ustore, repeat steps 2 and 3 for each location to be
loaded. If writing to non-consecutive locations, repeat steps 1 through 3 for each location to be
loaded.

5. Write the Ustore_Address[ECS] to ‘0’ to enter normal mode.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

E
C

S RESERVED UADR

Bits Field Description RW Reset

[31] ECS

0: Cleared during normal execution.

1: Set when reading or writing the control store. The
Microengine should be in Idle state (no contexts running).
The address in Uadr field specifies the Control Store
address where the data written to Ustore_Data will be
written. Also set in debug mode. This bit can be used to
dump data from Microengine GPRs and Read Transfer
registers. The Microengine should be in an idle state (no
contexts running).This forces the Microengine to
continuously execute an instruction at the address specified
by Uadr. Only the alu instruction is supported in this mode
and the result of the execution is written to Alu_Out CSR
rather than a destination register.

RW 0

[30:13] RESERVED Reserved RO 0

[12:0] UADR

Contains the address of the Control Store location to be
accessed.

IXP2400 and IXP2800 (Rev A): Valid values are 0 to 4095.

IXP2800 (Rev B): Valid values are 0 to 8191.

RW Undef
Programmer’s Reference Manual 247

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.2 USTORE_DATA_LOWER, USTORE_DATA_UPPER

Control Store Data. These registers (along with USTORE_ADDRESS) are used to program the
Microengine’s Control Store while the Microengine is in the idle state. Writing the Control Store
address to USTORE_ADDRESS CSR and following it with writes to these CSRs loads an
instruction (the write to USTORE_DATA_UPPER actually causes the write, and causes
USTORE_ADDRESS to increment).

Reading these registers after writing USTORE_ADDRESS reads the data stored in that Control
Store address

Even parity is supported on the control store which means the parity checking circuit counts the
number of 1 bits across the UDATA_UPPER_1, UDATA_UPPER_2, and PAR_UP and verifies
that the total number of 1 bits is an EVEN number. It also does the same across UDATA_LOWER
and PAR_LOW.

Once a parity error is detected on an ME, the ME is stopped in a manner that prevents it from
modifying any state, either internally or externally (so that the ME can be debugged); however the
internal PC continues to increment. The recommended method for recovering from a parity error is
to reset the ME.

Some of the bits hold parity information, as shown in the table below. It is the responsibility of the
Intel XScalecore loader routine that loads the Control Store to precompute and load the correct
parity.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

UDATA_UPPER_1 UDATA_LOWER

Bits Field Description RW Reset

[19:0] UDATA _LOWER
Contains the lower 20 bits of the instruction of the Control
Store location specified by the USTORE_ADDRESS CSR.
Parity for UDATA _LOWER is provided at bits PAR_LOW.

RW Undef

[31:20] UDATA_UPPER_1

Contains the first 12 bits of the upper 20 bits of the
instruction of the Control Store location specified by the
USTORE_ADDRESS CSR. Parity for UDATA_UPPER_1
as well as UDATA_UPPER_2 is provided at bits PAR_UP.

RW Undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

P
A

R
_U

P

P
A

R
_LO

W

UDATA_UPPER_2
248 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.3 USTORE_ERROR_STATUS

This register captures information about parity errors during instruction reads. The contents are
valid if CTX_ENABLE[CONTROL STORE PARITY ERROR] is a ‘1’.

5.2.4 ALU_OUT

This CSR is used during debugging to access the contents of the Microengine GPRs. It can be read
by the Intel XScalecore processor to view the current state of the ALU.

Bits Field Description RW Reset

[31:10] RESERVED Reserved RO 0

[9] PAR_UP
Parity. Contains even parity for UDATA_UPPER_1 and
UDATA_UPPER_2 data of the control store location
specified by the USTORE_ADDRESS CSR.

RW Undef

[8] PAR_LOW,
Parity. Contains even parity for UDATA_LOWER data of the
control store location specified by the USTORE_ADDRESS
CSR.

[7:0] UDATA_UPPER_2

Contains the data from bits [39:32] of the control store
location specified by the USTORE_ADDRESS CSR.

Contains the second 8 bits of the upper 20 bits of the
instruction of the Control Store location specified by the
USTORE_ADDRESS CSR. Parity for UDATA_UPPER_1
as well as UDATA_UPPER_2 is provided at bits PAR_UP.

RW Undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED CTX RESER
VED UADDR

Bits Field Description RW Reset

[31:19] RESERVED Reserved RO 0

[18:16] CTX Context that was Executing when parity error occurred. RO Undef

[15:13] RESERVED Reserved RO 0

[12:0] UADDR Contains the address that had the parity error. RO Undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

ALU_OUTPUT

Bits Field Description RW Reset

[31:0] ALU_OUTPUT ALU output. RO Undef
Programmer’s Reference Manual 249

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.5 TIMESTAMP_HIGH, TIMESTAMP_LOW

Timestamp is 64 bits. It counts up by one every sixteen cycles. When it hits the maximum value, it
wraps to zero on the next count.

Note: Note that this will never happen in our lifetime.

These registers can be written to preset it to a specific value. When
MISC_CONTROL[TIMESTAMP_ENABLE] (Section 5.6.4.2) is 0, Timestamp does not change
so a preset value can be written and when MISC_CONTROL[TIMESTAMP_ENABLE] is set to 1,
Timestamp will count normally. When MISC_CONTROL[TIMESTAMP_ENABLE] is set to 1
Timestamp cannot be written. Note that MISC_CONTROL[TIMESTAMP_ENABLE] controls all
Microengines, so that all of the Timestamps can be programmed with the same value and enabled
at once.

The value in Timestamp can be read. Because it is longer than 32 bits, it requires two reads, and
there is a hardware feature included to insure that the two values read are consistent. [Without this
feature the following sequence would be possible: 1) read lower part, 2) counter increments, and
upper part changes, 3) read upper part.] When the lower part is read (at the address of
TIMESTAMP_LOW), the corresponding value in the upper part is copied into a shadow register.
Reads of the upper part (at the address of TIMESTAMP_HIGH) read that shadow copy instead of
the actual counter.

Reading this register from the Intel XScale core or PCI returns undefined data. ME software that
reads both parts of Timestamp must read the lower part first, followed by the upper part. Note that
software is not required to read both parts if only the lower part is desired; the next read of
TIMESTAMP_LOW will re-load the shadow copy.

5.2.6 ACTIVE_CTX_FUTURE_COUNT

See Section 5.2.7, “INDIRECT_CTX_FUTURE_COUNT”.

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

COUNT_UPPER

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

COUNT_LOWER

Bits Field Description RW Reset

[63:32] COUNT_UPPER
Current count value. RW Undef

[31:0] COUNT_LOWER
250 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.7 INDIRECT_CTX_FUTURE_COUNT

There are 8 INDIRECT_CTX_FUTURE_COUNT registers for contexts 0 through 7. The value in
each is compared to the value in the low 16-bits of Timestamp, and will set the signal specified in
Future_Count_Signal register for this Context when it is armed and there is a match of
Future_Count to Timestamp. Writing to Future_Count arms the event. When the signal is set the
event is disarmed (so that it will not set again when the lower half of Timestamp wraps around and
matches Future_Count again).

The registers are accessed indirectly using the CSR_CTX_POINTER to select the specific context
register and reading or writing the INDIRECT_CTX_FUTURE_COUNT register. The register for
the context that is currently executing can be accessed by reading or writing the
ACTIVE_CTX_FUTURE_COUNT Local CSR.

.

5.2.8 ACTIVE_FUTURE_COUNT_SIGNAL

See Section 5.2.9, “INDIRECT_FUTURE_COUNT_SIGNAL”.

5.2.9 INDIRECT_FUTURE_COUNT_SIGNAL

There are 8 INDIRECT_FUTURE_COUNT_SIGNAL registers for contexts 0 through 7. The
value in these registers indicate which signal to set when the FUTURE_COUNT is used.

The registers are accessed indirectly using the CSR_CTX_POINTER to select the specific context
register and reading or writing the INDIRECT_FUTURE_COUNT_SIGNAL register. The register
for the context that is currently executing can be accessed by reading or writing the
ACTIVE_FUTURE_COUNT_SIGNAL Local CSR

.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED FUTURE_CNT

Bits Field Description RW Reset

[31:16] RESERVED Reserved. RO 0

[15:0] FUTURE_CNT Value to match against low 32-bits of Timestamp. RW undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED SIG_N0
Programmer’s Reference Manual 251

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.10 PROFILE_COUNT

PROFILE_COUNT is used for code profiling and tuning. It counts once per cycle, and when it
reaches maximum value it wraps to 0.

A typical use of PROFILE_COUNT is to read and store the value in a register, start an external
event (for example an external memory read), and then, when the external event completes, read
the value in PROFILE_COUNT again. Subtracting the two values will give the elapsed number of
cycles..

Bits Field Description RW Reset

[31:4] RESERVED Reserved RO 0

[3:0] SIG_N0 The signal number to set when FUTURE_COUNT matches
TIMESTAMP. RW Undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PROFILE_COUNT

Bits Field Description RW Reset

[31:16] RESERVED Reserved RO 0

[15:0] PROFILE_COUNT Count. Advances by one every cycle. RW Undef
252 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.11 PSEUDO_RANDOM_NUMBER

PSEUDO_RANDOM_NUMBER (PRN) uses a Linear Feedback Shift Register (LFSR) to
generate a pseudo random number which can be used by Microengine software. It can be initialized
by a local_csr_wr, and the number changes after each read by a local_csr_rd, according to the
polynomial:

x32+x31+x28+x27+x24+x17+x16+x14+x13+x12+x11+x8+x7+x6+x5+x4+x3+x2+1.

The period of the output sequence is 232 - 1.

Note: When a PRN is generated is based on the PRN Mode bit in the“CTX_ENABLES” CSR.

Note: The PRN will be updated if the local_csr_rd occurs in the shadow of a taken branch. This is OK as
long as one just wants a random number, however if a guaranteed repeatable random sequence is
desired, then do not place local_csr_rd of PRN in branch shadow.

5.2.12 NEXT_NEIGHBOR_SIGNAL

The NEXT_NEIGHBOR_SIGNAL CSR allows a program to signal a Context in the Next
Neighbor Microengine. The data is used to select which Context and Event Signal number is set.

This register must not be written to on two consecutive instructions. The limitation is due to the
fact that the IO signals of the Microengine run at one-half the internal rate.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

PSEUDO_RANDOM_NUMBER

Bits Field Description RW Reset

[31:0] PSEUDO_RANDOM_
NUMBER

Pseudo Random Number. This field must be initialized to a
non-zero value to generate a pseudo random number. RW Undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

T
H

IS
_C

T
X

SIG_NO CTX
Programmer’s Reference Manual 253

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.13 PREV_NEIGHBOR_SIGNAL

The PREV_NEIGHBOR_SIGNAL CSR allows a program to signal a Context in the Previous
Neighbor Microengine (the next lower numbered Microengine). The data is used to select which
context and signal number is set.

This register must not be written to on two consecutive instructions. The limitation is due to the
fact that the I/O signals of the Microengine run at one-half the internal rate.

Bits Field Description RW Reset

[31:8] RESERVED Reserved WO 0

[7] THIS_CTX

Controls whether or not the Context field of this register is
used in selecting the Context that is signaled in the next
neighbor Microengine.

1—Signal the same numbered Context as the one that
does the write to this register. This is useful if running
common code on multiple Contexts that need to signal
the same numbered Context.
0—Use the Context field of this register to select the
Context in the next neighbor Microengine.

WO 0

[6:3] SIG_NO Signal to set in the next neighbor Microengine. WO 0

[2:0] CTX Context to signal in the next neighbor Microengine. This
field is only used if THIS_CONTEXT is not asserted WO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

T
H

IS
_C

T
X

SIG_NO CTX

Bits Field Description RW Reset

[31:8] RESERVED Reserved W 0

[7] THIS_CTX

Controls whether or not the Context field of this register is
used in selecting the Context that is signaled in the
previous neighbor Microengine.

1—Signal the same numbered Context as the one that
does the write to this register. This is useful if running
common code on multiple Contexts that need to signal
the same numbered Context.
0—Use the Context field of this register to select the
Context in the previous neighbor Microengine.

W 0

[6:3] SIG_NO Signal to set in the previous neighbor Microengine. W 0

[2:0] CTX Context to signal in the previous neighbor Microengine.
This field is only used if THIS_CONTEXT is not asserted W 0
254 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.14 SAME_ME_SIGNAL

The SAME_ME_SIGNAL CSR allows a thread to signal another Context in the same
Microengine. The data is used to select which Context and signal number is set.

5.2.15 ACTIVE_CTX_STS

This register maintains the context number of the Context currently executing.

Each Microengine supports eight contexts (0 through 7).

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

N
E

X
T

_C
T

X

SIG_NO CTX

Bits Field Description RW Reset

[31:8] Reserved W 0

[7] NEXT_CTX

Controls whether or not the Context field of this register is
used in selecting the Context that is signaled in the
Microengine.

1—Signal the Context that is one greater (modulo the
number of Active Contexts in
CTX_ENABLE[IN_USE_CONTEXTS]) as the one that
does the write to this register. This is useful if running
common code on multiple Contexts that need to signal
the next sequential Context.
0—Use the Context field of this register to select the
Context in the Microengine.

W 0

[6:3] SIG_NO Signal to set in the Microengine. W 0

[2:0] CTX Context to signal in the Microengine. This field is only used
if NEXT_CONTEXT is not asserted W 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

A
B

0 RESERVED

A
C

T
X

P
C

ME_N0 ACNO
Programmer’s Reference Manual 255

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.16 INDIRECT_CTX_STS

There are 8 INDIRECT_CTX_STS registers, each contain the status of contexts 0 through 7. These
registers are accessed indirectly using the CSR_CTX_POINTER to select the specific context
register and reading or writing this register. Note that the active context number can be read via
ACTIVE_CTX_STS Local CSR.

Bits Field Description RW Reset

[31] AB0 If set, the Microengine has a Context in the Executing state.
If clear, no Context is in Executing State. RO 0

[30:21] RESERVED Reserved RO 0

[20:8] ACTXPC

PC of Executing Context. Only valid if AB0 is a 1.

IXP2400 and IXP2800 (Rev A): Valid values are 0 to 4095.

IXP2800 (Rev B): Valid values are 0 to 8191.

This field provides a snapshot value of the PC. This value is
used for tracking/code profiling purposes. When issued as
a local_csr_read from the ME, the PC value may not be the
exact PC value of the local_csr_rd instruction.

RO 0

[7:3] ME_N0

The number of this Microengine.

[7] = ME cluster

[6:3] = ME number

RO Note

[2:0] ACNO The number of the Executing context. Only valid if AB0 bit is
a 1. RW 0

Note -- the reset value is the number of the Microengine.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

R
R RESER

VED CTX_PC

Bits Field Description RW Reset

[31:17] RESERVED Reserved RO 0

[16] RR
Ready to Run. Indicates that the Context is in Ready state.
(This bit will be 0 if the Context is in any of the other three
states).

RO Undef

[15:13] RESERVED Reserved RO 0

[12:0] CTX_PC

The program counter at which the Context begins executing
when it is put into the Executing state.

IXP2400 and IXP2800 (Rev A): Valid values are 0 to 4095.

IXP2800 (Rev B): Valid values are 0 to 8191.

RW Undef
256 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.17 CTX_ARB_CNTL

This register is used by the context arbiter and is also used for debugging.

5.2.18 CTX_ENABLES

This register is used by the context arbiter and is also used for debugging.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PCTX

R
E

S
E

R
V

E
D

NCTX

Bits Field Description RW Reset

[31:7] RESERVED Reserved RO 0

[6:4] PCTX Previous Context. This field contains the number of the last
context that was running. RO Undef

[3] RESERVED Reserved RO 0

[2:0] NCTX Next Context. This field contains the number of the next
context that will be run. RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

IN
_U

S
E

_C
T

X

P
R

N
_M

ode

C
T

L_S
T

R
_P

A
R

_E
R

C
T

L_S
T

R
_P

A
R

_E
N

B
R

E
A

K
P

O
IN

T

RESERVED

N
N

_M
O

D
E

N
N

_R
IN

G
_E

M
P

T
Y

LM
_A

D
D

R
_1_G

LO
B

LM
_A

D
D

R
_0_G

LO
B

C
X

T
X

_E
N

A
B

LE
S

RESERVED
Programmer’s Reference Manual 257

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31] IN_USE_CTX

Indicates the number of in-use contexts, which determines
the GPR and Transfer Register allocation. Note that although
this information could be inferred from bits C0 to C7, this field
allows for contexts to be temporarily disabled due to error or
debug conditions.

0— 8 Context mode (Contexts 0, 1, 2, 3, 4, 5, 6, 7)
1— 4 Context mode (Contexts 0, 2, 4, 6)

It is illegal to enable Contexts that are not currently in-use
according to this field.

In 4 context mode the SRAM, scratch, cap, PCI, and MSF
instructions can only read data into the S-transfer registers
and not either the S or D transfer registers.

RW Undef

[30] PRN_MODE

Controls when the Pseudo_Random_Number is generated.
0—Pseudo_Random_Number is updated only when it is
loaded or read using the local_CSR instruction (not when
the Intel XScale core or PCI reads the local CSR).
1—Pseudo_Random_Number is updated every cycle

RW Undef

[29] CTL_STR_PAR_ER

Indicates that a parity error was detected in the Control Store
when an instruction was read. This bit will never be set if
CONTROL STORE PARITY ENABLE bit is 0. When this bit is
set the Microengine’s attn output is asserted.

The handling of such a parity error should involve resetting
the corresponding micro-engine, instead of clearing this bit.
This is because the micro-engine may have fetched invalid
code or may have incorrectly updated its program counter.

RW
1C 0

[28] CTL_STR_PAR_EN
Enables parity checking on Control Store.

0—Parity checking disabled, no error possible.
1—Parity checking enabled.

RW 0

[27] BREAKPOINT

ctx_arb[bpt] instruction was executed. When this bit is
set:
1. The Microengine’s attn output is asserted.
2. All CTX_ENABLES bits in this register are cleared.

RW
1C 0

[26:21] RESERVED Reserved RO 0
258 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[20] NN_MODE

Controls how the Next Neighbor Registers in this ME are
written.

0—From Previous Neighbor Microengine
1—From this Microengine

The Next Neighbor Registers can only be written by one
source. If ME(n+1) has this bit set and ME(n) has this bit clear
and ME (n) executes an instruction that uses the next
neighbor registers as a destination, the instruction is executed
but the result is not written anywhere. This bit setting for Next
Neighbor MEs can be summarized as follows:

ME(n) = ME(n+1) = 0:
Each ME writes to the next neighbor’s NN registers

ME(n) = 0, ME(n+1) = 1:
ME0 NN writes are not written anywhere
ME1 writes to its own NN registers

ME(n) = 1, ME(n+1) = 0:
ME0 writes to its own NN registers
ME1 writes to next neighbors NN registers

ME(n) = ME(n+1) = 1:
Each ME writes there own NN registers

When this bit is set to 1 the ME can use its NN registers in
context relative or ring mode and the ring full signals can be
used to get the status of its own NN Ring.

When an ME writes to its own Neighbor register it must wait 5
cycles (or instructions) before it executes the instruction that
reads the same register in order to get the newly written
value.

RW Undef

[19:18] NN_RING_EMPTY

Controls threshold when NN_Empty asserts. The number of
entries valid is determined by comparing NN_PUT and
NN_GET Local CSRs. The use of indicating empty when
there is really something on the Ring is if the cooperating
processes transfer data in a block, and the consumer does
not want to get a partial block.

00–0 entries valid
01–1 or less entries valid
10–2 or less entries valid
11–3 or less entries valid

RW Undef

[17] LM_ADDR_1_GLOB

Controls usage of LM_ADDR_1.
0—LM_ADDR_1 is Context Relative. Each Context uses
a separate copy of LM_ADDR_1.
1—LM_ADDR_1 is Global. Only the working copy of
LM_ADDR_1 is used, independent of Active Context.

RW Undef

[16] LM_ADDR_0_GLOB

Controls usage of LM_ADDR_0.
0—LM_ADDR_0 is Context Relative. Each Context uses
a separate copy of LM_ADDR_0.
1—LM_ADDR_0 is Global. Only the working copy of
LM_ADDR_0 is used, independent of Active Context.

RW Undef

[15:8] CTX_ENABLES
Context Enables for Context 7 through Context 0.

0—Context is in Inactive state.
1—Context may be in Ready, Executing, or Sleep states.

RW 0

[7:0] RESERVED Reserved RO 0

Bits Field Description RW Reset
Programmer’s Reference Manual 259

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.19 CC_ENABLE

The condition codes are always enabled for normal use and are disabled only during ME
debugging where the GPRs are read by an external source (PCI, Intel XScale core, other ME) and
condition codes need to be preserved.

5.2.20 CSR_CTX_POINTER

This register is used when reading or writing the Local CSRs that are unique per Context. The PCI,
Intel XScale core or ME writes a context number into this register and then reads or writes any
Local CSR with a name that starts with “INDIRECT_” to access the version of the register that is
specific to the context.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

C
C

C
E RESERVED

P
M

U
_E

N
A

B
LE

S

P
M

U
_C

T
X

_M
O

N

Bits Field Description RW Reset

[31:14] RESERVED Reserved RO 0

[13] CCCE
Current Condition Code Enable. Set to 1 to update the
condition codes. When 0, condition codes will not be
updated.

RW Undef

[12:4] RESERVED Reserved RO 0

[3] PMU_ENABLE

IXP2400 and IXP2800 Rev A -- Reserved

IXP2800 Rev B -- In order for the PMU (Performance
Monitor Unit) to be operational in the Microengine, the
programmer must write a 1 to the PMU_Enable bit.

RW 0

[2:0] PMU_CTX_MON
This field holds the number of the Context to be monitored.
The event count will only reflect events that occurred when
this Context is Executing.

RW Undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED CTX

Bits Field Description RW Reset

[31:3] RESERVED Reserved RO 0

[2:0] CTX
Selects which contexts Local CSR is accessed by
local_csr_read, local_csr_write, and by the Intel XScale
core.

RW Undef
260 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.21 ACTIVE_CTX_SIG_EVENTS

See Section 5.2.22, “INDIRECT_CTX_SIG_EVENTS”

5.2.22 INDIRECT_CTX_SIG_EVENTS

There are 8 INDIRECT_CTX_SIG_EVENTS registers, each contain status information that
indicates which Event Signals have occurred for contexts 0 through 7. The registers are accessed
indirectly using the CSR_CTX_POINTER to select the specific context register and reading or
writing the INDIRECT_CTX_SIG_EVENTS register. The register for the context that is currently
executing can be accessed by reading or writing the ACTIVE_CTX_STS Local CSR.

This register is used in conjunction with the CTX_WAKEUP_EVENTS register to move the
Context from Sleep state to Ready state.

5.2.23 ACTIVE_CTX_WAKEUP_EVENTS

See Section 5.2.24, “INDIRECT_CTX_WAKEUP_EVENTS”

5.2.24 INDIRECT_CTX_WAKEUP_EVENTS

There are 8 INDIRECT_CTX_WAKEUP_EVENTS registers, each contain status information that
indicate which Event Signals are required to put the each of the Contexts into Ready state. The
registers are accessed indirectly using the CSR_CTX_POINTER to select the specific context

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED SIGNAL_15…SIGNAL_1

V
O

L

Bits Field Description RW Reset

[31:16] RESERVED Reserved RO 0

[15:1] SIGNAL_15…
SIGNAL_1

Each bit is set as described in the Event Signals section.
Each is cleared by Microengine hardware when either:

• the signal is used to transition to Ready state if the
CTX_WAKEUP_EVENT OR bit is clear.

• a br_!signal on this signal is not taken.

• a br_=signal on this signal is taken.

RW Undef

[0] VOL Corresponds to Event for Voluntary arb wakeup event. RO 1
Programmer’s Reference Manual 261

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
register and reading or writing the INDIRECT_CTX_WAKEUP_EVENTS register. The register
for the context that is currently executing can be accessed by reading or writing the
ACTIVE_CTX_WAKEUP_EVENTS Local CSR.

5.2.25 ACTIVE_LM_ADDR_0

See “INDIRECT_LM_ADDR_1”.

5.2.26 ACTIVE_LM_ADDR_1

See “INDIRECT_LM_ADDR_1”.

5.2.27 INDIRECT_LM_ADDR_0

See “INDIRECT_LM_ADDR_1”.

5.2.28 INDIRECT_LM_ADDR_1

These registers hold the addresses which are used to read and write Local Memory (LM). Each
Context has its own LM_ADDR_0 and LM_ADDR_1. There is also a working copy of each.
When a Context is put into Executing state, the value from its pair of LM_ADDRS are copied into
the working pair.

Reads or writes of ACTIVE_LM_ADDR_# select the working pair.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

A
N

Y
_W

K
_E

V
N

T
S

WAKEUP_EVENT_15…WAKEUP_EVENT_1

V
O

LU
N

TA
R

Y

Bits Field Description RW Reset

[31:17] RESERVED Reserved RO 0

[16] ANY_WK_EVNTS

ANY Wakeup Events. Set by the ANY token on a ctx_arb
instruction,

0—All mode (AND)
1—ANY mode (OR)

RW Undef

[15:1] WAKEUP_EVENT_15…
WAKEUP_EVENT_1

Each wakeup event bit is set by either a ctx_swap_#
token on an instruction, or by the Event Signal Mask of the
ctx_arb instruction. All wakeup event bits are cleared by
Microengine hardware whenever the Context is put into
Execute state.

RW Undef

[0] VOLUNTARY Set by ctx_arb[voluntary]. Cleared when the Context
is put into Execute state. RW Undef
262 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
The context relative registers are accessed indirectly using the CSR_CTX_POINTER to select the
specific context register and reading or writing the INDIRECT_LM_ADDR_0 and
INDIRECT_LM_ADDR_1 registers. The working registers can be accessed by reading or writing
the ACTIVE_LM_ADDR_0 and ACTIVE_LM_ADDR_1 CSR. When the Context goes to Sleep
state, the value in the working pair is moved to the Context Specific pair.

When a LM_ADDR is being used globally (as set in CTX_ENABLE[LM_ADDR_GLOBAL]), the
working pair is used and never overwritten during Context swaps.

The working LM_ADDR can also be loaded with the result of a lookup_cam instruction.

5.2.29 BYTE_INDEX

This register is used to control the byte shift amount during Byte_Align instructions. This register
can be written alone, or can be written along with T_INDEX or LM_ADDR (see Section 5.2.31,
“T_INDEX_BYTE_INDEX”) and INDIRECT_LM_ADDR_#_BYTE_INDEX (see
Section 5.2.32, “INDIRECT_LM_ADDR_0_BYTE_INDEX”).

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED LM_ADDR
RES
ERV
ED

Bits Field Description RW Reset

[31:12] Reserved RO 0

[11:2] LM_ADDR
Selects the specific 32-bit word in Local Memory. This field can be
incremented or decremented by 1, or left unchanged after the access,
as specified in the instruction.

RW Undef

[1:0] RESERVED Reserved RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

B
Y

T
E

_N
0

Bits Field Description RW Reset

[31:2] Reserved RO 0

[1:0] BYTE_N0 Specifies a byte number for use with the byte_align instruction. RW Undef
Programmer’s Reference Manual 263

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.30 T_INDEX

This register is used when S_TRANSFER or D_TRANSFER registers are accessed via indexed
mode, which is specified in the source and destination fields of the instruction. This register can be
incremented, decremented, or left unchanged after the access. This register can be written alone, or
can be written along with BYTE_INDEX (see Section 5.2.31, “T_INDEX_BYTE_INDEX”).

5.2.31 T_INDEX_BYTE_INDEX

This is an alias of the Section 5.2.30, “T_INDEX” and Section 5.2.29, “BYTE_INDEX” register.
Reading and writing this register reads and writes both the T_INDEX and BYTE INDEX registers.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED XFER_INDEX
RES
ERV
ED

Bits Field Description RW Reset

[31:9] RESERVED Reserved RO 0

[8:2] XFER_INDEX

Transfer Register Index. Specifies one of 128 registers. The
choice of S_TRANSFER_IN, S_TRANSFER_OUT,
D_TRANSFER_IN, D_TRANSFER_OUT is made by the
other bits of the register specifier, and the use (either
source or destination). This field can be incremented or
decremented by 1, or left unchanged after the access, as
specified in the instruction.

RW Undef

[1:0] RESERVED Reserved RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED XFER_INDEX

B
Y

T
E

_N
O

Bits Field Description RW Reset

[31:9] RESERVED Reserved RO 0

[8:2] XFER_INDEX Section 5.2.30, “T_INDEX” RW Undef

[1:0] BYTE_NO Section 5.2.29, “BYTE_INDEX” RW Undef
264 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.32 INDIRECT_LM_ADDR_0_BYTE_INDEX

This is an alias of the Section 5.2.27, “INDIRECT_LM_ADDR_0” and Section 5.2.29,
“BYTE_INDEX” register. Reading and writing this register reads and writes both the
LM_ADDR_0 and BYTE INDEX registers.

5.2.33 INDIRECT_LM_ADDR_1_BYTE_INDEX

See Section 5.2.32, “INDIRECT_LM_ADDR_0_BYTE_INDEX”.

5.2.34 ACTIVE_LM_ADDR_0_BYTE_INDEX

See Section 5.2.32, “INDIRECT_LM_ADDR_0_BYTE_INDEX”.

5.2.35 ACTIVE_LM_ADDR_1_BYTE_INDEX

See Section 5.2.32, “INDIRECT_LM_ADDR_0_BYTE_INDEX”.

5.2.36 NN_PUT

This register contains the “put” pointer used when the Next Neighbor registers are used as a Ring.
When “previous” ME executes an instruction that specifies the destination as *n$index, the Next
Neighbor register in “this” ME is selected is by the value in this register, and the value is then
incremented by one (a value of 127 wraps back to 0). The value in this register is compared to the
value in NN_GET register to determine when to assert NN_FULL and NN_EMPTY status signals.
There is a behavior of the Ring is shown in Table 5-5 and Table 5-6.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED LM_ADDR

B
Y

T
E

_N
O

Bits Field Description RW Reset

[31:12] RESERVED Reserved RO 0

[11:2] LM_ADDR Section 5.2.27, “INDIRECT_LM_ADDR_0” RW Undef

[1:0] BYTE_NO Section 5.2.29, “BYTE_INDEX” RW Undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED NN_REG_INDEX
Programmer’s Reference Manual 265

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.37 NN_GET

This register contains the “get” pointer used when the Next Neighbor registers are used as a Ring.
This register is used to specify the Next Neighbor register when a source operand is *n$index, and
the value is then incremented (a value of 127 wraps back to 0). The value in this register is
compared to the value in NN_PUT register to determine when to assert NN_FULL and
NN_EMPTY status signals.

Bits Field Description RW Reset

[31:7] RESERVED Reserved RO 0

[6:0] NN_REG_INDEX Specifies one of 128 NN registers to write. RW Undef

Table 5-5. NN_PUT Ring Behavior

Description # Entries

MAX allowable entries in Neighbor Ring 124

NN_FULL asserts when number of entries 96

NN_FULL asserts when number of available entries (note 1) 28

Cycle latency between a Neighbor put and the update of NN_FULL status 20

Note 1: Equals 124 - 96

Table 5-6. NN_PUT Ring Latency

Number of cycles between a Neighbor put and
BR_!INP_STATE[NN_FULL,label#]

Number of longwords that can be safely put into a
Neighbor without overflowing the NN_RING

0 8

1 9

... ...

19 27

20 28

21 28

22 28

To understand this table consider the example where there are currently 95 LWs in the NN ring and software
reads the full state as "not full". Since it takes 20 cycles to get the NN put data into the ring, software must
assume (conservatively) that there are 20 put operations currently in progress. If the software waits 0 cycles
between testing the full state and the put operations software can safely perform 8 put operations (28 -20). On
the other hand, if the software waits 20 cycles between testing the full state and the put operations, any put
operation in progress will have completed, and software can safely perform 28 put operations.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED NN_REG_INDEX
266 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.2.38 CRC_REMAINDER

CRC_REMAINDER provides one operand to the CRC Unit, and gets written with the result of the
CRC operation after a crc instruction.

5.2.39 LOCAL_CSR_STATUS

This register is used by the Intel XScale processor or the PCI to determine if they successfully
accessed an MEs Local CSR.

The Local CSRs are single ported but can be accessed by the Local ME or a remote source. The
remote sources include: a Remote ME, Intel XScale core, or PCI which use CAP to get access. If
only one source accesses a given Local CSR, the access will complete as desired. If more than one
source attempts to access a Local CSR on the same cycle, the Local ME will win arbitration, and a
sticky status flag will be set to indicate a collision. The collision will also occur if the ME and the
external source are accessing two different registers. If the external access was a read, the data
returned to the Remote ME, Intel XScale core or PCI will be unpredictable; if the external access
was a write, that write will not occur. The LOCAL_CSR_STATUS register can be read by the
Remote ME, Intel XScale core or PCI to determine if the access completed without a collision.
Since CAP is used to access the Local CSRs, only one remote source (CAP) will ever request
access on a given cycle.

If there was a collision, the access should be repeated and status check again. Since the flag is
sticky, several accesses can be done prior to testing the flag. A read of LOCAL_CSR_STATUS
clears the flag. Note that LOCAL_CSR_STATUS Register is not part of the arbitrated Local CSR
port, rather it is only used for the Remote ME, Intel XScale core or PCI and can always be read
predictably.

Bits Field Description RW Reset

[31:7] Reserved RO 0

[6:0] NN_REG_INDEX Specifies one of 128 NN registers to read. RW Undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

CRC_REMAINDER

Bits Field Description RW Reset

[31:0] CRC_REMAINDER Input operand and result of crc instruction. RW Undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

S
TA

T
U

S

Programmer’s Reference Manual 267

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.3 RDR DRAM Controller - IXP2800

Table 5-7 shows the offset addresses of the DRAM Controller registers. Refer to Chapter 4,
“Address Maps” for the base address and details on how they are accessed. These CSRs can be
accessed Intel XScale core and PCI (not the ME).

The IXP2800 supports three RDR DRAM Channels, each with their own register set.

All RDRAMs connected on a channel must have the same timing, size, and bank properties.
RDRAMs on different channels may have different properties, but the number of addresses on all
populated channels must be the same.

Bits Field Description RW Reset

[31:1] Reserved RO 0

[0] STATUS

Indicates the status of Local CSR access in the
Microengine by the Intel XScale core

0—No accesses to Local CSRs were lost since last
reading this register
1—One or more accesses to Local CSRs were lost due
to collisions with Local CSR accesses by Microengine
code.

Note that this bit is cleared by a read of this CSR.

RC 0

Table 5-7. RDR DRAM Register Summary

Register Offset
(Hex) Comment Section

RDRAM_CONTROL 0x00 Section 5.3.1

RDRAM_ERROR_STATUS_1 0x08 Section 5.3.2

RDRAM_ERROR_STATAS_2 0x10 Section 5.3.3

RDRAM_ECC_TEST 0x18 Section 5.3.4

RDRAM_SERIAL_COMMAND 0x20 Section 5.3.5

RDRAM_SERIAL_DATA 0x28 Section 5.3.6

RDRAM_CONFIG_1 0x30 Section 5.3.7

RDRAM_CONFIG_2 0x38 Section 5.3.8

RDRAM_CONFIG_3 0x40 Section 5.3.9

RDRAM_RAC_INIT 0x48 Section 5.3.10

RDRAM_MISC_RAC_CONTROL 0x50 Section 5.3.11

RDRAM_RAC_CONFIG 0x58 Section 5.3.12

RDRAM_1066_CONFIG_GROUP 0x60 Section 5.3.13

RDRAM_SERIAL_CONFIG 0x68 Section 5.3.14

K0 through K11 0x100 -
0x158 Section 5.3.15
268 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.3.1 RDRAM_CONTROL (# = 0,1,2)

The # symbol in the register name signifies the DRAM Channel. This register controls parameters
for the channel. The proper values to use in this register will be determined by the RDRAMs used
in the system.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

UNUSED_SPARE

B
A

N
K

_R
E

M
A

P

R
D

_B
P

_D
IS

E
C

C

U
N

U
S

E
D

_S
P

A
R

E

N
O

_C
H

A
N SIZE

A
D

D
R

E
S

S
_R

E
M

A
P

UNUSED_SPARE

Bits Field Description RW Reset

[31:19] UNUSED_SPARE Reserved RO 0

[18:17] BANK_REMAP

IXP2800 Rev A -- Select remapping of the address
according to Table 5-8.

IXP2800 Rev B --

if ADDRESS_REMAP is configured for Optimize RDRAMs
Select remapping of the address according to Table 5-8

if ADDRESS_REMAP is configured for Optimize Banks
Select remapping of the address according to Table 5-9

RW 0

[16] RD_BP_DIS

Read Back pressure Disable. Back pressure should always
be enabled (bit set to 0)

1 back pressure disabled for read commands

0 back pressure enabled default value

RW

[15:14] ECC

Controls the protection mode used.

00—None

01—Parity

10—ECC

11—Reserved

RW 1

[13] UNUSED_SPARE Reserved RW 0

[12:11] NO_CHAN

The NO_CHAN bits in each of the three RAMBUS
controllers are configured as a set to select the number of
RAMBUS controllers in use. All the channels are enabled
initially and software must disable the desired channels. For
proper operation, the channels must be disabled by writing
to this field in the order: CH2, CH1, CH0.

These bits should be set as follows:

3 Channels Enabled (CH0, CH1, CH2):
CH2 = 0b10, CH1 = 0b10, CH0 = 0b10

2 Channels Enabled (CH0, CH1):
CH2 = 0b00, CH1 = 0b01, CH0 = 0b01

1 Channel Enabled (CH0):
CH2 = 0b00, CH1 = 0b00, CH0 = 0b00

RW 0x2
Programmer’s Reference Manual 269

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[10:8] SIZE

Rev A -- Indicates how much memory is on the channel.
This controls the interleave remapping.

000—8 MB

001—16 MB

010—32 MB

011—64 MB

100—128 MB

101—256 MB

110—512 MB

111—1 GB

RW 1

[7:6] ADDRESS_REMAP

IXP2800 Rev A -- Reserved

IXP2800 Rev B.--

00- Optimize RDRAMs -- This setting can be used when the
number of memory devices on the channel is a power of
two. The address is remapped according to Table 5-8 to
optimize RDRAM chip selection.

01 - Optimize Banks -- This setting should be used when
the number of memory devices on the channel is not a
power of two (for example, it there are 3 RDRAM chips).
The address is remapped according to Table 5-9 to
optimize RDRAM bank selection.

10 - No Remap -- This setting disables address remapping.

11 - Reserved

RW 0

[5:0] UNUSED_SPARE Reserved RW 0

Bits Field Description RW Reset

Table 5-8. Address Bank Remapping (Optimize RDRAMs)

Memory Size on
Channel (MB)3

Remapped Address for IXP2800 Rev A and IXP2800 Rev B when
RDRAM_CONTROL[ADDRESS_REMAP] is configured for Optimize RDRAMs

Based on RDRAM_Control[Bank_Remap]

00 01 10 11

8 7:14, 22:15 9:14, 7:8, 22:15 11:14, 7:10, 22:15 13:14, 7:12, 22:15

16 7:14, 23:15 9:14, 7:8, 23:15 11:14, 7:10, 23:15 13:14, 7:12, 23:15

32 7:14, 24:15 9:14, 7:8, 24:15 11:14, 7:10, 24:15 13:14, 7:12, 24:15

64 7:14, 25:15 9:14, 7:8, 25:15 11:14, 7:10, 25:15 13:14, 7:12, 25:15

128 7:14, 26:15 9:14, 7:8, 26:15 11:14, 7:10, 2615 13:14, 7:12, 26:15

256 7:14, 27:15 9:14, 7:8, 27:15 11:14, 7:10, 27:15 13:14, 7:12, 27:15

512 7:14, 28:15 9:14, 7:8, 28:15 11:14, 7:10, 28:15 13:14, 7:12, 28:15
270 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Table 5-9. Address Bank Remapping (Optimize Banks)

5.3.2 RDRAM_ERROR_STATUS_1 (# = 0,1,2)

The # symbol in the register name signifies the DRAM Channel. This register records the type and
address of a location with a parity or ECC error. It always loads the address of the most recent
location accessed. If either a Correctable or Uncorrectable ECC error is detected, the value in the
register is locked (it is locked when either of the ECC error bits is set), with one exception—an
Uncorrectable ECC error that occurs while the register is locked will overwrite the address of the
Correctable ECC error. The address of a subsequent error will be lost until software clears the error
bits.

1024 7:14, 29:15 9:14, 7:8, 29:15 11:14, 7:10, 29:15 13:14, 7:12, 29:15

Bits used to select
Bank Command

FIFO
7:8 9:10 11:12 13:14

NOTES:
1. Table shows device/bank sorting of the channel remapped block address, which is in address 31:7. LSBs of

the address are always 6:0 (byte within the block), which are not remapped
2. Unused MSBs of address have value of 0.
3. Size is programmed in RDRAM_CONTROL[SIZE].

Remapped Address when RDRAM_CONTROL[ADDRESS_REMAP] is configured for Optimize banks
Based on RDRAM_Control[Bank_Remap]

00 01 10 11

29:24, 7:14, 23:15 29:24, 9:14, 7:8, 23:15 29:24, 11:14, 7:10, 23:15 29:24, 13:14, 7:12, 23:15

NOTES:
1. Table shows device/bank sorting of the channel remapped block address, which is in address 31:7. LSBs of

the address are always 6:0 (byte within the block), which are not remapped
2. Bits [31:30] have a value of 0.
3. Accessing an address beyond the size of the physical memory on the channel will produce unpredictable

results.

Table 5-8. Address Bank Remapping (Optimize RDRAMs)

Memory Size on
Channel (MB)3

Remapped Address for IXP2800 Rev A and IXP2800 Rev B when
RDRAM_CONTROL[ADDRESS_REMAP] is configured for Optimize RDRAMs

Based on RDRAM_Control[Bank_Remap]

00 01 10 11

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

R
E

S
E

R
V

E
D

ERR_ADDR

R
E

S
E

R
V

E
D

U
N

C
O

R
_E

R
R

C
O

R
_E

R
R

Programmer’s Reference Manual 271

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.3.3 RDRAM_ERROR_STATUS_2 (# = 0,1,2)

The # symbol in the register name signifies the DRAM Channel. This register records the byte(s)
with parity errors, or syndrome of an ECC error, and the originator of the read. It always loads the
information of the most recent location accessed. If either a Correctable or Uncorrectable error is
detected, the value in the register is locked (it is locked when either of the error status bits is set),
with one exception—an Uncorrectable ECC error that occurs while the register is locked will
overwrite the information of the Correctable ECC error. This implies that once an Uncorrectable
Error occurs the information of a subsequent error will be lost.

Bits Field Description RW Reset

[31] RESERVED Reserved. Read only as 0. RO 0

[30:4] ERR_ADDR Address of the location with error. Only valid if either
Corr_Error or Uncorr_Error is asserted. RO 0

[3:2] RESERVED Reserved RO 0

[1] UNCOR_ERR
A parity or uncorrectable ECC error was detected. Will
interrupt the Intel XScale core if enabled. (See the Note
below.)

W1C 0

[0] COR_ERR A correctable ECC error was detected. Will interrupt the
Intel XScale core if enabled. (See the Note below.) W1C 0

NOTE: It is possible for both the UNCOR_ERR and COR_ERR to be set. This may occur if more than 2 bits
are in error. In this case the user should assume that an uncorrectable error has occurred.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

M
U

LT
_C

O
R

R
_E

R
R

M
U

LT
_U

N
C

O
R

R
_E

R
R

R
M

W
_E

R
R RESERVE

D ME CTX

S
R

C

UPPER_ERR_SYND LOWER_ERR_SYND

Bits Field Description RW Reset

[31] MULT_CORR_ERR
MULTIPLE CORR ERROR. Indicates that multiple
correctable errors have occurred. This bit is reset when
the Corr_Error bit in Error_Status_1 is cleared.

RO 0

[30] MULT_UNCORR
_ERR

MULTIPLE UNCORR ERROR. Indicates that multiple
uncorrectable errors have occurred. This bit is reset when
the Uncorr_Error bit in Error_Status_1 is cleared.

RO

[29] RMW_ERROR Indicates that the Error information captured was from an
RMW operation RO

[28:25] RESERVED This field is for internal use only. When read, the value of
this field will vary. RO 0

Note 1
272 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.3.4 RDRAM_ECC_TEST (# = 0,1,2)

The # symbol in the register name signifies the DRAM Channel. This register can be used to force
incorrect byte parity or ECC code into the memory for test and diagnostic purposes. Each bit, when
set, will invert the corresponding generated check bit during writes; there is no effect on reads.

[24:20] ME

Indicates which ME was the originator of the transaction
that had an error. Only valid if Source is a 1.

Note -- if ME, and indirect_ref is used to direct the read
data to a different ME, this field is that ME. If data is sent to
TBUF, this field is the ME that originated the command.

RO 0

[19:17] CTX

Indicates the originator of the transaction (based on the
Source bit) that had an error.

If Source is 1, this field is the ME Context number, if
Source is 0 this field is Intel XScale core or PCI as
follows.

000—Intel XScale core

001—PCI

Others—Reserved

Note -- if ME, and indirect_ref is used to direct the read
data to a different Context, this field is that Context. If data
is sent to TBUF, this field is the ME that originated the
command.

RO 0

[16] SRC

Source. Indicates, in conjunction with the Thread field the
originator of the transaction (either a read or partial write
that caused a read-modify-write) that had an error.

0—Intel XScale core or PCI

1—Microengine

RO 0

[15:8] UPPER_ERR_SYND UPPER ERROR SYNDROME. Byte(s) with parity errors,
or syndrome of an ECC error from data bits[127:64]. RO 0

[7:0] LOWER_ERR_SYND Byte(s) with parity errors, or syndrome of an ECC error
from data bits[63:0]. RO 0

1. The reset value of bits 27:25 on Channel 1 is 0x7

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED INV_CHK_BIT
Programmer’s Reference Manual 273

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.3.5 RDRAM_SERIAL_COMMAND (# = 0,1,2)

The # symbol in the register name signifies the DRAM Channel. This register is used to initiate
serial commands to the RDRAMs. The command is started when the register is written.

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] INV_CHK_BIT

INVERT CHECK BIT. Each bit controls one of the ecc
check bits during writes.

0 = Normal operation.

1 = Invert ecc during writes.

The correspondence between bits in this register and ecc
check bits is:

Bit 0—ECC[0] Bit 4—ECC[4]

Bit 1—ECC[1] Bit 5—ECC[5]

Bit 2—ECC[2] Bit 6—ECC[6]

Bit 3—ECC[3] Bit 7—ECC[7]

The behavior of the RDRAM controller will be unpredictable
if more than 2 bits are set in this register at a time for
uncorrectable error or more than 1bit is set at a time for
correctable errors.

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

B
U

S
Y

INTEL_PRIVATE SER_ADDR

S
E

R
_B

C
A

S
T

SER_DEV SER_OP

Bits Field Description RW Reset

[31] BUSY

When a 1 this bit indicates that a serial command is in
progress this register and RDRAMN_SERIAL_DATA must
not be written in that case. When the command completes
this bit reads as a 0.

RO 0

[30:23] INTEL_PRIVATE Intel Private and should always be written with 0. RO 0

[22:11] SER_ADDR
Serial address. This field is used in the SA field to select
which control register of the selected RDRAM device is
read or written.

RW 0

[10] SER_BCAST Serial broadcast. This bit is used in the SBC field; when set,
RDRAM devices ignore SDEV for RDRAM device selection. RW 0

[9:4] SER_DEV Serial device. This field is used in the SDEV field to select
the RDRAM device to which the transaction is directed. RW 0

[3:0] SER_OP Serial Op. This field is used as the Serial Op on D_CMD. RW 0
274 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.3.6 RDRAM_SERIAL_DATA (# = 0,1,2)

The # symbol in the register name signifies the DRAM Channel. This register holds the data for the
RDRAM serial port. For a serial port write, this register must be written prior to writing
RDRAM_SERIAL_COMMAND. For a serial port read, this register holds the data from the
RDRAM. The read data will be valid after a read when RDRAM_SERIAL_COMMAND[BUSY]
goes to 0.

5.3.7 RDRAM_CONFIG_1 (# = 0,1,2)

The # symbol in the register name signifies the DRAM Channel. This register holds configuration
parameters for timing and other controls.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

SRD SER_DATA

Bits Field Description RW Reset

[31:16] SRD Serial Read Data. The 16 bits of data read from the
selected control register of the selected RDRAM device. RO 0

[15:0] SWD Serial Write Data. The 16 bits of data written to the
selected control register of the selected RDRAM device. WO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

B
_T

O
_B

_R
D CC_

TEST

U
N

U
S

E
D

 _S
P

A
R

E

T
R

P
R

E
F

S
Y

N

T
R

A
S

R
E

F
S

Y
N

S
T

E
P

2_R
A

C
_C

C
_E

N

TOFFP TRP

R
E

S
E

R
V

E
D

T
R

A
S

S
Y

N

TCAC TRCD

Bits Field Description RW Reset

[31] B_TO_B_RD

Back-to-back RD

1: Back-to-back RD packets may be issued to different
RDRAMs

0: There must be at least one SynClk between RD packets
to different RDRAMs.

RW 0
Programmer’s Reference Manual 275

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[30:28] CC_TEST

Selects modes for shortening time to test the 24-bit CC
interval counter (CCINTCNT).

CCINTCNT is split into three 8-bit subcounters:
CCINTCNTA, CCINTCNTB and CCINTCNTC:

Clocked Compared Notes

000 23:0 23:16 Normal mode

001 7:0 7:0 Tests CCINTCNTA

010 15:8 15:8 Tests CCINTCNTB

011 23:16 23:16 Tests CCINTCNTC

100 23:16, 15:8, 7:0 23:16 All three sub-counters run in
parallel

101 none 7:0 Not used

110 none 15:8 Tests carry from CCIntCntA to
CCINTCNTB

111 none 23:16 Tests carry from CCINTCNTB to
CCINTCNTC

RW 0

[27] UNUSED _SPARE Reserved RW 0

[26:24] TRPREFSYN[

Interval between REFP and subsequent REFA or ACT
packets to the same bank.

Largest tRP,REF spec of any installed RDRAM; tCYCLE
granularity.

010: t RPREF = 8 t CYCLE.

011: t RPREF = 12 t CYCLE

100: t RPREF = 16 t CYCLE

...

111: t RPREF = 28 t CYCLE

RW 0

[23:20] TRASREFSYN

Interval between REFA and a subsequent REFP packet to
the same bank. Largest tRAS,REF spec of any installed
RDRAM; tCYCLE granularity.

0100: t RASREF = 16 * t CYCLE

0101: t RASREF = 20 * t CYCLE

0110: t RASREF = 24 * t CYCLE

…

1111: t RASREF = 60* t CYCLE

RW 0

[19] STEP2_RAC_CC_EN

This bit needs to be asserted prior to doing step2 of the
initialization process and should be de-asserted
immediately after that. This causes the STOPTDx pins in
the RAC to be deasserted during the initial current control
operations. This is a necessary step for initialization.

RW 0

[18:16] TOFFP

Offset. Offset from a RDA or PREX packet to the equivalent
PRER packet

100: t OFFP = 4 t CYCLE

101: t OFFP = 5 t CYCLE

110: t OFFP = 6 t CYCLE

111: t OFFP = 7 t CYCLE

Other values are reserved

RW 0

Bits Field Description RW Reset
276 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.3.8 RDRAM_CONFIG_2 (# = 0,1,2)

The # symbol in the register name signifies the DRAM Channel. This register holds configuration
parameters for timing and other controls.

[15:12] TRP

Row Precharge. Largest tRP spec of any installed RDRAM;
tCYCLE granularity.

0110: t RP = 6 t CYCLE

1000: t RP = 8 t CYCLE

1010: t RP = 10 t CYCLE

1100: t RP = 12 t CYCLE

Other values are reserved.

RW 0

[11] UNUSED _SPARE Reserved RW 0

[10:8] TRASSYN

Largest tRAS spec of any installed RDRAM; tCYCLE
granularity.

100: t RAS = 16 t CYCLE

101: t RAS = 20 t CYCLE

110: t RAS = 24 t CYCLE

111: t RAS = 28 t CYCLE

Other values are reserved.

RW 0

[7:4] TCAC

CAS Access Delay. Largest tCAC spec of any installed
RDRAM; tCYCLE granularity.

1000: t CAC = 8 t CYCLE

1001: t CAC = 9 t CYCLE

1010: t CAC = 10 t CYCLE

1011: t CAC = 11 t CYCLE

1100: t CAC = 12 t CYCLE

Other values are reserved.

RW 0

[3:0] TRCD

RAS to CAS Delay. Largest tRCD spec of any installed
RDRAM; tCYCLE granularity.

0101: t RCD = 5 t CYCLE

0111: t RCD = 7 t CYCLE

1001: t RCD = 9 t CYCLE

1011: t RCD = 11 t CYCLE

Other values are reserved.

RW 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED CCCNT REFBN
KBITS REFCNT MAX_DEV_ID
Programmer’s Reference Manual 277

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.3.9 RDRAM_CONFIG_3 (# = 0,1,2)

The # symbol in the register name signifies the DRAM Channel. This register holds configuration
parameters for timing and other controls.

Bits Field Description RW Reset

[31:27] Reserved RW 0

[26:19] CCCNT

In Normal Mode (CC_TEST = 0), CCINTCNT[23:0] resets
to 0 and increment every PClk cycle. When
CINTCNT[23:16]= CCCNT, it returns to 0 and CCRDY is
decremented. For the test modes (CC_TEST .NE. 0), other
subfields of CCINTCNT can be compared with CCCNT, and
CCINTCNT does not return to 0 when a match occurs

RW 0

[18:16] REFBNKBITS

Refresh bank bits.

010: 4 refresh banks

011: 8 refresh banks

100: 16 refresh banks

101: 32 refresh banks

RW 0

[15:5] REFCNT
REFCNT resets to 0 and increments every PClk cycle it
reaches REFCNT, then it returns to 0 and REFRDY is
decremented.

RW 0

[4:0] MAX_DEV_ID

Largest Device ID for any RDRAM; Device IDs must be
contiguous starting with 0 so CFGMAXDEVID equals the
number of RDRAMs, minus 1. Tells RMC2 how many
RDRAMs to perform current calibration on. Every
CFGMAXDEVID + 1 RDRAM CC transactions, CRRDY is
decremented to request a RAC CC cycle.

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

UNUSED _SPARE BANK_
BITS

ROW_

BITS

2K
B

_P
A

G
E

S
P

_C
O

R
E

D
E

P
_B

N
K

NO_DEV
278 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.3.10 RDRAM_RAC_INIT (# = 0,1,2)

This register is used for initialization.

Bits Field Description RW Reset

[31:16] UNUSED _SPARE Reserved RW 0

[15:13] BANK_BITS

Banks per Device

010: 4 banks per device.

011: 8 banks per device.

100: 16 banks per device.

101: 32 banks per device.

Other values are reserved.

RW 0

[12:9] ROW_BITS

Rows per Bank

1001: 512 rows per bank.

1010: 1024 rows per bank.

1011: 2048 rows per bank.

1100: 4096 rows per bank.

1101: 8192 rows per bank.

1110: 16,384 rows per bank.

Other values are reserved.

RW 0

[8] 2KB_PAGE

Page Size

1: 2KB (128 dualoct) page size.

0: 1KB (64 dualoct) page size.

RW 0

[7] SP_CORE

Core type

1: split core.

0: no split core.

RW 0

[6] DEP_BNK

Bank type

1: dependent (doubled) banks.

0: independent banks.

RW 0

[5:0] CFGNDEV Number of devices. Values from 0 to 32 are legal RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

R
A

C
_P

O
W

E
R

U
P

R
A

C
_R

E
S

E
T

D
O

_S
T

E
P

_5_C
C

T
L

D
O

_S
T

E
P

_6

IN
IT

 R
E

F
R

E
S

H
/C

C
T

L C
O

U
N

T

A
LL_IN

IT
IA

LIZ
A

T
IO

N
_D

O
N

E

S
T

E
P

_5_B
U

S
Y

S
T

E
P

_6_B
U

S
Y

M
A

S
K

_C
U

R
R

E
N

T
_C

O
N

T
R

O
L

RAC_CCTL_IN RAC_T44_TIMER

C
LO

C
K

_LO
C

K

D
O

_R
A

C
_IN

IT

IN
IT

_IN
_P

R
O

G
R

E
S

S

Programmer’s Reference Manual 279

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
T0

Bits Field Description RW Reset

[31] RAC_POWERUP

Powerup RAC
• 0: RAC is not powered
• 1: RAC is powered

Software must write this to a 1 either after or with writing
RAC_Reset to a 1.

RW 0

[30] RAC_RESET

Reset the RAC
• 0: RAC is reset
• 1: RAC is not reset

Software must write this to a 1 either before or with writing
RAC_Powerup to a 1, and then write to a 0 after 7 uS or
after detecting Clock_Lock, whichever is sooner.

RW 0

[29] DO_STEP_5_CCTL
_SRCTL

Do initialization step 5 as defined in Rambus Specs. To
repeat step 5, if desired write a 0 followed by a 1. RW 0

[28] DO_STEP_6 Do initialization step 6 as defined in Rambus Specs. To
repeat step 6, if desired write a 0 followed by a 1. RW 0

[27:24] INIT REFRESH/CCTL
COUNT

Number of refresh/current control operations done during
init step 5 and 6. The number of operations is 16 times this
number

RW 0

[23] ALL_INITIALIZATION
_DONE

Software must write this bit to 1 when all initialization has
been completed. RW 0

[22] STEP_5_BUSY Indicates that initialization step 5 is in progress. RO 0

[21] STEP_6_BUSY Indicates that initialization step 6 is in progress. RO 0

[20] MASK_CURRENT
_CONTROL

DFT -- Intel private

Masks current controls
• 0: Current Control operations happen normally
• 1: Current Control operations are disabled

RW 0

[19:13] RAC_CCTL_IN Intel private. Reset value—64 decimal (0x40) RW 0x40

[12:3] RAC_T44_TIMER DFT -- Intel private. RW 0

[2] CLOCK_LOCK Value of RAC Clock_Lock signal. RW 0

[1] DO_RAC_INIT
Writing a 1 to this bit during RDRAM Initialization starts the
RAC init process. Once this bit is set to 1, it should not be
set back to 0.

RW 0

[0] INIT_IN_PROGRESS

Indicates the status of RAC Init during RDRAM Initialization.
Once RAC Initialization has started, the RDRAM
Initialization process should not proceed until this bit returns
to 0.’

• 1: RAC init not done
• 0: RAC init done

RO 0
280 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.3.11 RDRAM_MISC_RAC_CONTROL

This register is used for initialization.

5.3.12 RDRAM_RAC_CONFIG

This register is private for Intel use and should not be written.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RQ0SEL RQ1SEL

S
T

O
P

R
Q

S
T

O
P

T
Q

N
A

P

H
O

LD

D
R

O
W

S
Y

R
E

S
E

R
V

E
D

H
C

LK
N

S
Y

N
C

M

P
H

S
TA

LL RESERVED

D
T

X
O

R

R
E

S
E

R
V

E
D

D
TA

LLZ

D
T

ID
D

Q

B
IM

O
D

E

S
Y

N
C

LK
_S

Y
N

C

B
Y

P
A

S
S

R
E

S
E

R
V

E
D

Bits Field Description RW Reset

[31:28] RQ0SEL RW 0

[27:24] RQ1SEL RW 0

[23] STOPRQ Inverted and sent to RAC RW 0

[22] STOPTQ RW 0

[21] NAP RW 0

[20] HOLD RW 0

[19] DROWSY RW 0

[18] RESERVED Reserved RW 0

[17] HCLKN RW 0

[16] SYNCM RW 0

[15] PHSTALL Moves SYNCLK by 90 degree phase RW 0

[14:9] RESERVED Reserved RW 0

[8] DTXOR RW 0

[7] RESERVED Reserved RW 0

[6] DTALLZ RW 0

[5] DTIDDQ RW 0

[4] BIMODE RW 0

[3] SYNCLK_SYNC Inverted and sent to RAC RW 0

[2] BYPASS RW 0

[1:0] RESERVED Reserved RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED
Programmer’s Reference Manual 281

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.3.13 RDRAM_1066_CONFIG_GROUP (# = 0,1,2)

The # symbol in the register name signifies the DRAM Channel.

5.3.14 RDRAM_SERIAL_CONFIG (# = 0,1,2)

The # symbol in the register name signifies the DRAM Channel. DRAM Clock is divided by
RegCnt to generate SCK for all SIO transactions but Nap and Powerdown Exit, for which CrClk is
divided by NapXCnt. (DRAM Clock is derived from via the CLOCK_CONTROL CSR) PdnX is
the number of SCK cycles (divided by 256) CrBusy is asserted and SCK toggles following a
Powerdown Exit command and must be greater than or equal to the value in the RDRAM PDNX
register. NapX is the number of SCK cycles CrBusy and SCK toggles following a Nap Exit
command and must be greater than or equal to the value in the RDRAM NAPX register. RIntStart
is the number of CrClk cycles after CrStart is asserted for a Nap Exit before TQEn is de-asserted, to
prevent the RMC transmitting ROW or COL packets during the restricted interval. RIntWidth is
the number of CrClk cycles TQEn is de-asserted.

The value left in this register at the end of the initialization sequence should be acceptable for
normal operation.

Bits Field Description RW Reset

[31:0] RESERVED Reserved RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

VALUE

Bits Field Description RW Reset

[31:0] VALUE

Each bit position represents the corresponding DevID
value in the dram. For 1066MHz or higher operation, if ’0’ it
means that RDRAM is levelized to return data at CfgTcac.
If ’1’, it means that RDRAM is levelized to return data at
CfgTcac +4*t CYCLE. The RMC inserts the necessary 4*t
CYCLE bubbles between RD packets to prevent data from
the two groups of RDRAMs overlapping on the Channel.

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RINT
_WIDTH RINT_START NAPX PDNX NAPXCNT SCLK_FREQ_DIVISOR
282 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.3.15 RDRAM_K0 through RDRAM_K11 (# = 0,1,2)

These registers are available in IXP2800 Rev B. The # symbol in the register name signifies the
DRAM Channel. These registers must be initialized when three channels are enabled in
RDRAM_CONTROL. When one or two channels are enabled, these registers are not used. The
value loaded is based on the amount of memory populated on the channel as shown in Table 5-10,
Table 5-11, and Table 5-12.

Bits Field Description RW Reset

[31:28] RINT_WIDTH

Do not overwrite these bits after initialization is complete.

RW 0

[27:20] RINT_START RW 0x00

[19:16] NAPX RW 0x1

[15:12] PDNX RW 0x1

[11:8] NAPXCNT RW 0x4

[7:0] SCLK_FREQ_DIVISOR (REGCNT) Divider value used to derive SCK from DRAM
Clock Frequency. RW 0x64

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved VALUE

Bits Field Description RW Reset

[31:23] Reserved RO 0

[22:0] Constant Value Value from Table 5-10, Table 5-11, or Table 5-12. RW 0

Table 5-10. RDRAM Constants (Hexadecimal) for 3-Channel Mode Part 1

MBytes 32 64 96 128 160 192 224 256

K11 NA NA NA NA NA NA NA NA

K10 NA NA NA NA 13FFFF 17FFFF 1BFFFF 1FFFFF

K9 NA 7FFFF BFFFF FFFFF 13FFFE 17FFFE 1BFFFE 1FFFFE

K8 3FFFF 7FFFE BFFFD FFFFC 13FFFB 17FFFA 1BFFF9 1FFFF8

K7 3FFFC 7FFF8 BFFF4 FFFF0 13FFEC 17FFE8 1BFFE4 1FFFE0

K6 3FFF0 7FFE0 BFFD0 FFFC0 13FFB0 17FFA0 1BFF90 1FFF80

K5 3FFC0 7FF80 BFF40 FFF00 13FEC0 17FE80 1BFE40 1FFE00

K4 3FF00 7FE00 BFD00 FFC00 13FB00 17FA00 1BF900 1FF800

K3 3FC00 7F800 BF400 FF000 13EC00 17E800 1BE400 1FE000

K2 3F000 7E000 BD000 FC000 13B000 17A000 1B9000 1F8000

K1 3C000 78000 B4000 F0000 12C000 168000 1A4000 1E0000

K0 30000 60000 90000 C0000 F0000 120000 150000 180000
Programmer’s Reference Manual 283

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Table 5-11. RDRAM Constants (Hexadecimal) for 3-Channel Mode Part 2

MBytes 288 320 352 384 416 448 480 512

K11 NA NA NA NA NA NA NA NA

K10 23FFFF 27FFFF 2BFFFF 2FFFFF 33FFFF 37FFFF 3BFFFF 3FFFFF

K9 23FFFD 27FFFD 2BFFFD 2FFFFD 33FFFC 37FFFC 3BFFFC 3FFFFC

K8 23FFF7 27FFF6 2BFFF5 2FFFF4 33FFF3 37FFF2 3BFFF1 3FFFF0

K7 23FFDC 27FFD8 2BFFD4 2FFFD0 33FFCC 37FFC8 3BFFC4 3FFFC0

K6 23FF70 27FF60 2BFF50 2FFF40 33FF30 37FF20 3BFF10 3FFF00

K5 23FDC0 27FD80 2BFD40 2FFD00 33FCC0 37FC80 3BFC40 3FFC00

K4 23F700 27F600 2BF500 2FF400 33F300 37F200 3BF100 3FF000

K3 23DC00 27D800 2BD400 2FD000 33CC00 37C800 3BC400 3FC000

K2 237000 276000 2B5000 2F4000 333000 372000 3B1000 3F0000

K1 21C000 258000 294000 2D0000 30C000 348000 384000 3C0000

K0 1B0000 1E0000 210000 240000 270000 2A0000 2D0000 300000

Table 5-12. RDRAM Constants (Hexadecimal) for 3-Channel Mode, Part 3

MBytes 544 576 608 640 672 704 736 768

K11 43FFFF 47FFFF 4BFFFF 4FFFFF 53FFFF 57FFFF 5BFFFF 5FFFFF

K10 43FFFE 47FFFE 4BFFFE 4FFFFE 53FFFE 57FFFE 5BFFFE 5FFFFE

K9 43FFFB 47FFFB 4BFFFB 4FFFFB 53FFFA 57FFFA 5BFFFA 5FFFFA

K8 43FFEF 47FFEE 4BFFED 4FFFEC 53FFEB 57FFEA 5BFFE9 5FFFE8

K7 43FFBC 47FFB8 4BFFB4 4FFFB0 53FFAC 57FFA8 5BFFA4 5FFFA0

K6 43FEF0 47FEE0 4BFED0 4FFEC0 53FEB0 57FEA0 5BFE90 5FFE80

K5 43FBC0 47FB80 4BFB40 4FFB00 53FAC0 57FA80 5BFA40 5FFA00

K4 43EF00 47EE00 4BED00 4FEC00 53EB00 57EA00 5BE900 5FE800

K3 43BC00 47B800 4BB400 4FB000 53AC00 57A800 5BA400 5FA000

K2 42F000 46E000 4AD000 4EC000 52B000 56A000 5A9000 5E8000

K1 3FC000 438000 474000 4B0000 4EC000 528000 564000 5A0000

K0 330000 360000 390000 3C0000 3F0000 420000 450000 480000
284 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.4 DDR SDRAM Controller - IXP2400

5.4.1 DDR SDRAM Register Map

The DDR registers are addressed at 8 byte offsets. Each register is 32 bits and data is transferred on
the low 32 bits of the DRAM Push/Pull Data Busses.

5.4.2 DRAM Controller Control Register (DU_CONTROL)

The DRAM Controller Control Register contains programmable delay/latency parameters to support
various DDR configurations. The NUM_CHANNELS and ENABLE_CNTLR fields are ignored in
IXP2400 because IXP2400 supports only 1 Channel.

Table 5-13. DDR SDRAM Register Map

Abbreviation Offset Name Description

DU_CONTROL 0x000 DRAM Controller
Control Register

Contains programmable delay/latency
parameters to support various
configurations

DU_ERROR_STATUS_1 0x008 DRAM Error Status
Register 1

Logs the Address of transaction which
had an ECC error

DU_ERROR_STATUS_2 0x010 DRAM Error Status
Register 2 Logs details about type of ECC error

DU_ECC_TEST 0x018 DRAM ECC Test
Register

Has control settings which can be used to
inject false ECC errors for testing
purposes

DU_INIT 0x020 DRAM Initialization
Register

Contains controls for the DDR Mode
register set, refresh, precharge
commands

DU_CONTROL2 0X028 DRAM Controller
Control Register 2

Contains additional DRAM Controller
control fields

- 0x030 -
0x0F8 - Reserved

DU_IO_CONFIG[1:224] 0x100 -
0x7F8

DRAM I/O Configu-
ration Registers

Contains Drive strength controls for
various interface pins.

For Intel Internal use only.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

X
32_P

A
R

T
_S

IZ
E

D
I
S
_
C
A
P

T
R

F
C

T
R

R
D

T
W

R

N
U

M
_S

ID
E

S

N
U

M
_R

O
W

_C
O

L

REF_COUNT

R
E

F
_E

N

E
N

A
B

LE
_C

N
T

LR

N
U

M
_C

H
A

N
N

E
LS

T
W

T
R

R
D

_W
R

_S
P

A
C

IN
G

R
D

_R
D

_S
P

A
C

IN
G

T
R

C

T
R

A
S

T
C

L

T
R

C
D

T
R

P

Programmer’s Reference Manual 285

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31] X32_PART_SIZE

For IXP2400 Rev B only. Reserved otherwise.

When the NUM_ROW_COL field contains the value
111, this bit specifies the size of the X32 parts used.

0 - 2M X 32

1 - 4M X 32

RO,

RW for
IXP2400

Rev B

0

[30] DIS_CAP

For IXP2400 Rev B only. Reserved otherwise.

Disable concurrent Auto Precharge

1 - Support DRAM parts that do not feature Concurrent
Auto Precharge

0 - Use with DRAM parts that feature Concurrent Auto
Precharge

RO,

RW for
IXP2400

Rev B

0

[29] TRFC

Refresh Command Period

Encoding

0 - 11 DRAM clocks
1 - 10 DRAM clocks

RW 0

[28] TRRD

Active BankA to Active BankB delay
Encoding
0 - 3 DRAM clocks
1 - 2 DRAM clocks

RW 0

[27] TWR

Write recovery time
Encoding
0 - 3 DRAM clocks
1 - 2 DRAM clocks

RW 0

[26] NUM_SIDES

Number of DIMM Sides or physical memory banks.

Encoding

0 - 1 side
1 - 2 sides

RW 0

[25:23] NUM_ROW_COL

Indicates the number of device row and column bits by
device type.

Encoding

000 - 8M X 8 or 8M X 16
001 - 16M X 8
010 - 16M X 16
011 - 32M X 8 or 32M X 16
100 - 64M X 8
101 - 64M X 16
110 - 128M X 8

111 - X32 parts (IXP2400 Rev B only)

RW X

[22:15] REF_COUNT

Refresh counter reload value. At 300Mhz, the counter
has a granularity of 213 ns and a maximum value of
54.61 us. If a double sided DIMM is used, the controller
alternates auto-refreshes between the 2 sides.
Therefore the refresh count should be set to half the
desired interval in this case

RW X

[14] REF_EN
Enables Refresh operation. This bit should be set after
loading the Refresh counter and setting the Refresh
mode in DRAM to be Auto Refresh.

RW 0

[13] ENABLE_CNTLR Not used in IXP2400 RO 0

[12:11] NUM_CHANNELS Not used in IXP2400 RO 00
286 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[10] TWTR

Write command to Read command delay. This field
controls the turnaround time on the DQ bus for WR-RD
pairs to the same side.

Encoding Turn-Around

0 2 DRAM clocks

1 1 DRAM clock

RW 0

[9] RD_WR_SPACING

Back to Back Read-Write Turn Around. This field
controls the turnaround time on the DQ bus for RD-WR
pairs.

Encoding Turn-Around

0 2 DRAM clocks

1 1 DRAM clock

RW 0

[8] RD_RD_SPACING

Back to Back Read Turn Around. This field controls the
turnaround time on the DQ bus for RD-RD sequence to
different rows

Encoding Turn-Around

0 2 DRAM clocks

1 1 DRAM clock

RW 0

[7:6] TRC

Active to Active (same bank) delay(tRC)

Encoding tRC

00 10 DRAM clocks

01 9 DRAM clocks

10 8 DRAM clocks

11 7 DRAM clocks

RW 00

[5:4] TRAS

Activate to Precharge delay (tRAS). This bit controls the
number of DRAM clocks for tRAS

Encoding tRAS

00 7 DRAM clocks

01 6 DRAM clocks

10 5 DRAM clocks

RW 00

Bits Field Description RW Reset
Programmer’s Reference Manual 287

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.4.3 DRAM Error Status Register 1 (DU_ERROR_STATUS_1)

The DRAM Error Status Register 1 records the type and address of a location with an ECC error.
The Error Address field is invalid unless either the Uncorr_Error or Corr_Error bit is set. If the
Corr_Error bit is set and the Uncorr_Error bit equals 0, then the Error Address field contains the
address for the first correctable error that occurred. If the Uncorr_Error bit is set, then the Error
Address field contains the address for the first uncorrectable error that occurred. This implies that
if there are multiple correctable errors, the information of only the first error is preserved, and once
an uncorrectable error occurs, the information of all subsequent errors is lost.

[3:2] TCL

CAS# Latency (tCL). This bit controls the number of
clocks inserted between the registration of a READ
command and the availability of the first piece of output
data

Encoding tCL

00 3

01 2.5

10 2

11 RESERVED

RW 00

[1] TRCD

DRAM RAS# to CAS# Delay (tRCD). This bit controls
the number of clocks inserted between a row activate
command and a read or write command in that row

Encoding tRCD

0 3 DRAM clocks

1 2 DRAM clocks

RW 0

[0] TRP

DRAM RAS# Precharge (tRP). This bit controls the
number of clocks that are inserted between a row
precharge command and an activate command to the
same row

Encoding tRP

0 3 DRAM clocks

1 2 DRAM clocks

RW 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

R
E

S
E

R
V

E
D

ERR_ADDR

R
E

S
E

R
V

E
D

U
N

C
O

R
R

_E
R

R

C
O

R
R

_E
R

R

Bits Field Description RW Reset

[31] reserved RO 0

[30:3] ERR_ADDR Address of the DRAM request which had an ECC error. RO X
288 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.4.4 DRAM Error Status Register 2 (DU_ERROR_STATUS_2)

The DRAM Error Status Register 2 records the syndrome of an ECC error, and the originator of the
read or RMW. The information in this register is valid only when either the Uncorr_Error or
Corr_Error bit in the DU_Error_Status_1 register is set. If the Corr_Error bit is set and the
Uncorr_Error bit equals 0, then this register contains the information for the first correctable error
that occurred. If the Uncorr_Error bit is set, then this register contains the information for the first
uncorrectable error that occurred. This implies that if there are multiple correctable errors, the
information of only the first error is preserved, and once an uncorrectable error occurs, the
information of all subsequent errors is lost.

[2] reserved RO 0

[1] UNCORR_ERR
Uncorrectable Error bit. If set, indicates that an
uncorrectable error was detected. If this bit gets set, an
Interrupt signal indicating uncorrectable error is asserted.

RW1C 0

[0] CORR_ERR
Correctable Error bit. If set, indicates that a correctable
error was detected.If this bit gets set, an Interrupt signal
indicating correctable error is asserted.

RW1C 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

M
U

LT
IP

LE
_C

O
R

R
_E

R
R

O
R

M
U

LT
IP

LE
_U

N
C

O
R

R
_E

R
R

O
R

R
M

W
_E

R
R

O
R

R
E

S
E

R
V

E
D

ME

C
O

N
T

E
X

T

S
O

U
R

C
E

RESERVED ERR_SYND

Bits Field Description RW Reset

[31] Multiple Corr Error
Indicates that multiple correctable errors have occurred.
This bit is reset when the Corr_Error bit in
DU_Error_Status_1 is cleared

RO 0

[30] Multiple Uncorr Error
Indicates that multiple uncorrectable errors have occurred.
This bit is reset when the Uncorr_Error bit in
DU_Error_Status_1 is cleared.

RO 0

[29] RMW_ERROR Indicates that the Error information captured was from an
RMW operation RO X

[28:25] reserved RO 0

[24:20] ME
Indicates which ME was the originator of the transaction
that had an error. This field captures bits 31:27 of the Push/
Pull ID. Only valid if Source field (bit 16) is a 1

RO X
Programmer’s Reference Manual 289

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.4.5 DRAM ECC Test Register (DU_ECC_TEST)

The DRAM ECC Test Register has control settings which can be used to inject false ECC errors for
testing purposes.

[19:17] CONTEXT

Indicates the originator of the transaction (based on the
Source bit) that had an error.

If Source is 1, this field is the ME Context number and this
field captures bits 26:24 of the Push/Pull ID.

If Source is 0 this field indicates Intel XScale core or PCI
as follows.

000 - Intel XScale core

001 - PCI

Others - Reserved

RO X

[16] SOURCE

Indicates, in conjunction with the Context and ME fields the
originator of the transaction that had an error.

0 - Intel XScale core or PCI

1 - ME

RO X

[15:8] reserved RO 0

[7:0] ERR_SYND
Syndrome bits generated by the ECC check logic. The
Syndrome can be used to determine which bit had an error.
Table 5-14

RO X

Table 5-14. RR_SYND values and error bit position mapping

ERR_SYND Bit ERR_SYND Bit ERR_SYND Bit ERR_SYND Bit

0x1C 0 0x2C 16 0x4C 32 0x8C 48

0x22 1 0xA4 17 0xA8 33 0xA1 49

0x51 2 0x52 18 0x54 34 0x58 50

0x0E 3 0xD0 19 0xF8 35 0x4F 51

0x94 4 0x98 20 0x0B 36 0x70 52

0x68 5 0x61 21 0x91 37 0x92 53

0x43 6 0x83 22 0x62 38 0x64 54

0xF1 7 0x2F 23 0x23 39 0x13 55

0xC1 8 0xC2 24 0xC4 40 0xC8 56

0x2A 8 0x4A 25 0x8A 41 0x1A 57

0x15 10 0x25 26 0x45 42 0x85 58

0xE0 11 0x0D 27 0x8F 43 0xF4 59

0x49 12 0x89 28 0xB0 44 0x07 60

0x86 13 0x16 29 0x19 45 0x29 61

0x34 14 0x38 30 0x26 46 0x46 62

0x1F 15 0xF2 31 0x32 47 0x31 63

Bits Field Description RW Reset
290 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED
D

IS
A

B
LE

_C
H

K
ECC_INV

Bits Field Description RW Reset

[31:9] reserved RO 0

[8] DISABLE_CHK Disable ECC checking bit. If set, disables checking for
errors and any correction of data. RW 0

[7:0] ECC_INV

Bits provided by user (software) which are XORed with the
H/W generated ECC bits. If any of these bits is “1”, the
corresponding ECC bit is inverted when data is written into
DRAM. Does not affect reads. These bits should be all zero
during normal operation.

RW 0
Programmer’s Reference Manual 291

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.4.6 DRAM Initialization Register (DU_INIT)

The DRAM Initialization Register contains controls for the DRAM Mode Register set, refresh, and
precharge commands. This register is used by the Initialization sequence to initialize the DRAM
chips as per the manufacturer’s requirements. This is a pseudo register, a write to this register
triggers an operation on the DRAM bus. The CAS latency value written into the DRAM Mode
Register should be the same as the setting in the DU_CONTROL register. The Burst length should
be set to 4 and the Burst type should be set to “sequential”. Minimum delays between special ops
using this register are not enforced by hardware. Software is responsible for ensuring that
minimum delays between these ops are met.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

LD
_M

O
D

E
_R

E
G

R
E

F
R

E
S

H

P
R

E
C

H
A

R
G

E

RESERVED

C
K

E

S
ID

E
1

S
ID

E
0

B
A

N
K

_S
E

L MODE_BITS

Bits Field Description RW Reset

[31] LD_MODE_REG

Perform “Load Mode Register” operation to DRAM. A
value of “00” on the BANK_SEL field selects the Mode
Register and “01” selects the Extended Mode Register.
Other values of BANK_SEL are reserved. This bit is
cleared by hardware when the operation is complete.

RW1S 0

[30] REFRESH
Perform an Auto Refresh operation to DRAM. This is used
to do an explicit refresh operation during Initialization.This
bit is cleared by hardware when the operation is complete.

RW1S 0

[29] PRECHARGE

Perform a Precharge operation to DRAM. This is used to
do an explicit refresh operation during Initialization. Set
MODE_BITS[10] to 1 to precharge all banks. If
MODE_BITS[10] is 0, the BANK_SEL field determines
which bank is precharged. This bit is cleared by hardware
when the operation is complete.

RW1S 0

[28:17] reserved RO 0

[16] CKE
Clock Enable

The value in this bit is driven to the D_CKE[1:0] pins.
RW1S 0

[15] SIDE1 Apply the command specified by bits [31:29] to side 1 of a
two sided DIMM. This bit controls the assertion of CS1#. WO X
292 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.4.7 DRAM Controller Control Register 2 (DU_CONTROL2)

The DRAM Controller Control Register 2 contains additional control fields that affect the operation of
the DRAM Controller. These fields should be set during initialization of the controller and should
not be changed during normal operation.

[14] SIDE0
Apply the command specified by bits [31:29] to side 0 of
the DIMM. For a one sided DIMM, this bit should be set to
1. This bit controls the assertion of CS0#.

WO X

[13:12] BANK_SEL
These bits select which internal bank is targeted by the
command specified in bits [31:29]. The BANK_SEL field
corresponds to the BA[1:0] pins on the DRAM interface.

WO X

[11:0] MODE_BITS

Mode bits written into the DRAM when a “Load Mode
Register” or “Load Enhanced Mode Register” command is
issued. Refer to the datasheet for the DRAM part for the
encoding of this field. MODE_BITS[10] is used to control
whether a Precharge command targets all banks or a
specific bank.

WO X

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

R
C

V
E

N
_O

V

P
H

A
S

S
E

L[1:0]

R
C

V
E

N
_D

LY

RD_SKIP WR_SKIP

Bits Field Description RW Reset

[31:12] reserved RO 0

[11[RCVEN_OV

Receive Enable Override
Override CAS Latency setting to control RCVEN
independently.
If 1, PHASSEL[1:0] and RCVEN_DLY control the behavior
of RCVEN.

If 0, the CAS Latency setting controls RCVEN.

RW 0

[10:9] PHASSEL[1:0]

Receive Enable Phase Select
Coarse adjustment (.25 Dram Clk granularity) of RCVEN
delay, if RCVEN_OV = 1.
A value of 00 is no delay.

RW 00
Programmer’s Reference Manual 293

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.4.8 DRAM RCOMP & I/O Registers

The DRAM RCOMP Registers contain drive strength controls for the interface pins. This is needed
in order to support different board configurations: On board DRAM/single sided DIMM/double
sided DIMM. These registers should be set to an appropriate value during initialization, before the
DDR is used. All of these registers are R/W. Most of the fields are not reset by system reset, so are
undefined until they are written. The reset value of fields which are reset is indicated in the field
description. Where less than 32 bits are used, the lower bits are used. Any unused bits are
undefined when read, and should be written with 0 unless indicated otherwise.

[8[RCVEN_DLY

Receive Enable Delay
Controls the timing of RCVEN signal.
A value of 1 delays RCVEN by 1 Dram Clk, if RCVEN_OV
= 1.
A value of 0 is no delay.

RW 0

[7:4] RD_SKIP

Read Skip Threshold
Determines the number of times waiting read requests are
skipped over by the Round Robin Scheduler in favor of
waiting write requests before the Scheduler starts giving
reads higher priority than writes.
Permissible range of values: 4’b011 to 4’b1100 (3 to 12)
Any other values will lead to unpredictable results.

RW 4’b0011

[3:0] WRT_SKIP

Write Skip Threshold
Determines the number of times waiting write requests are
skipped over by the Round Robin Scheduler in favor of
waiting read requests before the Scheduler starts giving
writes higher priority than reads.
Permissible range of values: 4’b011 to 4’b1100 (3 to 12)
Any other values will lead to unpredictable results.

RW 4’b0011

Bits Field Description RW Reset

Table 5-15. DRAM RCOMP & I/O Configuration Register Map

Abbreviation Offset Bits
Used Description Reset

cr0_frcsmrcomp 0x100 [0] Force an SM RCOMP 0

cr0_rcompprd 0x108 [2:0]

MCH R Comp period

000 - once every 2097152 DDR clock cycles
001 - once every 1048576 DDR clock cycles
010 - once every 524288 DDR clock cycles
011 - once every 262144 DDR clock cycles
100 - once every 131072 DDR clock cycles
101 - once every 65536 DDR clock cycles
110 - once every 32768 DDR clock cycles
111 - no rcomp updates

000

cr0_blkrcomp 0x110 [0] Block the RCOMP FSM 0

cr0_digfil 0x118 [1:0]

Digital Filtering Select

00 - No Filtering
01 - Filter Clamp Value = 2
10 - Filter Clamp Value = 4
11 - Filter Clamp Value = 16

01
294 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
cr0_rcompbit7_chk 0x120 [0] Indicates to consider whether rcomp bit 7 is set for
slew table indexing 0

cr0_slewprogrammed 0x128 [0]
Indicates when slew tables are programmed. This bit
is set by software to indicate when initialization is
done.

0

cr0_dstrengthsel 0x130 [26:24]

Strength Select for ckx16

Strength select 3 bit encoding for all the fields:
000 = .75x
001 = 1x
010 = 1.25x
011 = 1.50x
100 = 2x
101 = 2.5x
110 = 3x
111 = 4x

000

[23:21] Strength Select for ckx8 000

[20:18] Strength Select for csx16 000

[17:15] Strength Select for csx8 000

[14:12] Strength Select for ckex16 000

[11:9] Strength Select for ckex8 000

[8:6] Strength Select for rcv 000

[5:3] Strength Select for ctl 000

[2:0]
Strength Select for dq
DQ pin strength is decided by the jt_config register, if
jt_config[21] is "1"

000

cr0_ovrrideh 0x138 [17:0]

Override for Horizontal P and N.

17 = Override select for N. Reset value is 1.

16:9 = N override value. Reset value is 0x80.

8 = Override select for P. Reset value is 1.

7:0 = P override value. Reset value is 0x80.

0x308
0

cr0_ovrridev 0x140 [17:0]

Override for Vertical P and N

17 = Override select for N. Reset value is 1.

16:9 = N override value. Reset value is 0x80.

8 = Override select for P. Reset value is 1.

7:0 = P override value. Reset value is 0x80.

0x308
0

cr0_ddqrcomp 0x148 [15:0]

DDR DQ/DQS Rcomp offset register

15 = Sign for pulldown

14:8 = Value for pulldown

7 = Sign for pullup

6:0 = Value for pullup

cr0_ddqpslew0 0x150 [31:0] DDR DQ/DQS pull-up Slew lookup table register 0

cr0_ddqpslew1 0x158 [31:0] DDR DQ/DQS pull-up Slew lookup table register 1

cr0_ddqpslew2 0x160 [31:0] DDR DQ/DQS pull-up Slew lookup table register 2

cr0_ddqpslew3 0x168 [31:0] DDR DQ/DQS pull-up Slew lookup table register 3

cr0_ddqnslew0 0x170 [31:0] DDR DQ/DQS pull-dn Slew lookup table register 0

cr0_ddqnslew1 0x178 [31:0] DDR DQ/DQS pull-dn Slew lookup table register 1

cr0_ddqnslew2 0x180 [31:0] DDR DQ/DQS pull-dn Slew lookup table register 2

Table 5-15. DRAM RCOMP & I/O Configuration Register Map
Programmer’s Reference Manual 295

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
cr0_ddqnslew3 0x188 [31:0] DDR DQ/DQS pull-dn Slew lookup table register 3

cr0_dctlrcomp 0x190 [15:0]

MA, BA, RAS#, CAS#, WE# Rcomp offset register

15 = Sign for pulldown

14:8 = Value for pulldown

7 = Sign for pullup

6:0 = Value for pullup

cr0_dctlpslew0 0x198 [31:0] MA, BA, RAS#, CAS#, WE# pull-up Slew lookup table
register 0

cr0_dctlpslew1 0x1A0 [31:0] MA, BA, RAS#, CAS#, WE# pull-up Slew lookup table
register 1

cr0_dctlpslew2 0x1A8 [31:0] MA, BA, RAS#, CAS#, WE# pull-up Slew lookup table
register 2

cr0_dctlpslew3 0x1B0 [31:0] MA, BA, RAS#, CAS#, WE# pull-up Slew lookup table
register 3

cr0_dctlnslew0 0x1B8 [31:0] MA, BA, RAS#, CAS#, WE# pull-dn Slew lookup table
register 0

cr0_dctlnslew1 0x1C0 [31:0] MA, BA, RAS#, CAS#, WE# pull-dn Slew lookup table
register 1

cr0_dctlnslew2 0x1C8 [31:0] MA, BA, RAS#, CAS#, WE# pull-dn Slew lookup table
register 2

cr0_dctlnslew3 0x1D0 [31:0] MA, BA, RAS#, CAS#, WE# pull-dn Slew lookup table
register 3

cr0_drcvrcomp 0x1D8 [15:0]

RCV Rcomp offset register

15 = Sign for pulldown

14:8 = Value for pulldown

7 = Sign for pullup

6:0 = Value for pullup

cr0_drcvpslew0 0x1E0 [31:0] RCV pull-up Slew lookup table register 0

cr0_drcvpslew1 0x1E8 [31:0] RCV pull-up Slew lookup table register 1

cr0_drcvpslew2 0x1F0 [31:0] RCV pull-up Slew lookup table register 2

cr0_drcvpslew3 0x1F8 [31:0] RCV pull-up Slew lookup table register 3

cr0_drcvnslew0 0x200 [31:0] RCV pull-dn Slew lookup table register 0

cr0_drcvnslew1 0x208 [31:0] RCV pull-dn Slew lookup table register 1

cr0_drcvnslew2 0x210 [31:0] RCV pull-dn Slew lookup table register 2

cr0_drcvnslew3 0x218 [31:0] RCV pull-dn Slew lookup table register 3

cr0_dx8x16ckecscksel 0x220 [5:0]

Selects one of two possible slew compensation values
for all CKEs, CSs, and CKs.

0 - indicates x16

1 - indicates x8

0x00

cr0_dckercomp 0x228 [31:0]

CKE Rcomp offset register

31:16 = Pullup/down offset sign/value for x16

15:0 = Pullup/down offset sign/value for x8

cr0_dckex8pslew0 0x230 [31:0] CKE x8 pull-up Slew lookup table register 0

cr0_dckex8pslew1 0x238 [31:0] CKE x8 pull-up Slew lookup table register 1

cr0_dckex8pslew2 0x240 [31:0] CKE x8 pull-up Slew lookup table register 2

Table 5-15. DRAM RCOMP & I/O Configuration Register Map
296 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
cr0_dckex8pslew3 0x248 [31:0] CKE x8 pull-up Slew lookup table register 3

cr0_dckex8nslew0 0x250 [31:0] CKE x8 pull-dn Slew lookup table register 0

cr0_dckex8nslew1 0x258 [31:0] CKE x8 pull-dn Slew lookup table register 1

cr0_dckex8nslew2 0x260 [31:0] CKE x8 pull-dn Slew lookup table register 2

cr0_dckex8nslew3 0x268 [31:0] CKE x8pull-dn Slew lookup table register 3

cr0_dckex16pslew0 0x270 [31:0] CKE x16 pull-up Slew lookup table register 0

cr0_dckex16pslew1 0x278 [31:0] CKE x16 pull-up Slew lookup table register 1

cr0_dckex16pslew2 0x280 [31:0] CKE x16 pull-up Slew lookup table register 2

cr0_dckex16pslew3 0x288 [31:0] CKE x16 pull-up Slew lookup table register 3

cr0_dckex16nslew0 0x290 [31:0] CKE x16 pull-dn Slew lookup table register 0

cr0_dckex16nslew1 0x298 [31:0] CKE x16 pull-dn Slew lookup table register 1

cr0_dckex16nslew2 0x2A0 [31:0] CKE x16 pull-dn Slew lookup table register 2

cr0_dckex16nslew3 0x2A8 [31:0] CKE x16 pull-dn Slew lookup table register 3

cr0_dcsrcomp 0x2B0 [31:0]

CS# Rcomp offset register

31:16 = Pullup/down offset sign/value for x16

15:0 = Pullup/down offset sign/value for x8

cr0_dcsx8pslew0 0x2B8 [31:0] CS# x8 pull-up Slew lookup table register 0

cr0_dcsx8pslew1 0x2C0 [31:0] CS# x8 pull-up Slew lookup table register 1

cr0_dcsx8pslew2 0x2C8 [31:0] CS# x8 pull-up Slew lookup table register 2

cr0_dcsx8pslew3 0x2D0 [31:0] CS# x8 pull-up Slew lookup table register 3

cr0_dcsx8nslew0 0x2D8 [31:0] CS# x8 pull-dn Slew lookup table register 0

cr0_dcsx8nslew1 0x2E0 [31:0] CS# x8 pull-dn Slew lookup table register 1

cr0_dcsx8nslew2 0x2E8 [31:0] CS# x8 pull-dn Slew lookup table register 2

cr0_dcsx8nslew3 0x2F0 [31:0] CS# x8pull-dn Slew lookup table register 3

cr0_dcsx16pslew0 0x2F8 [31:0] CS# x16 pull-up Slew lookup table register 0

cr0_dcsx16pslew1 0x300 [31:0] CS# x16 pull-up Slew lookup table register 1

cr0_dcsx16pslew2 0x308 [31:0] CS# x16 pull-up Slew lookup table register 2

cr0_dcsx16pslew3 0x310 [31:0] CS# x16 pull-up Slew lookup table register 3

cr0_dcsx16nslew0 0x318 [31:0] CS# x16 pull-dn Slew lookup table register 0

cr0_dcsx16nslew1 0x320 [31:0] CS# x16 pull-dn Slew lookup table register 1

cr0_dcsx16nslew2 0x328 [31:0] CS# x16 pull-dn Slew lookup table register 2

cr0_dcsx16nslew3 0x330 [31:0] CS# x16pull-dn Slew lookup table register 3

cr0_dckrcomp 0x338 [31:0]

CK CK# Rcomp offset register

31:16 = Pullup/down offset sign/value for x16

15:0 = Pullup/down offset sign/value for x8

cr0_dckx8pslew0 0x340 [31:0] CK CK# x8 pull-up Slew lookup table register 0

cr0_dckx8pslew1 0x348 [31:0] CK CK# x8 pull-up Slew lookup table register 1

cr0_dckx8pslew2 0x350 [31:0] CK CK# x8 pull-up Slew lookup table register 2

cr0_dckx8pslew3 0x358 [31:0] CK CK# x8 pull-up Slew lookup table register 3

cr0_dckx8nslew0 0x360 [31:0] CK CK# x8 pull-dn Slew lookup table register 0

Table 5-15. DRAM RCOMP & I/O Configuration Register Map
Programmer’s Reference Manual 297

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.4.8.1 DDR_Rx_DLL

cr0_dckx8nslew1 0x368 [31:0] CK CK# x8 pull-dn Slew lookup table register 1

cr0_dckx8nslew2 0x370 [31:0] CK CK# x8 pull-dn Slew lookup table register 2

cr0_dckx8nslew3 0x378 [31:0] CK CK# x8 pull-dn Slew lookup table register 3

cr0_dckx16pslew0 0x380 [31:0] CK CK# x16 pull-up Slew lookup table register 0

cr0_dckx16pslew1 0x388 [31:0] CK CK# x16 pull-up Slew lookup table register 1

cr0_dckx16pslew2 0x390 [31:0] CK CK# x16 pull-up Slew lookup table register 2

cr0_dckx16pslew3 0x398 [31:0] CK CK# x16 pull-up Slew lookup table register 3

cr0_dckx16nslew0 0x3A0 [31:0] CK CK# x16 pull-dn Slew lookup table register 0

cr0_dckx16nslew1 0x3A8 [31:0] CK CK# x16 pull-dn Slew lookup table register 1

cr0_dckx16nslew2 0x3B0 [31:0] CK CK# x16 pull-dn Slew lookup table register 2

cr0_dckx16nslew3 0x3B8 [31:0] CK CK# x16 pull-dn Slew lookup table register 3

cr0_jt_config 0x3c0 [21] Select Test mode Strength 0

[20:18] Test mode Strength 100

[17] Fast Reset Strap 0

[16:9] NRCOMP for test mode 0x90

[8:1] PRCOMP for test mode 0x90

[0] Test Mode Override 0

DDR_Rx_DLL 0x650 [4:0] Selects Rx DLL tap

DDR_Rx_Deskew 0x688 [4:0] Sets the DLL to match the freq the DDR unit is
programmed to run.

DDR_RDDLYSEL_RE
CVEN 0x3C8 [4:0] Selects the DLL tap used for delaying the Rcvenin

strobe A related CSR is the DDR_Rx_DLL CSR.

Table 5-15. DRAM RCOMP & I/O Configuration Register Map

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

D
LL_TA

P
_S

E
L

Bits Field Description RW Reset

[31:5] Reserved RO

[4:0] DLL_Tap_Sel
Selects the Rx DLL tap (except for Receive Enable signal)
The Receive Enable signal tap is selected by the
DDR_RDDLYSEL_RECVEN CSR

RW 00010
298 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.4.8.2 DDR_Rx_Deskew

5.4.8.3 DDR_RDDLYSEL_RECVEN

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

D
LL_F

R
E

Q
_S

E
L

Bits Field Description RW Reset

[31:5] Reserved RO

[4:0] DLL_Freq_Sel Sets the DLL to match the freq the DDR unit is
programmed to run. RW 00011

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

D
LL_TA

P
_S

E
L_R

E
C

V
E

N

Bits Field Description RW Reset

[31:5] Reserved RO

[4:0] DLL_Tap_Sel_Recven Selects the DLL tap used for delaying the Rcvenin strobe
A related CSR is the DDR_Rx_DLL CSR. RW 00010
Programmer’s Reference Manual 299

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5 SRAM QDR Controller

Table 5-16 shows the offset addresses of the SRAM Controller registers. Refer to Chapter 4,
“Address Maps” for the base address and details on how they are accessed. These CSRs can be
accessed by the Intel XScale core, PCI and the MEs.

The IXP2800 supports four SRAM Channels. The IXP2400 supports two SRAM Channels, i.e.
Channel 0 and Channel 1. Each channel supports their own register set.

Table 5-16. SRAM Register Summary (Sheet 1 of 2)

CSR name Offset Description Section

SRAM_CONTROL 0x0000 SRAM controller
configuration Section 5.5.1

SRAM_PARITY_STATUS_1 0x0004 Parity control and recording
of last faulty address Section 5.5.2

SRAM_PARITY_STATUS_2 0x0008
Record of the source of
request which generated
parity error

Section 5.5.3

SPARE 0x000C Reserved Section 5.5.4

QDR_INTERNAL_PIPELINE 0x0108 Section 5.5.5

QDR_RX_DLL 0x0228 Section 5.5.6

QDR_RD_PTR_OFFSET 0x0240 Section 5.5.8

QDR_RX_DESKEW 0x0244 Section 5.5.7
300 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Q_RCMP_SETUP_CONTROL 0x0300

All QDR System Memory
RCOMP and Slew Rate
control functions are
consolidated into a memory
mapped address region. It
is expected that this
address space will only be
enabled temporarily by
System BIOS, and then
disabled to hide it from the
Operating System.

Section 5.5.9.1

Q_RCMP_PMOS_MEASURED 0x0304 Section 5.5.9.2

Q_RCMP_NMOS_MEASURED 0x0308 Section 5.5.9.3

Q_RCMP_PMOS_OVERRIDE 0x030C Section 5.5.9.4

Q_RCMP_NMOS_OVERRIDE 0x0310 Section 5.5.9.5

Q_RCMP_PMOS_NMOS_SCOMP_OVERRIDE 0x0314 Section 5.5.9.6

Q_RCMP_STRENGTH_SLEW_INDEX_SEL 0x0318 Section 5.5.9.8

Q_RCMP_ADDR_PMOS_PU_OFFSET 0x031C Section 5.5.9.9

Q_RCMP_ADDR_NMOS_PD_OFFSET 0x0320 Section 5.5.9.10

Q_RCMP_DATA _PMOS _PU_OFFSET 0x0324 Section 5.5.9.11

Q_RCMP_DATA_NMOS_PD_OFFSET 0x0328 Section 5.5.9.12

Q_RCMP_KCLK_PMOS_PU_OFFSET 0x032C Section 5.5.9.13

Q_RCMP_KCLK_NMOS_PD_OFFSET 0x0330 Section 5.5.9.14

Q_RCMP_DQ_PMOS_PU_OFFSET 0x0334 Section 5.5.9.15

Q_RCMP_DQ_NMOS_PD_OFFSET 0x0338 Section 5.5.9.16

Q_RCMP_PMOS_NMOS_VERT_OVERRIDE 0x033C Section 5.5.9.17

Q_RCMP_ADDR_PMOS_PU_SLEW_TABLE_#

(# = 0,1,2,3)
0x0340-
0x034C

Slew Look Up
Table Registers

Section 5.5.9.18

Q_RCMP_ADDR_NMOS_PD_SLEW_TABLE_#
(# = 0,1,2,3)

0x0350-
0x035C

Q_RCMP_DATA_PMOS_PU_SLEW_TABLE_#
(# = 0,1,2,3)

0x0360-
0x036C

Q_RCMP_DATA_NMOS_PD_SLEW_TABLE_#
(# = 0,1,2,3)

0x0370-
0x037C

Q_RCMP_KCLK_PMOS_PU_SLEW_TABLE_#
(# = 0,1,2,3)

0x0380-
0x038C

Q_RCMP_KCLK_NMOS_PD_SLEW_TABLE_#

(# = 0,1,2,3)
0x0390-
0x039C

Q_RCMP_DQ_PMOS_PU_SLEW_TABLE_#

(# = 0,1,2,3)
0x03A0-
0x03AC

Q_RCMP_DQ_NMOS_PD_SLEW_TABLE_#

(# = 0,1,2,3)
0x03B0-
0x03BC

Table 5-16. SRAM Register Summary (Sheet 2 of 2)

CSR name Offset Description Section
Programmer’s Reference Manual 301

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5.1 SRAM_CONTROL

SRAM_CONTROL is used for static setup parameters.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

Q
D

R
_S

W
IZ

Z
LE

Q
_C

T
L_M

O
D

E

E
N

Q
U

E
U

E
_P

E
R

F
O

R
M

A
N

C
E

_M
O

D
E

Q
C

_IG
N

_E
O

P

Q
C

_IG
N

_S
E

G
_C

N
T

P
IP

E
LIN

E

S
R

A
M

_S
IZ

E

U
N

U
S

E
D

_S
P

A
R

E

P
O

R
T

_C
T

L

P
A

R
_E

N

R
E

S
E

R
V

E
D

Bits Field Description RW Reset

[31:18] RESERVED Reserved RO 0

[17] QDR_SWIZZLE
Swizzle the QDR read data bits:

0 - No change
1 - Swap QDR read data [15:0] with bits [31:16]

RW 0

[16] Q_CTL_MODE Reserved for future RW 0

[15] ENQUEUE_PERFORMA
NCE_MODE

For IXP2400 and IXP2800 Rev A:
Setting this bit forces the Queue Controller to
serialize enqueues and dequeues to the same
queue.
Clearing this bits allows the Queue Controller, to
process enqueues and dequeues to the same
queue in parallel, which improves the performance.

For IXP2400 and IXP2800 Rev B:
Reserved

RW 0

[14] QC_IGN_EOP

Queue Controller Ignore EOP
1—always decrement Q_count on buffer dequeue
without regard to the buffer EOP bit.
0—decrement Q_count on buffer dequeue only if
buffer EOP is set

Refer to Table 5-17 for a description of queuing modes

RW 0

[13] QC_IGN_SEG_CNT

Queue Controller Ignore Segment Count
1—always do a full buffer dequeue and return the
Segment Count field to the ME unchanged.
0—if buffer Segment Count is zero, then do a full
buffer dequeue, else do a Segment dequeue and
decrement buffer Segment Count

Refer to Table 5-17 for a description of queuing modes

RW 0
302 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[12:10] PIPELINE

Indicates the number of external pipeline delays to wait
from read address driven from the IXP2800 / IXP2400
until registering the read data on the IXP2800 / IXP2400.
Value of 0 is used when there are no external pipeline
registers.

0—0 cycles (no external pipeline registers)
1—1 cycle
2—2 cycles
3—3 cycles
4—4 cycles
5, 6 and 7 are reserved values

RW 0

[9:7] SRAM_SIZE

Indicates the size of each SRAM chip. This controls
which address bits control when the port enables assert.
Note—all the SRAM chips on a given channel must be
the same size.

(Note—Addresses listed here are the program
generated address, not the SRAM address pins.)

000—512KB x 18 (1MB) —address [21:20]
001—1MB x 18 (2MB) —address [22:21]
010—2MB x 18 (4MB) —address [23:22]
011—4MB x 18 (8MB) —address [24:23]
100—8MB x 18 (16MB) —address [25:24]
101—16MB x 18 (32MB)—address [25] (only 2
SRAMs of this size can be used due to 64MB
channel address capacity).
110—32MB x 18 (64MB)—none (only 1 SRAM of
this size can be used due to 64MB channel address
capacity).
111—external port enable decode—RPE_L[0] and
WPE_L[0] assert for all accesses regardless of
address.

RPE_L[0]/WPE_L[0] are asserted for the lowest SRAM
addresses, RPE_L[1]/WPE_L[1] are asserted for the
next highest, etc.

RW 0

[6] UNUSED_SPARE Reserved RW 0

[5:4] PORT_CTL

Bit 5 enables SRAM Controller address [23:22] to be
used as RPE_L[2]/WPE_L[2].

Bit 4 enables SRAM Controller address [21:20] to be
used as RPE_L[3]/WPE_L[3].

0—Use as addresses.
1—Use as Port Enables.

These bits cannot be set for 8MB, 16MB, 32MB or 64M
SRAMs because the address outputs are needed as
addresses.

RW 3

[3] PAR_EN
Indicates if the array is protected by Parity.

0—No Parity.
1—Parity.

RW 0

[2:0] RESERVED Reserved RO 0

Bits Field Description RW Reset
Programmer’s Reference Manual 303

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5.2 SRAM_PARITY_STATUS_1

The SRAM_PARITY_STATUS_1 Register is used to record the address of parity errors, and allow
incorrect parity to be written into the SRAM for test and diagnostic purposes.

5.5.3 SRAM_PARITY_STATUS_2

The SRAM_PARITY_STATUS_2 Register is used to record the originator of the read with parity
error(s).

Table 5-17. Queueing Modes

Mode Mode of Operation
SRAM_CONTROL[]

QC_IGN_EOP QC_IGN_SEG_CNT

0 dequeue segments & count packets 0 0

1 dequeue buffers & count packets 0 1

2 Not valid 1 0

3 dequeue buffers & count buffers 1 1

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

WW_PAR RESERVE
D ADDRESS

Bits Field Description RW Reset

[31:28] WW_PAR

Write Wrong Parity. Enables test software to test the parity
bits of the RAMs and checking logic. Bit 28 controls byte 0,
bit 29 controls byte 1,etc.

0—write correct parity.

1—write incorrect parity.

RW 0

[27:24] RESERVED Reserved RO 0

[23:0] ADDRESS Records the address which has a parity error. Only valid
when one or more bits in SRAM_Parity[Error] is a 1. RO undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

M
U

LT
_E

R
R

RESERVED ME THD

S
R

C

RESERVED ERR
304 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5.4 SPARE

SPARE is a test registers for Intel use only.

Bits Field Description RW Reset

[31] MULT_ERR Multiple Errors. Indicates that another error occurred when
one or more Error bits were already set. RO 0

[30:25] RESERVED Read only as 0. RO undef

[24:20] ME Indicates which Microengine was the originator of the
transaction that had an error. Only valid if Source is a 1. RO undef

[19:17] THD

Thread. Indicates the originator of the transaction (based
on the Source bit) that had an error.

If Source is 1, this field is the thread number, if Source is 0
this field is the Intel XScale core or HL as follows.

000—Intel XScale core

001—PCI

Others—Reserved

RO undef

[16] SRC

Source. Indicates, in conjunction with the Thread field the
originator of the transaction (either a read or partial write
that caused a read-modify-write) that had an error.

0—Intel XScale core or PCI

1—Microengine

RO undef

[15:4] RESERVED Reserved undef

[3:0] ERR

ERROR. Indicates that incorrect parity was detected on a
read.

Bit 0 indicates byte 0, etc. These bits will interrupt the Intel
XScale core if enabled in FIQ_ENABLE or
IRQ_ENABLE.

When any of these bits is set the Address field of
SRAM_PARITY_STATUS_1 and the Source/Microengine/
Thread fields of this register are frozen, which implies that
the location of subsequent parity errors will be lost.

W1C 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

SPARE

Bits Field Description RW Reset

[31:0] SPARE Reserved RW 0x0ACE FACE
Programmer’s Reference Manual 305

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5.5 QDR_INTERNAL_PIPELINE

This register is for test, for use by Intel only.

5.5.6 QDR_RX_DLL

The purpose of this register and the QDR_RX_DESKEW register is to adjust the receiving clock
delay so that the receiving clock rising edge is located at the center of receiving data.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

P
IP

E
LIN

E

Bits Field Description RW Reset

31:2 RESERVED Reserved RO

1:0 PIPELINE

Adds or removes one cycle of internal read latency:
00 - Remove 1 cycle
01 - Nominal
10 - Add 1 cycle
11 - Reserved

RW 01

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

A
C

IO
LB

_D
E

LA
Y

D
LL_S

LA
V

E
_S

E
L

Bits Field Description RW IXP2400
Reset

IXP2800
Reset

31:7 RESERVED Reserved RO 0 0

[6:5]

OnDie Termination
(for IXP2400)

ACIOLB_DELAY
(for IXP2800)

For IXP2400, bit[6] enables OnDie
Termination. Set to 1 for Enable and 0 for
Disable. bit [5] is unused.

For IXP2800, Intel Use only and must
always be set to 0

RW 0 0

4:0 DLL_SLAVE_SEL

QDR DLL slave setting selects the number
of slave taps in the DLL. The number of
slave taps selected is approximately
proportional to the DLL delay.The valid
range is 0x0 to 0x17. This setting should be
the same as DLL delay master setting
(QDR_RX_DESKEW[4:0]). The
recommended value from simulation is 0xA.

RW 0x2 0
306 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5.7 QDR_RX_DESKEW

The purpose of this register and the QDR_RX_DLL register is to adjust the receiving clock delay
so that the receiving clock rising edge is located at the center of receiving data.

5.5.8 QDR_RD_PTR_OFFSET

This register is needed for configuration of QDR I Vs. QDR II interface.

This CSR controls which bank (odd or even bank) gets the first chunk of data.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

D
LL_B

Y
P

A
S

S

DLL_MASTER

Bits Field Description RW IXP2400
Reset

IXP2800
Reset

31:6 RESERVED Reserved RO 0 0

5 DLL_BYPASS For Intel Use only and must always be set to 0 RW 0 0

4:0 DLL_MASTER

QDR DLL master setting selects the number of
master taps in the DLL. The number of master
taps selected is approximately inverse
proportional to DLL delay. The valid range from
simulation is 0x0 to 0xa. The recommended
value from simulation is 0xa. The valid range
and recommended value may change after
silicon characterization.

RW 0x3 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

R
x_D

escram
ble

R
d_W

r_P
tr_O

ffset_S
el
Programmer’s Reference Manual 307

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5.9 QDR RCOMP Registers

These registers are used to set the drive strength for the QDR interface pins. The drive strength may
need to be adjusted for a specific PC Board design and the number of QDR devices installed on a
board. The setup procedure that is recommended for new board designs is described below. The
signal integrity can then be monitored for the specific PC board design and if required, the values
can be adjusted.

5.5.9.1 Q_RCMP_SETUP_CONTROL

The QDR RCOMP Setup and Control Register.

Bits Field Description RW Reset

31:3 Reserved Reserved RO 0

2 Rx_Descramble

Adjusts by 1/2 clock incrementing of the read pointer
to the receiver’s deskew FIFO. Affects by 1/2 clock
what two groups of input data are selected to form a
complete word when reading.

On the IXP2400, the default value 0 is for QDR I. Set
it to 1 for QDR II.

RW 0

1:0 Rd_Wr_Ptr_Offset_Sel
Selects the offset between the write & read pointers in
the receiver’s deskew FIFO. Affects the amount of
external latency cycles available.

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

S
LE

W
_IN

D
E

X
_S

E
LE

C
T

IN
C

_D
E

C
_IN

V
E

R
T

A
R

S
O

S

D
R

S
O

S

K
C

R
S

O
S

D
Q

D
R

S
O

S

R
C

O
M

P
_LO

C
K

S
LE

W
_R

A
T

E
_TA

B
LE

S

D
IG

ITA
L_F

ILT
E

R
_S

E
LE

C
T

R
C

O
M

P
P

R
D

B
LO

C
K

_R
C

O
M

P
_U

P
D

A
T

E
S

R
C

O
M

P
_S

M
_D

IS
A

B
LE

F
R

C
O

M
P

R
O

E
_N

M
O

S

R
O

E
_P

M
O

S

Bits Field Description RW Reset

[31:18] RESERVED Reserved RO 0x0

[17] SLEW_INDEX_SELECT
Use to select either RComp[6:3] or [5:2] to be the 4-bit
index to the slew rate LUT. 0 = RCOMP[6:3] (default); 1 =
RCOMP[5:2].

RW 0x0

[16] INC_DEC_INVERT Inc/Dec Invert: Invert the inc/dec signal from the pads. RW 0x0
308 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[15] ARSOS

Address RComp & SComp Override Select: When set will
allow PMOS & NMOS RComp and SComp override
register settings to over-ride the conditioned RComp
values and slew rate LUT SComp values at the Address
DRUPT output

RW 0x0

[14][DRSOS

Data RComp & SComp Override Select: When set will
allow PMOS & NMOS RComp and SComp override
register settings to over-ride the conditioned RComp
values and slew rate LUT SComp values at the Data
DRUPT output.

RW 0x0

[13] KCRSOS

K Clock RComp & SComp Override Select: When set will
allow PMOS & NMOS RComp and SComp override
register settings to over-ride the conditioned RComp
values and slew rate LUT SComp values at the K clock
DRUPT output.

RW 0x0

[12] DQDRSOS

DQ Data RComp & SComp Override Select: When set will
allow PMOS & NMOS RComp and SComp override
register settings to over-ride the conditioned RComp
values and slew rate LUT SComp values at the DQ Data
DRUPT output.

RW 0x0

[11] RCOMP_LOCK
RCOMP Lock Bit: Once this bit is set, any further reads or
writes to registers with names beginning Q_RCMP will be
ignored.

RW 0x0

[10] SLEW_RATE_TABLES

Slew Rate Tables Programmed: This field provides a
simple mechanism for SW and HW to know that the Slew
Rate tables are programmed to the intended values. This
field should be set by BIOS. It is currently ignored by
hardware.

RW 0x0

[9:8] DIGITAL_FILTER_
SELECT

Digital Filter Select: Selects the amount of digital filtering
to be applied to each SM RCOMP measurement cycle.
This RCOMP state machine will not allow the 8-bit
RCOMP values to change by more than the value
programmed here. The default value of 00 selects an
infinite clamp value, which effectively disables the filter.

00 — Infinite clamp value (default). Disable digital
filter, the RComp pad tracks the buffer)
01 — Clamp value of 01h (Limited to one count of
change at the RComp pad per cycle)
10— Clamp value of 02h (Limited to two counts of
change at the RComp pad per cycle)
11 — Clamp value of 04h (Limited to four counts of
change at the RComp pad per cycle)

RW 0x0

Bits Field Description RW Reset
Programmer’s Reference Manual 309

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[7:5] RCOMPPRD

RCOMP Period (RCOMPPRD): This field controls the
time period of the automatic hardware RCOMP operation
being performed on the all enabled interface. The value
programmed in this register will not take affect until the
current RCOMP timer value expires. After each RCOMP
time period, a new period will be loaded if this register has
been written. Note: When the output is grounded
(encoding = 111), the RCOMP period is 256 clocks. The
values in the table are valid at 250MHz. Scaling should be
applied for any other frequency.

000— Every 16ms
001 — Every 8ms
010 —Every 4ms
011 — Every 2 ms (default)
100 — Every 1ms
101 — Every 0.50 ms
110 — Every 0.25 ms
111 — Output is grounded.(Used with bit 2, below)

RW 0x3

[4] BLOCK_RCOMP_
UPDATES

Block RCOMP Updates: (Block at pads)
0 = Normal Operation (updates happen as needed).
1 = Blocks all updates to the DRUPT's and auto pad
up-dates with DRrcomp_pad_update.
DRrcomp_IDLE is still functional but the updated data
is stale.

RW 0x0

[3] RCOMP_SM_DISABLE

RComp State Machine Disable: (Block at WAIT)
0 — Normal Operation
1 — RComp cycle will stall at WAIT. All signals that
enable the pad groups to update are at logic 0 and all
RComp logic is frozen.

RW 0x0

[2] FRCOMP

Force RCOMP Operation (FRCOMP): Used for Validation/
DV. When a ’1’ is written to this bit a single RCOMP
operation is performed on all enabled interfaces (Address,
Data, K Clock, DQ inputs) simultaneously. Writing a ’0’ to
this bit has no affect. This value is not stored. This register
works in conjunction with RCOMP Period, bits 7:5 above.

RW 0x0

[1] ROE_NMOS

RCOMP Override Enable for NMOS. Over ride occurs in
the Eval block between the RComp counter and the digital
filter input. The value stored in the NMOS RCOMP
register is fed back to the NMOS RComp buffer and
forward into the digital filter logic.

RW 0x0

[0] ROE_PMOS

RCOMP Override Enable for PMOS. Over ride occurs in
the Eval block between the RComp counter and the digital
filter input. The value stored in the PMOS RCOMP
register is fed back to the PMOS RComp buffer and
forward into the digital filter logic.

RW 0x0

Bits Field Description RW Reset
310 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5.9.2 Q_RCMP_PMOS_MEASURED

In normal operation, this register contains the current 8-bit RCOMP value for the PMOS drivers.

5.5.9.3 Q_RCMP_NMOS_MEASURED

In normal operation, this register contains the current 8-bit RCOMP value for the NMOS drivers.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

IN
C

_D
E

C
_S

IG
N

A
L

PMOS_RCOMP
_MEASURED_VALUE

Bits Field Description RW IXP2400
Reset

IXP2800
Reset

[31:9] RESERVED Reserved RO 0x0 0x0

[8] INC_DEC_SIGNAL Inc/dec signal in PMOS Eval block. RO 1 dep

[7:0] PMOS_RCOMP_
MEASURED_VALUE

PMOS RCOMP Measured Value. A
instrumented signal that is used to view
the servo-mechanism.

RO 0x37 dep

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

IN
C

_D
E

C
_S

IG
N

A
L

NMOS_RCOMP
_MEASURED_VALUE

Bits Field Description RW IXP2400
Reset

IXP2800
Reset

[31:9] RESERVED Reserved RO 0x0 0x0

[8] INC_DEC_SIGNAL Inc/dec signal in NMOS Eval block. RO 0x37 dep

[7:0] NMOS_RCOMP_
MEASURED_VALUE

NMOS RCOMP Measured Value. A
instrumented signal that is used to view
the servo-mechanism.

RO 0x37 dep
Programmer’s Reference Manual 311

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5.9.4 Q_RCMP_PMOS_OVERRIDE

In normal operation, this register contains the current 8-bit RCOMP value for the PMOS drivers.

5.5.9.5 Q_RCMP_NMOS_OVERRIDE

In normal operation, this register contains the 8-bit override values for the RComp NMOS drivers.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

ADDRESS_OVERIDE DATA_OVERRIDE K_CLOCK_OVERRIDE DQ_DATA_OVERRIDE

Bits Field Description RW IXP2400
Reset

IXP2800
Reset

[31:24] ADDRESS_OVERRIDE Address PMOS RCOMP Override
Value RW 0x00 0x1C

[23:16] DATA_OVERRIDE Data PMOS RCOMP Override Value. RW 0x00 0x1C

[15:8] K_CLOCK_OVERRIDE K Clock PMOS RCOMP Override
Value. RW 0x00 0x1C

[7:0] DQ_DATA_OVERRIDE DQ Data PMOS RCOMP Override
Value. RW 0x00 0x1C

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

ADDRESS_OVERIDE DATA_OVERRIDE K_CLOCK_OVERRIDE DQ_DATA_OVERRIDE

Bits Field Description RW IXP2400
Reset

IXP2800
Reset

[31:24] ADDRESS_OVERRIDE Address NMOS RCOMP Override
Value RW 0x00 0x1C

[23:16] DATA_OVERRIDE Data NMOS RCOMP Override Value. RW 0x00 0x1C

[15:8] K_CLOCK_OVERRIDE K Clock NMOS RCOMP Override
Value. RW 0x00 0x1C

[7:0] DQ_DATA_OVERRIDE DQ Data NMOS RCOMP Override
Value. RW 0x00 0x1C
312 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5.9.6 Q_RCMP_PMOS_NMOS_SCOMP_OVERRIDE (IXP2400 and IXP2800
Rev A)

In normal operation, this register contains the 8-bit override values for the PMOS and NMOS
SComp drivers.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

A
D

D
R

E
S

S
_P

M
O

S
_S

C
O

M
P

_O
V

E
R

R
ID

E

A
D

D
R

E
S

S
_N

M
O

S
_S

C
O

M
P

_O
V

E
R

R
ID

E

D
A

TA
_P

M
O

S
_S

C
O

M
P

_O
V

E
R

R
ID

E

D
A

TA
_N

M
O

S
_S

C
O

M
P

_O
V

E
R

R
ID

E

K
_C

LO
C

K
_P

M
O

S
_S

C
O

M
P

_O
V

E
R

R
ID

E

K
_C

LO
C

K
_N

M
O

S
_S

C
O

M
P

_O
V

E
R

R
ID

E

D
Q

_D
A

TA
_P

M
O

S
_S

C
O

M
P

_O
V

E
R

R
ID

E

D
Q

_D
A

TA
_N

M
O

S
_S

C
O

M
P

_O
V

E
R

R
ID

E

Bits Field Description RW IXP2400
Reset

IXP2800
Reset

[31:28] ADDRESS_PMOS_
SCOMP_OVERRIDE

Address PMOS SCOMP Override
Value. RW 0x0 0x03

[27:24] ADDRESS_NMOS_
SCOMP_OVERRIDE

Address NMOS SCOMP Override
Value. RW 0x0 0x03

[23:20] DATA_PMOS_
SCOMP_OVERRIDE Data PMOS SCOMP Override Value. RW 0x0 0x03

[19:16] DATA_NMOS_
SCOMP_OVERRIDE Data NMOS SCOMP Override Value. RW 0x0 0x03

[15:12] K_CLOCK_PMOS_
SCOMP_OVERRIDE

K Clock PMOS SCOMP Override
Value. RW 0x0 0x03

[11:8] K_CLOCK_NMOS_
SCOMP_OVERRIDE

K Clock NMOS SCOMP Override
Value. RW 0x0 0x03

[7:4] DQ_DATA_PMOS_
SCOMP_OVERRIDE

DQ Data PMOS SCOMP Override
Value. RW 0x0 0x03

[3:0] DQ_DATA_NMOS_
SCOMP_OVERRIDE

DQ Data NMOS SCOMP Override
Value. RW 0x0 0x03
Programmer’s Reference Manual 313

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5.9.7 Q_RCMP_PMOS_NMOS_SCOMP_OVERRIDE(IXP2800 Rev B)

In normal operation, this register contains the 8-bit override values for the PMOS and NMOS
SComp drivers.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

A
D

D
R

E
S

S
_P

M
O

S
_S

C
O

M
P

_O
V

E
R

R
ID

E

A
D

D
R

E
S

S
_N

M
O

S
_S

C
O

M
P

_O
V

E
R

R
ID

E

D
A

TA
_P

M
O

S
_S

C
O

M
P

_O
V

E
R

R
ID

E

D
A

TA
_N

M
O

S
_S

C
O

M
P

_O
V

E
R

R
ID

E

K
_C

LO
C

K
_P

M
O

S
_S

C
O

M
P

_O
V

E
R

R
ID

E

K
_C

LO
C

K
_N

M
O

S
_S

C
O

M
P

_O
V

E
R

R
ID

E

R
E

S
E

R
V

E
D

Q
D

R
_W

R
_P

T
R

_R
S

T
_S

E
L_M

O
D

E

R
E

S
E

R
V

E
D

Q
D

R
_R

X
_D

LL_D
IS

A
B

LE

Q
D

R
_T

X
_D

LL_D
IS

A
B

LE

R
E

S
E

R
V

E
D

Bits Field Description RW IXP2800
Reset

[31:28] ADDRESS_PMOS_
SCOMP_OVERRIDE Address PMOS SCOMP Override Value. RW 0x03

[27:24] ADDRESS_NMOS_
SCOMP_OVERRIDE Address NMOS SCOMP Override Value. RW 0x03

[23:20] DATA_PMOS_
SCOMP_OVERRIDE Data PMOS SCOMP Override Value. RW 0x03

[19:16] DATA_NMOS_
SCOMP_OVERRIDE Data NMOS SCOMP Override Value. RW 0x03

[15:12] K_CLOCK_PMOS_
SCOMP_OVERRIDE K Clock PMOS SCOMP Override Value. RW 0x03

[11:8] K_CLOCK_NMOS_
SCOMP_OVERRIDE K Clock NMOS SCOMP Override Value. RW 0x03

[7] RESRVED RESERVED RW 0

[6] QDR_WR_PTR_RST_SEL_
MODE

Disables the phase comparator in the reset
circuit for input FIFO write pointer

0 -Enable phase comparator
1 - Disable phase comparator

RW 0

[5:4] RESRVED RESERVED RW b11

[3] QDR_RX_DLL_DISABLE
Disables the input master and slave DLL

1 - Disable
0 - Enable

RW 0

[2] QDR_TX_DLL_DISABLE

Disables the internal 2X clock generator
clk2g

1 - Disable
0 - Enable

RW 0

[1:0] RESRVED RESERVED RW b11
314 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5.9.8 Q_RCMP_STRENGTH_SLEW_INDEX_SEL

This register controls the Slew Rate Index Clamp Enable and drive strength of the I/O buffers for
the Address, Data, K Clock and DQ data signal groups. The four-bit strength setting is described in
the table below.

Table 5-18. Strength Control Settings

Value Setting Value Setting

0000 0.125 1000 1.25

0001 0.250 1001 1.50

0010 0.375 1010 2.00

0011 0.500 1011 2.125

0100 0.625 1100 2.25

0101 0.750 1101 2.50

0110 1.00 1110 3.00

0111 1.125 1111 4.00

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

A
D

D
R

_S
LE

W
_R

A
T

E
_IN

D
E

X

A
D

D
R

_S
T

R
E

N
G

H
_C

O
N

T
R

O
L

D
A

TA
_S

LE
W

_R
A

T
E

_IN
D

E
X

D
A

TA
_S

T
R

E
N

G
T

H
_C

O
N

T
R

O
L

K
_C

LO
C

K
_S

LE
W

_R
A

T
E

_IN
D

E
X

K
_C

LO
C

K
_S

T
R

E
N

G
T

H
_C

O
N

T
R

O
L

D
Q

_D
A

TA
_S

LE
W

_R
A

T
E

_IN
D

E
X

D
Q

_D
A

TA
_S

T
R

E
N

G
T

H
_C

O
N

T
R

O
L

Programmer’s Reference Manual 315

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW IXP2400
Reset

IXP2800
Reset

[31:20] RESERVED Reserved RO 0x0 0x00

[19] ADDR_SLEW_RATE_
INDEX

Address Slew Rate Index RCOMP
Clamp Enable.

This bit causes the RCOMP[6:2] field
that will be used to index into the Slew
Rate tables to be clamped to "11111"
whenever RCOMP[7] is set. If this bit is
clear, then only RCOMP[6:2] will be
used to index the Slew Rate tables
regardless of the value on RCOMP[7].0:
No RCOMP Clamping1: RCOMP
Clamping Enabled.

RW 0x0 0x0

[18:15] ADDR_STRENGTH_
CONTROL Address Strength Control. RW 0x0 0x6

[14] DATA_SLEW_
RATE_INDEX

Data Slew Rate Index RCOMP Clamp
Enable.

This bit causes the RCOMP[6:2] field
that will be used to index into the Slew
Rate tables to be clamped to "11111"
whenever RCOMP[7] is set. If this bit is
clear, then only RCOMP[6:2] will be
used to index the Slew Rate tables
regardless of the value on RCOMP[7].0:
No RCOMP Clamping1: RCOMP
Clamping Enabled.

RW 0x0 0x0

[13:10] DATA_STRENGTH_
CONTROL Data Strength Control. RW 0x0 0x6

[9] K_CLOCK_SLEW_
RATE_INDEX

K Clock Slew Rate Index RCOMP
Clamp Enable.

This bit causes the RCOMP[6:2] field
that will be used to index into the Slew
Rate tables to be clamped to "11111"
whenever RCOMP[7] is set. If this bit is
clear, then only RCOMP[6:2] will be
used to index the Slew Rate tables
regardless of the value on RCOMP[7].0:
No RCOMP Clamping1: RCOMP
Clamping Enabled.

RW 0x0 0x0

[8:5] K_CLOCK_STRENGTH_
CONTROL K Clock Strength Control. RW 0x0 0x6

[4] DQ_DATA_SLEW_
RATE_INDEX

DQ Data Slew Rate Index RCOMP
Clamp EnablE.

This bit causes the RCOMP[6:2] field
that will be used to index into the Slew
Rate tables to be clamped to "11111"
whenever RCOMP[7] is set. If this bit is
clear, then only RCOMP[6:2] will be
used to index the Slew Rate tables
regardless of the value on RCOMP[7].0:
No RCOMP Clamping1: RCOMP
Clamping Enabled.

RW 0x0 0x0

[3:0] DQ_DATA_STRENGTH_
CONTROL DQ Data Strength Control. RW 0x0 0x6
316 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5.9.9 Q_RCMP_ADDR_PMOS_PU_OFFSET

This value is a signed offset applied to the final PMOS RCOMP/Strength value determined for the
address signal group.

5.5.9.10 Q_RCMP_ADDR_NMOS_PD_OFFSET

This value is a signed offset applied to the final NMOS RCOMP/Strength value determined for the
Address signal group.

5.5.9.11 Q_RCMP_DATA _PMOS _PU_OFFSET

This value is a signed offset applied to the final PMOS RCOMP/Strength value determined for the
Data signal group.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED ADDR_PMOS_OFFSET

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0x00

[7:0] ADDR_PMOS_OFFSET Signed 8-bit offset to be applied to the PMOS drive
strength for the Address signal group. RW 0x00

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED ADDR_NMOS_OFFSET

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0x00

[7:0] ADDR_NMOS_OFFSET Signed 8-bit offset to be applied to the NMOS drive
strength for the Address signal group. RW 0x00

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED DATA_PMOS_OFFSET

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0x00

[7:0] DATA_PMOS_OFFSET Signed 8-bit offset to be applied to the PMOS drive
strength for the Data signal group. RW 0x00
Programmer’s Reference Manual 317

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5.9.12 Q_RCMP_DATA_NMOS_PD_OFFSET

This value is a signed offset applied to the final NMOS RCOMP/Strength value determined for the
Data signal group.

5.5.9.13 Q_RCMP_K_CLK_PMOS_PU_OFFSET

This value is a signed offset applied to the final PMOS RCOMP/Strength value determined for the
K Clock signal group.

5.5.9.14 Q_RCMP_KCLK_NMOS_PD_OFFSET

This value is a signed offset applied to the final NMOS RCOMP/Strength value determined for the
K Clock signal group.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED DATA_NMOS_OFFSET

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0x00

[7:0] DATA_NMOS_OFFSET Signed 8-bit offset to be applied to the NMOS drive
strength for the Data signal group. RW 0x00

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED K_CLK_PMOS_OFFSET

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0x00

[7:0] K_CLK_PMOS_
OFFSET

Signed 8-bit offset to be applied to the PMOS drive
strength for the K Clock signal group. RW 0x00

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED K_CLK_NMOS_OFFSET

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0x00

[7:0] K_CLK_NMOS_OFFSET Signed 8-bit offset to be applied to the NMOS drive
strength for the K Clock signal group. RW 0x00
318 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5.9.15 Q_RCMP_DQ_PMOS_PU_OFFSET

This value is a signed offset applied to the final PMOS RCOMP/Strength value determined for the
DQ signal group.

5.5.9.16 Q_RCMP_DQ_NMOS_PD_OFFSET

This value is a signed offset applied to the final NMOS RCOMP/Strength value determined for the
DQ signal group.

5.5.9.17 Q_RCMP_PMOS_NMOS_VERT_OVERRIDE

In normal operation, this register contains the 8-bit vertical override values for the RComp PMOS
& NMOS drivers.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED DQ_PMOS_OFFSET

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0x00

[7:0] DQ_PMOS_OFFSET Signed 8-bit offset to be applied to the PMOS drive
strength for the DQ signal group. RW 0x00

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED DQ_NMOS_OFFSET

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0x00

[7:0] DQ_NMOS_OFFSET Signed 8-bit offset to be applied to the NMOS drive
strength for the DQ signal group. RW 0x00

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED NMOS_RCOMP
_OVERRIDE

PMOS_RCOMP
_OVERRIDE
Programmer’s Reference Manual 319

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.5.9.18 Slew Rate Tables

Each SRAM controller supports the following Slew Lookup Tables. Each table consists of four
registers (designated by the # symbol in the name).

As shown in Table 5-20 and Table 5-21, the format of these registers are different for the IXP2400
and the IXP2800.

Bits Field Description RW IXP2400
Reset

IXP2800
Reset

[31:16] RESERVED Reserved RO 0x0 0x00

[15:8] NMOS_RCOMP_
OVERRIDE NMOS RCOMP Override Value RW 0x0 0x1C

[7:0] PMOS_RCOMP_
OVERRIDE PMOS RCOMP Override Value RW 0x0 0x1C

Table 5-19. SRAM Register Summary (where # = 0,1,2,3)

CSR name Section

Q_RCMP_ADDR_PMOS_PU_SLEW_TABLE_#
These four registers contain the entire slew-rate lookup
table for the pull-up (PMOS) devices in the I/O buffers for
the Address signal group.

Q_RCMP_ADDR_NMOS_PD_SLEW_TABLE_#
These four registers contain the entire slew-rate lookup
table for the pulldown (NMOS) devices in the I/O buffers
for the Address signal group.

Q_RCMP_DATA_PMOS_PU_SLEW_TABLE_#
These four registers contain the entire slew-rate lookup
table for the pull-up (PMOS) devices in the I/O buffers for
the Data signal group.

Q_RCMP_DATA_NMOS_PD_SLEW_TABLE_#
These four registers contain the entire slew-rate lookup
table for the pulldown (NMOS) devices in the I/O buffers
for the Data signal group.

Q_RCMP_KCLK_PMOS_PU_SLEW_TABLE_#
These four registers contain the entire slew-rate lookup
table for the pull-up (PMOS) devices in the I/O buffers for
the K Clock signal group.

Q_RCMP_KCLK_NMOS_PD_SLEW_TABLE_#
These four registers contain the entire slew-rate lookup
table for the pulldown (NMOS) devices in the I/O buffers
for the K Clock signal group.

Q_RCMP_DQ_PMOS_PU_SLEW_TABLE_#
These four registers contain the entire slew-rate lookup
table for the pull-up (PMOS) devices in the I/O buffers for
the DQ signal group.

Q_RCMP_DQ_NMOS_PD_SLEW_TABLE_#
These four registers contain the entire slew-rate lookup
table for the pulldown (NMOS) devices in the I/O buffers
for the DQ signal group.
320 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Table 5-20. Slew Table Format: IXP2400

Table 5-21. Slew Table Format: IXP2800

The reset values for all the Slew Lookup Tables are undefined until they are programmed for the
IXP2800. The recommended first time power-up values are defined in Table 5-22.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED ADDR_
xMOS_3

ADDR_
xMOS_2

ADDR_

xMOS_1
ADDR_
xMOS_0

RESERVED ADDR_
xMOS_7

ADDR_
xMOS_6

ADDR_

xMOS_5
ADDR_
xMOS_4

RESERVED ADDR_
xMOS_11

ADDR_
xMOS_10

ADDR_

xMOS_9
ADDR_
xMOS_8

RESERVED ADDR_
xMOS_15

ADDR_
xMOS_14

ADDR_

xMOS_13
ADDR_

xMOS_12

Note: The x in the name is equal to either P (for POS) or N (for NMOS) depending on the table.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

ADDR_
xMOS_7

ADDR_
xMOS_6

ADDR_

xMOS_5
ADDR_
xMOS_4

ADDR_
xMOS_3

ADDR_
xMOS_2

ADDR_

xMOS_1
ADDR_
xMOS_0

ADDR_
xMOS_15

ADDR_
xMOS_14

ADDR_

xMOS_13
ADDR_

xMOS_12
ADDR_
xMOS_11

ADDR_
xMOS_10

ADDR_

xMOS_9
ADDR_
xMOS_8

ADDR_
xMOS_23

ADDR_
xMOS_22

ADDR_

xMOS_21
ADDR_

xMOS_20
ADDR_
xMOS_19

ADDR_
xMOS_18

ADDR_

xMOS_17
ADDR_

xMOS_16

ADDR_
xMOS_31

ADDR_
xMOS_30

ADDR_

xMOS_29
ADDR_

xMOS_28
ADDR_
xMOS_27

ADDR_
xMOS_26

ADDR_

xMOS_25
ADDR_

xMOS_24

Note: The x in the name is equal to either P (for POS) or N (for NMOS) depending on the table.

Table 5-22. Slew Rate Table Recommended Initial Values (IXP2800)

 Bits
31:16

 Bits
15:12

 Bits
11:8

 Bits
7:4

 Bits
3:0

Word
Address

Offset

0x3333 0x3 0x3 0x3 0x3 00h

0x3333 0x3 0x3 0x3 0x3 01h

0x3333 0x3 0x3 0x3 0x3 10h

0x3333 0x3 0x3 0x3 0x3 11h
Programmer’s Reference Manual 321

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
The reset values for all the Slew Lookup Tables are undefined for the IXP2400. The recommended
first time power-up values are defined in Table 5-23.

5.5.10 QDR unit initialization

The recommended initial setup procedure differs between IXP2800 and IXP2400.

5.5.10.1 IXP2800 A Steppings QDR initial setup procedure

The section describes the control status register (CSR) initialization sequence to configure each
SRAM controller for operation.

The IXP2800 Network processor integrates four QDRII compliant SRAM controllers. The
following procedure explains how to program each SRAM controllers CSR’s in order to initialize
each channel for operation. Note that while values for each CSR are recommended within this
procedure, the timing characteristics of each implementation will vary and hence the programmed
values for each implementation may also vary. This procedure shows an example of the
initialization sequence for Channel 0 this sequence must be repeated for all SRAM channels. The
following procedure can be used to empirically determine the appropriate values.

1. Program the CLOCK_CONTROL register at address C0004A14 with the appropriate
SRAM_CHN_CLK_RATIO value. For A0/A1 steppings, assuming the setting value is
0x033A_6666, CLOCK_CONTROL needs to be set to 0x0300_0000 first, then set it to
0x033A_6666; for A2 and future stepping the initial write of 0x0300_0000 is not required.

2. Each channel must then have its reset removed by clearing the respective reset register in the
IXP_RESET_0 register at C0004A0C; bits 3 - 6 control channels 0 - 4 respectively.

3. Set QDR_DFT_CTRL register at address CC010200 with a value of 0x0000_2000.

4. Delay for 10ms prior to proceeding to step 5.

5. Set QDR_DFT_CTRL register at address CC010200 with a value of 0x0000_0000.

6. Setup the dynamic RCOMP logic by writing the Q_RCMP_SETUP_CONTROL register at
address CC010300 with a value of 0x00000160. This setting will disable all bypass
operations, set the digital filter to a single RComp change per RComp cycle and set the
RComp Period to 2ms. These filter and period setting allow for 500 RComp changes per
second.

7. Delay 10 ms prior to proceeding to step 8, this allows the RCOMP operations to complete.

8. Program the Q_RCMP_STRENGTH_SLEW_INDEX_SEL register at address CC010318
with a value of 0x000B5AD6.

9. Delay 10 ms prior to proceeding to step 10, this allows the RCOMP operations to complete.

Table 5-23. Slew Rate Table Recommended Initial Values (IXP2400)

 Bits
31:16

 Bits
15:12

 Bits
11:8

 Bits
7:4

 Bits
3:0

Word
Address

Offset

0x0 0xc 0xc 0xc 0xc 00h

0x0 0xc 0xc 0xc 0xc 01h

0x0 0xc 0xc 0xc 0xc 10h

0x0 0xc 0xc 0xc 0xc 11h
322 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
10. The CSRs mentioned in this step are reset to a value of 0x00000000. This is already the
recommended value for operation, but they are mentioned for completeness:

11. Initialize the slew rate tables to the value 0x33333333. (The # symbol in the register names
can be 0 to 3 and indicate the four registers in the table.)

12. Delay 10 ms prior to proceeding to step 13, this allows the RCOMP operations to complete.

13. Complete the setup the dynamic RCOMP logic by writing the Q_RCMP_SETUP_CONTROL
register at address CC010300 with a value of 0x00000D60.

14. Program the SRAM_CONTROL_00 Register at CC010000 with 0x00000100. This
configures the channel for a size of 4MB and parity disabled.

15. Program the QDR_INTERNAL_PIPELINE_00 register at address CC010108 with a value of
0x00000002, which adds or removes one cycle of read latency. Please note that a value of two
has been found empirically to be the best for 200 MHz operation; however this may vary per
implementation. This value should be set to a value of 0x00000001 for 100/133MHz/QDRI
operation. Again this may vary per implementation.

16. Program the SRAM_RX_DESKEW_00 register at address CC010244 with 0x00000001.
Wait 10ms, then program SRAM_RX_DESKEW_00 register with 0x00000002. Wait 10ms.
Continue incrementing the value after 10ms waits until reaching a final value of 0x00000008.
This sets the number of delay elements in the read clock DLL to <value> + 1. It is
recommended to only increment or decrement <value> in order to prevent the DLL from
having to deal with a large step response where it is at risk of locking to a harmonic.

17. Program the SRAM_RX_DLL_00 register at address CC010228 with a value of 0x00000008,
this adjusts the read clock DLL such that capture clock is centered in the middle of the receive
data eye window. The optimal value for this register will depend primarily on two features of
the board-level implementation. The first important consideration is the relationship of Q to
CIN. It is typically desired to have the read capture strobe placed in the middle of the data
valid window. Setting SRAM_RX_DLL_00 equal to SRAM_RX_DESKEW_00 achieves this
if Q and CIN arrive simultaneously. At 200MHz, changing the SRAM_RX_DLL_00 value
by one corresponds to moving the read capture strobe by ~65ps. So if a theoretical
implementation had Q data lagging CIN by ~200ps, an SRAM_RX_DLL_00 value set to
SRAM_RX_DESKEW_00 value + 3 = 0x0000000B would be optimal. The second relevant
consideration is the C-CIN loop length. There is clock-crossing between the read capture
strobe domain and the core’s PLL derived clock domain. If the read strobe is pushed out too
far (e.g. long CIN loop length or too high a value for SRAM_RX_DLL_00), the data capture
occurs beyond a core clock boundary. To recover the correct data, the strobe may be left as is,
and the pipeline delay increased (an increase in read latency), or the read capture strobe may
be pulled earlier than the center of the data valid window.

18. Delay 10 ms prior to proceeding to step 19, this allows the Deskew circuit to lock prior to
performing RCOMP operations.

Q_RCMP_ADDR_PMOS_PU_OFFSET
Q_RCMP_ADDR_NMOS_PD_OFFSET
Q_RCMP_DATA_PMOS_PU_OFFSET
Q_RCMP_DATA_NMOS_PD_OFFSET

Q_RCMP_K_CLK_PMOS_PU_OFFSET
Q_RCMP_K_CLK_NMOS_PD_OFFSET
Q_RCMP_DQ_PMOS_PU_OFFSET
Q_RCMP_DQ_NMOS_PD_OFFSET

Q_RCMP_ADDR_PMOS_PU_SLEW_TABLE_#
Q_RCMP_ADDR_NMOS_PD_SLEW_TABLE_#
Q_RCMP_DATA_PMOS_PU_SLEW_TABLE_#
Q_RCMP_DATA_NMOS_PD_SLEW_TABLE_#

Q_RCMP_KCLK_PMOS_PU_SLEW_TABLE_#
Q_RCMP_KCLK_NMOS_PD_SLEW_TABLE_#
Q_RCMP_DQ_PMOS_PU_SLEW_TABLE_#
Q_RCMP_DQ_NMOS_PD_SLEW_TABLE_#
Programmer’s Reference Manual 323

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
19. The final step is to reset the RD_WR_PTR logic by programming the
SRAM_RD_PTR_OFFSET_00 register at address CC010240 with a value of 0x00000000.
Note for QDRI mode this register should be programmed to a value of 0x00000004.

At this point the channel should be configured correctly and its timing characteristics adjusted to
compensate for latency incurred by the physical implementation. If data cannot be read and written
correctly then it may be required to perform another/multiple iterations of this procedure to
determine the appropriate values for QDR_INTERNAL_PIPELINE_00 and SRAM_RX_DLL_00
registers as described in step 17. It is also recommended that the range of operational values for
SRAM_RX_DLL_00 register be determined empirically by stepping the programmed value in step
15. Note that once the channel has been initialized the SRAM_RX_DLL_00 register value can be
modified without re-initializing the channel; however after any change to this register step 17 must
also be performed.

5.5.10.2 IXP2800 B Steppings - QDR initial setup procedure

This procedure is an example of the initialization sequence for Channel 0 for B steppings. You
must repeat this sequence for all QDR SRAM channels. Use the following procedure to
empirically determine the appropriate values:

1. Program the CLOCK_CONTROL register at address C0004A14 with the appropriate
SRAM_CHN_CLK_RATIO value.

2. Remove the reset from each channel by clearing the respective reset register in the
IXP_RESET_0 register at C0004A0C; bits 3 – 6 control channels 0 – 3, respectively.

3. Enable the TX and RX DLLs. For the B stepping, individual enables are provided for the TX
and RX DLLs in the QDR unit. The lower eight bits of
Q_RCOM_PMOS_NMOS_SCOMP_OVERRIDE at offset 0x0314 have been modified to
accommodate this feature. The previous functionality of this register and the registers
DQ_DATA_PMOS_SCOMP_OVERRIDE and DQ_DATA_NMOS_SCOMP_OVERRIDE,
have been hardwired to their reset value of 0x3.
Use the following steps to enable the DLLs:

a. Write a value of 0x1 to
Q_RCOM_PMOS_NMOS_SCOMP_OVERRIDE[QDR_TX_DLL_DISABLE]
to disable the TX DLL.

b. Write a value of 0x1 to
Q_RCOM_PMOS_NMOS_SCOMP_OVERRIDE[QDR_RX_DLL_DISABLE]
to disable the RX DLL.

c. Write a value of 0x00 to
Q_RCOM_PMOS_NMOS_SCOMP_OVERRIDE[QDR_K_CLOCK_ENABLE]
to disable the K/K# clocks.

d. Delay 10 ms.

e. Write a value of 0x0 to
Q_RCOM_PMOS_NMOS_SCOMP_OVERRIDE[QDR_TX_DLL_DISABLE]
to re-enable the TX DLL.

f. Delay 10 ms.

g. Write a value of 0x0 to
Q_RCOM_PMOS_NMOS_SCOMP_OVERRIDE[QDR_RX_DLL_DISABLE]
to re-enable the RX DLL.

h. Delay 10 ms.
324 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
4. Set up the dynamic RCOMP logic by writing the Q_RCMP_SETUP_CONTROL register at
address CC010300 with a value of 0x00000160. This setting disables all bypass operations,
sets the digital filter to a single RComp change per RComp cycle, and sets the RComp Period
to 2 ms. These filter and period setting allow for 500 RComp changes per second.

5. Program the Q_RCMP_STRENGTH_SLEW_INDEX_SEL register at address CC010318
with a value of 0x000B5AD6.

6. The following CSRs are reset automatically to a value of 0x00000000 (the recommended
value for operation); they are listed here for completeness:

7. Initialize the following slew rate tables to the value 0x33333333. (The # symbol in the register
names can be 0 to 3 and indicate the four registers in the table.)

8. Write the Q_RCMP_SETUP_CONTROL register at address CC010300 with a value of
0x00000D60.

9. Set QDR_DFT_CTRL1 register at address CC010200 with a value of 0x0000_2000. This will
allow updates to occur when the RCOMP_LOCK is asserted.

10. Delay 10ms

11. Write Q_RCMP_SETUP_CONTROL register at address CC010300 with a value of
0x00000560. This clears the RCOMP_LOCK bit.

12. Set QDR_DFT_CTRL1 register at address CC010200 with a value of 0x0000_0000.

13. Delay 1ms

14. Write a value of 0x3 to
Q_RCOM_PMOS_NMOS_SCOMP_OVERRIDE[QDR_K_CLOCK_ENABLE] to enable
the K/K# clocks.

15. Complete the setup of the dynamic RCOMP logic by writing Q_RCMP_SETUP_CONTROL
register at address CC010300 with a value of 0x00000D60.

16. Program the SRAM_CONTROL_00 register at CC010000, with 0x00000100. This configures
the channel for a size of 4 MB with parity disabled.

17. Program the QDR_INTERNAL_PIPELINE_00 register at address CC010108, with a value of
0x00000002, which adds or removes one cycle of read latency. Note: it has been determined
empirically, that a value of 2 is best for a 200 MHz operation; however this may vary per
implementation. For 100 – 133 MHz/QDRI operations, this value should be set to
0x00000001. Again, this may vary per implementation.

18. Program the SRAM_RX_DESKEW_00 register at address CC010244, with 0x00000001.
Wait 10 ms, then program this register with 0x00000002. Wait another 10 ms. Continue
incrementing the value after intervals of 10 ms, until you reach a final value of 0x00000008.

Q_RCMP_ADDR_PMOS_PU_OFFSET
Q_RCMP_ADDR_NMOS_PD_OFFSET
Q_RCMP_DATA_PMOS_PU_OFFSET
Q_RCMP_DATA_NMOS_PD_OFFSET

Q_RCMP_K_CLK_PMOS_PU_OFFSET
Q_RCMP_K_CLK_NMOS_PD_OFFSET
Q_RCMP_DQ_PMOS_PU_OFFSET
Q_RCMP_DQ_NMOS_PD_OFFSET

Q_RCMP_ADDR_PMOS_PU_SLEW_TABLE_#
Q_RCMP_ADDR_NMOS_PD_SLEW_TABLE_#
Q_RCMP_DATA_PMOS_PU_SLEW_TABLE_#
Q_RCMP_DATA_NMOS_PD_SLEW_TABLE_#

Q_RCMP_KCLK_PMOS_PU_SLEW_TABLE_#
Q_RCMP_KCLK_NMOS_PD_SLEW_TABLE_#
Q_RCMP_DQ_PMOS_PU_SLEW_TABLE_#
Q_RCMP_DQ_NMOS_PD_SLEW_TABLE_#

1. This is an Intel Reserved test register and it is not doucmented in the Programmers Reference Manual.
Programmer’s Reference Manual 325

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
This sets the number of delay elements in the read clock DLL to 0x00000008 + 1. It is
recommended that the final value be incremented or decremented only to prevent the DLL
from having to handle a large step response, which makes it at risk of locking to a harmonic.

19. Program the SRAM_RX_DLL_00 register at address CC010228, with a value of 0x00000008;
this adjusts the read clock DLL so that the capture clock is centered in the middle of the
receive data eye window. The optimal value for this register depends primarily on two features
of the board-level implementation: the relationship of Q to CIN and the C – CIN loop length,
as described in the following substeps:

a. For the relationship of Q to CIN, it is recommended that the read-capture strobe be placed
in the middle of the data valid window. Setting SRAM_RX_DLL_00 equal to
SRAM_RX_DESKEW_00 achieves this if Q and CIN arrive simultaneously.
At 200 MHz, changing the SRAM_RX_DLL_00 value by 1 corresponds to moving the
read-capture strobe by approximately 65 ps. For example, with an implementation that has
Q data lagging CIN by approximately 200 ps, an SRAM_RX_DLL_00 value set to
SRAM_RX_DESKEW_00 + 3 (equaling 0x0000000B) would be optimal.

b. For the C – CIN loop length, there is clock-crossing between the read-capture strobe
domain and the core’s PLL-derived clock domain. If the read strobe is pushed out too far
(for example, by a long CIN loop length or an excessively high value for
SRAM_RX_DLL_00), the data capture occurs past a core clock boundary. To recover the
correct data, the strobe may be left as is, and the pipeline delay increased (increasing read
latency), or the read-capture strobe may be pulled earlier than the center of the data valid
window.

20. Delay 10 ms prior to proceeding to 21., to allow the Deskew circuit to lock prior to performing
RCOMP operations.

21. Reset the RD_WR_PTR logic by programming the SRAM_RD_PTR_OFFSET_00 register at
address CC010240 with a value of 0x00000000. Note: for QDRI mode this register should be
programmed to a value of 0x00000004.

For B steppings, the preceding sequence of steps should configure the channel with timing
characteristics adjusted to compensate for latency incurred by the physical implementation. If data
cannot be read and written correctly, then it may be necessary to perform one or more iterations of
this procedure to determine the appropriate values for the SRAM_RX_DESKEW_00 and
SRAM_RX_DLL_00 registers as described in 19.

It is recommended that the range of operational values for the SRAM_RX_DLL_00 register be
determined empirically by stepping the programmed value in 19.

After the channel has been initialized, you can modify the SRAM_RX_DLL_00 register value
without re-initializing the channel; however, after any change to this register, you must perform 20.
and 21. again.

5.5.10.3 IXP2400 QDR initial setup procedure

For IXP2400, the recommended initial setup procedure is as follows:

1. Set the following slew rate tables to 0x0000cccc. (The # symbol in the register names can be 0
to 3 and indicate the four registers in the table.)

Q_RCMP_ADDR_PMOS_PU_SLEW_TABLE_#
Q_RCMP_ADDR_NMOS_PD_SLEW_TABLE_#
Q_RCMP_DATA_PMOS_PU_SLEW_TABLE_#
Q_RCMP_DATA_NMOS_PD_SLEW_TABLE_#

Q_RCMP_KCLK_PMOS_PU_SLEW_TABLE_#
Q_RCMP_KCLK_NMOS_PD_SLEW_TABLE_#
Q_RCMP_DQ_PMOS_PU_SLEW_TABLE_#
Q_RCMP_DQ_NMOS_PD_SLEW_TABLE_#
326 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
2. Set the Q_RCMP_SETUP_CONTROL registers (offset 0x0300) to the value 0x00010060.

3. Set the Q_RCMP_STRENGTH_SLEW_INDEX_SEL registers (offset 0x0318) to the value
0x000318c6.

4. Set the QDR_RX_DLL registers (offset 0x0228) to the value 0x0000004c.

5. Set the QDR_RX_DESKEW registers (offset 0x0244) to the value 0x00000012.

6. Configure the SRAM_CONTROL registers (offset 0x0000).

7. Configure the QDR_RD_PTR_OFFSET registers (offset 0x0240). This configuration selects
between QDR I and QDR II configurations.

8. Read the QDR_RD_PTR_OFFSET registers (offset 0x0240).

5.6 CSR Access Proxy (CAP)

The CAP address space includes CAP CSRs (Scratch, Hash, Fast Write, Global), Timers, UART,
PMU, SlowPort CSRs, ME’s Local CSRs, and the Reflector.

5.6.1 Scratchpad Memory CSRs (CAP CSR)

Table 5-24 shows the offset addresses of the Scratchpad Memory CSRs. Refer to Chapter 4,
“Address Maps” for the base address and details on how they are accessed. These CSRs can be
accessed by the Intel XScale core, PCI and the MEs.

Each of the Rings has its own copy of the registers; the “#” symbol is the number of the ring.
Substitute 0 through 0xF for the “#” to get the individual register names and addresses.

Note: There is an additional CSR associated with the Scratchpad memory which is located in the
Intel XScale core. Local CSRs and it provides the Ring Full status signals to the Intel XScale
Processor.

Warning: Scratch get and put operations must not be performed to ANY of the scratch rings at the same time
ANY of the scratch ring configuration registers are being written otherwise the result of the get and
put operations are unpredictable. A typical initialization sequence is one in which the Intel
XScale core initialize the rings once at system initialization time and then indicates to the
Microengine that get and put operations can be performed.

Note: For IXP2800 Rev A only -- Before using the Scratchpad Memory, write a ‘1’ to bit 10 of register at
address 0xfc, and then write a ‘0’ to bit 10 of the same register. This register is only used for
manufacturing test and must be initialized prior to use. Since there are other test bits in this register,
in order to write bit 10, the programmer should read the value of the register, modify bit 10, then
write back the modified value of the register.

Table 5-24. Scratchpad Memory Register Summary

CSR name Address Description Section

SCRATCH_RING_BASE_# 0x0#0 Base address of the Ring. Section 5.6.1.1
Programmer’s Reference Manual 327

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.1.1 SCRATCH_RING_BASE_# (# = 0 -15)

This register contains the Base Address in Scratchpad RAM for the Ring. This register must be
written before the Ring can be used.

Warning: The Scratch CSRs must be initialized prior to performing Put and Get operations to any of the
Scratch Rings otherwise the scratch operations are unpredictable.

SCRATCH_RING_HEAD_# 0x0#4 Offset of head entry from Base. Section 5.6.1.2

SCRATCH_RING_TAIL_# 0x0#8 Offset of tail entry from Base. Section 5.6.1.3

RESERVED 0xFC

Table 5-24. Scratchpad Memory Register Summary (Continued)

CSR name Address Description Section

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

S
IZ

E

R
E

S
E

R
V

E
D

R
IN

G
_S

TA
T

U
S

_F
LA

G

RESERVED BASE RESERVED

Bits Field Description RW Reset

[31:30] SIZE

Indicates the size of the Ring in 32-bit words.

00 = 128

01 = 256

10 = 512

11 = 1024

RW Undef

[29:27] RESERVED Reserved RO 0

[26] RING_STATUS_FLAG

Rev A -- Reserved

Rev B -- Indicates use of the Ring Status Flag

0 - Full. Ring Status Flag indicates that the Ring is
above High Water Mark (which is based on the Ring Size
field of this register.

1 - Empty. Ring Status Flag indicates that the Ring has
no data on it.

RW Undef

[25:14] RESERVED Reserved RO 0

[13:9] BASE

Ring Base Address. This value must be written to be
consistent with the requirement that the Ring is aligned to
its size. For example, if the Ring has 512 32-bit words, bits
10:9 must be written to 0.

RW Undef

[8:0] RESERVED Reserved RO 0
328 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.1.2 SCRATCH_RING_HEAD_# (# = 0 - 15)

This register contains the offset from the Ring Base of the current head. This is the next address to
be read on a get. This register must be written to 0 before the Ring can be used. When the Ring is in
use, the value is maintained by hardware, and can be read for debug and test.

Warning: The Scratch CSRs must be initialized prior to performing Put and Get operations to any of the
Scratch Rings otherwise the scratch operations are unpredictable.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED OFFSET

R
E

S
E

R
V

E
D

Bits Field Description RW Reset

[31:12] RESERVED Reserved RO 0

[11:2] OFFSET

Offset: Note that this field is large enough for the largest
size Ring. When the Ring is configured for a smaller size,
only the bits of Offset as specified in Table 5-25 will be
valid. If software uses this field, for example to calculate
how many entries of the Ring are occupied, it must mask off
unused bits.

RW Undef

[1:0] RESERVED Reserved RO 0

Table 5-25. Head/Tail Use and Full Threshold by Ring Size

Ring Size (# of
32-bit words) Base Address Head/Tail

Offset

Full Threshold
(Number of

Empty Entries)

128 13:9 8:2 32

256 13:10 9:2 64

512 13:11 10:2 128

1024 13:12 11:2 256

NOTE: Note that bits [1:0] of the address are assumed to be 00.
Programmer’s Reference Manual 329

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.1.3 SCRATCH_RING_TAIL_# (#= 0 - 15)

This register contains the offset from the Ring Base of the current tail. This is the next address to be
write on a put. This register must be written to 0 before the Ring can be used. When the Ring is in
use, the value is maintained by hardware, and can be read for debug and test.

Warning: The Scratch CSRs must be initialized prior to performing Put and Get operations to any of the
Scratch Rings otherwise the scratch operations are unpredictable.

5.6.2 Hash Configuration (CAP CSR)

Table 5-26 shows the offset addresses of the Hash Multiplier CSRs. Refer to Chapter 4, “Address
Maps” for the base address and details on how they are accessed. These CSRs can be accessed by
the Intel XScale core, PCI and the MEs.

The user should ensure that no hash operations are being performed when changing the multiplier
value since there is no order guaranteed between writes to Hash_Multiplier and Hash operations.
The Intel XScale core perform Hash operations using the HASH_OP_x_x and HASH_DONE
registers described in the Intel XScale core Local CSR section.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED OFFSET

R
E

S
E

R
V

E
D

Bits Field Description RW Reset

[31:12] RESERVED Reserved RO 0

[11:2] OFFSET

Offset: Note that this field is large enough for the largest
size Ring. When the Ring is configured for a smaller size,
only the bits of Offset as specified in Table 5-25 will be
valid. If software uses this field, for example to calculate
how many entries of the Ring are occupied, it must mask off
unused bits.

RW Undef

[1:0] RESERVED Reserved RO 0

Table 5-26. Hash Multiplier Register Summary

CSR name Address Description Section

HASH_MULTIPLIER_48_0 0x00 Least significant 32 bits of 48-bit Hash
Multiplier.

Section 5.6.2.1

HASH_MULTIPLIER_48_1 0x04 Most significant 16 bits of 48-bit Hash
Multiplier.
330 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.2.1 HASH_MULTIPLIER_48_# (# = 0,1)

These registers contain the programmable hash multiplier for generating 48-bit hash keys.
HASH_MULTIPLIER_48_1 contains the most significant 16 bits of the 48-bit hash multiplier.
HASH_MULTIPLIER_48_0 contains the least significant 32 bits of the 48-bit hash multiplier.

5.6.2.2 HASH_MULTIPLIER_64_# (# = 0,1)

These registers contain the programmable hash multiplier for generating 64-bit hash keys.
HASH_MULTIPLIER_64_1 contains the most significant 32 bits of the 64-bit hash multiplier.
HASH_MULTIPLIER_64_0 contains the least significant 32 bits of the 64-bit hash multiplier.

HASH_MULTIPLIER_64_0 0x08 Least significant 32 bits of 64-bit Hash
Multiplier.

Section 5.6.2.2

HASH_MULTIPLIER_64_1 0x0C Most significant 32 bits of 64-bit Hash
Multiplier.

HASH_MULTIPLIER_128_0 0x10 Least significant 32 bits of 128-bit Hash
Multiplier.

Section 5.6.2.3

HASH_MULTIPLIER_128_1 0x14 Bits 32 to 63 of the 128-bit hash
multiplier.

HASH_MULTIPLIER_128_2 0x18 Bits 64 to 95 of the 128-bit hash
multiplier.

HASH_MULTIPLIER_128_3 0x1C Most significant 32 bits of 128-bit Hash
Multiplier.

Table 5-26. Hash Multiplier Register Summary (Continued)

CSR name Address Description Section

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED HASH_MULT_48_1

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

HASH_MULT_48_0

Bits Field Description RW Reset

[31:16] RESERVED Reserved RO 0

[15:0] HASH_MULT_48_1 The most significant 16 bits of the 48-bit hash multiplier. RW 0

Bits Field Description RW Reset

[31:0] HASH_MULT_48_0 The least significant 32 bits of the 48-bit hash multiplier. RW 0
Programmer’s Reference Manual 331

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.2.3 HASH_MULTIPLIER_128_# (# = 0,1,2,3)

These registers contain the programmable hash multiplier for generating 128-bit hash keys.
HASH_MULTIPLIER_128_3 contains the most significant 32 bits of the 128-bit hash multiplier.
HASH_MULTIPLIER_128_0 contains the least significant 32 bits of the 128-bit hash multiplier.

HASH_MULTIPLIER_128_1 and HASH_MULTIPLIER_128_2 contain bit 32 to bit 95 of the
128-bit hash multiplier.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

HASH_MULT_64_1

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

HASH_MULT_64_0

Bits Field Description RW Reset

[31:0] HASH_MULT_64_1 The most significant 32 bits of the 64-bit hash multiplier. RW 0

Bits Field Description RW Reset

[31:0] HASH_MULT_64_0 The least significant 32 bits of the 64-bit hash multiplier. RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

HASH_MULT_128_3

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

HASH_MULT_128_2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

HASH_MULT_128_1

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

HASH_MULT_128_0

Bits Field Description RW Reset

[31:0] HASH_MULT_128_3 The most significant 32 bits (127 to 96) of the 128-bit hash
multiplier. RW 0
332 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.3 Fast Write CSRs (CAP CSR)

Table 5-27 shows the offset addresses of the Inter-process Communication CSRs. Refer to
Chapter 4, “Address Maps” for the base address and details on how they are accessed. Read and
write operations can be performed on these CSRs by the Intel XScale core, PCI and the MEs. Fast
write operations can only be performed by the MEs.

Bits Field Description RW Reset

[31:0] HASH_MULT_128_2 Contains bits 64 to 95 of the 128-bit hash multiplier. RW 0

Bits Field Description RW Reset

[31:0] HASH_MULT_128_1 Contains bits 32 to 63 of the 128-bit hash multiplier. RW 0

Bits Field Description RW Reset

[31:0] HASH_MULT_128_0 The least significant 32 bits (31 to 0) of the 128-bit hash
multiplier. RW 0

Table 5-27. Inter-Process Communication Register Summary

CSR Name Address Description Section

THD_MSG
(Generic address) 0x000

Address for Microengine
threads to write a message to
their specific register.

Refer to Note 1.

Section 5.6.3.1

THD_MSG_CLR_#_$_&
= ME cluster number 0 to 1

$ = ME number in cluster. 0 to7 for
IXP2800. 0 to 3 for IXP2400

& = thread number 0 to7

0x100–0x2FC
Address to read and clear each
individual THD_MSG.

Refer to Note 1.
Section 5.6.3.2

THD_MSG_#_$_&
= ME cluster number 0 to 1

$ = ME number in cluster. 0 to7 for
IXP2800. 0 to 3 for IXP2400

& = thread number 0 to7

0x500–0x6FC

Address to read each individual
THD_MSG_#_$_&.

Refer to Note 1.

For IXP2800, the offset for the
128 registers are 0x500 +
(((cluster# * 64) + (ME# * 8) +
Thread#) * 4)

For IXP2400, the offset for the
64 registers are 0x500 +
(((cluster# * 64) + (ME# * 8) +
Thread#) * 4)

Section 5.6.3.3

THD_MSG_SUMMARY_0_0 0x004 - Bit vector registers that
indicates which threads have
new messages

THD_MSG_SUMMARY_#_$

= ME cluster number 0 to 1

$ = register number 0 to1

Refer to Note 1.

Section 5.6.3.4

THD_MSG_SUMMARY_0_1

(IXP2800 only)
0x008

THD_MSG_SUMMARY_1_0 0x00C

THD_MSG_SUMMARY_1_1

(IXP2800 only)
0x010
Programmer’s Reference Manual 333

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.3.1 THD_MSG (Generic)

A ME thread writes this register using the cap[fast_wr] or cap[write] instruction to post a message.
The data supplied with the instruction is written to the actual register associated with the
Microengine thread number. CAP takes the generic address concatenates it with the ME and
context number of the sender to create the specific address. The usage of this model to run common
code on multiple threads. Without this address, SW would be required for figure out the specific
register. The write will also set the bit corresponding to the sender in the
THD_MSG_SUMMARY_#_$ Register. A thread can read it’s own message register by reading
this register. The read will result in a read to the associated THD_MSG_#_$_& (by concatenating
the ME and context number to create the specific address), however the usage of this model is that
a thread typically does not read its own message register. The Intel XScale core and PCI should
not read this register since they do not have a message field reserved in these register.

SELF_DESTRUCT_0 0x014 Write bit number to set a bit in
these registers and a read
clears all the bits in the register

Section 5.6.3.5
SELF_DESTRUCT_1 0x018

INTERTHREAD_SIG 0x01C

Writing a thread and signal
number to this register
generates a signal event to the
thread

Section 5.6.3.6

XSCALE_INT_A 0xb20 Address for Microengine
threads to set an interrupt to
the Intel XScale core.

Section 5.6.3.7
XSCALE_INT_B 0xb24

Note 1.

Each Microengine thread can be programmed to write an 8-bit message to its own THD_MSG_#_$_& register.
The intent of these registers is to provide a mechanism to have the Microengine threads report their current
processing status. The interpretation of the message is a software semantic between the sender and receiver.

The numbering scheme of the Microengine threads involves the ME cluster, the ME number within the cluster
and the thread number within each ME. There are two ME clusters for both IXP2800/2400. IXP2800 offers 8
MEs per cluster, with numbers 0 through 7. IXP2400 offers 4 MEs per cluster, with numbers 0 through 3.

A Microengine thread writes this register using the fast_wr or cap[write] instruction with the generic THD_MSG
register address. The data supplied with the instruction is written to the actual register associated with the
Microengine thread number. CAP takes the generic address concatenates it with the ME and context number
of the sender to create the specific address. The write will also set the bit corresponding to the sender in the
THD_MSG_SUMMARY_#_$ Register.

The cap[read] instruction or the IIntel XScale core read uses the actual THD_MSG register addresses to
read these registers. There are two addresses to read THD_MSG. One will return the read data and clear the
THD_MSG (and its corresponding THD_MSG_SUMMARY_#_$ bit), the other will return the read data and
leave the contents of the register intact.

The cap[read] instruction can use either the generic THD_MSG address or the actual thread specific
THD_MSG_#_$_& register addresses to read these registers. When the generic THD_MSG address is used
for a read, CAP will determine the actual register in the same way as described above in the write description.
There are two thread specific addresses for each THD_MSG; one will only read the data, the other will read
the data and clear the THD_MSG register, and also clear the corresponding bit in the
THD_MSG_SUMMARY_#_$ Register. Reading at the generic address does not do the clear function.

Table 5-27. Inter-Process Communication Register Summary (Continued)

CSR Name Address Description Section
334 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Note that if the CTX or ME numbers are overridden by using an indirect_ref token in the cap
command, the values of the CTX and the ME specified in the indirect reference are used in
calculating the register address..I

5.6.3.2 THD_MSG_CLR_#_$_& (# = {0,1}, $= {0,7 or 3}, & = {0,7})

= ME cluster number 0 to 1
$ = ME number in cluster. 0 to 7 for IXP2800 and 0 to 3 for IXP2400
& = Thread number 0 to 7

Reading this register returns the thread status for the specified thread and clears the contents of this
register as well as the corresponding summary bit in the THD_MSG_SUMMARY_#_$ register.
Although this register can be written, the usage model is that this is read only register.

5.6.3.3 THD_MSG_#_$_& (# = {0,1}, $ = {0,7 or 3}, & = {0,7})

= ME cluster number 0 to 1
$ = ME number in cluster. 0 to 7 for IXP2800 and 0 to 3 for IXP2400
& = Thread number 0 to 7

Reading this register returns the thread status for the specified thread. Although this register can be
written, the usage model is that this is read only register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED THD_MESSAGE

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] THD_MESSAGE Thread status RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED THD_MESSAGE

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] THD_MESSAGE Thread status WRC 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED THD_STATUS
Programmer’s Reference Manual 335

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.3.4 THD_MSG_SUMMARY_#_$ (# = {0,1}, $ = {0,1})

= ME cluster number 0 to 1
$ = register number 0 to 1 (only 0 for IXP2400)
These registers provide a summary of which THD_MSG registers that have valid data in them.

When a thread writes to its THD_MSG register the corresponding bit in
THD_MSG_SUMMARY_#_$ is set. When a THD_MSG register is read (and cleared), the
corresponding bit in THD_MSG_SUMMARY_#_$ is also cleared. This allows a reader to quickly
check which threads have posted information into a THD_MSG register (by reading the four
THD_MSG_SUMMARY_#_$ registers), and then go read the information.

There are two addresses to read THD_MSG. One will return the read data and clear the THD_MSG
(and its corresponding THD_MSG_SUMMARY_#_$ bit), the other will return the read data and
leave the contents of the register intact.

Note: There is a race condition if multiple message receivers are used—two (or more) readers could read
the summary and see a bit (or bits) set. They could both then try to read the same THD_MSG. To
solve that problem, the first reader of THD_MSG will get the information, and THD_MSG will be
cleared (in hardware) by the read. The message value of 0 should therefore be reserved by software
as a null message. A reader getting that value from THD_MSG should treat it as null.

5.6.3.5 SELF_DESTRUCT_# (# = 0 -1)

These two registers are written during a CAP[fast_wr or write] instruction with data in the range
of 0 through 31 (decimal). Writing to a SELF_DESTRUCT register sets a bit that corresponds to
the data written. For example, writing a value of 12 (decimal) sets bit 12. Multiple writes can be
performed to set multiple bits in the register. When the register is read, all bits are cleared to 0 after
the original data is read.

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] THD_STATUS Thread status RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

THD_MSG_ VALID

(ME n + 3)
THD_MSG_ VALID

(ME n + 2)
THD_MSG_ VALID

(ME n + 1)
THD_MSG_ VALID

(ME n + 0)

Bits Field Description RW Reset

[31:0]

THD_MSG_ VALID

ME

(where n= 0 or 4)

Set by a fast_wr or cap[write] to THD_MSG; cleared
by a read of the corresponding THD_MSG.

Each byte represents the thread message valid status for an
ME.

bits [0],[8],[16],[24] are thread 0

bits [1],[9],[17],[25] are thread 1

bits [2],[10],[11],[12] are thread 3 etc...

RO 0
336 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.3.6 INTERTHREAD_SIG

Any master can write a Microengine thread number to this register to signal an event to another
thread. The value written to this register is broadcast to all Microengines. Each Microengine
compares the Microengine number to its own number, and if it matches it sets the specified signal
number for the specified thread.

Writes to INTERTHREAD_SIG are not queued at the Microengine. Multiple writes to the same
thread ID may result in only 1 signal. Software must enforce a strict handshake between threads
using this method.

5.6.3.7 XSCALE_INT_# (# = A, B)

An ME writes any data to these registers to generate an Intel XScale core interrupt. The ME and
Context number are used to set a bit in the Intel XScale core Local CSRs
{IRQ,FIQ}THD_RAW_STATUS_$_#, THD_RAW_STATUS_$ registers (refer to
Section 5.10.1.18).

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

SELF_DEST_DATA

Bits Field Description RW Reset

[31:0] SELF_DEST_DATA

Read/Write Data. A set bit corresponds to a value of 0
through 31 (decimal) written to this register during a
fast_wr or cap[write] instruction. When the register is
read, this field is cleared after reading.

WRC 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

M
E

 C
LU

S

R
E

S
E

R
V

E
D

ME_NO THD_
NO SIG

Bits Field Description RW Reset

[31:12] RESERVED Reserved W 0

[11] ME CLUS ME Cluster W 0

[10] RESERVED
Reserved

when writing to this register this bit must always be 0
W 0

[9:7] ME_NO
Microengine number that will be signaled. Valid IXP2800
ME numbers are 0 - 7. Valid IXP2400 ME numbers are 0 -
3.

W 0

[6:4] THD_NO Thread number (0–7) that will be signaled. W 0

[3:0] SIG Number of the signal to deliver. 0x0 indicates no signal. W 0
Programmer’s Reference Manual 337

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
CAP takes the ME and context number of the sender to create the specific address. If the CTX or
ME numbers are overridden by using an indirect_ref token in the cap command, the values of the
CTX and the ME specified in the indirect reference are used in calculating the bit address.

5.6.4 Global Control (CAP CSR)

Table 5-28 shows the offset addresses of the Global Control CSRs. Refer to Chapter 4, “Address
Maps” for the base address and details on how they are accessed. These CSRs can be accessed by
the Intel XScale core, PCI and the MEs.

5.6.4.1 PRODUCT_ID

PRODUCT_ID can be used by software to determine the type and revision level of the device.

The MAJOR REV is incremented for revisions that are visible to software, and may therefore
require different versions of code. The MINOR REV is incremented for changes which are not
visible to software, such as chip clock frequency improvements, bug fixes, etc. Chip
documentation and Errata sheets will identify which version of the chip they pertain to by this
register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

ANY DATA

Bits Field Description RW Reset

[31:0] ANY _DATA Any data can be written since it is ignored by CAP WO 0

Table 5-28. Global Chassis Registers

Register Name Address Description Section

PRODUCT_ID 0x00 Section 5.6.4.1

MISC_CONTROL 0x04 Section 5.6.4.2

MCCR (IXP2400 Only) 0x08 Section 5.6.4.3

IXP_RESET_0 0x0C Section 5.6.4.4

IXP_RESET_1 0x10 Section 5.6.4.5

CLOCK_CONTROL 0x14 Section 5.6.4.6

STRAP_OPTIONS 0x18 Section 5.6.4.7

WATCHDOG_HISTORY 0x40 Section 5.6.4.8

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED MAJ_PROD_
TYPE MIN_PROD_TYPE MAJ_REV MIN_REV
338 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.4.2 MISC_CONTROL

This register contains control for miscellaneous functions.

Bits Field Description RW Reset

[31:21] RESERVED Reserved RO 0

[20:16] MAJ_PROD_TYPE 0 = IXP2000 others will be assigned as needed RO

[15:8] MIN_PROD_TYPE

0 = IXP2800

2 = IXP2400

others will be assigned as needed

RO

[7:4] MAJ_REV Current Revision. Starts at 0 for A stepping. B stepping is 1. RO

[3:0] MIN_REV

0 = Rev A0/B0

1 = Rev A1

2 = Rev A2

RO

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PCI_CMD_
PRIO

XSCALE_

CMD_PRIO
RESERVED

F
LA

S
H

_W
R

_E
N

F
LA

S
H

_A
LIA

S
_ D

IS
A

B
LE

T
IM

E
S

TA
M

P
_E

N

CLK_DISABLE

Bits Field Description RW Reset

[31:26] RESERVED Reserved RO 0

[25:21] PCI_CMD_PRIO

Priority for PCI in Command Bus Arbiter. The counter
counts down one every cycle when PCI is requesting, and
when it hits zero PCI has highest Command Bus priority.

This field is the value that is loaded into the counter when it
has counted down to zero. Lower values give PCI higher
priority.

RW 0

[20:16] XSCALE_CMD_PRIO

Priority for the Intel XScale core in Command Bus Arbiter.
The counter counts down one every cycle when the Intel
XScale core is requesting, and when it hits zero the Intel
XScale core has highest Command Bus priority.

This field is the value that is loaded into the counter when it
has counted down to zero. Lower values give the Intel
XScale core higher priority.

RW 0

[15:10] RESERVED Reserved RO 0

9 FLASH_WR_EN

This bit provides some protection against software bugs
accidentally causing a write to flash space which overwrites
good data.

0—Writes to flash address space are discarded by the
flash controller.
1—Writes to flash address are done as normal by the
flash controller.

RW 0
Programmer’s Reference Manual 339

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.4.3 MSF Clock Control CSR (MCCR) - IXP2400 only

MSF Clock Control selects the clock ratio for the four IXP2400 MSF RX0, RX1, TX0, and TX1
PLL. This register must be programmed before accesses to the MSF.

These steps must be followed:

During power on initialization
1. PLL in PLL disable mode (MCCR[MSF_POWERDOWN] =1 default)

2. PLL in bypass mode (MCCR[MSF_BYPASS_SEL] =1 default)

3. Software Set up each of MSF clock ratio (MCCR[MSF_CLKCFG])
4. Disable the PLL bypass mode (MCCR[MSF_BY_PASS_SEL] = 0)
5. Turn on PLL(MCCR[MSF_POWERDOWN] =0)

6. Wait for MSF PLL lock (MCCR[MSF_PLL_LOCK] = 1)
7. Enable MSF block (via MSF_Rx_Control[Rx_En] or MSF_Tx_Control[Tx_En])
8. Initialize the MSF CSR registers

8 FLASH_ALIAS_
DISABLE

This bit allows the Intel XScale core to be able to boot
from address 0, and to later put vectors into writable
memory at address 0.

0—the flash ROM appears at address 0, as well as its
normal address.
1—DRAM appears at address 0.

RW 0

7 TIMESTAMP_EN

This bit enables the Timestamp in the Microengines to
count. Writing to this bit enables/disables all Timestamps at
the same time, so they can be kept in sync.

0—Timestamps do not advance.
1—Timestamps advance.

RW 0

[6:0] CLK_DISABLE

Control clocks to memory controller units. May be used to
save power if a memory channel is not being used.

Only valid for IXP2800. Reserved on IXP2400.

When 0—Unit clock is enabled.

When 1—Unit clock is disabled.

Bit map:
• 6 DRAM Channel 2
• 5 DRAM Channel 1
• 4 DRAM Channel 0
• 3 SRAM Channel 3
• 2 SRAM Channel 2
• 1 SRAM Channel 1
• 0 SRAM Channel 0

RW 0

Bits Field Description RW Reset
340 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31:28] MSF_PLL_LOCK

This field is read only and is intended to provide visibility of
the PLL LOCK output signal from the MSF PLLs.
0 = PLL is not locked
1 = PLL is locked

[31] - TX PLL 1 (channels 2/3)
[30] - TX PLL 0 (channels 0/1)
[29] - RX PLL 1 (channels 2/3)

[28] - RX PLL 0 (channels 0/1)

RO 0x0

[27:26] Reserved RO 0x0

[25] MSF_TX_CLK_MODE

Used to configure the number of clocks on the transmit
interface.

0 - single clock mode; only TXCLK01 clock input is used;
TXCLK23 clock input should be tied low

1- dual clock mode; both TXCLK01 and TXCLK23
clock inputs are used

RW 0x0

[24] MSF_RX_CLK_MODE

Used to configure the number of clocks on
the receive interface.

0 - single clock mode; only RXCLK01 clock
input is used; RXCLK23 clock input
should be tied low

1- dual clock mode; both RXCLK01 and RXCLK23
clock inputs are used

RW 0x0
Programmer’s Reference Manual 341

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[23:16] MSF_CLKCFG

This field is used to set the multiplier/divisor for the PLLs.
The PLL operates at the external clock multiplied by the
value of the selected multiplier. The output of the PLL is then
divided by the same value to recreate the original clcck
frequency.

00: 48 (nominally 25 MHz)
01: 24 (nominally 50 MHz)
10: 16 (nominally 104 MHz)
11: 12 (nominally 125 MHz)

For clock frequencies other than the nominal frequencies,
select the setting for the closest value. For example, for 80
MHz, use “10” for a multipler/divisor of 16. The requirement
is that the clock frequency times the selected multiplier
should fall in the range of 1 to 2 GHz to achieve lock.

[23:22] - TX PLL 1 (channels 2/3)
[21:20] - TX PLL 0 (channels 0/1)
[19:18] - RX PLL 1 (channels 2/3)
[17:16] - RX PLL 0 (channels 0/1)

These steps must be followed:

During power on initialization
1. PLL in PLL disable mode (MCCR[MSF_POWERDOWN]
=1)

2. PLL in bypass mode (MCCR[MSF_BYPASS_SEL] =1)

3. Software Set up each of MSF clock ratio
(MCCR[MSF_CLKCFG] bits)
4. Disable the PLL bypass mode
(MCCR[MSF_BY_PASS_SEL] = 0)
5. Turn on PLL(MCCR[MSF_POWERDOWN] =0)

6. Wait for MSF PLL lock (MCCR[MSF_PLL_LOCK] = 1)
7. Initialize the MSF

8. Enable MSF block (via MSF_Rx_Control[Rx_En] or
MSF_Tx_Control[Tx_En])

RW 0x0

[15:12] MSF_BYPASS_SEL

Select MSF PLL bypass
It should be in bypass mode during power on initialization.

0: no bypass (Select PLL clock output)
1: bypass (Select external reference clock)

[15] - TX PLL 1 (channels 2/3)
[14] - TX PLL 0 (channels 0/1)
[13] - RX PLL 1 (channels 2/3)
[12] - RX PLL 0 (channels 0/1)

RW 0xF

Bits Field Description RW Reset
342 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[11:8] MSF_DIV_RESET

This is used to reset the divider and should be
used only in test mode. To reset the divider,
software must first write a 1, then a 0.

0: reset not asserted
1: reset asserted

[11] - TX PLL 1 (channels 2/3)
[10] - TX PLL 0 (channels 0/1)
[9] - RX PLL 1 (channels 2/3)
[8] - RX PLL 0 (channels 0/1)

RW 0x0

[7:4]
MSF_POWERDOWN

(IDDQ Enable)

MSF_POWERDOWN

This is used for MSF PLL disable during the power on
initialization. This is also can be used during IDDQ/leakage
tests.

0: no power down
1: power down

[7] - TX PLL 1 (channels 2/3)
[6] - TX PLL 0 (channels 0/1)
[5] - RX PLL 1 (channels 2/3)
[4] - RX PLL 0 (channels 0/1)

RW 0xF

[3:0] MSF_ICCTEST

This is used to power down the differential amps
in the clock buffer and is intended to be used only in IDDQ/
leakage tests.

0 = normal operation
1 = power down

[3] - TX PLL 1 (channels 2/3)
[2] - TX PLL 0 (channels 0/1)
[1] - RX PLL 1 (channels 2/3)
[0] - RX PLL 0 (channels 0/1)

RW 0x0

Bits Field Description RW Reset
Programmer’s Reference Manual 343

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.4.4 IXP_RESET_0

Software reset control consists of two 32-bit registers: IXP_RESET_0 and IXP_RESET_1.
IXP_RESET_0 is used to reset everything except Microengines. IXP_RESET_1 is used to reset
Microengines. Software initiated system resets should be performed by setting the
IXP_RESET_0[15] (RST_ALL). This is equivalent to a hard reset. Some reset bits in this register
are for Intel testing only and should never be set. Other reset bits can be used to reset the unit
during run time (if the unit is in a quiescent state) or hold units in reset if the units are not used.
These registers are Read/Write by both PCI host and the Intel XScale processor.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

W
A

T
C

H
D

O
G

C
R

Y
P

T
O

_U
N

IT

E
X

T
_R

E
S

E
T

_E
N

IN
IT

_C
O

M
P

C
M

D
_A

R
B

S
B

U
S

_A
R

B

D
B

U
S

_A
R

B

S
H

aC

R
S

T
_A

LL

E
X

T
_R

S
T

D
R

A
M

_3

D
R

A
M

_2

D
R

A
M

_1

D
R

A
M

_0

R
E

S
E

R
V

E
D

M
S

F

S
R

A
M

_3

S
R

A
M

_2

S
R

A
M

_1

S
R

A
M

_0

P
C

I_R
S

T

P
C

I

X
S

C
A

LE

Bits Field Description RW
IXP

28x0
Reset

IXP
2400
Reset

[31:25] RESERVED Reserved. Read as “0” RO 0 0

[24] WATCHDOG

WatchDog Timer Reset Enable

0: WatchDog Timer reset triggers a PCI interrupt to be
sent to the PCI host.

1: WatchDog Timer reset triggers a Soft reset which is
equivalent to asserting IXP_RESET_0[16] (RST_ALL).

RW 1 0

[23] Reserved Resereved. RW 1 1

[22] EXT_RESET_EN

External Reset Enable (IXP2800 Only)

If RESET_OUT_STRAP is “1” and this bit is:
0: The nRESET_OUT pin behaves the same as the
internal reset caused by a hardware reset (reset is
deasserted when the PLL lock is obtained).
1: Software controls the nRESET_OUT pin by
writing to IXP_RESET._0[15] (EX_RST)

Else if RESET_OUT_STRAP is “0”, Software always
controls the nRESET_OUT pin by writing to
IXP_RESET._0[15] (EX_RST)

RW 0 0

[21] INIT_COMP

Indicates that initialization is complete.

0— The IXP processor returns a retry response as the
target of PCI configuration cycles, and will not assert
PCI_DEV_SEL# to the PCI I/O or memory commands.

1—The IXP processor returns a normal response to
PCI configuration cycles.

RW 0 0

[20] CMD_ARB

Intel test bit. Users should not set it.

For IXP2400, IXP2400 automatically sets this bit as part
of system reset, and automatically clears it after 256
cycles.
Command bus arbiter reset

RW 0 1
344 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[19] SBUS_ARB

Intel test bit. Users should not set it.

For IXP2400, IXP2400 automatically sets this bit as part
of system reset, and automatically clears it after 256
cycles.
S Push/Pull Bus arbiter reset.

RW 0 1

[18] DBUS_ARB

Intel test bit. Users should not set it.

For IXP2400, IXP2400 automatically sets this bit as part
of system reset, and automatically clears it after 256
cycles.
D Push/Pull bus arbiter reset.

RW 0 1

[17] SHaC

Intel test bit. Users should not set it.

For IXP2400, IXP2400 automatically sets this bit as part
of system reset, and automatically clears it after 256
cycles.
Scratch Controller, Hash Unit and CSR unit reset.

RW 0 1

[16] RST_ALL

Resets the chip in a manner equivalent to a Hard Reset.

For IXP2400, IXP2400 automatically sets this bit as part
of system reset, and automatically clears it after 256
cycles.

RW 0 1

[15] EXT_RST
External Reset: If set, the external reset pin
RESET_OUT# is asserted. Refer to IXP_RESET_0[22]
(EXT_RESET_EN).

RW 0 1

[14] DRAM_3 Not used: Reserved for future use. RO 0 0

[13] DRAM_2 Dram 2 Controller: Reserved on IXP2400. RW 1 0

[12] DRAM_1 Dram 1 Controller: Reserved on IXP2400. RW 1 0

[11] DRAM_0
Dram 0 Controller.

For IXP2400, IXP2400 automatically clears this bit after
256 cycles as part of system reset.

RW 1 0

[10:8] RESERVED Reserved for MSF future use. RO 0 0

[7] MSF Media and Switch Fabric Controller: RW 1 1

[6] SRAM_3
SRAM 3 Controller:

IXP2800 only. Reserved on IXP2400.
RW 1 0

[5] SRAM_2
SRAM 2 Controller:

IXP2800 only. Reserved on IXP2400.
RW 1 0

[4] SRAM_1
SRAM 1 Controller

For IXP2400, IXP2400 automatically clears this bit after
256 cycles as part of system reset.

RW 1 0

[3] SRAM_0
SRAM 0 Controller

For IXP2400, IXP2400 automatically clears this bit after
256 cycles as part of system reset.

RW 1 0

Bits Field Description RW
IXP

28x0
Reset

IXP
2400
Reset
Programmer’s Reference Manual 345

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[2] PCI_RST

If the CFG_RST_DIR pin is asserted high, PCI_RST# is
an output and if this bit is:

0 - IXP2800 / IXP2400 does not assert PCI_RST#
pin.
1 - IXP2800 / IXP2400 asserts PCI_RST# pin.

The Intel XScale core must clear this bit after reset to
release the PCI bus from reset.

If the CFG_RST_DIR pin is asserted low, PCI_RST# is
an input. This bit will be asserted when PCI_RST# is
asserted and cleared otherwise

RW 1 1

[1] PCI PCI Unit: Should only be set as part of system reset RW 1 1

[0] XSCALE

Intel XScale core Reset: If the CFG_PROM_BOOT
pin is:

1: This bit is automatically cleared by hardware after the
reset so that the Intel XScale core can boot

0: This bit remains high after reset and must be cleared
by the PCI host driver after boot code has been loaded
into DRAM. When it is deasserted, theIntel XScale
core will fetch the boot code from DRAM.

RW Refer to the
description.

Bits Field Description RW
IXP

28x0
Reset

IXP
2400
Reset
346 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.4.5 IXP_RESET_1

Reset control consists of two 32-bit registers: RESET_0 and RESET_1. RESET_0 is used to reset
everything except Microengines. RESET_1 is used to reset Microengines. These bits are Read/
Write by both PCI host and the Intel XScale processor.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

M
E

1_7

M
E

1_6

M
E

1_5

M
E

1_4

M
E

1_3

M
E

1_2

M
E

1_1

M
E

1_0

RESERVED

M
E

0_7

M
E

0_6

M
E

0_5

M
E

0_4

M
E

0_3

M
E

0_2

M
E

0_1

M
E

0_0

Bits Field Description RW
IXP

2800
Reset

IXP
2400
Reset

[31:24] RESERVED Reserved. Read as 0x0. RO 0 0

[23] ME1_7
Cluster 1 -ME 7: If set, the ME is reset.

IXP2800 only. Reserved on IXP2400.
RW 1 0

[22] ME1_6
Cluster 1 -ME 6: If set, the ME is reset.

IXP2800 only. Reserved on IXP2400.
RW 1 0

[21] ME1_5
Cluster 1 -ME 5: If set, the ME is reset.

IXP2800 only. Reserved on IXP2400.
RW 1 0

[20] ME1_4
Cluster 1 -ME 4: If set, the ME is reset.

IXP2800 only. Reserved on IXP2400.
RW 1 0

[19] ME1_3 Cluster 1 -ME 3: If set, the ME is reset. RW 1 1

[16] ME1_2 Cluster 1 -ME 2: If set, the ME is reset. RW 1 1

[17] ME1_1 Cluster 1 -ME 1: If set, the ME is reset. RW 1 1

[16] ME1_0 Cluster 1 -ME 0: If set, the ME is reset. RW 1 1

[15:8] RESERVED Reserved RO 0 0

[7] ME0_7 Cluster 0 -ME 7: If set, the ME is reset.
IXP2800 only. Reserved on IXP2400. RW 1 0

[6] ME0_6
Cluster 0 -ME 6: If set, the ME is reset.

IXP2800 only. Reserved on IXP2400.
RW 1 0

[5] ME0_5
Cluster 0 -ME 5: If set, the ME is reset.

IXP2800 only. Reserved on IXP2400.
RW 1 0

[4] ME0_4
Cluster 0 -ME 4: If set, the ME is reset.

IXP2800 only. Reserved on IXP2400.
RW 1 0

[3] ME0_3 Cluster 0 -ME 3: If set, the ME is reset. RW 1 1

[2] ME0_2 Cluster 0 -ME 2: If set, the ME is reset. RW 1 1

[1] ME0_1 Cluster 0 -ME 1: If set, the ME is reset. RW 1 1

[0] ME0_0 Cluster 0 -ME 0: If set, the ME is reset. RW 1 1
Programmer’s Reference Manual 347

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.4.6 CLOCK_CONTROL

Clock Control selects the clock ratio for the SRAM and DRAM controllers. This register must be
programmed before accesses to the SRAM/DRAM are done. For the IXP2800, a value of 0x0 stops
the clock and 0x1 and 0x2 are illegal.

For IXP2400 only, the clock control settings are documented in the description column of the
following table.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVE
D

APB_CLK_
RATIO

MSF_CLK
_RATIO

DRAM_

CLK_

RATIO

SRAM_
CH3_CLK_
RATIO

SRAM_
CH2_CLK_
RATIO

SRAM_
CH1_CLK_
RATIO

SRAM_

CH0_CLK_
RATIO

Bits Field Description RW
IXP

2800
Reset

IXP
2400
Reset

[31:28] RESERVED Reserved RO 0x0 0x0

[27:24] APB_CLK_RATIO

IXP2800: Clock ratio for the IIntel XScale
core peripheral devices. The frequency is 1/4n
the ME frequency where n is the value in this
field.

0x3 - 1/12 ME Frequency

0x4 - 1/16 ME Frequency

....0xf - 1/60 ME Frequency

a value of 0 will disable the clock, which is not
recommended due to it shutting off the SHaC
unit.

IXP2400: Reserved

RW 0xF 0x0

[23:20] MSF_CLK_RATIO

IXP2800: Clock ratio for media and switch
fabric interface if RCLK input clock supplied by
the PHY interface is not used.

MSF freq = (ME freq) / value in this field

IXP2400: Reserved

RW 0xF 0x0

[19:16] DRAM_CLK_RATIO

Clock ratio for all the DRAM Channels.

IXP2800: DRAM internal clock frequency =
(ME freq) / value in this field. The reference
output clock (RefClk) is this frequency/2 and
the CTM clock is 4x this frequency.

IXP2400: DRAM freq = ME freq / value in this
field. Valid values are 0x4 and 0x6.

RW 0xF 0x6

[15:12] SRAM_CH3_CLK_
RATIO

IXP2800: Clock ratio for SRAM Channel 3. An
integer that used to derive the SRAM bus
frequency.

SRAM freq = (ME freq) / value in this field

IXP2400: Reserved

RW 0xF 0x0
348 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
When the Clock Control register is programmed, typically through the integrated Intel XScale
processor or PCI interface, the IXP2400 network processor needs to resynchronize with the new
clock ratio settings. User should allow adequate time for the synchronization to take effect.
Specifically, software should allow 500 Intel XScale core clock cycles or 100 PCI cycles to
ensure that the synchronization is complete.

Here is a sample Intel XScale code sequence for programming Clock_Control:
//Drain instruction

mcr p15, 0, r0, c7, c10, 4

//Align the following code sequence to 32-byte cache

//line boundary.

.align 5

//Program Clock_Control register.

//Register r10 holds the address of Clock_Control.

//Register r2 holds the value to be programmed into Clock_Control.

str r2, [r10]

//Perform a wait loop of about 500 or 0x200 cycles.

mov r3, #0x200

1:

subs r3, r3, #1

bne 1b

[11:8] SRAM CHANNEL 2
CLOCK RATIO

IXP2800: Clock ratio for SRAM Channel 2. An
integer that used to derive the SRAM bus
frequency.

SRAM freq = (ME freq) / value in this field.

IXP2400: Reserved

RW 0xF 0x0

[7:4] SRAM CHANNEL 1
CLOCK RATIO

Clock ratio for SRAM Channel 1. An integer
that used to derive the SRAM bus frequency.

XP2800:, SRAM freq = (ME freq) / value in this
field.

IXP2400: SRAM freq = ME freq / value in this
field. Valid values are 0x3, 0x4, and 0x6.

RW 0xF 0x6

[3:0] SRAM CHANNEL 0
CLOCK RATIO

Clock ratio for SRAM Channel 0. An integer
that used to derive the SRAM bus frequency.

IXP2800: SRAM freq = (ME freq) / value in this
field.

IXP2400: SRAM freq = ME freq / value in this
field. Valid values are 0x3, 0x4, and 0x6.

RW 0xF 0x6

Bits Field Description RW
IXP

2800
Reset

IXP
2400
Reset
Programmer’s Reference Manual 349

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.4.7 STRAP_OPTIONS

This register provides software visibility to board strapping options (i.e. pins that are tied high or
low on the PC board to configure start-up options).

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED
R

E
S

E
T

_O
U

T
_S

T
R

A
P

CFG_PLL_MULT

C
F

G
_P

C
I_S

W
IN

C
F

G
_P

C
I_D

W
IN

C
F

G
_P

C
I_A

R
B

C
F

G
_P

C
I_B

O
O

T
_

C
F

G
_P

R
O

M
_B

O
O

T

C
F

G
_R

S
T

_D
IR

Bits Field Description RW Reset

[31:15] RESERVED Reserved RO 0

[14] RESET_OUT_STRAP

IXP2800: The SP_AD[7] pins selects when the external
reset pin (NRESET_OUT) is deasserted and the current
strapping settings are provided in this field.

1: the reset deasserts after PLL Lock based on the default
value from IXP_RESET_0[22] (EXT_RESET_EN which
defaults to 0)

0: the reset deasserts under Software control by writing to
IXP_RESET_0[15] (EX_RST). Refer to Section 5.6.4.4

IXP2400: Reserved

RO dep

[13:8] CFG_PLL_MULT

IXP2800: The SP_AD[5:0] pins selects IXP PLL Multiplier
and the current strapping settings are provided in this field.

Valid values are even values between (and including) 0x10
(16) to 0x30 (48).

IXP2400: Reserved

RO dep

[7:6] CFG_PCI_SWIN

The GPIO[6:5] pins selects PCI SRAM BAR Window Size
and the current strapping settings are provided in this field.

11—256 MByte
10—128 MByte
01—64 MByte
00— 32MByte

RO dep

[5:4] CFG_PCI_DWIN

The GPIO[4:3] pins selects PCI DRAM BAR Window Size
and the current strapping settings are provided in this field.

11—1024 MByte
10—512 MByte
01—256 MByte
00—128 MByte

RO dep

[3] CFG_PCI_ARB

The GPIO[2] pin selects PCI Arbiter configuration and the
current strapping settings are provided in this field.

0 — Uses an external arbiter
1 — Uses the internal arbiter

RO dep
350 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.4.8 WATCHDOG_HISTORY

A status register that indicates if the watchdog timer has expired.

[2] CFG_PCI_BOOT_
HOST

The GPIO[1] pin selects whether the PCI Host or the IXP’s
Intel XScale core will configure PCI devices and the
current strapping settings are provided in this field.

0—External Host
1—The IXP2800 / IXP2400

RO dep

[1] CFG_PROM_BOOT

The GPIO[0] pin selects whether a Boot ROM is present
and the current strapping settings are provided in this field.

0—No Boot ROM -- Host must download Boot image
into DRAM
1—Boot ROM is present

RO dep

[0] CFG_RST_DIR

The CFG_RST_DIR pin selects the direction of PCI_RST#
signal and the current strapping settings are provided in this
field.

1—IXP is the host supporting central functions.
PCI_RST# is an output. NRESET is used as reset
input.
0—External PCI host supporting central functions.
PCI_RST# is an input.

RO dep

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

S
R

_H
IS

W
D

_H
IS

Bits Field Description RW Reset

[31:2] RESERVED Reserved RO 0

[1] SR_HIS

Soft reset history

Gets set to 1 when Software sets the IXP_RESET0[16]
RSTALL to 1

Gets reset to 0 when hard reset is applied or software
reads this register.

This bit is Reserved in Rev A of IXP2400 and IXP2800.

RC 0x0

[0] WD_HIS

The watchdog timer has expired when this bit is set. It is
reset when hard reset is applied or the register is read. If
IXP_RESET_0[WatchDog] is 0 the watchdog expiry will
generate a PCI interrupt. the PCI host can read this bit to
determine if the interrupt was caused by the watchdog
timer. If IXP_RESET_0[WatchDog] is 1, the WatchDog
Timer triggers a Soft reset.

RC 0
Programmer’s Reference Manual 351

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.5 Timer (CAP CSR)

Table 5-29 shows the offset addresses of the Timer CSRs. Refer to Chapter 4, “Address Maps” for
the base address and details on how they are accessed. These CSRs can be accessed by the Intel
XScale core, PCI and the MEs.

Note: In the IXP2800 Rev A, only timer register #1 and #4 are available. Timer registers #2 and #3 are
reserved.

5.6.5.1 T#_CTL (# = 1,2,3,4)

Timer Control Registers. This register controls the timer functions, mode, and activation.

Table 5-29. Timer Register Map

Name Abbreviation Address Description Section

TIMER
CONTROL
registers

T1_CTL

T2_CTL

T3_CTL

T4_CTL

0x00

0x04

0x08

0x0C

This is used to determine the timer
functions, mode, activation Section 5.6.5.1

TIMER
COUNTER
LOADING
registers

T1_CLD

T2_CLD

T3_CLD

T4_CLD

0x10

0x14

0x18

0x1C

These registers store the initial values
for the timer counters. Writing to a
register causes the timer to reload with
its initial value.

Section 5.6.5.2

TIMER
COUNTER

STATUS
register

T1_CSR

T2_CSR

T3_CSR

T4_CSR

0x20

0x24

0x28

0x2C

This is to store the current counter
values. Section 5.6.5.3

TIMER
COUNTER

CLEAR
registers

T1_CLR

T2_CLR

T3_CLR

T4_CLR

0x30,
0x34,
0x38,
0x3C

Any write to these registers clear the
associated timer interrupts. Section 5.6.5.4

TIMER
WATCHDOG

ENABLE
register

TWDE 0x40 This is to enable the timer 4 to be a
watchdog timer. Section 5.6.5.4

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

A
C

T

R
E

S
E

R
V

E
D

PSS

R
E

S
E

R
V

E
D

352 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.5.2 T#_CLD, (# = 1,2,3,4)

Timer Counter Loader Register. These registers is used to hold the counter initial value. The value
can be altered by the programmer. Writing to these registers causes the reload of the counters. By
default, they contain the value of 0xFFFF_FFFF.

Bits Field Description RW Reset

[31:8] RESERVED Reserved. Read returns 0; write has no effect RO 0

[7] ACT

Activate the Timer. When 1: Timer is activated. After the re-
activation, the Timer Counter Status register value is
resumed.

When 0: Timer is deactivated. The counter is disabled but
the value in the Timer Counter Status register can still be
read.

RW 0x0

[6:4] RESERVED Reserved. Read returns 0; write has no effect RO 0

[3:2] PSS

Select the pre-scaler. The bit interpretation:
00: Use clock to trigger the counter;
01: Use clock/16 to trigger the counter;
10: Use clock/256 to trigger the counter;
11: Use GPIO pins to trigger the counter for external
event. In this case, there are three limitations:

• The duration of the GPIO pulse has to be greater than
40ns

• The pulse delay has to be more than 40ns

• The maximum counter trigger frequency is 25MHz
ideally.

The GPIO Pins are assigned as follows:
gpio[0] = timer1
gpio[1] = timer2
gpio[2] = timer3
gpio[3] = timer4.

RW 0x00

[1:0] RESERVED Reserved. Read returns 0; write has no effect RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

CLV

Bits Field Description RW Reset

[31:0] CLV Store the counter initial value. RW 0xFFFFFFFF
Programmer’s Reference Manual 353

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.5.3 T#_CSR, (# = 1,2,3,4)

Timer Counter Status Register. These registers store the current counter value. During reset, the
T#_CSR registers get loaded with the initial value of the T#_CLD registers.

5.6.5.4 T#_CLR(# = 1,2,3,4)

Timer (Interrupt) Clear Register. This is a set of four registers, one for each timer. Each of them has
only one bit to be activated and used to clear corresponding interrupt signal, which are being
asserted. It is a write-only register.

5.6.5.5 TWDE

Timer Watchdog Enable Register. This register contains 1 bit, corresponding to timer 4. If it is set
to one, the watchdog reset is enable; otherwise, it stays dormant. By default, it is set to 0. Once this
bit is set it can only be cleared by a system reset.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

CSV

Bits Field Description RW Reset

[31:0] CSV Store the current counter value RO 0xFFFFFFFF

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

IC
L

Bits Field Description RW Reset

[31:1] RESERVED Reserved. Read returns undefined value in this case; write
has no effect RO undef

[0] ICL
When 0: No effect;

When 1: Clear the interrupt being asserted
WO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

W
D

E

354 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.6 GPIO (CAP CSR)

Table 5-30 shows the offset addresses of the GPIO CSRs. Refer to Chapter 4, “Address Maps” for
the base address and details on how they are accessed. These CSRs can be accessed by the Intel
XScale core, PCI and the MEs.

The value of each GPIO pin can be read through the GPIO pin-level register (GPIO_PLR). This
register can be read at any time, regardless of drive direction, and can be used to confirm the state
of the pin. In addition, each GPIO pin can be programmed to detect a rising and/or falling edge
through the GPIO rising-edge detect enable register (GPIO_REDR) and GPIO falling-edge detect
enable register (GPIO_FEDR). The state of the edge detect can be read through the GPIO edge
detect status register (GPIO_EDSR). These edge detects can be programmed to generate an
interrupt. Also, each GPIO pin can be programmed to generate an interrupt on the state of the pin
by enabling the level sensitive high and low detect register (GPIO_LSHR and GPIO_LSLR).

The outputs of the GPIO can be used to advance the timer counts in the Timer registers, when this
feature is enabled. All of them are synchronized with the internal clock and converted to a pulse
before feeding into the timer counters internally. GPIO[0] connects to Timer 0, GPIO[1] to Timer
1, GPIO[2] to Timer 2 and GPIO[3] to Timer 3.

Bits Field Description RW Reset

[31:1] RESERVED Reserved. Read returns 0; write has no effect RO 0

[0] WDE

Watchdog Enable

0: Watchdog is disabled

1: Watchdog is enabled. Writing a one enables the
watchdog function.

RW 0

Table 5-30. GPIO Register Map

Abbreviation Address Name Description Section

GPIO_PLR 0x00 GPIO Pin level
register

This is used to determine the
current value of a particular pin Section 5.6.6.1

GPIO_PDPR 0x04 GPIO Pin direction
programmable register

This is to program a pin as an input
or a output Section 5.6.6.2

GPIO_PDSR 0x08 GPIO Pin direction set
register This is to set a pin as an output Section 5.6.6.3

GPIO_PDCR 0x0C GPIO Pin direction
clear register This is to reset a pin as an input Section 5.6.6.4

GPIO_POPR 0x10 GPIO Output data
programmable register

This is to program the output data
register Section 5.6.6.5

GPIO_POSR 0x14 GPIO Output data set
register

This is to set an output data
register Section 5.6.6.6

GPIO_POCR 0x18 GPIO Output data
clear register

This is to clear an output data
register

GPIO_REDR 0x1C GPIO Rising edge
detect enable register

This is to enable detects on rising
edge Section 5.6.6.7

GPIO_FEDR 0x20 GPIO Falling edge
detect enable register

This is to enable detects on falling
edge
Programmer’s Reference Manual 355

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.6.1 GPIO_PLR

GPIO Pin Level Register. This is a read only register that is used to determine the current value of
a particular pin (regardless of input/output). The state of each of the GPIO pins is visible through
the GPIO pin-level register (GPIO_PLR). Each bit corresponds to the bit number.These are read-
only registers that are used to determine the current value of a particular pin (regardless of the
programmed pin direction).

In the following, two sets of registers are described. They are functionally quite similar, with each
set consisting three registers. The user can use these registers to control either the direction of the
pins or the data propagating through the pins. The first set contains GPIO_PDPR, GPIO_PDSR,
and GPIO_PDCR. They allow the user to either program the direction of the pins by programming
GPIO_PDPR, or set and reset the direction of the pins by using GPIO_PDSR and GPIO_PDCR.
The main purpose is to provide the user a simple, flexible and efficient way to control the direction
of these pins. For example, if the user wants to change most of the pin direction, they can use the
GPIO_PDPR to program the direction of those pins. If only one or two pins need to be changed, the

GPIO_EDSR 0x24 GPIO Edge detect
status register

This is the logging of detected
transitions Section 5.6.6.8

GPIO_LSHR 0x28 GPIO level sensitive
high enable register

This is to enable detect on level
sensitive high inputs. Section 5.6.6.9

GPIO_LSLR 0x2C GPIO level sensitive
low enable register

This is to enable detect on level
sensitive low inputs. Section 5.6.6.9

GPIO_LDSR 0x30 GPIO level detect
status register

This is to log the logic level of
inputs. Section 5.6.6.10

GPIO_INER 0x34 GPIO Interrupt Enable
register

This is to enable the interrupt
generation. Section 5.6.6.11

GPIO_INSR 0x38 GPIO Interrupt Set
register

This is to set the interrupt enable
register. Section 5.6.6.12

GPIO_INCR 0x3C GPIO Interrupt Reset
register

This is to reset the interrupt enable
register. Section 5.6.6.13

GPIO_INST 0x40 GPIO Interrupt Status
Register

This is to capture the interrupts
occurred to the corresponding pin
by the external devices.

Section 5.6.6.14

Table 5-30. GPIO Register Map (Continued)

Abbreviation Address Name Description Section

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PL

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] PL
GPIO Pin level; write has no effect.

0—Pin state is low
1—Pin state is high

RO 0
356 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
user may simply use the GPIO_PDSR and GPIO_PDCR to set to output pins and reset to input
pins. Applying the same approach, the user can also eliminate the usage of read-modify-write to
alter the direction of a few pins.

Likewise, the second set of the registers contains three registers. They employ the same approach
as described above for the first set of the direction control registers. However, these registers are
used to control the pin output logic levels. GPIO_POPR allows the user to program each pin logic
level while the GPIO_POSR and GPIO_POCR can set and reset the pin logic level respectively.

5.6.6.2 GPIO_PDPR

GPIO Pin Direction Programmable Register. Pin direction is controlled by programming the GPIO
pin direction register. The GPIO_PDR registers contain one direction control bit for each of the 8
pins. If a direction bit is programmed to a 1, the port is an output. If it is programmed to a zero, it is
an input. At reset, all bits in this register are cleared, configuring all GPIO pins as inputs. Reserved
bits, should be written to zeros and reads to the reserved bits should be ignored.

Note: For glitch free operation on GPIO outputs -- one has to write the pin output values first and then
enable the pin as an output. Otherwise unknown values would be driven out on the GPIO pin.

5.6.6.3 GPIO_PDSR

GPIO Pin Direction Set Register. This register consists of 8 bits, each corresponding to each pin of
the GPIO. This register allow the programmer to set pin direction to be an output port simply by
writing a one to register bit corresponding to that pin. However, there is no effect for writing a zero
to register bits. Meanwhile, the value of the GPIO_PDPR is going to be updated accordingly.
Reserved bits, should be written to zeros and reads to the reserved bits should be ignored.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PDP

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] PDP
GPIO Pin direction

0—Pin configured as an input
1—Pin configured as an output

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PDS

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] PDS
GPIO pin output direction set

0—Pin direction unaffected
1—Set pin to an output pin

WO 0
Programmer’s Reference Manual 357

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.6.4 GPIO_PDCR

GPIO Pin Direction Clear Register.This register also has 8 bits associated with 8 GPIO. It is used
for resetting the pin direction to be an input if a one is written to the corresponding register bit. It
has no effect if it is programmed to zero. Similarly, the GPIO_PDPR is updated accordingly.
Reserved bits, should be written to zeros and reads to the reserved bits should be ignored.

5.6.6.5 GPIO_POPR

GPIO Pin Output Programmable Register. Each GPIO pin is associated with each register bit. This
register allows user to configure the output level of the pin. Reserved bits, should be written to
zeros and reads to the reserved bits should be ignored

For glitch free operation on the GPIO output pins, the output values should be set prior to changing
the GPIO pin direction, otherwise unknown values (in the case of the test a very short pulsed
glitch) would appear on the pins..

5.6.6.6 GPIO_POSR, GPIO_POCR

GPIO Pin Output Set Register and GPIO Pin Output Clear Register

When a GPIO is configured as an output, the user controls the state of the pin by writing to either
the GPIO pin output set registers (GPIO_POSR) or the GPIO pin output clear registers
(GPIO_POCR). An output pin is set by writing a one to its corresponding bit within the
GPIO_POSR. To clear an output pin, a one is written to the corresponding bit within the
GPIO_POCR. These are write-only registers. Reads return unpredictable values.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PDC

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] PDC
GPIO pin input direction set

0—Pin direction unaffected
1—Clear pin to an input pin

WO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED POP

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] POP
GPIO output pin set

0—if pin configured as an output, set pin level low
1—if pin configured as an output, set pin level high

RW 0
358 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Writing a zero to any of the GPIO_POSR or GPIO_POCR bits has no effect on the state of the pin.
Writing a one to a GPIO_POSR or GPIO_POCR bit corresponding to a pin that is configured as an
input will have effect only after the pin is configured as output. Writing a one to GPIO_POSR or
GPIO_POCR when the pin is configured as an input will register the value in the register. Reserved
bits, must be written with zeros and reads should be ignored.

5.6.6.7 GPIO_REDR, GPIO_FEDR

GPIO Rising Edge Detect Register and GPIO Falling Edge Detect Register. Each GPIO can also be
programmed to detect a rising-edge, falling-edge, or either transition on a pin. It is required
however, that the pulse following the edge be ATLEAST 100ns wide to guarantee a detection.
When an edge is detected that matches the type of edges programmed for the pin, a status bit is set.
The interrupt controller can be programmed to signal an interrupt to the CPU when any one of
these status bits is set.

The GPIO rising-edge and falling-edge detect enable registers (GPIO_REDR and GPIO_FEDR,
respectively) are used to select the type of transition on a GPIO pin that causes a bit within the
GPIO edge detect enable status register (GPIO_EDSR) to be set. For a given GPIO pin, its
corresponding GPIO_REDR bit is set to cause a GPIO_EDSR status bit to be set when the pin
transitions from logic level zero (0) to logic level one (1). Likewise, GPIO_FEDR is used to set the
corresponding GPIO_EDSR status bit when a transition from logic level one (1) to logic level zero
(0) occurs. When the corresponding bits are set in both registers, either a falling- or a rising-edge
transition causes the corresponding GPIO_EDSR status bit to be set.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PS

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] PS
GPIO output pin set

0—Pin level unaffected
1—if pin configured as an output, set pin level high

WO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PC

Bits Field Description RW Reset

[31:8] reserved RO 0

[7:0] PC
GPIO output pin clear

0—Pin level unaffected
1—if pin configured as an output, clear pin level low

WO 0
Programmer’s Reference Manual 359

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.6.8 GPIO_EDSR

GPIO Edge Detect Status Register. The GPIO edge detect status register contains a total of 8 status
bits that correspond to the 8 GPIO pins. When an edge detect occurs on a pin that matches the type
of edge programmed in the GPIO_REDR and/or GPIO_FEDR registers, the corresponding status
bit is set in GPIO_EDSR. Once a GPIO_EDSR bit is set, the CPU must clear it. GPIO_EDSR
status bits are cleared by writing a one to them. Writing a zero to a GPIO_EDSR status bit has no
effect.

Each edge detect that sets the corresponding GPIO_EDSR status bit for GPIO pins 0–7 can trigger
an interrupt request. “Interrupt Controller” should have a description of the programming of GPIO
interrupts.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PRE

Bits Field Description RW Reset

[31:8] reserved RO 0

[7:0] PRE

GPIO pin rising edge detect enable
0—Disable rising edge detect enable
1—set corresponding GPIO_EDSR status bit when a
rising edge is detected on the GPIO Pin

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PFE

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] PFE

GPIO pin falling edge detect enable
0—Disable falling edge detect enable
1—set corresponding GPIO_EDSR status bit when a
falling edge is detected on the GPIO Pin

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PSR
360 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.6.9 GPIO_LSHR, GPIO_LSLR

GPIO Level Sensitive High (enable) Register and GPIO Level Sensitive Low (enable) Register.
Each GPIO can be programmed to detect the level sensitive state of a pin. When the pin level
matches the level detect enable programmed on the pin, a status bit is set. The interrupt controller
can be programmed to signal an interrupt to the CPU when any of these status bits are set.

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] PSR

GPIO edge detect status
0—No edge detect has occurred as specified in
GPIO_REDR and GPIO_FEDR
1—Edge detect has occurred as specified in
GPIO_REDR and GPIO_FEDR

RW 1C 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PLH

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] PLH

GPIO Level Sensitive High detect enable
0—Disable level sensitive high detect enable
1—set status bit in interrupts status register when a
high state is detected on the GPIO pin.

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PLL

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] PLL

GPIO Level Sensitive Low detect enable
0—Disable level sensitive low detect enable
1—set status bit in interrupts status register when a low
state is detected on the GPIO pin.

RW 0
Programmer’s Reference Manual 361

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.6.10 GPIO_LDSR

GPIO Level Detect Status Register. This register contains a total of 8 status bits that correspond to
the 8 GPIO pins. When a level detect occurs on a pin that matches the type of level programmed in
the GPIO_LSLR and/or GPIO_LSHR registers, the corresponding status bit is set in GPIO_LDSR.
Once a GPIO_LDSR bit is set, the CPU must clear it. GPIO_LDSR status bits are cleared by
writing a one to them. Writing a zero to a GPIO_LDSR status bit has no effect.

Each edge detect that sets the corresponding GPIO_LDSR status bit for GPIO pins 0–7 can trigger
an interrupt request. “Interrupt Controller” should have a description of the programming of GPIO
interrupts.

5.6.6.11 GPIO_INER

GPIO Interrupt Enable Register. Each GPIO pin is associated with each register bit. This register
allows user to configure the interrupt generation if an event occurs, like the edge or level detections
of the corresponding pin. When setting a one, the corresponding pin interrupt is enabled and vise
versa. Reserved bits, should be written to zeros and reads to the reserved bits should be ignored.

5.6.6.12 GPIO_INSR

GPIO Interrupt Enable Set Register. Each GPIO pin is associated with each register bit. This
register allows user to set the interrupt enable register. When setting a one, the corresponding pin
interrupt is enabled; otherwise, it keeps the same configuration as before.

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] PSR

GPIO edge detect status
0—No level detect has occurred as specified in
GPIO_LSLR and GPIO_LSHR
1—Level Detect has occurred as specified in
GPIO_LSLR and GPIO_LSHR

RW 1C 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED IER

Bits Field Description RW Reset

[31:8] reserved RO 0

[7:0] IER
GPIO output pin set

0—Disable the interrupt with the corresponding pin;
1—Enable the interrupt with the corresponding pin.

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED IELR
362 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.6.13 GPIO_INCR

GPIO Interrupt Enable Clear Register. Each GPIO pin is associated with each register bit. This
register allows user to set the interrupt enable register. When setting a one, the corresponding pin
interrupt is disabled; otherwise, it keeps the same configuration as before.

5.6.6.14 GPIO_INST

GPIO Interrupt Status Register. This register contains a total of 8 status bits that correspond to the 8
GPIO pins. When an interrupt occurs on a pin, the corresponding status bit is set in GPIO_INST.
Once a GPIO_INST bit is set, the CPU must clear it. GPIO_INST status bits are cleared by writing
a one to them. Writing a zero to a GPIO_INST status bit has no effect.

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] IS

GPIO output pin set
0—No effect;
1—Enable the interrupt enable register with the
corresponding pin.

WO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED IC

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] IC

Interrupt Enable Registers. GPIO output pin set
0—No effect;
1—Disable the interrupt enable register with the
corresponding pin.

WO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED IST

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] IST
Interrupt Status Register. GPIO edge detect status

0—No interrupt has occurred;
1—Interrupt has occurred.

RW
1C 0
Programmer’s Reference Manual 363

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.7 UART (CAP CSR)

Table 5-31 shows the offset addresses of the UART CSRs. Refer to Chapter 4, “Address Maps” for
the base address and details on how they are accessed. These CSRs can be accessed by the Intel
XScale core, PCI and the MEs.

The UART supports registers similar to the 16550 UART. There are 12 registers in the UART.
These registers share eight address locations in the I/O address space. Only for the lowest byte has
data for all UART registers. Note that the state of the Divisor Latch Bit (DLAB), which is the
MOST significant bit of the Serial Line Control Register, affects the selection of certain of the
UART registers. The DLAB bit must be set high by the system software to access the Baud Rate
Generator Divisor Latches.

Table 5-31. UART Register Map

Abbreviation Address
[7:0] Name Description Section

UART_RBR 0x00,
DLAB=0

UART Receive Buffer
Register

It is used to buffer the received
data. Section 5.6.7.1

UART_THR
0x00,

DLAB=0
UART Transmit Holding
Register

It is used to hold the
transmitting data. Section 5.6.7.2

UART_DLRL 0x00,
DLAB=1

UART Divisor Latch
register Low

It is associated with
UART_DLHR and used to
control the baud rate together.

Section 5.6.7.3

UART_DLRH 0x04,
DLAB=1

UART Divisor Latch
Register High

It is associated with
UART_DLRL and used to
control the baud rate together.

Section 5.6.7.3

UART_IER
0x04,

DLAB=0
UART Interrupt Enable
Register

It is the interrupt enable register
for all interrupt control. Section 5.6.7.4

UART_IIR 0x08 UART Interrupt
Identification Register

This is a read only register and
shares the same space as
UART_FCR

Section 5.6.7.5

UART_FCR 0x08 UART Fifo control register This is a write only register. It is
used to control the FIFO. Section 5.6.7.6

UART_LCR 0x0C UART Line Control
Register

This is used to control the
transmission line data format. Section 5.6.7.7

UART_LSR 0x14 UART Line Status Register This stores the status of the
previous transaction. Section 5.6.7.8

UART_SPR 0x1C UART scratch pad register
This allows the program to
access for programming
purpose.

Section 5.6.7.9
364 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.7.1 UART_RBR

UART Receive Buffer Register. This register holds the characters received by the UART’s receive
shift register. If fewer than 8 bits are received, the bits are right justified and leading bits are zeroed.
Reading the register empties the register and reset the Data Ready (DR) bit in the Line status
register to 0. In FIFO mode this register latches the data byte at the bottom of the FIFO.

5.6.7.2 UART_THR

UART Transmit Holding Register. This register holds the next data byte to be transmitted, When
the Transmit Shift Register becomes empty, the contents of the Transmit Holding Register are
loaded into the shift register and the transmit data request (TDRQ) bit in the Line Status Register is
set to 1. In FIFO mode, writing to THR puts data at the top of the FIFO. The data at the bottom of
the FIFO is loaded to the shift register when it is empty.

5.6.7.3 UART_DLRL, UART_DLRH

Divisor Latch Registers. Each UART contains a programmable Baud Rate Generator that is
capable of taking the fixed input clock and dividing it by any divisor from 2 to (216 - 1). The output
frequency of the Baud Rate Generator is 16 times the baud rate. Two 8-bit latches store the divisor
in a 16-bit binary format. These Divisor Latches must be loaded during initialization to ensure
proper operation of the Baud Rate Generator. If both Divisor Latches are loaded with 0, the 16X
output clock is stopped.

The baud rate of the data shifted in/out of a UART is given by:

Baud Rate = APB Clock/ 16 x divisor

A Divisor value of 0 in the Divisor Latch Register is not allowed. The reset value of the divisor is
02.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED RBR

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] RBR Receive Buffer Register. Data byte received, least
significant bit first. RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED THR

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] THR Data byte transmitted, least significant bit first W0 0
Programmer’s Reference Manual 365

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
UART_DLRL

UART_DLRH

5.6.7.4 UART_IER

UART Interrupt Enable Register. This register enables the four types of UART interrupts. Each
interrupt can individually activate the interrupt (INTR) output signal. It is possible to totally disable
the interrupt system by resetting bits 0 through 4 of the Interrupt Enable Register (UART_IER).
Similarly, setting bits of the UART_IER register to a logic 1, enables the selected interrupt(s).
Disabling an interrupt prevents it from being indicated as active in the IIR and from activating the
INTR output signal. All other system functions operate in their normal manner, including the
setting of the Line Status Registers.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED LB

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] LB Low byte for generating baud rate RW 0x2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED HB

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] HB High byte for generating baud rate RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

U
U

E

N
R

Z
E

R
T

O
IE

R
E

S
E

R
V

E
D

R
LS

E

T
IE

R
A

V
IE
366 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.7.5 UART_IIR

UART Interrupt Identification Register. In order to minimize software overhead during data
character transfers, the UART prioritizes interrupts into four levels (listed in Table 5-32) and
records these in the Interrupt Identification register. The Interrupt Identification register
(UART_IIR) stores information indicating that a prioritized interrupt is pending and the source of
that interrupt.

Bits Field Description RW Reset

[31:7] RESERVED Reserved RO 0

[6] UUE
UART Unit Enable:

0—the UART unit is disabled
1—the UART unit is enabled

RW 0

[5] NRZE
NRZ coding Enable:

0: NRZ coding disabled
1: NRZ coding enabled

RW 0

[4] RTOIE

Receiver Time out Interrupt Enable:
0—Receiver data time out interrupt disabled
1—Receiver data time out interrupt enabled (Applicable
only in FIFO mode and when UART_FCR ITL is set to
a trigger level other than 1 byte.)

RW 0

[3] RESERVED Reserved RW 0

[2] RLSE
Receiver Line Status Interrupt Enable:

0—Receiver Line Status interrupt disabled
1—Receiver Line Status interrupt enabled

RW 0

[1] TIE
Transmit Data request Interrupt Enable:

0—Transmit FIFO Data Request interrupt disabled
1—Transmit FIFO Data Request interrupt enabled

RW 0

[0] RAVIE

Receiver Data Available Interrupt Enable:
0—Receiver Data Available (Trigger level reached)
interrupt disabled
1—Receiver Data Available (Trigger level reached)
interrupt enabled

RW 0

Table 5-32. Interrupt Conditions

Priority Level Interrupt Origin

1 (highest) Receiver Line Status: one or more error bits were set.

2 Received Data is available. In FIFO mode, trigger level was reached; in non-FIFO mode,
RBR has data.

2

Receiver Time out occurred. It happens only in FIFO mode and when the trigger level is set to
8, 16, or 32 bytes in the ITL field of the UART_FCR register. Specifically, it happens when
some data that is less than the configured trigger level has been received in the receive FIFO,
but there is no further activity for a time period.

3 Transmitter requests data. In FIFO mode, the transmit FIFO is half or more than half empty; in
non-FIFO mode, THR is read already.

4 (lowest) Not used (Modem status in standard UART)
Programmer’s Reference Manual 367

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
If the CPU access is occurring at the same time when the UART records new interrupts, the UART
doesn’t pass the newly captured interrupts to the CPU until the current access has completed.
Therefore, the CPU can only obtain the information of newly captured interrupts in the next access
cycle.

Table 5-33 shows how the above bits are to be used in decoding

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

F
IF

O
E

S

R
E

S
E

R
V

E
D

T
O

D

IID IP
#

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:6] FIFOES[1:0]

FIFO Mode Enable Status:
00 = Non-FIFO mode is selected
01 = Reserved
10 = Reserved
11 = FIFO mode is selected (TRFIFOE = 1)

RO 0

[5:4] RESERVED Reserved RO 0

[3]
TOD

(IID3)

Time Out Detected:
0—No time out interrupt is pending
1—Time out interrupt is pending. (Only in FIFO mode
and when UART_FCR ITL is set to a trigger level other
than 1 byte.)

RO 0

[2:1] IID (IID1,IID2)

Interrupt Source Encoded:
00 = NOT USED (In standard UART used to be Modem
Status (CTS, DSR, RI, DCD modem signals changed
state)
01 = Transmit FIFO requests data
10 = Received Data Available
11 = Receive error (Overrun, parity, framing, break,
FIFO error)

RO 0

[0] IP# (IID0)
Interrupt Pending:

0—Interrupt is pending. (Active low)
1—No interrupt is pending

RO 1

Table 5-33. Interrupt Identification Register Decode

Interrupt ID bits
UART_IIR[3:0] Interrupt SET/RESET Function

3 2 1 0 Priority Type Source RESET Control

0 0 0 1 - None No Interrupt is pending. -

0 1 1 0 Highest Receiver
Line Status

Overrun Error, Parity Error,
Framing Error, Break Interrupt.

Reading the Line Status
Register.
368 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.7.6 UART_FCR

UART FIFO Control Register. UART_FCR is a write only register that is located at the same
address as the UART_IIR (UART_IIR is a read only register). UART_FCR enables/disables the
transmitter/receiver FIFOs, clears the transmitter/receiver FIFOs, and sets the receiver FIFO
trigger level.

0 1 0 0 Second
Highest

Received
Data

Available.

Non-FIFO mode: Receive
Buffer is full.

Non-FIFO mode: Reading the
Receiver Buffer Register.

FIFO mode: Trigger level was
reached.

FIFO mode: Reading bytes until
Receiver FIFO drops below
trigger level or setting RESETRF
bit in FCR register.

1 1 0 0 Second
Highest

Character
Time-out

indication.

FIFO Mode only: At least 1
character is in receiver FIFO
and there was no activity for a
time period.

Reading the Receiver FIFO or
setting RESETRF bit in FCR
register.

0 0 1 0 Third
Highest

Transmit
FIFO Data
Request

Non-FIFO mode: Transmit
Holding Register Empty

Reading the IIR Register (if the
source of the interrupt) or writing
into the Transmit Holding
Register.

FIFO mode: Transmit FIFO
has half or less than half data.

Reading the IIR Register (if the
source of the interrupt) or writing
to the Transmitter FIFO.

0 0 0 0 Fourth
Highest

NOT
USED NOT USED NOT USED

Table 5-33. Interrupt Identification Register Decode (Continued)

Interrupt ID bits
UART_IIR[3:0] Interrupt SET/RESET Function

3 2 1 0 Priority Type Source RESET Control

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED ITL

R
E

S
E

R
V

E
D

R
E

S
E

T
T

F

R
E

S
E

T
R

F

T
R

F
IF

O
E

Programmer’s Reference Manual 369

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:6] ITL

Interrupt Trigger Level: When the number of bytes in the
receiver FIFO equals the interrupt trigger level programmed
into this field and the Received Data Available Interrupt is
enabled (via UART_IER), an interrupt is generated and
appropriate bits are set in the UART_IIR.

00 = 1 byte in FIFO causes interrupt
01 = 8 bytes in FIFO causes interrupt
10 = 16 bytes in FIFO causes interrupt
11 = 32 bytes in FIFO causes interrupt

W0 0

[5:3] RESERVED Reserved RO 0

[2] RESETTF

Reset transmitter FIFO: When RESETTF is set to 1, the
transmitter FIFO counter logic is set to 0, effectively
clearing all the bytes in the FIFO. The TDRQ bit in
UART_LSR are set and IIR shows a transmitter requests
data interrupt if the TIE bit in the IER register is set. The
transmitter shift register is not cleared; it completes the
current transmission. After the FIFO is cleared, RESETTF
is automatically reset to 0.

0—Writing 0 has no effect
1—The transmitter FIFO is cleared (FIFO counter set
to 0). After clearing, bit is automatically reset to 0

W0 0

[1] RESETRF

Reset Receiver FIFO: When RESETRF is set to 1, the
receiver FIFO counter is reset to 0, effectively clearing all
the bytes in the FIFO. The DR bit in LSR is reset to 0. All
the error bits in the FIFO and the FIFOE bit in LSR are
cleared. Any error bits, OE, PE, FE or BI, that had been set
in LSR are still set. The receiver shift register is not cleared.
If IIR had been set to Received Data Available, it is cleared.
After the FIFO is cleared, RESETRF is automatically reset
to 0.

0—Writing 0 has no effect
1—The receiver FIFO is cleared (FIFO counter set to
0). After clearing, bit is automatically reset to 0

W0 0

[0] TRFIFOE

Transmit and Receive FIFO Enable: TRFIFOE enables/
disables the transmitter and receiver FIFOs. When
TRFIFOE = 1, both FIFOs are enabled (FIFO Mode). When
TRFIFOE = 0, the FIFOs are both disabled (non-FIFO
Mode). Writing a 0 to this bit clears all bytes in both FIFOs.
When changing from FIFO mode to non-FIFO mode and
vice versa, data is automatically cleared from the FIFOs.
This bit must be 1 when other bits in this register are written
or the other bits are not programmed.

0—FIFOs are disabled
1—FIFOs are enabled

W0 0
370 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.7.7 UART_LCR

UART Line Control Register. In the Line Control Register, the system programmer specifies the
format of the asynchronous data communications exchange. The serial data format consists of a
start bit (logic 0), five to eight data bits, an optional parity bit, and one or two stop bits (logic 1).
The UART_LCR has bits for accessing the Divisor Latch and causing a break condition. The
programmer can also read the contents of the Line Control Register. The read capability simplifies
system programming and eliminates the need for separate storage in system memory.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

D
LA

B

S
B

S
T

K
Y

P

E
P

S

P
E

N

S
T

B

W
LS

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7] DLAB

Divisor register access bit: This bit is the Divisor Latch
Access Bit. It must be set high (logic 1) to access the
Divisor Latches of the Baud Rate Generator during a READ
or WRITE operation. It must be set low (logic 0) to access
the Receiver Buffer, the Transmit Holding Register, or the
Interrupt Enable Register.

0—access Transmit Holding register (THR), Receive
Buffer Register (RBR) and Interrupt Enable Register.
1—access Divisor Latch Registers (DLL and DLM)

RW 0

[6] SB

Set break: This bit is the set break control bit. It causes a
break condition to be transmitted to the receiving UART.
When SB is set to a logic 1, the serial output (TXD) is forced
to the spacing (logic 0) state and remains there until SB is
set to a logic 0. This bit acts only on the TXD pin and has no
effect on the transmitter logic.

This feature enables the processor to alert a terminal in a
computer communications system. If the following
sequence is executed, no erroneous characters will be
transmitted because of the break:

Load 00H in the Transmit Holding register in response to a
TDRQ interrupt

After TDRQ goes high (indicating that 00H is being shifted
out), set the break bit before the parity or stop bits reach the
TXD pin

Wait for the transmitter to be idle (TEMT = 1) and clear the
break bit when normal transmission has to be restored

During the break, the transmitter can be used as a
character timer to accurately establish the break duration.
In FIFO mode, wait for the transmitter to be idle (TEMP=1)
to set and clear the break bit.

0—no effect on TXD output
1—forces TXD output to 0 (space)

RW 0
Programmer’s Reference Manual 371

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[5] STKYP

Sticky Parity: This bit is the “sticky parity” bit, which can be
used in multiprocessor communications. When PEN and
STKYP are logic 1, the bit that is transmitted in the parity bit
location (the bit just before the stop bit) is the complement
of the EPS bit. If EPS is 0, then the bit at the parity bit
location will be transmitted as a 1. In the receiver, if STKYP
and PEN are 1, then the receiver compares the bit that is
received in the parity bit location with the complement of the
EPS bit. If the values being compared are not equal, the
receiver sets the Parity Error bit in LSR and causes an error
interrupt if line status interrupts were enabled. For example,
if EPS is 0, the receiver expects the bit received at the
parity bit location to be 1. If it is not, then the parity error bit
is set. By forcing the bit value at the parity bit location,
rather than calculating a parity value, a system with a
master transmitter and multiple receivers can identify some
transmitted characters as receiver addresses and the rest
of the characters as data. If PEN = 0, STKYP is ignored.

0—no effect on parity bit
1—Forces parity bit to be opposite of EPS bit value

RW 0

[4] EPS

Even parity Select: This bit is the even parity select bit.
When PEN is a logic 1 and EPS is a logic 0, an odd number
of logic ones is transmitted or checked in the data word bits
and the parity bit. When PEN is a logic 1 and EPS is a logic
1, an even number of logic ones is transmitted or checked
in the data word bits and parity bit. If PEN = 0, EPS is
ignored.

0—sends or checks for odd parity
1—sends or checks for even parity

RW 0

[3] PEN

Parity enable: This is the parity enable bit. When PEN is a
logic 1, a parity bit is generated (transmit data) or checked
(receive data) between the last data word bit and Stop bit of
the serial data. (The parity bit is used to produce an even or
odd number of ones when the data word bits and the parity
bit are summed.)

0—no parity function
1—allows parity generation and checking

RW 0

[2] STB

Stop bits: This bit specifies the number of stop bits
transmitted and received in each serial character. If STB is
a logic 0, one stop bit is generated in the transmitted data. If
STB is a logic 1 when a 5-bit word length is selected via bits
0 and 1, then 1 and one half stop bits are generated. If STB
is a logic 1 when either a 6, 7, or 8-bit word is selected, then
two stop bits are generated. The receiver checks the first
stop bit only, regardless of the number of stop bits selected.

0—1 stop bit
1—2 stop bits, except for 5-bit character then 1-1/2 bits

RW 0

[1:0] WLS

Word Length select: The Word Length Select bits specify
the number of data bits in each transmitted or received
serial character.

00 = 5-bit character (default)
01 = 6-bit character
10 = 7-bit character
11 = 8-bit character

RW 0

Bits Field Description RW Reset
372 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.7.8 UART_LSR

UART Line Status Register. This register provides status information to the processor concerning
the data transfers. Bits 5 and 6 show information about the transmitter section. The rest of the bits
contain information about the receiver.

In non-FIFO mode, three of the LSR register bits, parity error, framing error, and break interrupt,
show the error status of the character that has just been received. In FIFO mode, these three bits of
status are stored with each received character in the FIFO. LSR shows the status bits of the
character at the top of the FIFO. When the character at the top of the FIFO has errors, the
UART_LSR error bits are set and are not cleared until software reads UART_LSR, even if the
character in the FIFO is read and a new character is now at the top of the FIFO.

Bits 1 through 4 are the error conditions that produce a receiver line status interrupt when any of
the corresponding conditions are detected and the interrupt is enabled. These bits are not cleared by
reading the erroneous byte from the FIFO or receive buffer. They are cleared only by reading
UART_LSR. In FIFO mode, the line status interrupt occurs only when the erroneous byte is at the
top of the FIFO. If the erroneous byte being received is not at the top of the FIFO, an interrupt is
generated only after the previous bytes are read and the erroneous byte is moved to the top of the
FIFO.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

F
IF

O
E

T
E

M
T

T
D

R
Q

B
I

F
E

P
E

O
E

D
R

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7] FIFOE

FIFO Error Status: In non-FIFO mode, this bit is 0. In FIFO
Mode, FIFOE is set to 1 when there is at least one parity
error, framing error, or break indication for any of the
characters in the FIFO. Note that a processor read to the
Line Status register does not reset this bit. FIFOE is reset
when all erring bytes have been read from the Receive
Buffer register.

0—No FIFO or no errors in receiver FIFO
1—At least one character in receiver FIFO has errors

RO 0

[6] TEMT

Transmitter Empty: TEMT is set to a logic 1 when the
Transmit Holding register and the Transmitter Shift register
are both empty. It is reset to a logic 0 when either the
Transmit Holding register or the transmitter shift register
contains a data character. In FIFO mode, TEMT is set to 1
when the transmitter FIFO and the Transmit Shift register
are both empty.

0—There is data in the Transmit Shift register, the
holding register, or the FIFO
1—All the data in the transmitter has been shifted out

RO 1
Programmer’s Reference Manual 373

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[5] TDRQ

Transmit Data Request: TDRQ indicates that the UART is
ready to accept a new character for transmission. In
addition, this bit causes the UART to issue an interrupt to
the processor when the transmit data request interrupt
enable is set high. The TDRQ bit is set to a logic 1 when a
character is transferred from the Transmit Holding register
into the Transmit Shift register. The bit is reset to logic 0
concurrently with the loading of the Transmit Holding
register by the processor. In FIFO mode, TDRQ is set to 1
when half of the characters in the FIFO have been loaded
into the Shift register or the RESETTF bit in FCR has been
set to 1. It is cleared when the FIFO has more than half
data. If more than 64 characters are loaded into the FIFO,
the excess characters are lost.

0—There is data in Holding register or FIFO waiting to
be shifted out
1—Transmit FIFO has half or less than half data

RO 1

[4] BI

Break Interrupt: BI is set to a logic 1 when the received data
input is held in the spacing (logic 0) state for longer than a
full word transmission time (that is, the total time of Start bit
+ data bits + parity bit + stop bits). The Break indicator is
reset when the processor reads the Line Status Register. In
FIFO mode, only one character (equal to 00H), is loaded
into the FIFO regardless of the length of the break
condition. BI shows the break condition for the character at
the top of the FIFO, not the most recently received
character.

0—No break signal has been received
1—Break signal occurred

RO 0

[3] FE

Framing Error: FE indicates that the received character did
not have a valid stop bit. FE is set to a logic 1 when the bit
following the last data bit or parity bit is detected as a logic 0
bit (spacing level). If the Line Control register had been set
for two stop bit mode, the receiver does not check for a
valid second stop bit. The FE indicator is reset when the
processor reads the Line Status Register. The UART will
resynchronize after a framing error. To do this it assumes
that the framing error was due to the next start bit, so it
samples this “start” bit twice and then takes in the “data”. In
FIFO mode, FE shows a framing error for the character at
the top of the FIFO, not for the most recently received
character.

0—No Framing error
1—Invalid stop bit has been detected

RO 0

[2] PE

Parity Error: PE indicates that the received data character
does not have the correct even or odd parity, as selected by
the even parity select bit. The PE is set to a logic 1 upon
detection of a parity error and is reset to a logic 0 when the
processor reads the Line Status register. In FIFO mode, PE
shows a parity error for the character at the top of the FIFO,
not the most recently received character.

0—No Parity error
1—Parity error has occurred

RO 0

Bits Field Description RW Reset
374 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.7.9 UART_SPR

UART Scratchpad Register. This 8-bit Read/Write Register does not control the UART in anyway.
It is intended as a scratchpad register to be used by the programmer to hold data temporarily.

[1] OE

Overrun Error: In non-FIFO mode, OE indicates that data in
the receiver buffer register was not read by the processor
before the next character was transferred into the receiver
buffer register, thereby destroying the previous character. In
FIFO mode, OE indicates that all 64 bytes of the FIFO are
full and the most recently received byte has been
discarded. The OE indicator is set to a logic 1 upon
detection of an overrun condition and reset when the
processor reads the Line Status register.

0—No data has been lost
1—Received data has been lost

RO 0

[0] DR

Data Ready: Bit 0 is set to a logic 1 when a complete
incoming character has been received and transferred into
the receiver buffer register or the FIFO. In non-FIFO mode,
DR is reset to 0 when the receive buffer is read. In FIFO
mode, DR is reset to a logic 0 if the FIFO is empty (last
character has been read from RBR) or the RESETRF bit is
set in FCR.

0—No data has been received
1—Data is available in RBR or the FIFO

RO 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED SCRATCH

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] SCRATCH No effect on UART functionality RW 0
Programmer’s Reference Manual 375

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.8 PMU (Performance Monitor UNit) (CAP CSR)

Table 5-34 shows the offset addresses of the PMU CSRs. Refer to Chapter 4, “Address Maps” for
the base address and details on how they are accessed. These CSRs can be accessed by the Intel
XScale core, PCI and the MEs.

Table 5-34. PMU Register Summary

CSR name Offset Description Section

PMUCONTCFG 0x0F00 PMU Control Bus Configuration Register Section 5.6.8.1

PMUSTAT 0x0E00 PMU Counter Interrupt status Register Section 5.6.8.2

PMUMASK 0x0D00 PMU Counter Interrupt Mask Register Section 5.6.8.3

PMUINTEN 0x0C00 PMU Counter Interrupt enable Register Section 5.6.8.4

CHAPCMD0 0x0000 CHAP Counter 0 Command Register

Section 5.6.8.5

CHAPCMD1 0x0010 CHAP Counter 1 Command Register

CHAPCMD2 0x0020 CHAP Counter 2 Command Register

CHAPCMD3 0x0030 CHAP Counter 3 Command Register

CHAPCMD4 0x0040 CHAP Counter 4 Command Register

CHAPCMD5 0x0050 CHAP Counter 5 Command Register

CHAPEVN0 0x0004 CHAP Counter 0 Event Register

Section 5.6.8.6

CHAPEVN1 0x0014 CHAP Counter 1 Event Register

CHAPEVN2 0x0024 CHAP Counter 2 Event Register

CHAPEVN3 0x0034 CHAP Counter 3 Event Register

CHAPEVN4 0x0044 CHAP Counter 4 Event Register

CHAPEVN5 0x0054 CHAP Counter 5 Event Register

CHAPSTAT0 0x0008 CHAP Counter 0 status Register

Section 5.6.8.7

CHAPSTAT1 0x0018 CHAP Counter 1 status Register

CHAPSTAT2 0x0028 CHAP Counter 2 status Register

CHAPSTAT3 0x0038 CHAP Counter 3 status Register

CHAPSTAT4 0x0048 CHAP Counter 4 status Register

CHAPSTAT5 0x0058 CHAP Counter 5 status Register
376 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Because the CHAP unit resides on the APB bus, the offset associated with each of these registers is
relative to the Memory Base Address that configuration software will set in the PMUADR register.

Each counter has one command, one event, one status, and one data register associated with it.
Each counter is “packaged” with these four registers in a “counter block”. Each implementation
selects the number of counters it will implement, and therefore how many counter blocks (or slices)
it will have. These registers are numbered 0 through N - 1 where N represents the number of
counters - 1. See Figure 5-1.

CHAPDATA0 0x000C CHAP Counter 0 Data Register

Section 5.6.8.8

CHAPDATA1 0x001C CHAP Counter 1 Data Register

CHAPDATA2 0x002C CHAP Counter 2 Data Register

CHAPDATA3 0x003C CHAP Counter 3 Data Register

CHAPDATA4 0x004C CHAP Counter 4 Data Register

CHAPDATA5 0x005C CHAP Counter 5 Data Register

Table 5-34. PMU Register Summary (Continued)

CSR name Offset Description Section

Figure 5-1. Conceptual Diagram of Counter Array

Register
Interface

Counter
Block 0

Counter

Command
Register

Events
Register

Status
Register

Data
Register

Counter
Block 1

Counter

Command
Register

Events
Register

Status
Register

Data
Register

Counter
Block 2

Counter

Command
Register

Events
Register

Status
Register

Data
Register

Event
Signals
Programmer’s Reference Manual 377

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.8.1 PMUCONTCFG—PMU Control Bus Configuration Register

PMU Control Block consists of logic and state machine to generate the protocol on the Control bus
and to generate mux selects for the PMU mux selects. Collectively this block programs all the
design units and the PMU mux control block to route the right event to the counter chosen by
software. Software programs the PMU Control Config register with appropriate event code and the
PMU Control Bus State Machine generates Control Bus cycles to program the Design Units. Upon
completion of the Control Bus cycle PMU control bus state machine generates a configuration
done signal which can be monitored by the software to program the next set of counters.

PMU Control Block has two registers which can be written and read from APB bus. They are PMU
Control Configuration registers and PMU Control Status Registers. PMU Control Configuration
register PMUCONTCFG is programmed by the software to generate Control Bus cycles. A write to
this register triggers the PMU Control Bus State Machine. Based on the command in the
PMUCONTCFG PMU Control Bus State Machine generates the appropriate command on the
Control Bus.

Software has to indicate to which counter the event from the design block is being routed. It also
needs to indicate in the PMUCONTCFG register whether event being routed is to increment the
counter, decrement the counter or to trigger the counter.Software also needs to indicate the mux in
the design unit which is being used to route the event to the PMU. The 12 bit Event Selection Code
indicates the event and the design unit where from the event is routed. PMUCONTCFG[6:0]
indicates the event being routed while PMUCONTCFG[12:7] indicates the target design block id.
PMU state machine supports 4 commands for routing and programming the performance
monitoring muxes.

Note that IXP2400 and IXP2800 network processors only support the AUTOCONFIG command.
Usage of the other commands by software results in undefined behavior.

Following are the actions by the PMU Control State Machine based on the command initiated by
the software

RESET:

Table 5-35. PMU Control Bus data Map

Command Description
PMU Control Bus Configuration

Register
[31:0]

Target_Control_
Bus

[10:0]

Idle Idle Command [17:16] =00 [10:9] <= [17:16]

Reset

1. PMU Event bus bit
Selection
(total6)

2.Target ID Selection

Target Command [17:16] =01
PMU Event bus [15:13]
Target ID [12:7]

[10:9] <= [17:16]
[8:6] <= [15:13]
[5:0] <= [12:7]

INIT

1. PMU Event bus bit
Selection
(total6)

2.Target ID Selection

Target Command [17:16] =01
PMU Event bus [15:13]
Target ID [12:7]

[10:9] <= [17:16]
[8:6] <= [15:13]
[5:0] <= [12:7]

CONFIG Event Selection
(total 128 events)

Target Command [17:16] =11
Target Events [6:0]

[10:9] <= [17:16]
[6:0] <= [6:0]
378 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
PMU State Machine asserts Target_Control_Bus_active and puts RESET command on
Target_Control_Bus[10:9] and puts target ID (PMUCONTCFG[12:7] of Target Design ID on
Target_Control_Bus[5:0] and inserts PMU Event bus on Target_Control_Bus[8:6]. The state
machine in the design unit decodes the block number and if it is for that design uses the PMU
Event bus and resets the mux selects for that mux.

INIT:

PMU State Machine asserts Target_Control_Bus_active and puts INIT command on
Target_Control_Bus[10:9] and puts block ID (PMUCONTCFG[11:7] of Event Selection Code) on
Target_Control_Bus[4:0] and inserts PMU Event bus on Target_Control_Bus[7:5]. The state
machine in the design unit decodes the block number and if it is for that design uses the mux
number and waits for config command for that mux. Software could choose to either use RESET
command if it intents to clear the previous INIT command or could generate CONFIG cycle if it
intends to configure the mux in the design unit.

PMU State Machine also generates selects to program the PMU mux control logic to route the
event signals from the appropriate PMU Event bus (i.e of and 1 of the 6 design muxes) and selects
the appropriate design block (one of the several design blocks) and it does this selection to the
counter number defined in the PMUCONTCFG register and to one of the three event mux controls
in each counter namely, increment, decrement or command trigger PMU Event bus. There are total
of 18 mux controls in the PMU control block with three mux controls for each counter to select the
increment, decrement and trigger events for that counter. There are 6 events generated from each
design unit and there are over 10 design units generating those events. To make the right selection
the PMU control state machine during the INIT cycle asserts one of the 6 Cntr_inc_sel and 6
Cntr_dec_sel and 6 Cntrl_trig_sel signals. PMU control State Machine also puts the 3 bit mux
number and 5 bit design block number in the PMUCONTCFG register on Cntr_mux_no and
Cntrl_desgn_blk signals that are inputs to PMU mux control block.

CONFIG:

This command should follow a INIT cycle. PMU State Machine asserts
Target_Control_Bus_active and puts CONFIG command on Target_Control_Bus[10:9] and puts
event number (PMUCONTCFG[6:0] of Design Event) on Target_Control_Bus[6:0]. The state
machine in the design unit uses the event number and programs the mux that has been identified
during the INIT cycle.

AUTOCONFIG:

This commands performs RESET followed by a INIT command followed by a CONFIG
command. Upon completion of the control bus cycles it generates a Config done command which
is registered in the PMUCONTSTS register.
Programmer’s Reference Manual 379

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.8.2 PMUSTAT—PMU Counter Interrupt Status Registers

To clear any of the PMUSTAT interrupts and status bits, software should write a 0 to the respective
status bits of the PMUSTAT register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

A
U

T
O

C
F

G

R
E

S
E

R
V

E
D

S
E

LE
C

T
_E

V
E

N
T

_B
U

S

S
E

LE
C

T
_D

E
S

IG
N

_B
LO

C
K

S
E

LE
C

T
_D

E
S

IG
N

_E
V

E
N

T

Bits Field Description RW Reset

[31:19] RESERVED Reserved RO 0

[18] AUTOCFG

AUTOCFG command

(IXP2400 and IXP2800 only support this command.)

It will generate atomic operation. It will start
from RESET, INIT, followed by CONFIG
cycles to the design blocks.

Upon completion it sets PMUCONTST[31]

RW 0

[17:16] RESERVED Reserved RW 0

[15:13] SELECT_EVENT_BUS Select one out of 6 Event Bus which will route from
design block to the counter. RW 0

[12:7] SELECT_DESIGN_BLOCK Select one out of 35 design blocks. RW 0

[6:0] SELECT_DESIGN_EVENT Select one out of 128 design events. RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

T
C

D RESERVED

C
H

A
P

_C
N

T
R

_5_S
TA

T
U

S

R
E

S
E

R
V

E
D

C
H

A
P

_C
N

T
R

_4_S
TA

T
U

S

R
E

S
E

R
V

E
D

C
H

A
P

_C
N

T
R

_3_S
TA

T
U

S

R
E

S
E

R
V

E
D

C
H

A
P

_C
N

T
R

_2_S
TA

T
U

S

R
E

S
E

R
V

E
D

C
H

A
P

_C
N

T
R

_1_S
TA

T
U

S

R
E

S
E

R
V

E
D

C
H

A
P

_C
N

T
R

_0_S
TA

T
U

S

380 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31] TCD

PMU Target Design Configuration command
was executed. When set, indicates Target
Design Configuration command was
executed.

RW 0

[30:23] RESERVED RW 0

[22:20] CHAP_CNTR_5_STATUS

CHAP Counter 5 Status. This counter can
generate 3possible status conditions, which are
reported through these bits in the status register.

bit[20] When set, indicates Over Flow on Counter
5.

bit[21] When set, indicates Command got
Triggered on Counter 5.

bit[22] When set, indicates Threshold Compare
was observed on Counter 5.

RW 0

[19] RESERVED RW 0

[18:16] CHAP_CNTR_4_STATUS

CHAP Counter 4 Status. This counter can
generate 3 possible status conditions, which are
reported through these bits in the status register.

bit[16] When set, indicates Over Flow on Counter
4.

bit[17] When set, indicates Command got
Triggered on Counter 4.

bit[18] When set, indicates Threshold Compare
was observed on Counter 4.

RW 0

[15] RESERVED RW 0

[14:12] CHAP_CNTR_3_STATUS

CHAP Counter 3 Status. This counter can
generate 3 possible status conditions, which are
reported through these bits in the status register.

bit[12] When set, indicates Over Flow on Counter
3.

bit[13] When set, indicates Command got
Triggered on Counter 3.

bit[14] When set, indicates Threshold Compare
was observed on Counter 3.

RW 0

[11] RESERVED RW 0

[10:8] CHAP_CNTR_2_STATUS

CHAP Counter 2 Status. This counter can
generate 3 possible status conditions, which are
reported through these bits in the status register.

bit[8] When set, indicates Over Flow on Counter
2.

bit[9] When set, indicates Command got
Triggered on Counter 2.

bit[10] When set, indicates Threshold Compare
was observed on Counter 2.

RW 0

[7] RESERVED RW
Programmer’s Reference Manual 381

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.8.3 PMUMASK—PMU Counters Interrupt Mask Registers

[6:4] CHAP_CNTR_1_STATUS

CHAP Counter 1 Status. This counter can
generate 3 possible status conditions, which are
reported through these bits in the status register.

bit[4] When set, indicates Over Flow on Counter
1.

bit[5] When set, indicates Command got
Triggered on Counter 1.

bit[6] When set, indicates Threshold Compare
was observed on Counter 1.

RW 0

[3] RESERVED RW 0

[2:0] CHAP_CNTR_0_STATUS

CHAP Counter 0 Status. This counter can
generate 3 possible status conditions, which are
reported through these bits in the status register.

bit[0] When set, indicates Over Flow on Counter
0.

bit[1] When set, indicates Command got
Triggered on Counter 0.

bit[2] When set, indicates Threshold Compare
was observed on Counter 0.

RW 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

T
C

M RESERVED

C
H

A
P

_C
N

T
R

_5_M
A

S
K

R
E

S
E

R
V

E
D

C
H

A
P

_C
N

T
R

_4_M
A

S
K

R
E

S
E

R
V

E
D

C
H

A
P

_C
N

T
R

_3_M
A

S
K

R
E

S
E

R
V

E
D

C
H

A
P

_C
N

T
R

_2_M
A

S
K

R
E

S
E

R
V

E
D

C
H

A
P

_C
N

T
R

_1_M
A

S
K

R
E

S
E

R
V

E
D

C
H

A
P

_C
N

T
R

_0_M
A

S
K

382 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31] TCM

Target Configuration Mask. PMUMASK [31]
masks PMUSTAT [31]. If PMUMASK [31] is set to
1, then PMUSTAT [31] does not register the
status of the target design configuration
command was executed or not.

RW 0

[30:23] RESERVED Reserved RW 0

[22:20] CHAP_CNTR_5_MASK

CHAP Counter 5 Mask.

Each of the CHAP counters can generate three
possible status conditions, which can be masked
by writing a 1 to the appropriate bit in the Mask
register.

PMUMASK [20] masks PMUSTAT [20]. If
PMUMASK [20] is set to 1, then PMUSTAT [20]
does not register the status of status condition0 in
CHAP counter 5.

PMUMASK [21] masks PMUSTAT [21]. If
PMUMASK [21] is set to 1, then PMUSTAT [21]
does not register the status of status condition1 in
CHAP counter 5.

PMUMASK [22] masks PMUSTAT [22]. If
PMUMASK [22] is set to 1, then PMUSTAT [22]
does not register the status of status condition2 in
CHAP counter 5.

RW 0

[19] RESERVED Reserved RW 0

[18:16] CHAP_CNTR_4_MASK

CHAP Counter 4 Mask.

Each of the CHAP counters can generate three
possible status conditions, which can be masked
by writing a 1 to the appropriate bit in the Mask
register.

PMUMASK [16] masks PMUSTAT [16]. If
PMUMASK [16] is set to 1, then PMUSTAT [16]
does not register the status of status condition0 in
CHAP counter 4.

PMUMASK [17] masks PMUSTAT [17]. If
PMUMASK [17] is set to 1, then PMUSTAT [17]
does not register the status of status condition1 in
CHAP counter 4.

PMUMASK [18] masks PMUSTAT [18]. If
PMUMASK [18] is set to 1, then PMUSTAT [18]
does not register the status of status condition2 in
CHAP counter 4.

RW 0

[15] RESERVED Reserved RW 0
Programmer’s Reference Manual 383

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[14:12] CHAP_CNTRR_3_MASK

CHAP Counter 3 Mask.

Each of the CHAP counters can generate three
possible status conditions, which can be masked
by writing a 1 to the appropriate bit in the Mask
register.

PMUMASK [12] masks PMUSTAT [12]. If
PMUMASK [12] is set to 1, then PMUSTAT [12]
does not register the status of status condition0 in
CHAP counter 3.

PMUMASK [13] masks PMUSTAT [13]. If
PMUMASK [13] is set to 1, then PMUSTAT [13]
does not register the status of status condition1 in
CHAP counter 3.

PMUMASK [12] masks PMUSTAT [12]. If
PMUMASK [12] is set to 1, then PMUSTAT [12]
does not register the status of status condition2 in
CHAP counter 3.

RW 0

[11] RESERVED Reserved RW 0

[10:8] CHAP_CNTR_2_MASK

CHAP Counter 2 Mask.

Each of the CHAP counters can generate three
possible status conditions, which can be masked
by writing a 1 to the appropriate bit in the Mask
register.

PMUMASK [8] masks PMUSTAT [8]. If
PMUMASK [8] is set to 1, then PMUSTAT [8]
does not register the status of status condition0 in
CHAP counter 2.

PMUMASK [9] masks PMUSTAT [9]. If
PMUMASK [9] is set to 1, then PMUSTAT [9]
does not register the status of status condition1 in
CHAP counter 2.

PMUMASK [10] masks PMUSTAT [10]. If
PMUMASK [10] is set to 1, then PMUSTAT [10]
does not register the status of status condition2 in
CHAP counter 2.

RW 0

[7] RESERVED Reserved RW 0

Bits Field Description RW Reset
384 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[6:4] CHAP_CNTR_1_MASK

CHAP Counter 1 Mask.

Each of the CHAP counters can generate three
possible status conditions, which can be masked
by writing a 1 to the appropriate bit in the Mask
register.

PMUMASK [4] masks PMUSTAT [4]. If
PMUMASK [4] is set to 1, then PMUSTAT [4]
does not register the status of status condition0 in
CHAP counter 1.

PMUMASK [5] masks PMUSTAT [5]. If
PMUMASK [5] is set to 1, then PMUSTAT [5]
does not register the status of status condition1 in
CHAP counter 1.

PMUMASK [6] masks PMUSTAT [6]. If
PMUMASK [6] is set to 1, then PMUSTAT [6]
does not register the status of status condition2 in
CHAP counter 1.

RW 0

[3] RESERVED Reserved RW 0

[2:0] CHAP_CNTR_0_MASK

CHAP Counter 0 Mask.

Each of the CHAP counters can generate three
possible status conditions, which can be masked
by writing a 1 to the appropriate bit in the Mask
register.

PMUMASK [0] masks PMUSTAT [0]. If
PMUMASK [0] is set to 1, then PMUSTAT [0]
does not register the status of status condition0 in
CHAP counter 0.

PMUMASK [1] masks PMUSTAT [1]. If
PMUMASK [1] is set to 1, then PMUSTAT [1]
does not register the status of status condition1 in
CHAP counter 0.

PMUMASK [2] masks PMUSTAT [2]. If
PMUMASK [2] is set to 1, then PMUSTAT [2]
does not register the status of status condition2 in
CHAP counter 0.

RW 0

Bits Field Description RW Reset
Programmer’s Reference Manual 385

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.8.4 PMUINTEN—PMU Interrupt Enable Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

T
C

E RESERVED

C
H

A
P

_C
N

T
R

_5_IN
T

_E
N

A
B

LE

R
E

S
E

R
V

E
D

C
H

A
P

_C
N

T
R

_4_IN
T

_E
N

A
B

LE

R
E

S
E

R
V

E
D

C
H

A
P

_C
N

T
R

_3_IN
T

_E
N

A
B

LE

R
E

S
E

R
V

E
D

C
H

A
P

_C
N

T
R

_2_IN
T

_E
N

A
B

LE

R
E

S
E

R
V

E
D

C
H

A
P

_C
N

T
R

_1_IN
T

_E
N

A
B

LE

R
E

S
E

R
V

E
D

C
H

A
P

_C
N

T
R

_0_IN
T

_E
N

A
B

LE

Bits Field Description RW Reset

[31] TCE

PMU Target design command
Execute Interrupt Enable

If PMUSTAT [31] is set to 1, then to
generate an interrupt to XSCALE
TCE (PMUINTEN [31]) needs to be
programmed to 1.

All interrupts signals from several
different CHAP counters are ORed
together to generate single interrupt
to the PMU software interface.

RW 0

[30:23] RESERVED Reserved RW 0

[22:20] CHAP_CNTR_5_INTERRUPT_ENABLE

CHAP Counter 5 Interrupt Enable

Each of the CHAP counters can
generate 3 possible status
conditions, which can be enabled to
generate a interrupt by writing a 1 to
the appropriate bit in the Interrupt
enable register. This register
supports 6 counters.

If PMUSTAT [20] is set to 1, then to
generate an interrupt to XSCALE
PMUINTEN [20] needs to be
programmed to 1.

If PMUSTAT [21] is set to 1, then to
generate an interrupt to XSCALE
PMUINTEN [21] needs to be
programmed to 1.

If PMUSTAT [22] is set to 1, then to
generate an interrupt to XSCALE
PMUINTEN [22] needs to be
programmed to 1.

All interrupts signals from several
different CHAP counters are ORed
together to generate single interrupt
to the PMU software interface.

RW 0

[19] RESERVED Reserved RW 0
386 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.8.5 CHAPCMDN—CHAP Command N Register (N = 0...5)

This 32-bit register allows control of the CHAP counter N. When this register is written, the
previous register contents are overwritten. All 32 bits must be programmed each time the register is
written. If the register contained a command that was still waiting to be triggered, it would be
flushed without ever being executed. The currently executing command will continue to be
executed only until the newly programmed command is triggered to execute.

[18:16] CHAP_CNTR_4_INTERRUPT_ENABLE

CHAP Counter 4 Interrupt Enable.

This counter can generate 3
possible status conditions, which
can be enabled to generate a
interrupt by writing a 1 to the
appropriate bit in the Interrupt
enable register.

RW 0

[15] RESERVED Reserved RW 0

[14:12] CHAP_CNTR_3_INTERRUPT_ENABLE

CHAP Counter 3 Interrupt Enable.

This counter can generate 3
possible status conditions, which
can be enabled to generate a
interrupt by writing a 1 to the
appropriate bit in the Interrupt
enable register.

RW 0

[11] RESERVED Reserved RW 0

[10:8] CHAP_CNTR_2_INTERRUPT_ENABLE

CHAP Counter 2 Interrupt Enable.

This counter can generate 3
possible status conditions, which
can be enabled to generate a
interrupt by writing a 1 to the
appropriate bit in the Interrupt
enable register.

RW 0

[7] RESERVED Reserved RW 0

[6:4] CHAP_CNTR_1_INTERRUPT_ENABLE

CHAP Counter 1 Interrupt Enable.

This counter can generate 3
possible status conditions, which
can be enabled to generate a
interrupt by writing a 1 to the
appropriate bit in the Interrupt
enable register.

RW 0

[3] RESERVED Reserved RW 0

[2:0] CHAP_CNTR_0_INTERRUPT_ENABLE

CHAP Counter 0 Interrupt Enable.

This counter can generate 3
possible status conditions, which
can be enabled to generate a
interrupt by writing a 1 to the
appropriate bit in the Interrupt
enable register.

RW 0

Bits Field Description RW Reset
Programmer’s Reference Manual 387

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

D
B

G

R
E

S
E

R
V

E
D

O
U

IE

C
T

IE

T
H

IE

C
O

N
D

IT
IO

N
 C

O
D

E

S
A

C

O
P

C
O

D
E

R
E

S
E

R
V

E
D

CTEMS CTDBS RESERVED

A
C

T

Table 5-36. CHAP Command N Register Bit Definition (Sheet 1 of 4)

Bits Field Description RW Reset

[31] DBG

PMU DEBUG mode

[31] =0 Normal PMU function.

[31]=1 Each CHAP counter the event signals map to incremnt0,
increment1, decrement0, decrement1 and trigger event will
keep in CHAP status register[20:16] instead of go to CHAP
counter.

[20] keep incremnt0 event

[19] keep increment1 event

[18] keep decrement0 event

[17] keep decrement1 event

[16] keep trigger event

RW 0

[30:27] RESERVED Reserved RW 0

[26] OUIE

Overflow/Underflow Indicator Enable (OUIE)

0 = No indication provided when a counter overflow or underflow
occurs except for setting the Overflow/Underflow Indicator (OUI)
status bit.

1 = CHAP output signal will also be asserted to indicate that a
counter overflow or underflow occurs. This is an output enable bit
that is shared by all indicators. A global interrupt mask controls
whether an interrupt is also generated. An interrupt service routine
can check the status bits associated with enabled interrupts to
determine how the interrupt was generated.

RW 0

[25] CTIE

Command Trigger Indicator Enable (CTIE)

0 = No indication provided when a command is triggered except for
setting the Command Trigger Indicator (CTI) status bit.

1 = CHAP output signal will also be asserted when a command is
triggered. This is an output signal that is shared by all indicators. A
global interrupt mask controls whether an interrupt is also
generated. An interrupt service routine can check the status bits
associated with enabled interrupts to determine how the interrupt
was generated.

RW 0
388 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[24] THIE

Threshold Indicator Enable (THIE)

0 = No indication provided when threshold condition is true except
for setting the Threshold Indicator (TI) status bit

1 = CHAP output signal will also be asserted when threshold
condition is true. This is an output signal that is shared by all
indicators. A global interrupt mask controls whether an interrupt is
also generated. An interrupt service routine can check the status bits
associated with enabled interrupts to determine how the interrupt
was generated.

RW 0

[23:21] CC

Condition Code (CC)

This field contains the code that indicates what type of threshold
compare is done between the counter and the data register. For all
non-0 values of this field, the counter’s data register will contain the
threshold value. The outcome of this compare will generate a
threshold event and potentially an interrupt if that capability is
enabled.

Bit 23 is for less than (<)
Bit 22 is for equal (=)
Bit 21 is for greater than (>)

Select the proper bit mask for desired threshold condition:

000 = False (no threshold compare)
001 = Greater Than
010 = Equal
011 = Greater Than or Equal
100 = Less Than
101 = Not Equal
110 = Less Than or Equal
111 = True (always generate threshold event)

RW 0

[20] SAC

Select ALL Counters (SAC)

0 = The instruction is applied only to the counter associated with this
command register.

1 = The instruction is applied to ALL counters. This means that every
command register is written to with the same value that was written
to this particular command register. This is particularly handy for
resetting all counters with a single command or starting or stopping
all counters simultaneously.

This bit is only valid in Command Register 0 and should be reserved
in all non-0 command registers.

“Globally” executed commands (by setting this bit in Command
Register 0) always override “locally” executed commands.

RW 0

Table 5-36. CHAP Command N Register Bit Definition (Sheet 2 of 4)

Bits Field Description RW Reset
Programmer’s Reference Manual 389

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[19:16] OPCODE

Opcode

0000 = Stop. The corresponding counter does not count.

0001 = Start. The corresponding counter begins counting. Each
counter increments by one if the corresponding increment event
occurs or decrements by one if the corresponding decrement event
occurs. All duration type events toggle every CHAP unit clock tick
that the event is true. The desired increment and decrement events
must be selected before this command executes.

0010 = Sample. The corresponding counter value is latched into the
corresponding data register, which can then be read by reading the
appropriate data register. The counter continues to count without
being reset.

0100 = Reset. The corresponding counter and register is reset to
0000 0000h. The 32 bit wide data registers allow 4 billion clock ticks
or occurrences to be counted between sample commands. When
the counter rolls over, the overflow status bit will be set in the
corresponding status register.

0101 = Restart. The corresponding counter resets, then starts
counting again. This is essentially a Reset & Start command. This
functionality will facilitate histogramming by allowing an event to
trigger to clear the counter and resume counting with no further
intervention.

0110 = Sample & Restart. The Sample command happens and is
followed immediately by the Restart command.

1111 = Preload. The corresponding counter is set to the value that is
located in the associated data register. This facilitates rollover and
overflow validation. The counter remains in the same state when
preloaded. If the counter was counting before the preload was
executed it will continue to count after the preload. It is software’s
responsibility to ensure that the counter is in the desired state
(example: execute stop command) prior to issuing a preload
command.

All others reserved.

RW 0

[15] RESERVED Reserved RW 0

[14:12] CTEMS

Command Trigger Event Mux Select (CTEMS)

This field contains the Event Selection.

Select one out of six events from each design group block to each
associated counter to trigger

RW 0

[11:8] CTDBS

Command Trigger Design Block Select (CTDBS)

This field contains the Design group block trigger Selection.

Select one out of 10 design group blocks to each associated counter
command trigger.

This field contains the PMU design group blocks that the unit will be
required to detect before executing the opcode. The previously
programmed opcode continues to execute until this command
trigger is detected.

RW 0

[7:1] RESERVED Reserved RW 0

Table 5-36. CHAP Command N Register Bit Definition (Sheet 3 of 4)

Bits Field Description RW Reset
390 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.8.6 CHAPEVN—CHAP Events N Register (N = 0...5)

This 32-bit register contains the events that control the increment and decrement of CHAP counter
N. When this register is written, the previous register contents are overwritten (the event fields are
unbuffered) and the associated counter will immediately be affected by the change. This register
should only be programmed when the counter is idle and before the command register receives an
opcode that is associated with the events in this register. If both an increment and a decrement
event are detected on the same clock cycle, the counter value will not change.

[0] ACT

Always Command Trigger (ACT)

1= This causes the command to be triggered immediately upon
being written to the command register.

0= This causes the command to be triggered by the command
trigger [11:7] command register.

RW 0

Table 5-36. CHAP Command N Register Bit Definition (Sheet 4 of 4)

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

D
O

C
E

D
E

C
1_M

U
X

_S
E

L

R
E

S
E

R
V

E
D

D
E

C
0_M

U
X

_S
E

L

R
E

S
E

R
V

E
D

DDB

IO
C

E

IN
C

1_M
U

X
_S

E
L

R
E

S
E

R
V

E
D

IN
C

0_M
U

X
_S

E
L

R
E

S
E

R
V

E
D

IDB

Table 5-37. CHAP Events N Register Bit Definition

Bits Field Name Description RW RESET

[31] DOCE

Decrement Occurrence Count Enable (DOCE)

0 = Decrement Duration Count: the counter is decrement
for each clock for which the decrement event signal is
asserted logic high

1 = Decrement Occurrence Count: the counter is
decrement each time a rising edge of the decrement event
signal is detected.

RW 0

[30:28] DEC1_MUX_SEL

Dec1 Mux Sel

This field contains the Event Selection.

Select one out of six events from each design group block
to each associated counter Decrement 1

Select 0~5 are valid.

Select 6~8 are disable the DEC1_MUX_SEL

RW 0

[27:26] RESERVED Reserved RW 0

[25:23] DEC0_MUX_SEL

Dec0 Mux Sel

This field contains the Event Selection.

Select one out of six events from each design group block
to each associated counter Decrement 0

Select 0~5 are valid.

Select 6~8 are disable the DEC0_MUX_SEL.

RW 0
Programmer’s Reference Manual 391

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[22:20] RESERVED Reserved RO 0

[19:16] DDBS

Decrement Design Block Selection

Select one out of 10 Design group blocks to counter
Decrement 0 and Decrement 1

In case of event block are in 2x of PMU frequency domain
then Counter may need two Decrement otherwise select
either one of them.

RW 0

[15] IOCE

Increment Occurrence Count Enable (IOCE)

0 = Increment Duration Count: the counter is increment for
each clock for which the increment event signal is asserted
logic high

1 = Increment Occurrence Count: the counter is
decrement each time a rising edge of the increment event
signal is detected.

RW 0

[14:12] INC1_MUX_SEL

Inc1 Mux Sel

This field contains the Event Selection.

Select one out of six events from each design group block
to each associated counter Increment 1

Select 0~5 are valid.

Select 6~8 are disable the INC1_MUX_SEL.

RW 0

[11:10] RESERVED Reserved RW 0

[9:7] INC0_MUX_SEL

Inc0 Mux Sel

This field contains the Event Selection.

Select one out of six events from each design group block
to each associated counter Increment 0

Select 0~5 are valid.

Select 6~8 are disable the INC0_MUX_SEL.

RW 0

6:4 RESERVED Reserved RW 0

3:0 IDBS

Increment Design Block Selection
Select one out of 10 Design group blocks to counter
Decrement 0 and Decrement 1
In case of event block are in 2x of PMU frequency
domain then Counter may need two Decrements
otherwise select either one of them.

RW 0

Figure 5-2. Count Types Example

Table 5-37. CHAP Events N Register Bit Definition (Continued)

Bits Field Name Description RW RESET

21

7

1Occurrence Count

Event Signal

Duration Count

Clock 1 2 3 4 5 6

2

43 5
392 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.8.7 CHAPSTAT# (# = 0...5)

This 32-bit register reports the current status of the CHAP counters 0 through 5.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

D
E

I

IE
I

C
A

I

R
E

S
E

R
V

E
D

U
E

I

O
U

I

C
T

I

T
H

I

R
E

S
E

R
V

E
D

DME RESERVED

Table 5-38. CHAP Status N Register Bit Definition

Bit No Field Name Description RW RESET

[31] DEI

Decrement Event Indicator (DEI), WC

0 = The selected decrement event was NOT detected.

1 = The selected decrement event WAS detected.

This bit is updated every clock, whether or not the counter
is counting.

RW1C 0

[30] IEI

Increment Event Indicator (IEI), WC

0 = The selected increment event was NOT detected.

1 = The selected increment event WAS detected.

This bit is updated every clock, whether or not the counter
is counting.

RW1C 0

[29] CAI

Counter Active Indicator (CAI), WC

0 = The associated counter is in a state that does NOT
allow it to be increment or decrement if the appropriate
event(s) are detected.

1 = The associated counter is in a state that allows it to be
increment or decrement if the appropriate event(s) are
detected.

This bit is updated every clock.

RW1C 0

[28] RESERVED Reserved RW1C 0

[27] UEI

Reserved

Unsupported Event Indicator (UEI), WC

0 = No unsupported events have been selected.

1 = An unsupported Event Selection Code (ESC) was
written into in one of the event selection fields (Command
Trigger, Increment Event, or Decrement Event).

RW1C 0

[26] OUI

Overflow/Underflow Indicator (OUI), WC

0 = The associated 32 bit counter has NOT rolled over
since the last time it was cleared.

1 = The associated 32 bit counter HAS rolled over since
the last time it was cleared.

RW1C 0
Programmer’s Reference Manual 393

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.8.8 CHAPDATAN—CHAP Data N Register (N = 0...5)

This 32-bit register allows for reading of the sampled value from CHAP event counter N. When
write to this register it will keep the threshold value that will be compared to the value in the event
counter when a threshold condition is in effect. Read and write will not go to same register. They
share the same address, one for read only (sampled counter value) and the other one for the write
only (threshold value).

[25] CTI

Command Trigger Indicator (CTI), WC

0 = NO commands have been triggered since the last time
this bit was cleared.

1 = A command WAS triggered since the last time this bit
was cleared.

Software can use this bit to determine whether a command
that was pending earlier has been triggered. Once a
command has been triggered, another command can be
triggered to execute.

RW1C 0

[24] THI

Threshold Indicator (THI), WC

0 = No threshold event has been generated since the last
time this bit was cleared.

1 = This counter generated a threshold event due to a true
threshold condition compare since the last time this bit was
cleared.

RW1C 0

[23:21] RESERVED Reserved RO 0

[20:16] DME

Debug Mode Event. If PMU Control bus configuration
Register bit[31] set to 1 (debug mode), then CAHP counter
all the events (incremnt0, increment1, decrement0,
decrement1 and trigger event) will keep in these CHAP
Status register[20:16], it will keep update every CPP clock.

[20] keep incremnt0 event

[19] keep increment1 event

[18] keep decrement0 event

[17] keep decrement1 event

[16] keep trigger event

RO 0

[15:0] RESERVED Reserved RO 0

Table 5-38. CHAP Status N Register Bit Definition (Continued)

Bit No Field Name Description RW RESET

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

COUNT_N_VALUE
394 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.9 SlowPort (CAP CSR)

Table 5-40 shows the offset addresses of the Slowport CSRs. Refer to Chapter 4, “Address Maps”
for the base address and details on how they are accessed. These CSRs can be accessed the Intel
XScale core, PCI and the MEs.

Table 5-39. CHAP Data N Register Bit Definition

Bits Field Name Description RW RESET

31:0 COUNTER_N_VALUE

Counter N Value: Contains either duration (number
of clock ticks) or occurrences contained in CHAP
event counter n at time of sampling. The register is
programmed to contain the threshold value that will
be compared to the value in the event counter when
non-0 condition codes have been selected.

RW 0

Table 5-40. SlowPort Register Map

Abbreviation Address Name Description Section

SP_CCR 0x0000 Clock Configuration
Register

This allows the user to
configure the clock frequency
at the SlowPort

Section 5.6.9.1

SP_WTC1

SP_WTC2

0x0004

0x0008
Write Timing Control
Registers

These registers are used to
control the timing of the
waveforms for write access.

Section 5.6.9.2

Section 5.6.9.3

SP_RTC1

SP_RTC2

0x000C

0x0010
Read Timing Control
Registers

These registers are used to
control the timing of the
waveforms for read access.

Section 5.6.9.4

Section 5.6.9.5

SP_FSR 0x0014 Fault Status Register This register stores the
previous transaction status. Section 5.6.9.6

SP_PCR 0x0018 Protocol Control
Register

This defines the protocol
being used by the second
SlowPort.

Section 5.6.9.7

SP_ADC 0x001C Address Size Control
Register

This defines the address and
data widths. Section 5.6.9.8

SP_FAC 0x0020 Flash Memory Address
Size Register

This defines the address size
of the flash memory used. Section 5.6.9.9

SP_FRM 0x0024 Flash Memory Read
Mode Register

This defines the data width
read back from the flash
memory.

Section 5.6.9.10

SP_FIN 0x0028 Framer Interrupt
Enable Register

This enables the framer
interrupt. Section 5.6.9.11

SP_RXE 0x002C Receive Enable
Register

This enables configuration of
input data sampling timing. Section 5.6.9.13

SP_TXE 0x0030 Transmit Enable
Register

This enables configuration of
output data driving timing. Section 5.6.9.12
Programmer’s Reference Manual 395

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.9.1 SP_CCR

Clock Configuration Register. This register is used to allows the user to configure the output clock
frequency driven onto SlowPort. It is going to be a 4-bit register so as to allow the user to specify
the divisor from 1 up to 30. The default value is set to 0x0 with divisor of 1. All the reserved bits
are read zero and have no effect for write access.

The IXP2xxx rev B enhances the flexibility of configuring the Slowport bus timing. As a result of
this enhancement, the definition of the Divisor field of the SP_CCR register has changed. Both the
original and the new definitions are captured in the following two tables. The original version
applies to rev A of IXP2400 and IXP2800 network processors. The new version applies to rev B of
IXP2400 and IXP2800 network processors.

In Table 5-41, core circuit clock means the APB clock.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED DIVISOR

Bits Field Description RW Reset

[31:4] RESERVED Reserved. Read returns 0; write has no effect RO 0

[3:0] DIVISOR Configure the clock divider. refer to Table 5-41
and Table 5-42 RW

0 (for
rev A), 1
(for rev

B)

Table 5-41. Corresponding Clock Division Values with Respect to the Register Values (for
IXP2xxx rev A)

SP_CCR[3:0] Divisor Description

0000 0x01 Divide core circuit clock by 1

0001 0x02 Divide core circuit clock by 2

0010 0x04 Divide core circuit clock by 4

0011 0x06 Divide core circuit clock by 6

0100 0x08 Divide core circuit clock by 8

0101 0x0A Divide core circuit clock by 10

0110 0x0C Divide core circuit clock by 12

0111 0x0E Divide core circuit clock by 14

1000 0x10 Divide core circuit clock by 16

1001 0x12 Divide core circuit clock by 18

1010 0x14 Divide core circuit clock by 20

1011 0x16 Divide core circuit clock by 22

1100 0x18 Divide core circuit clock by 24
396 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Table 5-42. Corresponding Clock Division Values with Respect to the Register Values (for
IXP2400 rev B)

Table 5-43. Corresponding Clock Division Values with Respect to the Register Values (for

1101 0x1A Divide core circuit clock by 26

1110 0x1C Divide core circuit clock by 28

1111 0x1E Divide core circuit clock by 30

SP_CCR[3:0] Divisor Description

0000 0x04
Divide internal bus clock by four. The period of the internal bus clock
is two times the period of the micro-engine clock.

For 400MHz parts, Divisor must be 0x06 or bigger.

0001 0x06 Divide internal bus clock by six

0010 0x08 Divide internal bus clock by eight

0011 0xA Divide internal bus clock by ten

0100 0xC Divide internal bus clock by twelve

0101 0xE Divide internal bus clock by fourteen

0110 0x10 Divide internal bus clock by sixteen

0111 0x12 Divide internal bus clock by eighteen

1000 0x14 Divide internal bus clock by twenty

1001 0x16 Divide internal bus clock by twenty two

1010 0x18 Divide internal bus clock by twenty four

1011 0x1A Divide internal bus clock by twenty six

1100 0x1C Divide internal bus clock by twenty eight

1101 0x1E Divide internal bus clock by thirty

1110 0x20 Divide internal bus clock by thirty two

1111 0x22 Divide internal bus clock by thirty four

Table 5-41. Corresponding Clock Division Values with Respect to the Register Values (for
IXP2xxx rev A)

SP_CCR[3:0] Divisor Description
Programmer’s Reference Manual 397

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
IXP2800 rev B)

5.6.9.2 SP_WTC1

Write Timing Control Register for Device 1. There are two timing control registers, each corre-
sponding to one device. They are used to control the access timing for setup time, pulse duration,
and hold time. SP_WTC1 controls Flash PROM write parameters, while SP_WTC2 controls the
second device write access on the Slow Port.

SP_CCR[3:0] Divisor Description

0000 0x10 Divide internal bus clock by sixteen. The period of the internal bus
clock is two times the period of the micro-engine clock.

0001 0x12 Divide internal bus clock by eighteen

0010 0x14 Divide internal bus clock by twenty

0011 0x16 Divide internal bus clock by twenty two

0100 0x18 Divide internal bus clock by twenty four

0101 0x1A Divide internal bus clock by twenty six

0110 0x1C Divide internal bus clock by twenty eight

0111 0x1E Divide internal bus clock by thirty

1000 0x20 Divide internal bus clock by thirty two

1001 0x22 Divide internal bus clock by thirty four

1010 0x24 Divide internal bus clock by thirty six

1011 0x26 Divide internal bus clock by thirty eight

1100 0x28 Divide internal bus clock by forty

1101 0x2A Divide internal bus clock by forty two

1110 0x2C Divide internal bus clock by forty four

1111 0x2E Divide internal bus clock by forty six

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED SU PW HD

Bits Field Description RW Reset

[31:10] Reserved Read returns 0; write has no effect. RO 0x0

[9:6] SU Delay from the address strobe to the data strobe; for mode
1 it represents the duration of the address strobe. RW 0x1

[5:2] PW

Pulse width for the data strobe, SP_WR_L; the value of this
filed should be greater than zero for fixed-timed device;
otherwise, it will be treated as self-timing device with the
SP_ACK_L activated.During the self-timing mode, the
SP_ACK_L should respond after SU number of SP_CLK
cycles.

RW 0xC
398 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.9.3 SP_WTC2

Write Timing Control Register for Device 2. There are two timing control registers, each corre-
sponding to one device. They are used to control the access timing for setup time, pulse duration,
and hold time. SP_WTC1 controls Flash PROM write parameters, while SP_WTC2 controls the
second device write access on the Slow Port.

This register has 10-bit width. The field definition is changed according to the mode set in the pro-
tocol control register (SP_PCR Section 5.6.9.7). In mode 0 (used for FlashROMs), the 4 bit SU
field is allocated to the setup time control, indicating the number of clock cycles available from
SP_CS_L assertion to the assertion of the SP_WR_L, depending on read or write access. The 4 bit
PW field is allocated to the pulse width control. If this field is set to 0, the device will be treated as
a self timing device; otherwise it is assumed to be a fixed timing and the number of clock cycles the
pulse width spans is dictated by the value stored in this field. It indicates the number of clock
cycles elapsed before the termination of the SP_WR_L signal. The 3 bit HD field is allocated to the
hold delay timing control. It allows a certain number of clock cycles to pass before the termination
of the transaction.

[1:0] HD Hold time for the data from the data strobe to the end of
cycle. RW 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED SU PW HD

Bits Field Description RW Reset

[31:10] Reserved Read returns 0; write has no effect. RO 0x0

[9:6] SU

Mode 0:
Delay from the address strobe, SP_CS_L to the data
strobe, SP_WR_L for write or SP_RD_L for read.

Mode 1:
Duration for SP_CS _L(CS); it represents the duration
of whole transaction cycle;

Mode 2:
Number of SP_CLK cycle from the last data of data to
the assertion of SP_CS_L and SP_WR_L/WRB for
write;

Mode 3:
Delay from asserted SP_CS_L/CSB to asserted
SP_WR_L/WRB for write;

Mode 4:
Delay from asserted SP_CS_L/CSB to asserted
SP_RD_L/E; SP_WR_L/RWB is also asserted together
with SP_CS_L;

RW 0x1
Programmer’s Reference Manual 399

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
.

[5:2] PW

Mode 0:
Pulse width for the data strobe, SP_WR_L; the value of
this filed should be greater than zero for fixed timed
device; otherwise, it will be treated as self-timing device
with the SP_ACK_L activated. During the self-timing
mode, the SP_ACK_L should respond after SU number
of SP_CLK cycles.

Mode 1:
Duration for SP_RD_L (R/W); the value of this field
should be greater than zero but less than or equal to
the value in the SU field described above for fixed-
timed mode; if it is programmed to zero, it will be
treated as self-timing mode. In the self-timing mode the
ACK is expected after the SP_WR_L deasserted at
least.

Mode 2:
Duration for SP_CS_L and SP_WR_L/WRB; this field
cannot be set to zero; otherwise, it treats the
transaction as self-timing transaction and the
SP_ACK_L/INTB as an ACK signal. During the self-
timing mode, the ACK is expected to appear after the
number of SP_CLK cycle set in the SU field.

Mode 3:
Duration for SP_WR_L assertion for write; this field
cannot be set to zero; otherwise, it treats the
transaction as self-timing transaction and the
SP_ACK_L/INTB as an ACK signal. During the self-
timing mode, the ACK is expected to appear after the
number of SP_CLK cycle set in the SU field.

Mode 4:
Duration for SP_RD_L/E assertion; this field cannot be
set to zero; otherwise, it treats the transaction as self-
timing transaction and the SP_ACK_L/INTB as an ACK
signal. During the self-timing mode, the ACK is
expected to appear after the number of SP_CLK cycle
set in the SU field.

RW 0x2

[1:0] HD

Mode 0:
Hold time for the data from the data strobe to the end of
cycle.

Mode 1:
Duration for SP_WR_L (ADS); the normal value of this
field should be equal to 1;

Mode 2:
Number of SP_CLK cycle before the termination of the
current transaction;

Mode 3:
Delay from deasserted SP_WR_L to deasserted
SP_CS_L;

Mode 4:
Delay from deasserted SP_RD_L/E to deasserted
SP_CS_L/CSB; SP_WR_L/RWB is also terminated
together with SP_CS_L/E.

RW 0

Bits Field Description RW Reset
400 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.9.4 SP_RTC1

Slow Port Read Timing Control for Device 1. There are two timing control registers (SP_RTC1
and SP_RTC2), each corresponding to a slowport device. They are used to control the access
timing for setup time, pulse duration, and hold time. SP_RTC1 controls the read parameters for the
first device (typically Flash PROM), while SP_RTC2 controls the second device on the SlowPort.

5.6.9.5 SP_RTC2

Slow Port Read Timing Control for Device 2. There are two timing control registers (SP_RTC1
and SP_RTC2), each corresponding to a slowport device. They are used to control the access
timing for setup time, pulse duration, and hold time. SP_RTC1 controls the read parameters for the
first device (typically Flash PROM), while SP_RTC2 controls the second device on the SlowPort.

This register has 10-bit width. The field definition is changed according to the mode set in the
protocol control register (SP_PCR Section 5.6.9.7). In mode 0 (used for FlashROMs), the 4 bit SU
field is allocated to the delay control of the number of clock cycles available from SP_CS_L
assertion to the assertion of the SP_RD_L. The 4 bits PW field is allocated to the pulse width
control that indicates the number of clock cycles elapsed before the termination of the SP_RD_L
signal. The 3 bit HD field is allocated to the delay number of clock cycles between the deassertion
of SP_RD_L or SP_WR_L and the termination of the transaction. However, for mode 1 set in the
protocol control register, the functionality of these fields are changed. SU, PW, and HD represent
the number of clock cycles for the SP_CS (CS), SP_RD_L (RW), and SP_WR_L (ADS),
respectively.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED SU PW HD

Bits Field Description RW Reset

[31:10] RESERVED Reserved. Read returns 0; write has no effect. RO 0x0

[9:6] SU
SP_RTC1:

Delay from the address strobe SP_CS_L assertion to the
data strobe SP_RD_L assertion.

RW 0x1

[5:2] PW

SP_RTC1:

Pulse width for the data strobe, SP_RD_L assertion; the
value of this filed should be greater than zero for fixed-
timed device; otherwise, it will be treated as self-timing
device with the SP_ACK_L activated. The SP_ACK_L
should appear after SU number of SP_CLK cycles during
the self-timing mode.

RW 0xC

[1:0] HD
SP_RTC1:

Hold time for the data from the data strobe, SP_RD_L,
deassertion to the end of cycle, SP_CS_L deassertion.

RW 0x0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED SU PW HD
Programmer’s Reference Manual 401

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31:10] RESERVED Reserved. Read returns 0; write has no effect. RO 0x0

[9:6] SU

Mode 0:
Delay from the address strobe SP_CS_L assertion to
the data strobe SP_RD_L assertion.

Mode 1:
For Fixed timing the setup value should be equal to or
greater than the pulse width value. The setup value
should not be set to zero (invalid entry)

Mode 2:
Number of SP_CLK cycle from the de-assertion of
SP_ALE_L to the assertion of SP_CS_L and
SP_RD_L/RDB;

Mode 3:
Delay from asserted SP_CS_L/CSB to asserted
SP_RD_L/RDB;

Mode 4:
Delay from asserted SP_CS_L/CSB to asserted
SP_RD_L/E;

RW 0x1

[5:2] PW

Mode 0:
Pulse width for the data strobe, SP_RD_L assertion;
the value of this filed should be greater than zero for
fixed-timed device; otherwise, it will be treated as self
timing device with the SP_ACK_L activated. The
SP_ACK_L should appear after SU number of SP_CLK
cycles during the self-timing mode.

Mode 1:
Duration for SP_RD_L (R/W); the value of this field
should be greater than zero but less than or equal to
the value in the SU field described above for fixed-
timed mode; if it is programmed to zero, it will be
treated as self-timing mode. During the self-timing
mode, the ACK should appear after the SP_WR_L is
deasserted.

Mode 2:
Duration for SP_CS_L and SP_RD_L/RDB for read;
this field cannot be set to zero; otherwise, it treats the
transaction as self-timing and the SP_ACK_L/INTB as
an ACK signal. During self-timing mode, the
SP_ACK_L is expected after the SU number of
SP_CLK cycles.

Mode 3:
Duration for SP_RD_L; this field cannot be set to zero;
otherwise, it treats the transaction as self-timing and
the SP_ACK_L/INT as an ACK signal. During self-
timing mode, the SP_ACK_L should appear after the
SU number of SP_CLK cycles.

Mode 4:
Duration for SP_RD_L/E assertion; this field cannot be
set to zero; otherwise, it treats the transaction as self-
timing and the SP_ACK_L/INT as an ACK signal.
During self-timing mode, the SP_ACK_L should appear
after the SU number of SP_CLK cycles.

RW 0x2
402 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.9.6 SP_FSR

Fault Status Register. The SP_FSR reports the time-out error if the transaction cycle is terminated
before the SP_ACK_L returns back. The transaction is limited to 256 clock cycle of the
SP_CLK(not the SHXP_APB_CLK). The SP_ACK_L must respond back within 256 clock cycle
of the SP_CLK(not the SHXP_APB_CLK). This only happens in the self-timing device.
Afterwards, an interrupt signal is issued back to the bus master. The interrupt is cleared by writing
0x1 to the FIN field.

[1:0] HD

Mode 0:
Hold time for the data from the data strobe, SP_RD_L,
deassertion to the end of cycle, SP_CS_L deassertion.

Mode 1:
Duration for SP_WR_L (ADS); the normal value of this
field should be equal to 1 and should be at least one
SP_CLK cycle less than SP_CS_L;

Mode 2:
Number of SP_CLK cycles before the termination of
the current transaction; usually it is zero;

Mode 3:
Delay from de-asserted SP_RD_L to de-asserted
SP_CS_L;

Mode 4:
Delay from de-asserted SP_RD_L/E to de-asserted
SP_CS_L/CSB.

RW 0x0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

F
IN

T
O

W
2

T
O

R
2

T
O

W
1

T
O

R
1

Bits Field Description RW Reset

[31:5] RESERVED Reserved. Read returns 0; write has on effect RO 0

[4] FIN 0: No interrupt;
1: Interrupt from the external framer device 2 RW1C 0

[3] TOW2 0: No time-out occurs;
1: Write transaction time-out for device 2 RW1C 0

[2] TOR2 0: No time-out occurs;
1: Read transaction time-out for device 2 RW1C 0

[1] TOW1 0: No time-out occurs;
1: Write transaction time-out for device 1 RW1C 0

[0] TOR1 0: No time-out occurs;
1: Read transaction time-out for device 1 RW1C 0
Programmer’s Reference Manual 403

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.9.7 SP_PCR

Protocol Control Register. Flash PROM interface uses the generic bus protocol (mode 0) on
SlowPort. For the second device, user can configure the SlowPort for different application. The
SP_PCR is equipped for the user to configure the SlowPort interface with the non-standardized
SONET/SDH microprocessor interfaces. The type of the microprocessor interface is presented in
the microprocessor interface configuration (MIC) field as shown below.

5.6.9.8 SP_ADC

Address Size/Data Width Control Register. The SP_ADC is used to configure the SlowPort
interface with the non-standardized SONET/SDH microprocessor interface. The address size can
be specified by AS field and the data width, by the DW field.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED MIC

Bits Field Description RW Reset

[31:3] RESERVED Reserved. Read returns 0; write has no effect RO 0

[2:0] MIC

Configure µP interface type.

RW 0

000 Mode 0: use generic bus protocol

001 Mode 1: designated for the device similar to Lucent
TDAT042G5 SONET/SDH µP interface

010 Mode 2: designated for the device similar to PMC-
Sierra PM5351 S/UNI-TETRA µP interface

011 Mode 3: designated for the device similar to Intel
and AMCC SONET/SDH Intel µP interface

100 Mode 4: designated for the device similar to Intel
and AMCC SONET/SDH Motorola µP interface

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED DW

R
E

S
E

R
V

E
D

AS
404 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.9.9 SP_FAC

Flash Memory Address Size Control Register. The SP_FAC is used to configure the address size of
the flash memory. The address size can be specified by FAS field.

5.6.9.10 SP_FRM

Flash Read Mode Register. The SP_FRM is used to configure the SlowPort flash memory read
mode. There are two read mode, 8-bit read mode and 32-bit read mode. For the 8-bit read mode,
one read cycle is involved. No packing process is needed. The data will be directly placed onto the
lower order byte, [7:0] of the APB bus. For the 32-bit read mode, it needs 4 read cycles. All 4 bytes
are packed into a 32-bit data and passed to the APB bus. By default, it is configured to 32-bit mode.
The programmer should leave it to be 32-bit read mode most of the time unless they need to
program the flash memory and access registers inside the flash memory.

Bits Field Description RW Reset

[31:6] RESERVED Reserved. Read returns 0; write has no effect RO 0x0

[5:4] DW

Configure data width. For mode 0, value 0 is treated as
single byte transfer; otherwise, it will be treated as 4-byte
transaction.

00 - Use 8-bit data width

01 - Use 16-bit data width

10 - Use 24-bit data width (this case may not exist)

11 - Use 32-bit data width

For mode 0, a value o zero is treated as a single byte
transfer; otherwise it is treated as a 4-byte transaction.

RW 0x0

[3:2] RESERVED Reserved. Read returns 0; write has no effect RO 0x0

[1:0] AS

Configure address width.

00 - Use 8-bit address space

01 - Use 16-bit address space

10 - Use 24-bit address space

11 - Use 32-bit address space; actually the maximum space
is 25 bits which is only used for the mode 1,2,3,4 since
mode 0 uses two control pins for the lower address bit[1:0].

RW 0x2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

FA
S

Bits Field Description RW Reset

[31:2] RESERVED Reserved. Read returns 0; write has on effect RO 0

[1:0] FAS

Configure flash memory

00 - Use 10-bit address space

01 - Use 18-bit address space

10 - Use 25-bit address space

11 - Reserved

RW 0x2
Programmer’s Reference Manual 405

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.9.11 SP_FIN

Framer Interrupt Enable Register. The SP_FIN allows the user to enable or disable the interrupt
signal from the framer. Since the interrupt signal shares the same pin of the sp_ack_l, the user
should disable the interrupt if the sp_ack_l is used as an ack signal.

5.6.9.12 SP_TXE

Transmit Enable Register. The SP_TXE allows the users to configure the timing of data written out
at the Slowport interface by the network processor. Specifically, relative to the active edge of the
Slowport clock, data gets written out after TXE+1 number of internal bus clock cycles. The period
of the internal bus clock is two times the period of the micro-engine clock. The maximum value for
TXE depends on the setting of the SP_CCR register, which controls the divisor between the
internal bus clock and the Slowport clock. The maximum value for TXE is the SP_CCR Divisor
field value minus 2.

This register applies to IXP2400 rev B only.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

F
R

M

Bits Field Description RW Reset

[31:1] RESERVED Reserved. Read returns 0; write has on effect RO 0

[0] FRM

Configure flash memory read mode

0 - Use 32-bit data

1 -Use 8-bit data

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

F
IN

Bits Field Description RW Reset

[31:1] RESERVED Reserved. Read returns 0; write has on effect RO 0

[0] FIN

Framer interrupt enable.

0 - Disable

1 - Enable

RW 0x0
406 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.6.9.13 SP_RXE

Receive Enable Register. The SP_RXE allows the users to configure the timing of data being
sampled at the Slowport interface by the network processor. Specifically, data gets sampled
RXE+1 number of internal bus clock cycles before the following active edge of the Slowport clock.
The period of the internal bus clock is two times the period of the micro-engine clock. The
maximum value for RXE depends on the setting of the SP_CCR register, which controls the divisor
between the internal bus clock and the Slowport clock. The maximum value for RXE is the
SP_CCR Divisor field value minus 2.

This register applies to IXP2400 rev B only.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED TXE

Bits Field Description RW Reset

[31:6] RESERVED Reserved. Read returns 0; write has on effect RO 0

[5:0] TXE

TXE + 1 reflects the delay between active edge of Slowport
clock and driving out Slowport data in number of internal
bus clocks.

Legal values for IXP2400 rev B includes 0 through the
SP_CCR Divisor value minus 2. For instance, if Divisor is 6,
the Slowport clock is 6 times slower than the internal bus
clock and the maximum value for TXE is 6 - 2, equal 4.
Other values result in undefined behavior.

RW 0x1

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED RXN

Bits Field Description RW Reset

[31:6] RESERVED Reserved. Read returns 0; write has on effect RO 0

[5:0] RXE

RXE + 1 reflects the number of internal bus clocks before
the next active edge of Slowport clock that input data gets
sampled at the Slowport.

Legal values for IXP2400 rev B includes 0 through the
SP_CCR Divisor value minus 2. For instance, if Divisor is 6,
the Slowport clock is 6 times slower than the internal bus
clock and the maximum value for RXE is 6 - 2, equal 4.
Other values result in undefined behavior.

RW 0x1
Programmer’s Reference Manual 407

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7 Media and Switch Fabric Interface (MSF) - IXP2800

Table 5-44 shows the offset addresses of the IXP2800 MSF CSRs. Refer to Chapter 4, “Address
Maps” for the base address and details on how they are accessed. These CSRs can be accessed by
the Intel XScale core, PCI and the MEs.

Note: For IXP2800 Rev A only -- Before using MSF, write a ‘1’ to bit 10, and then write a ‘0’ to bit 10
for the following register addresses -- 0x80f4, 0x80f8, 0x80fc, 0x8100, 0x8104. These registers are
only used for manufacturing test and must be initialized prior to use. Since there are other test bits
in these registers, in order to write bit 2, the programmer should read the value of the register,
modify bit 2, then write back the modified value of the register.

Table 5-44. MSF Register Summary (Sheet 1 of 5)

Register Offset
(Hex) Comment Section

MSF_RX_CONTROL 0x0000 Section 5.7.1

MSF_TX_CONTROL 0x0004 Section 5.7.2

MSF_INTERRUPT_STATUS 0x0008 Section 5.7.3

MSF_INTERRUPT_ENABLE 0x000C Section 5.7.4

CSIX_TYPE_MAP 0x0010 Section 5.7.5

FC_EGRESS_STATUS 0x0014 Section 5.7.6

FC_INGRESS_STATUS 0x0018 Section 5.7.7

Reserved 0x001C

Reserved 0x0020

HWM_CONTROL 0x0024 Section 5.7.17

FC_STATUS_OVERRIDE 0x0028 Section 5.7.8

MSF_CLOCK_CONTROL 0x002C Section 5.7.9

RX_THREAD_FREELIST_0 0x0030

Section 5.7.18RX_THREAD_FREELIST_1 0x0034

RX_THREAD_FREELIST_2 0x0038

Reserved 0x003C RX_THREAD_FREELIST_3 in
IXP2400

RX_PORT_MAP 0x0040 Section 5.7.19

RBUF_ELEMENT_DONE 0x0044 Section 5.7.20

RX_CALENDAR_LENGTH 0x0048 RX_MPHY_POLL_LIMIT in the
IXP2400 Section 5.7.21

FCEFIFO_VALIDATE 0x004C Section 5.7.22

RX_THREAD_FREELIST_TIMEOUT_0 0x0050

Section 5.7.24RX_THREAD_FREELIST_TIMEOUT_1 0x054

RX_THREAD_FREELIST_TIMEOUT_2 0x0058

Reserved 0x005C RX_THREAD_FREELIST_TIMEOU
T_3 in the IXP2400

NOTES:
1. Addresses that are used in IXP2400 are reserved in IXP2800 to allow for a common superset address map.
408 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
TX_SEQUENCE_0 0x0060

Section 5.7.23TX_SEQUENCE_1 0x0064

TX_SEQUENCE_2 0x0068

Reserved 0x006C TX_SEQUENCE_3 in the IXP2400

TX_CALENDAR_LENGTH 0x0070 Section 5.7.26

Reserved 0x0074-
0x0088

TX_MPHY_POLL_LIMIT,

TX_MPHY_STATUS,
TX_MPHY_FORCE_UPDATE,
RX_UP_CONTROL, and
TX_UP_CONTROL in the IXP2400

Reserved 0x008C–
0x009C

TRAIN_DATA 0x00A0 Section 5.7.31

TRAIN_CALENDAR 0x00A4 Section 5.7.32

TRAIN_FLOW_CONTROL 0x00A8 Section 5.7.33

Reserved 0x00AC–
0x00FC

FCIFIFO 0x0100–
0x013C

FCIFIFO has 16 addresses for burst
access. Burst must start at lowest
address.

Section 5.7.10

FCEFIFO 0x0140–
0x017C

FCEFIFO has 16 addresses for
burst access. Burst must start at
lowest address.

Section 5.7.11

Reserved 0x0180–
0x02FC

Table 5-44. MSF Register Summary (Sheet 2 of 5)

Register Offset
(Hex) Comment Section

NOTES:
1. Addresses that are used in IXP2400 are reserved in IXP2800 to allow for a common superset address map.
Programmer’s Reference Manual 409

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
RX_DESKEW_RDAT0 0x0300

These registers hold the deskew
values per pin from training Section 5.7.12

RX_DESKEW_RDAT1 0x0304

RX_DESKEW_RDAT2 0x0308

RX_DESKEW_RDAT3 0x030C

RX_DESKEW_RDAT4 0x0310

RX_DESKEW_RDAT5 0x0314

RX_DESKEW_RDAT6 0x0318

RX_DESKEW_RDAT7 0x031C

RX_DESKEW_RDAT8 0x0320

RX_DESKEW_RDAT9 0x0324

RX_DESKEW_RDAT10 0x0328

RX_DESKEW_RDAT11 0x032C

RX_DESKEW_RDAT12 0x0330

RX_DESKEW_RDAT13 0x0334

RX_DESKEW_RDAT14 0x0338

RX_DESKEW_RDAT15 0x033C

RX_DESKEW_RCTL 0x0340

RX_DESKEW_RPAR 0x0344

RX_DESKEW_RPROT 0x0348

SPI4_DYNFILT_THRESH 0x034C Section 5.7.13

MSF_DLL_DATA_DELAY_CTL 0x0350 Section 5.7.14

RX_DESKEW_RXCSOF 0x0354

Section 5.7.12

RX_DESKEW_RXCDAT0 0x0358

RX_DESKEW_RXCDAT1 0x035C

RX_DESKEW_RXCDAT2 0x0360

RX_DESKEW_RXCDAT3 0x0364

RX_DESKEW_RXPAR 0x0368

RX_DESKEW_RXCSRB 0x036C

FC_DYNFILT_THRESH 0x0370 Section 5.7.15

FC_DLL_DATA_DELAY_CTL 0x0374 Section 5.7.16

Reserved 0x0378–
0x037C

TX_MULTIPLE_PORT_STATUS_# 0x0380–
0x03BC Section 5.7.29

Reserved 0x03C0–
0x03FC

Table 5-44. MSF Register Summary (Sheet 3 of 5)

Register Offset
(Hex) Comment Section

NOTES:
1. Addresses that are used in IXP2400 are reserved in IXP2800 to allow for a common superset address map.
410 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
 RX_PHASEMON_RDAT0 0x0400

Allows the user to monitor which dll
output clock phase is being used to
sample the data

Section 5.7.34

 RX_PHASEMON_RDAT1 0x0404

 RX_PHASEMON_RDAT2 0x0408

 RX_PHASEMON_RDAT3 0x040C

 RX_PHASEMON_RDAT4 0x0410

 RX_PHASEMON_RDAT5 0x0414

 RX_PHASEMON_RDAT6 0x0418

 RX_PHASEMON_RDAT7 0x041C

 RX_PHASEMON_RDAT8 0x0420

 RX_PHASEMON_RDAT9 0x0424

 RX_PHASEMON_RDAT10 0x0428

 RX_PHASEMON_RDAT11 0x042C

 RX_PHASEMON_RDAT12 0x0430

 RX_PHASEMON_RDAT13 0x0434

 RX_PHASEMON_RDAT14 0x0438

 RX_PHASEMON_RDAT15 0x043C

 RX_PHASEMON_RCTL 0x0440

 RX_PHASEMON_RPAR 0x0444

RX_PHASEMON_RPROT 0x0448

Reserved 0x044C
0x0450

RX_PHASEMON_RXCSOF 0x0454

Section 5.7.34

RX_PHASEMON_RXCDAT0 0x0458

RX_PHASEMON_RXCDAT1 0x045C

RX_PHASEMON_RXCDAT2 0x0460

RX_PHASEMON_RXCDAT3 0x0464

 RX_PHASEMON_RXCPAR 0x0468

 RX_PHASEMON_RXSRB 0x046C

Reserved 0x0470–
0x04FC

Rx_Port_Calendar_Status_# (0 TO 255) 0x500–
0x8FC Section 5.7.25

Reserved 0x0900–
0x0FFC

TX_CALENDAR_# (0 TO 255) 0x1000–
0x13FC Section 5.7.27

TX_PORT_STATUS_# (0 TO 255) 0x1400–
0x17FC Section 5.7.28

Table 5-44. MSF Register Summary (Sheet 4 of 5)

Register Offset
(Hex) Comment Section

NOTES:
1. Addresses that are used in IXP2400 are reserved in IXP2800 to allow for a common superset address map.
Programmer’s Reference Manual 411

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
TBUF_ELEMENT_CONTROL_#

(0 TO 127)
0x1800–
0x1BFC

Write
TBUF_ELEMENT_CONTROL_#
and set Element Valid. If done as 2
separate 32-bit writes, the write to
the upper half of the register sets
Element Valid.

Section 5.7.30

RBUF/TBUF (8KB) 0x2000–
0x3FFF

Read = RBUF, Write = TBUF refer
to Section 4.1.5 for memory map for
the RBUF and TBUF.

Section 4.1.5

MSF_IO_BUF_CTL 0x8008
MSF Rcomp Registers

Section 5.7.35

FC_IO_BUF_CTL 0x800C Section 5.7.36

Table 5-44. MSF Register Summary (Sheet 5 of 5)

Register Offset
(Hex) Comment Section

NOTES:
1. Addresses that are used in IXP2400 are reserved in IXP2800 to allow for a common superset address map.
412 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.1 MSF_RX_CONTROL

The control register defines a number of receive configuration parameters.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

R
X

_E
N

_C

R
X

_E
N

_S

R
E

S
E

R
V

E
D

S
P

I4_C
H

E
C

K
S

U
M

_M
O

D
E

D
A

TA
_D

IP
4_D

IS

F
LW

C
T

L_V
P

A
R

_T
Y

P
E

D
A

TA
_V

P
A

R
_T

Y
P

E

F
LW

C
T

L_V
P

A
R

_D
IS

D
A

TA
_V

P
A

R
_D

IS

F
LW

C
T

L_H
P

A
R

_D
IS

D
A

TA
_H

P
A

R
_D

IS

R
S

TA
T

_O
V

_V
A

LU
E

R
S

TA
T

_O
V

E
R

R
ID

E

D
U

P
LE

X
_M

O
D

E

R
X

_C
W

R
D

_S
IZ

E

S
TA

T
_C

LO
C

K

R
S

TA
T

_S
E

LE
C

T

R
X

_C
A

LE
N

D
A

R
_M

O
D

E

R
E

S
E

R
V

E
D

C
S

IX
_F

R
E

E
LIS

T

R
E

S
E

R
V

E
D

R
B

U
F

_E
LE

_S
IZ

E
_2

R
B

U
F

_E
LE

_S
IZ

E
_1

R
B

U
F

_E
LE

_S
IZ

E
_0

R
B

U
F

_P
A

R
T

IT
IO

N

Bits Field Description RW Reset

[31] RX_EN_C

Receive Enable for CSIX (RPROT = 1).
0—Receive section ignores CSIX transfers on the rx
pins.
1—Receive section enabled to receive CSIX transfers
as defined in this spec.

RW 0

[30] RX_EN_S

Receive Enable for SPI-4 (RPROT = 0).
0—Receive section ignores SPI-4 transfers on the rx
pins.
1—Receive section enabled to receive SPI-4
transfers as defined in this spec.

RW 0

[29:28] RESERVED Reserved RW 0

[27] SPI4_CHECKSUM_MO
DE

Rev A -- Reserved

Rev B-- SPI4 checksum mode select
0— 1's compliment of checksum calculated over data
words in element (A0 mode)
1— checksum calculated over data words in element

RW 0

[26] DATA_DIP4_DIS

0—Check DIP-4 Parity received in SPI-4 bursts received
on RDAT.

1—Ignore DIP4 field in all SPI4 Control Words received
on RDAT. Note - Does not stop the IXP2800 from
generating correct DIP-4 Parity on transmitted SPI-4
bursts.

RW 0

[25] FLWCTL_VPAR_TYPE

Flow Control Vertical parity type.

There is an option for CSIX mode to select the type of
parity generated and sent inband (with in the CFrame).
Refer to bit [24] (DATA_VPAR_TYPE) for more
information.

0—Vertical Parity (as defined in CSIX-L1 specification)

1—DIP-16 Parity

RW 0
Programmer’s Reference Manual 413

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[24] DATA_VPAR_TYPE

There is an option for CSIX mode to select the type of
parity generated and sent inband (within the CFrame).

0—Vertical Parity (as defined in CSIX-L1 specification)

1—DIP-16 Parity (not defined in CSIX Specification. This
eliminates the need for the out-of-band horizontal parity
specified by CSIX. The DIP-16 parity is generation as
defined in SPI-4 specification (which describes a DIP-4
example that produces an intermediate DIP-16).

RW 0

[23] FLWCTL_VPAR_DIS

0—Calculate the Vertical Parity for the CFrames on the
RXCDAT pins and check it with the Vertical Parity
received in the CFrame.

1—Ignore the Vertical Parity. Note - Does not stop the
IXP2800 from generating correct Vertical Parity on
transmitted CFrames.

RW 0

[22] DATA_VPAR_DIS

0—Calculate the Vertical Parity for the CFrames on the
RDAT pins and check it with the Vertical Parity received in
the CFrame.

1—Ignore the Vertical Parity. Note - Does not stop the
IXP2800 from generating correct Vertical parity on
transmitted CFrames.

RW 0

[21] FLWCTL_HPAR DIS

0—Calculate the Horizontal Parity for the CFrames on the
RXCDAT pins and check it with the Horizontal Parity
received on the RXCPAR pins.

1—Ignore RXCPAR. Note - Does not stop the IXP2800
from generating correct TXCPAR on transmitted CWords.

RW 0

[20] DATA_HPAR_DIS

0— Calculate the Horizontal Parity for the CFrames on the
RDAT pins and check it with the Horizontal Parity received
on the RPAR pins.

1—Ignore RPAR. Note - Does not stop the IXP2800 from
generating correct TPAR on transmitted CWords

RW 0

[19:18] RSTAT_OV_VALUE

Rev A --

Value used with RSTAT_Override.

When RSTAT_Override is 0 the value in the calendar is:

RBUF above HWM - 10 (Satisfied)

RBUF not above HWM - Value in this field

When RSTAT_Override is 1 the value in the calendar is:

Value in this field

Rev B --

This value is used according to the mode specified in
RX_CALENDAR_MODE, if RSTAT_OVERRIDE is set.

RW 0

Bits Field Description RW Reset
414 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[17] RSTAT_OVERRIDE

Rev A --

Allows software to control value sent on RSTAT outputs.

0—RSTAT sends calendar based on RBUF High Water
Mark and RSTAT_OV_Value as defined in the
RSTAT_OV_Value field description (note that it is the
more conservative of RBUF_HWM and the
RSTAT_OV_Value field.

1—RSTAT sends calendar -- status is always equal to
RSTAT_OV_Value bits

RSTAT calendar is only sent when
Train_Data[RSTAT_En] is set, otherwise it is held in
framing state.

Rev B --

Enables the value in RSTAT_OV_VALUE to be sent on
the RSTAT outputs according to the mode specified in
RX_CALENDAR _MODE.

RW 0

[16] DUPLEX_MODE

Determines the way CSIX Switch Fabric flow control
information is communicated.

• 0—Simplex Mode. Directly from Switch Fabric.
• 1—Full Duplex Mode. From Egress IXP2800 to

Ingress IXP2800

Determines the source of the data put into FCEFIFO.
• Simplex Mode. ME or Intel XScale core writes to

FCEFIFO.
• Full Duplex Mode. CSIX CFrames received from

Switch Fabric on the RDAT.

RW 0

[15:14] RX_CWRD_SIZE

Determines the CWord size on receive (only applies when
CFrames are received). The CWord size determines
where padding bytes are in a CFrame. (Only applies to
RDAT pins; CFrames received into FCIFIFO on RXCDAT
always use 32 bit CWords.)

00—32 bits
01—64 bits
10—96 bits
11—128 bits

RW 0

[13] RSTAT_CLOCK

Selects which edge of RSCLK is used to change
RSTAT[1:0]. Only applies if RSTAT_Select bit is 0.

0—Falling edge

1—Rising edge

RW 0

[12] RSTAT_SELECT

Selects which pins are used for SPI-4 Status Channel
outputs.

0—Use LVTTL pins RSCLK and RSTAT[1:0].

1—Use LVDS pins TXCCLK and TXCDAT[1:0].

LVDS mode must be used when RCLK is greater than or
equal to 500 MHz.

RW 0

Bits Field Description RW Reset
Programmer’s Reference Manual 415

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[11] RX_CALENDAR_MODE

Rev A -- Reserved

Rev B -- This bit controls the value driven on RSTAT.

0—Conservative_Value The value driven as the status for
a given port is the most conservative of:

• the RBUF status based on RBUF high-water-mark
(Section 5.7.17).

• RSTAT_Ov_Value (if RSTAT_Override is 1)
(Section 5.7.1)

• the value in Rx_Port_Calendar_Status_#
(Section 5.7.25) for the port.

1—Force_Override. The value in
Rx_Port_Calendar_Status_# (Section 5.7.25) as
described in Rx_Port_Calendar_Status_# description.

RW 0

[10] RESERVED Reserved RW 0

[9] CSIX_FREELIST

Determines how received CFrames are mapped to
RX_THREAD_FREELISTS. See Table 5-45.

0—Data and Control CFrames go to different
RX_THREAD_FREELISTS.
1—Data and Control CFrames go to the same
RX_THREAD_FREELIST.

RW 0

[8] RESERVED Reserved RW 0

[7:6] RBUF_ELE_SIZE_2

Indicates element size for partition 2 of RBUF. Number of
elements is a function of number of partitions—see
Table 5-45. Only used if RBUF_Partition is 3.

00—64 bytes
01—128 bytes
10—256 bytes
11—Reserved

RW 0

[5:4] RBUF_ELE_SIZE_1

Indicates element size for partition 1 of RBUF. Number of
elements is a function of number of partitions—see
Table 5-45. Only used if RBUF_Partition is 2 or 3.

00—64 bytes
01—128 bytes
10—256 bytes
11—Reserved

RW 0

[3:2] RBUF_ELE_SIZE_0

Indicates element size for partition 0 of RBUF. Number of
elements is a function of number of partitions—see
Table 5-45.

00—64 bytes
01—128 bytes
10—256 bytes
11—Reserved

RW 0

[1:0] RBUF_PARTITION

Controls the number of partitions for RBUF elements.
• 00–1 way—All elements allocated from

RBUF_Element_Freelist_0 (and
RBUF_Element_Freelist_1 based on value in
Rx_Port_Map CSR).

• 01–2 way—¾ of elements allocated from
RBUF_Element_Freelist_0 and ¼ from
RBUF_Element_Freelist_1.

• 10–3 way—1/2 of elements allocated from
RBUF_Element_Freelist_0, 3/8 from
RBUF_Element_Freelist_1, and 1/8 from
RBUF_Element_Freelist_2.

• 11—Reserved

RW 0

Bits Field Description RW Reset
416 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Table 5-45. Number of Elements per RBUF or TBUF Partition

TBUF_PARTITION
or

RBUF_PARTITION
Fields

TBUF_ELE_SIZE_#
or

RBUF_ELE_SIZE_#
Fields

Partition Number

0 1 2

00 (1 partition)

00 (64 byte) 128

Unused Unused01 (128 byte) 64

10 (256 byte) 32

01 (2 partitions)

00 (64 byte) 96 32

Unused01 (128 byte) 48 16

10 (256 byte) 24 8

10 (3 partitions)

00 (64 byte) 64 48 16

01 (128 byte) 32 24 8

10 (256 byte) 16 12 4

This table applies to both RBUF and TBUF partitioning.
Programmer’s Reference Manual 417

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.2 MSF_TX_CONTROL

The control register defines a number of receive configuration parameters.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

T
X

_E
N

_C
D

T
X

_E
N

_C
C

T
X

_E
N

_S

S
P

A
R

E

T
X

_F
LU

S
H

_P
A

R
2

T
X

_F
LU

S
H

_P
A

R
1

T
X

_F
LU

S
H

_P
A

R
0

S
P

A
R

E

T
X

_S
TA

T
U

S
_U

P
D

A
T

E
_M

O
D

E

T
X

_S
TA

T
U

S
_R

E
A

D
_M

O
D

E

T
X

C
C

LK
_S

O
U

R
C

E

F
LW

C
T

L_V
P

A
R

_T
Y

P
E

D
A

TA
_V

P
A

R
_T

Y
P

E

T
X

_D
U

P
LE

X
_M

O
D

E

T
X

_C
W

R
D

_S
IZ

E

T
S

TA
T

_C
LO

C
K

T
S

TA
T

_S
E

LE
C

T

T
C

LK
_S

O
U

R
C

E

T
X

_E
N

A
B

LE

T
X

_ID
LE

T
S

TA
T

_E
N

T
B

U
F

_E
LE

_S
IZ

E
_2

T
B

U
F

_E
LE

_S
IZ

E
_1

T
B

U
F

_E
LE

_S
IZ

E
_0

T
B

U
F

_P
A

R
T

IT
IO

N

Bits Field Description RW Reset

[31] TX_EN_CD

Transmit Enable for CSIX Data.
0—Do not transmit TBUF elements from CSIX Data
partition. The effect is the same as if no CSIX Data
TBUF element is valid.
1—Transmit valid CSIX Data TBUF elements as
defined in this spec.

Whenever TX_EN_CD is cleared, the TX_FLUSH bits of
the used partitions must be set to reset the partition before
resetting TX_EN_CD to re-enable the partition.

RW 0

[30] TX_EN_CC

Transmit Enable for CSIX Control.
0—Do not transmit TBUF elements from CSIX Control
partition. The effect is the same as if no CSIX Control
TBUF element is valid.
1—Transmit valid CSIX Control TBUF elements as
defined in this spec.

Whenever TX_EN_CC is cleared, the TX_FLUSH bits of
the used partitions must be set to reset the partition before
resetting TX_EN_CC to re-enable the partition.

RW 0

[29] TX_EN_S

Transmit Enable for SPI-4.
0—Do not transmit TBUF elements from SPI-4
partition. The effect is the same as if no SPI-4 TBUF
element is valid.
1—Transmit valid SPI-4 TBUF elements as defined in
this spec.

Whenever TX_EN_SS is cleared, the TX_FLUSH bits of the
used partitions must be set to reset the partition before
resetting TX_EN_SS re-enable the partition.

RW 0

[28:27] SPARE Reserved RW 0

[26] TX_FLUSH_PAR2 These bits can be written to flush valid entries from TBUF.
When a 1 is written to these bits, all valid bits of
corresponding TBUF partition elements are cleared, and
the internal element pointers and TX sequence number
used by that section of TBUF are reset. These bits return 0
when read.

WO 0

[25] TX_FLUSH_PAR1 WO 0

[24] TX_FLUSH_PAR0 WO 0

[23] SPARE Reserved RW 0
418 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[22] TX_STATUS_UPDATE
MODE

Rev A -- Reserved

Rev B -- Controls how TX_PORT_STATUS and
TX_MULTIPLE_PORT_STATUS are updated.

0—The latest received status sample for the port is
always updated into TX_PORT_STATUS and
TX_MULTIPLE_PORT_STATUS.
1—The latest received status sample for the port is
updated into TX_PORT_STATUS and
TX_MULTIPLE_PORT_STATUS as shown in
Table 5-46.

RW 0

[21] TX_STATUS_READ
MODE

Rev A -- Reserved

Rev B --Controls what value is placed into
TX_PORT_STATUS and TX_MULTIPLE_PORT_STATUS
when they are read. The modified value is used as an
indication that the most recently received calendar status
has been read.

0—Illegal value (11)
1—Satisfied value (10)

RW 0

[20:19] TXCCLK_SOURCE

Selects which clock source is used for TXCCLK Output.
00—RCLK input
01—TCLK_REF input
10— Divided version of internal fast clock; divide value
is specified in Clock_Control CSR.
11—Reserved

RW 0

[18] FLWCTL_VPAR_TYPE
Flow Control Vertical Parity Type

0—Vertical Parity (defined in CSIX-L1 specification)
1—DIP-16 Parity (defined in SPI-4 specification)

RW 0

[17] DATA_VPAR_TYPE

DATA Vertical Parity Type
0—Vertical Parity (defined in CSIX-L1 specification)
1—DIP-16 Parity (defined in SPI-4 specification)

This bit is available for CSIX mode only.

RW 0

[16] TX_DUPLEX_MODE

Determines the way CSIX Switch Fabric flow control
information is communicated.

0—Simplex Mode. Directly from Switch Fabric.
1—Full Duplex Mode. From Egress IXP2800 to Ingress
IXP2800

Determines where CSIX link level Flow Control bits saved
in the FC_Ingress_Status CSR are derived.

Simplex Mode. Directly from Switch Fabric via the
RXCDAT, RXCPAR, RXCSOF pins.

Full Duplex Mode. From the Egress processor via the
RXCSRB pin.

RW 0

[15:14] TX_CWRD SIZE

Determines the CWord size on transmit (only applies when
CFrames are transmitted). The CWord size determines
where padding bytes are in a CFrame. (Only applies to
TDAT pins; CFrames transmitted from FCEFIFO on
TXCDAT always use 32 bit CWords.)

00—32 bits
01—64 bits
10—96 bits
11—128 bits

RW 0

[13] TSTAT_CLOCK

Selects which edge of TSCLK is used to sample
TSTAT[1:0]. Only applies if TSTAT_Select bit is 0.

0—Falling edge
1—Rising edge

RW 0

Bits Field Description RW Reset
Programmer’s Reference Manual 419

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[12] TSTAT_SELECT

Selects which pins are used for SPI-4 Status Channel
inputs.

0—Use LVTTL pins TSCLK and TSTAT[1:0].
1—Use LVDS pins RXCCLK and RXCDAT[1:0].

RW 0

[11] TCLK_SOURCE

Selects the source for TCLK output.
0—From TCLK_REF input.
1—Divided version of internal fast clock; divide value is
specified in CLOCK_CONTROL CSR.

RW 0

[10] TX_ENABLE

Enables transmission.
0—All Transmit output signals remain driven low.
1—Normal transmit operation is enabled.

Note this bit does not control TCLK. TCLK is controlled by
MSF_CLK_CONTROL[TCLK_EN].

RW 0

[9] TX_IDLE

Controls which type of idle information is transmitted if no
TBUF element is valid or if transmit flow control has
disabled transmission.

0—SPI-4
1—CSIX

Note: in interleaved mode, where the TBUF is partitioned to
transmit CSIX and SPI-4 data, this bit must be set to 1.

RW 0

[8] TSTAT_EN

TSTAT Enable.
0—TSTAT pins are ignored.
1—TSTAT is used to receive FIFO status according to
the description in SPI-4 Transmit Flow Control.

Note: enables writing RXCDAT in LVDS mode.

RW 0

[7:6] TBUF_ELE_SIZE_2

Indicates element size for partition 2 of TBUF. Number of
elements is a function of number of partitions—see
Table 5-45. Only used if TBUF_Partition is 3.

00—64 bytes
01—128 bytes
10—256 bytes
11—Reserved

RW 0

[5:4] TBUF_ELE_SIZE_1

Indicates element size for partition 1 of TBUF. Number of
elements is a function of number of partitions—see
Table 5-45. Only used if TBUF_Partition is 2 or 3.

00—64 bytes
01—128 bytes
10—256 bytes
11—Reserved

RW 0

[3:2] TBUF_ELE_SIZE_0

Indicates element size for partition 0 of TBUF. Number of
elements is a function of number of partitions—see
Table 5-45.

00—64 bytes
01—128 bytes
10—256 bytes
11—Reserved

RW 0

[1:0] TBUF_PARTITION

Controls the number of partitions for TBUF elements.
00–1 way—All elements allocated from
TBUF_Element_Freelist_0.
01–2 way—¾ of elements allocated from
TBUF_Element_Freelist_0 and ¼ from
TBUF_Element_Freelist_1.
10–3 way—1/2 of elements allocated from
TBUF_Element_Freelist_0, 3/8 from
TBUF_Element_Freelist_1, and 1/8 from
TBUF_Element_Freelist_2.
11—Reserved

RW 0

Bits Field Description RW Reset
420 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.3 MSF_INTERRUPT_STATUS

This register holds error status. When any of these bits is set, and the corresponding bit in
MSF_INTERRUPT_ENABLE is set, MSF generates an interrupt signal to the Intel XScale
processor. Note that these bits can be read even if the interrupt is not enabled.

Table 5-46. New Port Status to be saved based on currently saved value and new value
received on TSTAT

TX_STATUS_UPDATE_MODE Value

1 0

New Value from
TSTAT Starving Hungry Satisfied Illegal Any

Starving Starving Starving Starving Starving Starving

Hungry Starving Hungry Hungry Hungry Hungry

Satisfied Starving Hungry Satisfied Satisfied Satisfied

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

FCEFIFO_OVFLW_CNT RBUF_OVFLW_CNT

F
C

IF
IF

O
_P

A
R

IT
Y

_E
R

R

F
LW

C
T

L_T
R

A
IN

_S
T

O
P

P
E

D

C
A

L_T
R

A
IN

_S
T

O
P

P
E

D

D
A

TA
_T

R
A

IN
_S

T
O

P
P

E
D

D
E

T
_C

S
IX

_F
C

_ID
LE

D
E

T
_C

S
IX

_ID
LE

R
E

C
_F

LW
_C

T
L_T

R
A

IN

R
E

C
_C

A
L_T

R
A

IN

R
E

C
_D

A
TA

_T
R

A
IN

F
C

IF
IF

O
_E

R
R

D
E

T
E

C
T

_N
O

_C
A

L

T
B

U
F

_E
R

R
O

R

T
S

TA
T

_P
A

R
_E

R
R

D
IP

4_E
R

R

V
P

_E
R

R

H
P

_E
R

R

Programmer’s Reference Manual 421

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31:24] FCEFIFO_OVFLW_CNT

Full Duplex Mode:

CSIX CFrame mapped to FCEFIFO arrived and
FCEFIFO did not have sufficient room. The entire
CFrame is discarded. This field counts up by 1 for
every discarded CFrame.

Simplex Mode: (IXP2800 Rev B ONLY)

Software attempted to write data into FCEFIFO and it
is completely full. (FCEFIFO can hold up to 255
entries in this mode). This field counts up by 1 for
every discarded CWord.

This field saturates at 0xFF. In other words, when the
count reaches 0xFF, it will stop counting, so as to not
roll over to zero.

Note that these bits need to be cleared all at the
same time by writing 0xFF to them.

RW
1C 0

[23:16] RBUF_OVFLW_CNT

Data was received on Rx pins and no buffer space
was free to accept it. The data is discarded. This field
counts up by 1 for every discarded SPI-4 burst or
CFrame. If the count reaches 0xFF it will stop
counting, so as to not roll over to zero.

Note that these bits need to be cleared all at the
same time by writing 0xFF to them.

RW
1C 0

[15] FCIFIFO_PARITY_ERR Incorrect Parity was received on a CFrame received
on RXCDAT pins.

RW
1C 0

[14] FLWCTL_TRAIN_STOPPED
When set indicates that Training was received on
Flow Control Rx pins and the training sequence has
stopped.

RW
1C 0

[13] CAL_TRAIN_STOPPED
When set indicates that Training was received on
Calendar Rx pins and the training sequence has
stopped.

RW
1C 0

[12] DATA_TRAIN_STOPPED When set indicates that Training was received on
Data Rx pins and the training sequence has stopped.

RW
1C 0

[11] DET_CSIX_FC_IDLE
When set indicates that at least one CSIX Idle
CFrame was received by the IXP2800 on the
RXCDAT pins.

RW
1C 0

[10] DET_CSIX_IDLE
When set indicates that at least one CSIX Idle
CFrame was received by the IXP2800 on the RDAT
pins.

RW
1C 0

[9] REC_FLW_CTL_TRAIN

At least one complete training sequence was
received on the Flow Control Rx pins. If this bit is
cleared by software while continuous training is being
received, it will set again.

RW
1C 0

[8] REC_CAL_TRAIN

At least one complete training sequence was
received on the Calendar Rx pins. If this bit is cleared
by software while continuous training is being
received, it will set again.

RW
1C 0

[7] REC_DATA_TRAIN

At least one complete training sequence was
received on the Data Rx pins. If this bit is cleared by
software while continuous training is being received, it
will set again.

RW
1C 0
422 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[6] FCIFIFO_ERR

FCIFIFO CFrame was discarded due to either:
Horizontal Parity Error
Vertical Parity Error
Premature RXCSOF (before entire payload
length was received)
Overflow—CFrame with Payload Size greater
than space available in FCIFIFO

RW
1C 0

[5] DETECT_NO_CAL

Status channel disabled indicator. Status channel is
either TSTAT or RXCDAT depending on
MSF_Tx_Control[TSTAT_Select].

When LVTTL is used, this bit indicates TSTAT input
has had framing pattern for more than 32 consecutive
cycles.

When LVDS is used, this bit indicates that 3
consecutive training patterns were detected on
RXCDAT.

• 0—Status channel indicates calendar is active.
1—Status channel indicates need for training (i.e.
no calendar active).

RW
1C 0

[4] TBUF_ERROR

Transmit Control Word programming error.

When set indicates that a programming error
occurred when writing the TBUF_Element_Control
register.

• In CSIX and SPI4 modes, this bit is set when the
sum of ((prepend_offset + preprend_length + 7)
& 0xf8) + payload_offset + payload_length is
greater than the TBUF element size.
In this case the payload length transmitted will be
truncated by the number of bytes in excess of the
TBUF element size.

• In SPI4 mode, this bit is also set when the sum of
the Prepend Length and Payload Length is not
an integer multiple of 16 bytes and the EOP bit is
not set in the Transmit Control Word.

RW
1C 0

[3] TSTAT_PAR_ERR Incorrect DIP-2 Parity was received on TSTAT or
RXCDAT.

RW
1C 0

[2] DIP4_ERR Incorrect DIP-4 Parity on received SPI-4. RW
1C 0

[1] VP_ERR Incorrect Vertical Parity on a received CFrame or
premature SOF.

RW
1C 0

[0] HP_ERR Incorrect Horizontal Parity on a received CFrame. RW
1C 0

Bits Field Description RW Reset
Programmer’s Reference Manual 423

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.4 MSF_INTERRUPT_ENABLE

This register holds enable bits for individual error types. This register is bitwise ANDed with
MSF_INTERRUPT_STATUS—if the result is not zero MSF generates an interrupt signal to the
Intel XScale processor

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

F
C

E
F

IF
O

_O
V

F
LW

_C
N

T

RESERVED

R
B

U
F

_O
V

F
LW

_C
N

T

F
C

IF
IF

O
_P

A
R

IT
Y

_E
R

R

F
LW

C
T

L_T
R

A
IN

_S
T

O
P

P
E

D

C
A

L_T
R

A
IN

_S
T

O
P

P
E

D

D
A

TA
_T

R
A

IN
_S

T
O

P
P

E
D

D
E

T
_C

S
IX

_F
C

_ID
LE

D
E

T
_C

S
IX

_ID
LE

R
E

C
_F

LW
_C

T
L_T

R
A

IN

R
E

C
_C

A
L_T

R
A

IN

R
E

C
_T

R
A

IN

F
C

IF
IF

O
_ E

R
R

D
E

T
E

C
T

_N
O

_C
A

L

T
B

U
F

_E
R

R
O

R

T
S

TA
T

_P
A

R
_E

R
R

D
IP

4_E
R

R

V
P

_E
R

R

H
P

_E
R

R

Bits Field Description RW Reset

[31:25] RESERVED Reserved RO 0

[24] FCEFIFO_OVFLW_CNT
This bit is ANDed with the OR of all the
FCEFIFO_OVERFLOW_COUNT bits (to detect
when the count is not zero).

RW 0

[23:17] RESERVED Reserved RO 0

[16] RBUF_OVFLW_CNT
This bit is ANDed with the OR of all the
RBUF_OVERFLOW_COUNT bits (to detect when
the count is not zero).

RW 0

[15] FCIFIFO_PARITY_ERR Incorrect Parity was received on a CFrame
received on RXCDAT pins. RW 0

[14] FLWCTL_TRAIN_STOPPED RW 0

[13] CAL_TRAIN_STOPPED RW 0

[12] DATA_TRAIN_STOPPED RW 0

[11] DET_CSIX_FC_IDLE RW 0

[10] DET_CSIX_IDLE RW 0

[9] REC_FLW_CTL_TRAIN RW 0

[8] REC_CAL_TRAIN RW 0

[7] REC_TRAIN RW 0

[6] FCIFIFO_ ERR RW 0

[5] DETECT_NO_CAL RW 0

[4] TBUF_ERROR RW 0

[3] TSTAT_PAR_ERR RW 0

[2] DIP4_ERR RW 0

[1] VP_ERR RW 0

[0] HP_ERR RW 0
424 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.5 CSIX_TYPE_MAP

CSIX supports a 4-bit Type field (16 types) in the base header. When a CFrame is received, the
Type field is checked and the CFrame is directed based on the settings in this register. This register
must not be changed while CSIX CFrames are being received.

5.7.6 FC_EGRESS_STATUS

This register holds the link level flow control information received from the Switch Fabric, and the
status of RBUF and FCEFIFO. In Full Duplex Mode, this information is transmitted out of the
IXP2800 on TXCSRB.

Note: The actual update into bits[1:0] of this register is done so as to be pessimistic. When a Base Header
is received with Ready bit(s) deasserted, 0 is put into the appropriate bit(s) prior to receiving the
entire CFrame. When a Base Header is received with Ready bit asserted, the 1 is held until the
entire CFrame is received error-free (i.e. wait until the Vertical Parity field is found to be good)
before reflecting that value in the appropriate bit(s). If there is an error on a CFrame, or if the
Switch Fabric is transmitting Training Sequence or continuous Dead Cycles, then those two bits
are cleared (regardless of the Ready bits received). CFrame errors will set bits as defined in
MSF_Interrupt_Status to assist in debug.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

TYP
15

TYP
14

TYP
13

TYP
12

TYP
11

TYP
12

TYP
9

TYP
8

TYP
7

TYP
6

TYP
5

TYP
4

TYP
3

TYP
2

TYP
1

TYP
0

Bits Field Description RW Reset

[31:0] TYP15 -TYP0

These pairs of bits map CFRAME TYPE field as shown.
Bit [1:0] is for type 0x0, bit[3:2] for type 0x1, etc.

00—Discard

01—RBUF Control partition

10—RBUF Data partition

11—Flow Control Egress FIFO (FCEFIFO)

CFrames type defined in Version 1 of the CSIX-L1 are: RW 0

0x0 always discarded

0x1 Unicast

0x2 Mulitcast Mask

0x3 Multicast ID

0x4 Multicast Binary Copy

0x5 Broadcast

0x6 Flow Control Frame

0x7 Command and Status

0x8-0xB CSIX Reserved

0xC-0xF Private

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

F
C

E
F

IF
O

_F
U

LL

T
M

_D
R

E
A

D
Y

T
M

_C
R

E
A

D
Y

S
F

_D
R

E
A

D
Y

S
F

_C
R

E
A

D
Y

Programmer’s Reference Manual 425

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31:5] RESERVED Reserved RO 0

[4] FCEFIFO_FULL
Indicates if FCEFIFO is full or not, based on
HWM_CONTROL[FCEFIFO_HWM].

Note that this bit is primarily used in Simplex Mode.
RO 0

[3] TM_DREADY

Value for Ingress IXP2800 to use for Data Ready in
CFrames sent to Switch Fabric.

When FC_STATUS_OVERRIDE[EGRESS_FORCE_EN] is
0 -- Deasserted when RBUF CSIX Data Partition is full
(based on HWM_Control[RBUF_D_HWM]).

When FC_STATUS_OVERRIDE[EGRESS_FORCE_EN] is
1 – The value in FC_STATUS_OVERRIDE[4]

In Full Duplex Mode—transmitted on TXCSRB bit 9.

In Simplex mode—Data Ready value to transmit (in bit 7 of
byte 0) of CSIX Base Headers sent on TXCDAT.

RO 0

[2] TM_CREADY

Value for Ingress IXP2800 to use for Control Ready in
CFrames sent to Switch Fabric.

When FC_STATUS_OVERRIDE[EGRESS_FORCE_EN] is
0 -- In Full Duplex Mode, deasserted when RBUF CSIX
Control Partition is full (based on
HWM_Control[RBUF_C_HWM]) or when FCEFIFO is full
(based on HWM_Control[FCEFIFO_HWM]). In Simplex
Mode deasserted only when RBUF CSIX Control Partition
is full.

When FC_STATUS_OVERRIDE[EGRESS_FORCE_EN] is
1 – The value in FC_STATUS_OVERRIDE[5].

In Full Duplex Mode—transmitted on TXCSRB bit 8.

In Simplex mode—Control Ready value to transmit (in bit 6
of byte 0) of CSIX Base Headers sent on TXCDAT.

RO 0

[1] SF_DREADY

Data Ready received in CSIX Base Headers (bit 7 of byte
0), updated after the CFrame is received. It is cleared if an
error is detected on a received CFrame, or if the Switch
Fabric is transmitting Training Sequence or continuous
Dead Cycles.

When FC_STATUS_OVERRIDE[EGRESS_FORCE_EN] is
0 -- Equals bit in CSIX Base Headers (bit 7 of byte 0)
1 – Equals the value in FC_STATUS_OVERRIDE[6]

In Full Duplex Mode—transmitted on TXCSRB bit 7.

RO 0

[0] SF_CREADY

Control Ready received in CSIX Base Headers (bit 6 of byte
0), updated after CFrame is received. Cleared if an error is
detected on a received CFrame, or if the Switch Fabric is
transmitting Training Sequence, or continuous Dead
Cycles.

When FC_STATUS_OVERRIDE[EGRESS_FORCE_EN] is
0 -- Equals bit in CSIX Base Headers (bit 6 of byte 0)
1 – Equals the value in FC_STATUS_OVERRIDE[7]

In Full Duplex Mode—transmitted on TXCSRB bit 6.

RO 0
426 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.7 FC_INGRESS_STATUS

This register holds the link level flow control information received on RXCSRB. It is used as ready
information in CSIX Base Headers, and used to enable or disable transmission of CFrames to the
Switch Fabric

.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

T
M

_D
R

E
A

D
Y

T
M

_C
R

E
A

D
Y

S
F

_D
R

E
A

D
Y

S
F

_C
R

E
A

D
Y

Bits Field Description RW Reset

[31:4] RESERVED Reserved RO 0

[3] TM_DREADY

Data Ready value to transmit in bit 7 of byte 0 of CSIX Base
Headers on TDAT pins.

When FC_STATUS_OVERRIDE[INGRESS_FORCE_EN]
is 0 –values defined below for Full Duplex and Simplex
modes respectively.

When FC_STATUS_OVERRIDE[INGRESS_FORCE_EN]
is 1 – The value in FC_STATUS_OVERRIDE[0]

In Full Duplex Mode—received on RXCSRB bit 9. Cleared if
Training Sequence detected on Flow Control Bus.

In Simplex mode—0.

RO 0

[2] TM_CREADY

Control Ready value to transmit (in bit 6 of byte 0) of CSIX
Base Headers on TDAT pins.

When FC_STATUS_OVERRIDE[INGRESS_FORCE_EN]
is 0 –values defined below for Full Duplex and Simplex
modes respectively.

When FC_STATUS_OVERRIDE[INGRESS_FORCE_EN]
is 1 – The value in FC_STATUS_OVERRIDE[1]

In Full Duplex Mode—received on RXCSRB bit 8. Cleared if
Training Sequence detected on Flow Control Bus.

In Simplex mode—Number of free CWords in FCIFIFO is
below high water mark as programmed in
HWM_Control[FCIFIFO_Ext_HWM] (Note -- CReady is true
when FCIFIFO is not nearly full).

RO 0
Programmer’s Reference Manual 427

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[1] SF_DREADY

Hardware control of transmission of CSIX Data elements.
• 0—Stop sending Data CFrames to the Switch Fabric.
• 1—OK to send Data CFrames to the Switch Fabric.

When FC_STATUS_OVERRIDE[INGRESS_FORCE_EN]
is 0 –values defined below for Full Duplex and Simplex
modes respectively.

When FC_STATUS_OVERRIDE[INGRESS_FORCE_EN]
is 1 – The value in FC_STATUS_OVERRIDE[2]

In Full Duplex Mode—received on RXCSRB bit 7. Cleared if
Training Sequence detected on Flow Control Bus.

In Simplex mode—Data Ready of CSIX Base Headers (bit
7 of byte 0) received on RXCDAT, updated as each CFrame
is received. Cleared if an error is detected on a received
CFrame, or if the Switch Fabric Flow Control Bus is
transmitting Training Sequence, or continuous Dead
Cycles.

RO 0

[0] SF_CREADY

Hardware control of transmission of CSIX Control elements.
0—Stop sending Control CFrames to the Switch Fabric.
1—OK to send Control CFrames to the Switch Fabric.

When FC_STATUS_OVERRIDE[INGRESS_FORCE_EN]
is 0, the value that is sent is defined below for Full Duplex
and Simplex modes respectively.

When FC_STATUS_OVERRIDE[INGRESS_FORCE_EN]
is 1, the value in FC_STATUS_OVERRIDE[3] is sent.

In Full Duplex Mode, the value sent is the value received on
RXCSRB bit 6 and is cleared if Training Sequence detected
on Flow Control Bus.

In Simplex mode, the value sent is the Ready flag for the
control traffic which is found in the CSIX Base Headers (bit
6 of byte 0) received on RXCDAT. It is updated as each
CFrame is received and cleared if an error is detected on a
received CFrame, if the Switch Fabric Flow Control Bus is
transmitting Training Sequence, or there are continuous
Dead Cycles.

RO 0

Bits Field Description RW Reset
428 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.8 FC_STATUS_OVERRIDE

This register sets how the CSIX Ready bits are driven onto the TXSRB and/or RXSRB pins.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

E
G

R
E

S
S

_F
O

R
C

E
_E

N

IN
G

R
E

S
S

_F
O

R
C

E
_E

N

E
G

R
E

S
S

_F
O

R
C

E

IN
G

R
E

S
S

_F
O

R
C

E

Bits Field Description RW Reset

[31:10] RESERVED Reserved RO 0

[9] EGRESS_FORCE_EN

This bit controls the data driven on TXCSRB output.

0 = Drive TXCSRB output from
FC_EGRESS_STATUS

1 = Drive TXCSRB output from EGRESS_FORCE
FIELD

RW 1

[8] INGRESS_FORCE_EN

This bit controls whether RXCSRB input or
INGRESS_FORCE field is used.

0 = Use RXCSRB input signal

1 = Use INGRESS_FORCE field

RW 1

[7:4] EGRESS_FORCE

This is used to provide hardware with software-chosen
values to send on the TXCSRB pin in place of the ones
generated by internal hardware.

7: SF_CReady

6: SF_DReady

5: TM_CReady

4: TM_DReady

RW 0

[3:0] INGRESS_FORCE

This is used to provide hardware with software-chosen
values to use in place of the ones received on the
RXCSRB pin.

3: SF_CReady

2: SF_DReady

1: TM_CReady

0: TM_DReady

RW 0
Programmer’s Reference Manual 429

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.9 MSF_CLOCK_CONTROL

This register is used to control MSF clocks to allow software to initialize MSF and external Media
and Switch Fabric devices. Before this register can be written, the MSF Unit must be taken out of
reset by writing a 0 to IXP_RESET_0[MEDIA].

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED
F

C
_R

C
V

_C
LK

_S
E

L

R
C

V
_C

LK
_S

E
L

R
X

C
C

LK
_D

LL_E
N

R
C

LK
_D

LL_E
N

R
S

X
_S

E
C

T
IO

N
_E

N

T
S

X
_S

E
C

T
IO

N
_E

N

R
C

LK
_R

E
F

_E
N

T
X

C
C

LK
_E

N

R
S

C
LK

_E
N

T
C

LK
_E

N

R
X

_F
C

_S
E

C
T

IO
N

_E
N

T
X

_F
C

_S
E

C
T

IO
N

_E
N

R
X

_S
E

C
T

IO
N

_E
N

T
X

_S
E

C
T

IO
N

_E
N

Bits Field Description RW Reset

[31:14] RESERVED Reserved RO 0x0

[13]

IXP2800 Rev A:

FC_RCV_CLK_SEL

IXP2800 Rev B:

RXCCLK_DLL_RESET

IXP2800 Rev A:

0 – Flow control receive logic uses clock which is divided
from main PLL output frequency using divide value in
CLOCK_CONTROL[MSF_CLK_RATIO].

1 – Flow control receive logic uses RXCCLK_DLL output
(which is locked to RXCCLK input).

This bit must not be written to a 1 until RXCCLK_DLL_EN
has been written to a 1 and DLL has been given enough
time to lock.

IXP2800 Rev B:

0 – Hold the FC DLL in reset.

1 – Remove the FC DLL from reset.

This bit must be written to a 1 prior to RXCCLK_DLL_EN is
asserted

RW 0x0

[12]

IXP2800 Rev A:

RCV_CLK_SEL

IXP2800 Rev B:

RCLK_DLL_RESET

IXP2800 Rev A:
0 – Data receive logic uses clock which is divided from
main PLL output frequency using divide value in
CLOCK_CONTROL[MSF_CLK_RATIO].
1 – Data receive logic uses RCLK_DLL output (which is
locked to RCLK input).
This bit must not be written to a 1 until RCLK_DLL_EN has
been written to a 1 and DLL has been given enough time to
lock.
IXP2800 Rev B:

0 – Hold the MSF DLL in reset.

1– Remove the MSF DLL from reset.

This bit must be written to a 1 prior to RCLK_DLL_EN is
asserted

RW 0x0
430 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[11] RXCCLK_DLL_EN

IXP2800 Rev A:

0 – RXCCLK DLL is held in reset

1 – RXCCLK DLL locks to frequency on RXCCLK input pin.
The output of this DLL can be used as source for flow
control receive logic.

IXP2800 Rev B:

0 - RXCCLK (Flowcontrol) internal clock network is driven
by the internal clock pclk.

1 - The DLL output is switched to drive the RXCCLK
(Flowcontrol) internal clock network.

This bit should not be set until bit 13
(RXCCLK_DLL_RESET)has been set and until the DLL
has locked to the input clock.

RW 0x0

[10] RCLK_DLL_EN

IXP2800 Rev A

0 – RCLK DLL is held in reset.

1 – RCLK DLL locks to frequency on RCLK input pin. The
output of this DLL can be selected as the source for
RCLK_REF and data receive logic based on
RCV_CLK_SEL of this register.

IXP2800 Rev B:

0 - RCLK (MSF) internal clock network is driven by the
internal clock pclk.

1 - The DLL output is switched to drive the RCLK (MSF)
internal clock network.

This bit should not be set until bit 13
(RXCLK_DLL_RESET) has been set and until the DLL has
locked to the input clock.

RW 0x0

[9] RSX_SECTION_EN

0 – Receive calendar section of MSF (all functions clocked
by RSCLK) are in reset state.
1 – Receive calendar section of MSF runs normally
This bit is used to prevent clock glitches from affecting
Receive calendar section when RSCLK is being changed.
Do not write this bit to a 1 until the RCLK DLL is locked.

RW 0x0

[8] TSX_SECTION_EN

0 – Transmit calendar section of MSF (all functions clocked
by TSCLK) are in reset state.
1 – Transmit calendar section of MSF runs normally
This bit is used to prevent clock glitches from affecting
Transmit section when TSCLK is being changed.

RW 0x0

[7] RCLK_REF_EN

0 – RCLK_REF output is statically 0

1 – RCLK_REF output runs at frequency of RCLK

RCLK_REF will not have a glitch when this bit is written
from 0 to 1.

RW 0x0

[6] TXCCLK_EN

0 – TXCCLK output is statically 0

1 – TXCCLK output runs at frequency selected by
MSF_TX_CONTROL[TXCCLK_SOURCE] TXCCLK will
not have a glitch when this bit is written from 0 to 1.

RW 0x0

[5] RSCLK_EN

0 – RSCLK output is statically 0

1 – RSCLK output runs at ¼ the frequency of RCLK input.

RSCLK will not have a glitch when this bit is written from 0
to 1.

RW 0x0

Bits Field Description RW Reset
Programmer’s Reference Manual 431

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.10 FCIFIFO

This register is used by Microengines to read CFrames, one CWord at a time, from the FCIFIFO.
When valid CWords are read they are removed from FCIFIFO. If FCIFIFO is empty when it is
read, it substitutes an Idle CWord for the read data.

When reading this register, the number of words returned always equals the value of ref_cnt in the
instruction.

In the IXP2800 the vertical parity is written into the FCIFIFO. When reading a CFrame from this
register, the programmer must count for reading the vertical parity and the padding. For example,
reading a 5 byte data (d) CFrame with two bytes of header (h), 4 bytes of extension header (e) and
2 bytes of vertical parity (v), will involve reading four CWords with the following format: hhhh
eeee, eeee dddd, dddd dd00, 0000 vvvv, where the comma separates the CWords read from this
register, v is a place holder for the vertical parity, and 0 is padding.

[4] TCLK_EN

0 – TCLK output is statically 0

1 – TCLK output runs at frequency selected by
MSF_TX_CONTROL[TCLK_SOURCE]

TCLK will not have a glitch when this bit is written from 0 to
1.

RW 0x0

[3] RX_FC_SECTION_EN

0 – Receive flow control section of MSF (all functions
clocked by RXCCLK) are in reset state.
1 – Receive flow control section of MSF runs normally
This bit is used to prevent clock glitches from affecting
Receive flow control section when RXCCLK is being
changed. Do not write this bit to a 1 until the RXCCLK DLL
is locked.

RW 0x0

[2] TX_FC_SECTION_EN

0 – Transmit flow control section of MSF (all functions
clocked by TXCCLK) are in reset state.
1 – Transmit flow control section of MSF runs normally
This bit is used to prevent clock glitches from affecting
Transmit flow control section when TXCCLK is being
changed (for example when
MSF_TX_CONTROL[TXCCLK_SOURCE] or
CLOCK_CONTROL[MSF_CLK_RATIO] is being changed).

RW 0x0

[1] RX_SECTION_EN

0 – Receive section of MSF (all functions clocked by
RCLK) are in reset state.
1 – Receive section of MSF runs normally
This bit is used to prevent clock glitches from affecting
Receive section when RCLK is being changed. Do not
write this bit to a 1 until the RCLK DLL is locked.

RW 0x0

[0] TX_SECTION_EN

0 – Transmit section of MSF (all functions clocked by
TCLK) are in reset state.
1 – Transmit section of MSF runs normally
This bit is used to prevent clock glitches from affecting
Transmit section when TCLK is being changed (for
example when MSF_TX_CONTROL[TCLK_SOURCE] or
CLOCK_CONTROL[MSF_CLK_RATIO] is being changed).

RW 0x0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

CWRD
432 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.11 FCEFIFO

This register is used by Microengines to write CFrames, one CWord at a time, to the FCEFIFO,
when MSF_RX_CONTROL[DUPLEX_MODE] is Simplex Mode. It is up to Microengines to test
for room in FCEFIFO by reading FC_EGRESS_STATUS[FCEFIFO_FULL].

In the IXP2800, the trailing bytes of the last CWord must be set to zero by the software. If the
vertical parity does not fit in the last CWord written into the FIFO, an extra CWord equal to zero
must be written as a place holder for the vertical parity. For example, writing a 5 byte data (d)
CFrame with two bytes of header (h), 4 bytes of extension header (e) and 2 bytes of vertical parity
(v) should have the following format: hhhh eeee, eeee dddd, dddd dd00, 0000 vvvv, where the
comma separates the CWords written to this register, v is a place holder for the vertical parity, and
0 is padding.

5.7.12 RX_DESKEW_# (# = pin name)

These registers hold the deskew values per pin from training. Normally their use is to read the
values to test the training logic. However, if training is disabled in Train_Calendar[IGN_TRAIN],
they can be written. MEs cannot use the msf[fast_wr] instruction to write this register.

There is a register per pin; the # in Rx_Deskew_# is replaced by each pin name. Refer to
Table 5-47 for the actual names and addresses.

Bits Field Description RW Reset

[31:0] CWRD Data from head entry of FCIFIFO, or Idle CWord if FCIFIFO
is empty. RO undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

CWRD

Bits Field Description RW Reset

[31:0] CWRD Data written to tail entry of FCEFIFO. W undef

Table 5-47. List of RX_DESKEW_# Registers

RX_DESKEW_# - Replace # With the Following

RDAT0 RDAT7 RDAT14 RXCDAT1

RDAT1 RDAT8 RDAT15 RXCDAT2

RDAT2 RDAT9 RCTL RXCDAT3

RDAT3 RDAT10 RPAR RXCPAR

RDAT4 RDAT11 RPROT RXCSRB

RDAT5 RDAT12 RXCSOF

RDAT6 RDAT13 RXCDAT0
Programmer’s Reference Manual 433

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
.

5.7.13 SPI4_DYNFILT_THRESH

The SPI4_DYNFILT_THRESH and FC_DYNFILT_THRESH registers are enabled when the
DYN_DESKEW_DIS bit in the MSF_IO_BUF_CTL and FC_IO_BUF_CTL registers are set. This
is the dynamic jitter compensation mode. The feature works as follows. A dll in the receive logic
generates 16 sampling clocks for each RCLK cycle. These clocks are referred to as the phase
clocks. The phase of each phase clock is skewed 22.5 degrees from the last. Since LVDS data is
double data rate, eight of the phase clocks are used to sample each of the two data bits transmitted
in each clock cycle. Normally, dynamic deskew mode is used to find the center of each data bit and
then logic selects the phase clock that is closest to the center of this data. Dynamic jitter

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

S
TA

T
U

S

DESKEW_
VALUE

Bits Field Description RW Reset

[31:4] RESERVED Reserved RO 0

[4] STATUS

A value of 0 indicates the success and a value of 1
indicates the failure of the most recent training for that pin.
A failure means that the dynamic deskew logic was not able
to find a clock to use, and the value in the Deskew Value
field is not valid. One typical reason a value could not be
found is that there was no transition on the signal.

RO 0

[3:0] DESKEW_VALUE

This field enables software to manually select one of the
internally generated deskew clocks to be used. The values
are the same as specified in the “RX_PHASEMON_# (# =
pin name)” registers.

Value - Degree dll clock phase
0x0 - 90 degree
0x1 - 112.5 degree
0x2 - 135 degree
0x3 - 157.5 degree
0x4 - 180 degree
0x5 - 202.5 degree
0x6 - 225.0 degree
0x7 - 247.5 degree
0x8 - 270 degree
0x9 - 292.5 degree
0xA - 315 degree
0xB - 337.5 degree
0xC - 0 degree
0xD - 22.5degree
0xE - 45 degree
0xF - 67.5 degree

Reading this register returns the value that was last written
to this register. The “RX_PHASEMON_# (# = pin name)”
registers should be read to get the Degree dll clock phase
currently used.

This field can be modified only when the RX_SECTION_EN
bit and the RX_FC_SECTION_EN bit in the MSF_CLOCK
CONTROL register are disabled

RW 0
434 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
compensation mode attempts to correct for phase shifts between the clock and data which might
occur dynamically and randomly over time after the initial training has been done. Three
successive samples are compared to each other every bit time. When these samples are all equal,
the phase clock being used to sample incoming data is reasonably centered in the data valid
window and no adjustments are made. Occasionally, noise may cause the data and clock to skew
from one another by a different amount than was present when training first took place. It is
expected that a large percentage of this additional skew will occur over a period of time measured
in the 1’s to 10’s of bit times, caused for example by a change in the supply voltage of the driver. If
this skew is big enough, the three samples will no longer be equal. This signifies that the selected
phase clock should be adjusted to re-center the sample point. When a mismatch in the three
samples is detected, the dynamic jitter logic will adjust the selected phase clock to move to the next
or the previous sample depending on whether the mismatched samples indicate the sampling is
occurring too early or too late. The DYNFILT_THRESH value allows the user to control the
bandwidth of these updates. When a value of 1 is programmed, one mismatched sample will cause
the phase adjustment to be made. When a 2 is programmed, the jitter compensation will wait to see
2 mismatched samples (out of the last 4 data transitions) before it makes an adjustment, etc). When
values of 2 or higher are set, a delay adjustment sample cancels an advance adjustment sample.

Of special interest regarding the rate of update, it takes the jitter compensation logic 5 bit-times to
complete an adjustment operation from the time the sample first arrived. This makes the cut-off
frequency of the jitter comp logic 100Mhz when the port is running at 500Mhz. Aliasing could be a
problem if the rate of change in the skew between clock and data is too high.

5.7.14 MSF_DLL_DATA_DELAY_CTL

The msf_dll_data_delay_ctl register (rev B only) is useful when running in static alignment mode.
In this mode, the receiver samples incoming data at the 90 degree point relative to the clock based
on the assumption that the data and clock are very precisely matched as they enter IXP2800.
Normally, the default setting is adequate. However, systems designers may notice that dynamic
training cycles yield phasemon register values that suggest the 90 degree point is not the nominal
deskew setting for the majority of the incoming data bits. When that is the case, the internal skew
between data and clocks can be adjusted by programming this register to advance or delay the data
relative to the clock, thus bringing it closer to the 90 degree sampling point.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

#_S
A

M
P

LE
S

Bits Field Description RW Reset

[31:3] RESERVED Reserved RO 0x0

[2:0] #_SAMPLES

The number of mismatched samples that must be seen
before an adjustment is made to advance or delay the
sampling clock phase. Legal values are 1-4, and 7. A value

7 disables dynamic filtering.

This field can be modified only when the RX_SECTION_EN
bit and the RX_FC_SECTION_EN bit in the MSF_CLOCK
CONTROL register are disabled

RW 0x7
Programmer’s Reference Manual 435

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.15 FC_DYNFILT_THRESH

The FC_DYNFILT_THRESH register defines the number of mismatched samples that must be
seen before an adjustment is made to advance or delay the sampling clock phase. See
Section 5.7.13 for an explanation of dynamic jitter compensation.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

M
S

F
_D

A
TA

_D
E

LA
Y

_S
E

LE
C

T

Bits Field Description RW Reset

[31:2] RESERVED Reserved W 0x0

[1:0] MSF_DATA_DELAY_S
ELECT

00 Nominal delay is inserted on the msf receive data
bits.
01 Nominal delay + 50psec is inserted on the msf
receive data bits.
10 Nominal delay - 50psec is inserted on the msf
receive data bits.
11 Nominal delay - 100psec is inserted on the msf
receive data bits.

This field can be modified only when the RX_SECTION_EN
bit and the RX_FC_SECTION_EN bit in the MSF_CLOCK
CONTROL register aredisabled

W 0x0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

#_S
A

M
P

LE
S

436 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.16 FC_DLL_DATA_DELAY_CTL

The fc_dll_data_delay_ctl register (rev B only) is useful when running in static alignment mode. In
this mode, the receiver samples incoming data at the 90 degree point relative to the clock based on
the assumption that the data and clock are very precisely matched as they enter IXP2800.
Normally, the default setting is adequate. However, systems designers may notice that dynamic
training cycles yield phasemon register values that suggest the 90 degree point is not the nominal
deskew setting for the majority of the incoming data bits. When that is the case, the internal skew
between data and clocks can be adjusted by programming this register to advance or delay the data
relative to the clock, thus bringing it closer to the 90 degree sampling point.

Bits Field Description RW Reset

[31:3] RESERVED Reserved RO 0

[2:0] _SAMPLES

The number of mismatched samples that must be seen
before an adjustment is made to advance or delay the
sampling clock phase. Legal values are 1-4.

This field can be modified only when the
RX_FC_SECTION_EN bit in the MSF_CLOCK CONTROL
register is disabled

RW 0x7

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

F
C

_D
A

TA
_D

E
LA

Y
_S

E
LE

C
T

Bits Field Description RW Reset

[31:2] RESERVED Reserved W 0x0

[1:0] FC_DATA_DELAY_SE
LECT

00 Nominal delay is inserted on the msf receive data
bits.
01 Nominal delay + 50psec is inserted on the msf
receive data bits.
10 Nominal delay - 50psec is inserted on the msf
receive data bits.
11 Nominal delay - 100psec is inserted on the msf
receive data bits.

This field can be modified only when the RX_SECTION_EN
bit and the RX_FC_SECTION_EN bit in the MSF_CLOCK
CONTROL register are disabled

W 0x0
Programmer’s Reference Manual 437

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.17 HWM_CONTROL

This register is used to control high water marks for RBUF, FCEFIFO, and FCIFIFO. This register
must not be changed while SPI-4 or CSIX CFrames are being received.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED
F

C
IF

IF
O

_E
X

T
_H

W
M

F
C

IF
IF

O
_IN

T
_H

W
M

F
C

E
F

IF
O

_H
W

M

R
B

U
F

_S
_H

W
M

R
B

U
F

_D
_H

W
M

R
B

U
F

_C
_H

W
M

Bits Field Description RW Reset

[31:12] RESERVED Reserved RO 0

[11:10] FCIFIFO_Ext_HWM

Flow Control Ingress FIFO High Watermark for external
use.

Simplex mode: Deassert FC_Ingress_Status[TM_CReady]
if the number of CWord entries used in the FCIFIFO is >=
the programmed high watermark. Note this is different than
the IXP2400.

Full duplex mode: Assert RXCFC to the Egress IXP2800 if
the number of CWord entries used in the FCIFIFO is >= the
programmed high watermark.

0x00: 32 CWords

0x01: 64 CWords

0x10: 128 CWords

0x11: 192 CWords

RW 0

[9:8] FCIFIFO_Int_HWM

Flow Control Ingress FIFO High Watermark for internal use.
Assert FCI_Near_Full to the MEs if the number of CWord
entries used in the FCIFIFO is >= the programmed water
mark. Note this is different than the IXP2400.

0x00: 16 CWords

0x01: 32 CWords

0x10: 64 CWords

0x11: 128 CWords

RW 0

[7:6] FCEFIFO_HWM

Flow Control Egress FIFO High Watermark. Near full if the
number of occupied CWords is >= number in this field.
Controls when FC_Egress_Status[FCEFIFO_Full] asserts.
Note this is different than the IXP2400.

0x00:16 CWords

0x01: 32 CWords

0x10: 64 CWords

0x11: 128 CWords

RW 0
438 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Table 5-48 shows the HWM by number of RBUF elements. Refer to Table 5-31 to determine how
many RBUF elements exist for each partition.

5.7.18 RX_THREAD_FREELIST_# (# = 0,1,2)

Microengines write to these registers to add a Context to RX_THREAD_FREELIST_#. The
various Freelists are connected to protocol type as shown in Table 5-49. The size of the Freelists
are:

• freelist 0 - 64 entries

• freelist 1 - 32 entries

• freelist 2 - 32 entries

[5:4] RBUF_S_HWM

RBUF SPI-4 High Watermark. Near full if the number of
occupied RBUF entries allocated for SPI-4 data is >=
number in this field. The number of entries is a function of
the number of partitions and entry size as programmed in
MSF_Rx_Control. Refer to Table 5-45 and Table 5-48. Note
this is different than the IXP2400.

RW 0

[3:2] RBUF_D_HWM

RBUF Data High Watermark. Near full if the number of
occupied RBUF entries allocated for CSIX Data CFrames is
>= number in this field. The number of entries is a function
of the number of partitions and entry size as programmed in
MSF_Rx_Control. Refer to Table 5-45 and Table 5-48. Note
this is different than the IXP2400.

RW 0

[1:0] RBUF_C_HWM

RBUF Control High Watermark. Near full if the number of
occupied RBUF entries allocated for CSIX Control
CFrames is >= number in this field. The number of entries is
a function of the number of partitions and entry size as
programmed in MSF_Rx_Control. Refer to Table 5-45 and
Table 5-48. Note this is different than the IXP2400.

RW 0

Bits Field Description RW Reset

Table 5-48. RBUF High Water Marks

Number of
Elements in

Partition

Value Programmed in HWM Field
(Note -- HWM indicates that >= number of entries indicated are occupied)

00 (1/4 Entries) 01 (1/2 Entries) 10 (3/4 Entries) 11 (7/8 Entries)

128 32 64 96 112

96 24 48 72 84

64 16 32 48 56

48 12 24 36 42

32 8 16 24 28

24 6 12 18 21

16 4 8 12 14

12 3 6 9 10

8 2 4 6 7

4 1 2 3 3
Programmer’s Reference Manual 439

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Users should not place more entries on the list than the list can hold. Note that the Microengine
number is specified differently for the IXP2400.

Refer to the IXP2800 Hardware Reference Manual (HRM) for definition of the Element status.

.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED SIG_NO
M

E
 _C

LU
S

R
E

S
E

R
V

E
D

ME_NO THD
XFER_

REG

Bits Field Description RW Reset

[31:16] RESERVED Reserved RO 0

[15:12] SIG_NO Which signal to deliver when pushing the Element status. WO 0

[11] ME _CLUS ME Cluster WO 0

[10] RESERVED Reserved RO 0

[9:7] ME_NO
Microengine number that will be signaled. Valid IXP2800
ME numbers are 0 - 7. Valid IXP2400 ME numbers are 0 -
3.

WO 0

[6:4] THD Indicates which thread will get the RBUF Element status
pushed to it. WO 0

[3:0] XFER_REG
Indicates which S_Transfer registers will get the RBUF
Element status pushed to it. Two consecutive registers,
starting with the one in this field, are written.

WO 0

Table 5-49. Rx_Thread_Freelist Use

Number of
Partitions1 Use CSIX_Freelist2

Rx_Thread_Freelist_# Used

0 1 2

1 SPI-4 only n/a
SPI-4 Ports equal

to or below
Rx_Port_Map

SPI-4 Ports
above

Rx_Port_Map
Not Used

2 CSIX only

0 CSIX Data CSIX Control Not Used

1 CSIX Data and
CSIX Control Not Used Not Used

3 Both SPI-4
and CSIX

0 CSIX Data SPI-4 CSIX Control

1 CSIX Data and
CSIX Control SPI-4 Not Used

1. Programmed in MSF_Rx_Control[RBUF_Partition].
2. Programmed in MSF_Rx_Control[CSIX_Freelist].
440 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.19 RX_PORT_MAP

This register is used to connect SPI-4 ports to Contexts by controlling which
RX_THREAD_FREELIST_# each port uses. This is only used when
MSF_RX_CONTROL[RBUF_PARTITION] is set for one SPI-4 partition. This register must not
be changed while SPI-4 data is being received.

5.7.20 RBUF_ELEMENT_DONE

This register is written with an RBUF element number and the number is placed onto a freelist so
that the RBUF element can be reused. It is illegal to write this register with the element number of
an already free element.

After Reset, all RBUF elements are free.

5.7.21 RX_CALENDAR_LENGTH

This register is used to set the length of the SPI-4 RSTAT calendar. This register must not be
changed while SPI-4 data is being received.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PORT_NO

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] PORT_NO

Mpackets from SPI-4 ports equal to or less than this
number will be pushed to Contexts from
RX_THREAD_FREELIST_0. Mpackets from SPI-4 ports
above this number will be pushed to Contexts from
RX_THREAD_FREELIST_1. To have all mpackets pushed
to Contexts from RX_THREAD_FREELIST_0 put 0xFF into
this field.

RW FF

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED ELE_TO_FREE

Bits Field Description RW Reset

[31:7] RESERVED Reserved RO 0

[6:0] ELE_TO_FREE Indicates the number of the element to free. WO undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED LENGTH
Programmer’s Reference Manual 441

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.22 FCEFIFO_VALIDATE

This register is used to validate a CFrame written into FCEFIFO by software. The CFrame will not
be transmitted on TXCDAT until it is validated. The data is not used; any write to this register does
the validate.

5.7.23 TX_SEQUENCE_# (# = 0,1,2)

A read of this register provides a wrapping count of the number of TBUF elements that have been
transmitted from the TBUF the partition. The number of partitions in use is based on
MSF_TX_CONTROL[TBUF_PARTITION]. The count advances when the entire content of the
element have been transmitted, or if the element control word skip bit was set (i.e., so it is safe to
write new data into the element).

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] LENGTH

Length of the RX_CALENDAR. The value represents the
number of time slots allotted for the 2-bit status messages
sent out in each RSTAT message. For example, a value of
0x1 indicates one 2-bit status message per RSTAT
message. The one exception is that a value of 0x0 indicates
256 2-bit status messages.

Each 2-bit message indicates the status of the RBUF at the
time the 2-bits are transmitted on the RSTAT pins. In other
words, the value of the 2-bit messages may change in the
middle of an RSTAT message.

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

ANY_DATA

Bits Field Description RW Reset

[31:0] ANY_DATA
The act of writing to this register validates the CFrame
written into FCEFIFO. Any data may be written to this
register.

WO undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

E
M

P
T

Y

RESERVED SEQUENCE
442 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.24 RX_THREAD_FREELIST_TIMEOUT_# (# = 0,1,2)

There is one RX_THREAD_FREELIST_TIMEOUT register associated with each
RX_THREAD_FREELIST.

5.7.25 RX_PORT_CALENDAR_STATUS_# (0 TO 255)

Rev B -- These registers allow software to control the SPI-4 Calendar Status driven out on
RSTAT[1:0] or TXCDAT[1:0]. Each register controls the calendar status value for a different port,
corresponding to the port number (indicated by #).

Bits Field Description RW Reset

[31] EMPTY

Indicates if there are any valid elements (i.e. elements that
are ready to be transmitted) for this partition.

0: One or more elements are valid.

1: No elements are valid.

RO 1

[30:8] RESERVED Reserved RO 0

[7:0] SEQUENCE

Sequence count of how many elements have been
transmitted for this partition. The count always counts from
0 to 255 and then wraps back to 0, regardless of the
number of elements in the partition.

RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED TIMEOUT_INTERVAL

Bits Field Description RW Reset

[31:13] RESERVED Reserved RO 0

[12:0] TIMEOUT_INTERVAL

This is the number of internal bus clocks (1/2 Microengine
frequency), starting from the autopush of a null or non-null
Receive Status Word, that are allowed to elapse before
triggering the autopush of a null Receive Status Word.

Every time any Receive Status Word is autopushed the
timer is reset and restarted. If no new receive traffic has
come in and the time-out interval has been reached,
hardware will automatically autopush a null Receive Status
Word to the next thread in the RX_THREAD_FREELIST. A
value of 0 means that the timer is disabled.

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

S
TA

T
U

S

Programmer’s Reference Manual 443

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.26 TX_CALENDAR_LENGTH

Used to set the length of the SPI-4 TSTAT calendar. This register must not be changed while SPI-4
data is being received.

Bits Field Description RW Reset

[31:2] RESERVED Reserved RO 0

[1:0] PORT_CALENDAR
STATUS

The value driven as the status for a given port is dependent
on the MSF_RX_CONTROL[Rx_Calendar_Mode]
(Section 5.7.1) setting.

When in Conservative_Value Mode, the value for each port
is the most conservative of:

• the RBUF status based on RBUF high-water-mark
(Section 5.7.17)

• RSTAT_Ov_Value (if RSTAT_Override is 1)
(Section 5.7.1)

• the value in Rx_Port_Calendar_Status_# for the port.

Satisfied is more conservative than Hungry, which is more
conservative than Starving. This allows software to give a
more conservative value for all ports at once
(RSTAT_Override), or control each port individually
(Rx_Port_Calendar_Status_#), or allow all ports to be
controlled by the RBUF hardware high-water-mark control.
In this mode it is illegal to program 11 into this field. To have
no override, set this to Starving, which is the least
conservative and therefore won't have any effect.

When in Force_Override Mode, the value for each port is
the value in this field with one exception. - The value of 11 is
the calendar framing indicator, so can't be used as a
calendar value. Programming the value of 11 in the register
is an indication to not override, but instead use the more
conservative of RBUF status and RSTAT_Ov_Value (if
RSTAT_Override is 1) as the calendar value for this port.

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED LENGTH

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] LENGTH

Length of TX_CALENDAR. The value represents the
number of entries to use in TX_CALENDAR. For example
an value of 0x1 indicates 1 entry in the calendar. The one
exception is that a value of 0x0 indicates 256 entries.

RW 0
444 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.27 TX_CALENDAR_# (# = 0 - 255)

TX_CALENDAR is a RAM with 256 entries, each of which is a time slot in the calendar. The
address number corresponds to the time slot. Each entry has the following format.

5.7.28 TX_PORT_STATUS_# (# = 0 - 255)

TX_PORT_STATUS_# represents 256 registers, one for each of 256 SPI-4 ports. The port status is
updated each time a new calendar status for that port is received, according to the mode
programmed in TX_CONTROL[TX_STATUS_UPDATE_MODE]. When the register is read, the
Status field is replaced by the value selected by TX_CONTROL[TX_STATUS_READ_MODE].
Each entry has the following format.

Note that this set of registers or the TX_MULTIPLE_PORT_STATUS set of registers must be read
by the software in order to determine the status of each port and send data to them accordingly. The
MSF hardware does not check these registers for port status before sending data out to a particular
port.

5.7.29 TX_MULTIPLE_PORT_STATUS_# (# = 0 - 15)

TX_MULTIPLE_PORT_STATUS_# provides the same information as TX_PORT_STATUS but in
a denser format. There are 16 addresses, each reading 16 ports. Each entry has the following
format. The value n in the description is replaced by 0, 16, 32, etc for each of the 16 registers,
starting with the lowest address register (TX_MULTIPLE_PORT_STATUS_0).

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED PORT#

Bits Field Description RW Reset

[31:8] RESERVED Reserved RO 0

[7:0] PORT#
Port number for the time slot. In normal operation this
register is write only. It can be read, for test purposes, but
only if MSF_TX_CONTROL[TSTAT_EN] is a 0.

WO Undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

S
TA

T
U

S

Bits Field Description RW Reset

[31:2] RESERVED Reserved RO Undef

[1:0] STATUS Status value for port. RO 0x3
Programmer’s Reference Manual 445

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
For Rev B -- The port status is updated each time a new calendar status for that port is received,
according to the mode programmed in TX_CONTROL[TX_STATUS_UPDATE_MODE]. When
the register is read, the Status field for each port is replaced by the value selected by
TX_CONTROL[TX_STATUS_READ_MODE]. Each entry has the following format.

Note that this set of registers or the TX_PORT_STATUS set of registers must be read by the
software in order to determine the status of each port and send data to them accordingly. The MSF
hardware does not check these registers for port status before sending data out to a particular port.

5.7.30 TBUF_ELEMENT_CONTROL_$_# ($ = A, B, # = Element No)

These write-only registers are used to set the control information for TBUF elements. The
TBUF_ELEMENT_CONTROL is 64-bits and can be addressed via two registers, referred to as
“A” and “B.” There is also one set of TBUF_ELEMENT_CONTROL registers per element.

The TBUF_ELEMENT_CONTROL registers are a contiguous block of 128 64-bit (8-byte)
registers. When the element size is set to 64 bytes, each TBUF_ELEMENT_CONTROL register is
indexed on 8-byte boundaries from the base address specified in Section 4. When the element size
is set to either 128 or 256 bytes, the number of RBUF elements is reduced and therefore the number
of TBUF_ELEMENT_CONTROL registers required is also reduced. When the element size is set

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

S
TA

T
U

S
n+

15

S
TA

T
U

S
n+

14

S
TA

T
U

S
n+

13

S
TA

T
U

S
n+

12

S
TA

T
U

S
n+

11

S
TA

T
U

S
n+

10

S
TA

T
U

S
n+

8

S
TA

T
U

S
n+

8

S
TA

T
U

S
n+

7

S
TA

T
U

S
n+

6

S
TA

T
U

S
n+

5

S
TA

T
U

S
n+

4

S
TA

T
U

S
n+

3

S
TA

T
U

S
n+

2

S
TA

T
U

S
n+

1

S
TA

T
U

S
n

Bits Field Description RW Reset

[31:30] Status Status value for port n+15. RO 0x3

[29:28] Status Status value for port n+14. RO 0x3

[27:26] Status Status value for port n+13. RO 0x3

[25:24] Status Status value for port n+12. RO 0x3

[23:22] Status Status value for port n+11. RO 0x3

[21:20] Status Status value for port n+10. RO 0x3

[19:18] Status Status value for port n+9. RO 0x3

[17:16] Status Status value for port n+8. RO 0x3

[15:14] Status Status value for port n+7. RO 0x3

[13:12] Status Status value for port n+6. RO 0x3

[11:10] Status Status value for port n+5. RO 0x3

[9:8] Status Status value for port n+4. RO 0x3

[7:6] Status Status value for port n+3. RO 0x3

[5:4] Status Status value for port n+2. RO 0x3

[3:2] Status Status value for port n+1. RO 0x3

[1:0] Status Status value for port n. RO 0x3
446 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
to 128 bytes, the IXP2800 does not use every 2nd TBUF_ELEMENT_CONTROL register and
likewise, if the element size is set to 256 bytes, the IXP2800 does not use every 2nd and 3rd and
4th TBUF_ELEMENT_CONTROL register. Note that this is different from how the
TBUF_ELEMENT_CONTROL are indexed in the IXP2400. The IXP2400 always uses a
contiguous set of registers beginning at the base address and up to the appropriate number of
register.

The fields in the TBUF_ELEMENT_CONTROL are interpreted differently depending on whether
the TX interface is configured as SPI-4 or CSIX.

If the interface is configured as CSIX the CSIX TBUF_ELEMENT_CONTROL_# has the
following format. Writing to TBUF_ELEMENT_CONTROL_A_# and
TBUF_ELEMENT_CONTROL_B_# with a single instruction validates the TBUF element. If two
separate instructions are used, the write to the TBUF_ELEMENT_CONTROL_B_# of the register
validates the TBUF element. In other words, the act of writing
TBUF_ELEMENT_CONTROL_B_# validates the element.

The follwoing formula is used to validate that the element does not exceed the TBUF element size.
((prepend_offset + preprend_length + 7) & 0xf8) + payload_offset + payload_length
If the result of the formula is greater than the TBUF element size, the TBUF ERROR bit in the
MSF_INTERRUP_ STAUTS CSR will be set

Table 5-50. CSIX TBUF_ELEMENT_CONTROL_A_#

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

PAYLOAD_LENGTH
PRE

PEND
OFFSET

PREPEND
LENGTH

PAY

LOAD
OFFSET

R
E

S
E

R
V

E
D

S
K

IP

R
E

S
E

R
V

E
D

C
R P RESERVED TYPE

Bits Field Description RW Reset

[31:24] PAYLOAD LENGTH

Indicates the number of Payload bytes, from 1 to 256, in the
element. The value of 0x00 means 256 bytes. The sum of
Prepend Length and Payload Length will be sent, and also
put into the CSIX Base Header Payload Length field. Note
that this length does not include any padding which may be
required. Padding is inserted by transmit hardware as
needed.

WO undef

[23:21] PREPEND OFFSET Indicates the first valid byte of Prepend, from 0 to 7. WO undef

[20:16] PREPEND LENGTH Indicates the number of bytes in Prepend, from 0 to 31. WO undef

[15:13] PAYLOAD OFFSET Indicates the first valid byte of Payload, from 0 to 7. WO undef

[12] RESERVED Reserved RO undef

[11] SKIP

Allows software to allocate a TBUF element and then not
transmit any data from it. 0—transmit data according to
other fields of Control Word; 1—free the element without
transmitting any data.

WO undef

[10] RESERVED Reserved RO undef

[9] CR CR (CSIX Reserved) bit to put into the CSIX Base Header. WO undef
Programmer’s Reference Manual 447

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
If the interface is configured as SPI-4.2 the TBUF_ELEMENT_CONTROL_# has the following
format.

[8] P P (Private) bit to put into the CSIX Base Header. WO undef

[7:4] RESERVED Reserved WO undef

[3:0] TYPE Type Field to put into the CSIX Base Header. Idle type is
not legal here. WO undef

Table 5-51. CSIX TBUF_ELEMENT_CONTROL_B_#

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Extension Header

Bits Field Description RW Reset

[31:0] EXTENSION HEADER

The Extension Header to be sent with the CFrame. The
bytes are sent in big-endian order: byte 0 is in bits 31:24,
byte 1 is in bits 23:16, byte 2 is in bits 15:8, and byte 3 is in

bits 7:0.

WO undef

Table 5-52. SPI-4 TBUF_ELEMENT_CONTROL_A_#

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

PAYLOAD_LENGTH
PRE

PEND
OFFSET

PREPEND
LENGTH

PAY

LOAD
OFFSET

R
E

S
E

R
V

E
D

S
K

IP

A
B

O
R

T

S
O

P

E
O

P ADR

Bits Field Description RW Reset

[31:24] PAYLOAD LENGTH

Indicates the number of Payload bytes, from 1 to 256, in the
element. The value of 0x00 means 256 bytes. The sum of
Prepend Length and Payload Length will be sent. That
value will also control the EOPS field (1 or 2 bytes valid
indicated) of the Control Word that will succeed the data
transfer. Note 1.

WO undef

[23:21] PREPEND OFFSET Indicates the first valid byte of Payload, from 0 to 7. WO undef

[20:16] PREPEND LENGTH Indicates the first valid byte of Prepend, from 0 to 31. WO undef

[15:13] PAYLOAD OFFSET Indicates the first valid byte of Payload, from 0 to 7. WO undef

[12] RESERVED Reserved WO undef

[11] SKIP

Allows software to allocate a TBUF element and then not
transmit any data from it. 0—transmit data according to
other fields of Control Word; 1—free the element without
transmitting any data.

WO undef
448 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.31 TRAIN_DATA

This register is used for control and status related to pin deskew training. Train_Data is for pins
controlled by RCLK (RDAT, RCTL, RPAR, RPROT) and TCLK (TDAT, TCTL, TPAR, TPROT).

It is possible for conditions to exist that simultaneously force data training and dead cycles. In that
event data training takes precedence over dead cycles for both simplex and duplex configurations.

[10] ABORT

Indicates if the element is the end of a packet that should
be aborted. If this bit is set the status code of EOP Abort will
be sent in the EOPS field of the Control Word that will
succeed the data transfer. Note 1

WO undef

[9] SOP
Indicates if the element is the start of a packet. This field will
be sent in the SOPC field of the Control Word that will
precede the data transfer.

WO undef

[8] EOP
Indicates if the element is the end of a packet. This field will
be sent in the EOPS field of the Control Word that will
succeed the data transfer. Note 1.

WO undef

[7:0] ADR
The port number to which the data is directed. This field will
be sent in the ADR field of the Control Word that will
precede the data transfer.

WO undef

NOTE:
1. Normally EOPS is sent on the next Control Word (along with ADR and SOP) to start the next element. If

there is no valid element pending at the end of sending the data, the transmit logic will insert an Idle Control
Word with the EOPS information.

Table 5-53. SPI-4 TBUF_ELEMENT_CONTROL_B_#

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

F
O

R
C

E
_C

D
E

A
D

ALPHA

S
IN

G
_T

R
A

IN

C
O

N
T

_T
R

A
IN

D
E

A
D

_E
N

_F
C

ID
LE

T
R

A
IN

_E
N

_F
C

D
E

A
D

D
E

T
E

C
T

_C
D

E
A

D

D
E

T
E

C
T

_C
ID

LE

D
E

T
E

C
T

_N
O

_C
A

L

T
R

A
IN

_E
N

_T
S

TA
T

R
S

TA
T

_E
N

IG
N

_T
R

A
IN
Programmer’s Reference Manual 449

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31:17] RESERVED Reserved RO 0

[16] FORCE_CDEAD

Force sending Dead Cycle on TDAT pins.
0—No effect.
1—Send back to back Dead Cycles. On assertion of
this bit the current CFrame transmission is completed
before beginning the Dead Cycles.

RW 0

[15:10] ALPHA

Number of repetitions of training sequence. The value
written indicates how many repeats of the 20-word pattern
to do (it represents the α value in the SPI-4 spec). A value
of 0x0 indicates 1 and a value of 0x3F indicates 64.

RW 0

[9] SING_TRAIN

Single Train.Transmit training pattern once on signals timed
to TCLK.

0—No effect.
1—Transmit training pattern. On assertion of this bit the
current element transmission is completed before
beginning transmission of the training pattern.

WO 0

[8] CONT_TRAIN

Continuously Train.Transmit training pattern continuously
on signals timed to TCLK.

0—No effect.
1—Transmit training pattern. On assertion of this bit the
current element transmission is completed before
beginning the training pattern. On deassertion of this bit
the current training pattern sequence (as specified by
Alpha field) is completed before resuming normal
transmit operation.

RW 0

[7] DEAD_EN_FCIDLE

Enable to automatically transmit Dead Cycles on signals
timed to TCLK.

0—Ignore
TRAIN_FLOW_CONTROL[DETECT_FCIDLE] bit.
1—Transmit Dead Cycles while
TRAIN_FLOW_CONTROL[DETECT_FCIDLE] bit is
asserted. On assertion of that bit the current element
transmission is completed before beginning
transmission of the Dead Cycles.

RW 0

[6] TRAIN_EN_FCDEAD

Enable automatically transmit training pattern on signals
timed to TCLK.

0—Disable transmit training on the TDAT pins (Ignore
the TRAIN_FLOW_CONTROL[DETECT_FCDEAD]
bit).
1—Perform transmit training pattern while
TRAIN_FLOW_CONTROL[DETECT_FCDEAD] bit is
asserted. On assertion of the DETECT_FCDEAD bit,
the current element transmission is completed before
beginning transmission of the training pattern. On
deassertion of either this bit or DETECT_FCDEAD bit,
the current training pattern is completed before
resuming normal transmit operation.

Training does not necessarily begin on assertion of the
respective TRAIN_FLOW_CONTROL[DETECT_FCDEAD]
bit. If the training pattern does not begin because it is
waiting for the current transmission to complete, and during
that time the
TRAIN_FLOW_CONTROL[DETECT_FCDEAD] bit is
desasserted, then training may never be sent.

RW 0
450 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[5] DETECT_CDEAD

RDAT pins status.

This bit dynamically changes as dead cycles are received
on the RDAT pins.

0—RDAT input has received Dead Cycles for less than
consecutive cycles.
1—RDAT input has received Dead Cycles for 2 or more
consecutive cycles.

RO 0

[4] DETECT_CIDLE

RDAT pins status.
0—RDAT input has received less than two consecutive
Idle CFrames.
1—RDAT input has received 2 or more consecutive Idle
CFrames.

RO 0

[3] DETECT_NO_CAL

Status channel disabled indicator. Status channel is either
TSTAT or RXCDAT depending on
MSF_Tx_Control[TSTAT_Select]. When LVTTL is used this
bit indicates TSTAT input has had framing pattern for more
than 32 consecutive cycles; when LVDS is used this bit
indicates that 3 consecutive training patterns were detected
on RXCDAT.

• 0—Status channel indicates calendar is active.
1—Status channel indicates need for training (i.e. no
calendar active).

RO 0

[2] TRAIN_EN_TSTAT

Enable to automatically transmit training pattern on signals
timed to TCLK.

0—Ignore Detect_No_Calendar bit.
1—Transmit training pattern while
Detect_No_Calendar bit is asserted.
On assertion of DETECT_NO_CAL bit the current
element transmission is completed before beginning
transmission of the training pattern. On deassertion of
either this bit or Detect_No_Calendar bit the current
training pattern is completed before resuming normal
transmit operation.

RW 0

[1] RSTAT_EN

RSTAT Enable.
0—RSTAT is held statically at 0x3.
1—RSTAT is used to send FIFO status according to the
description in SPI-4 Receive Flow Control.

Note: enables writing TXCDAT in LVDS mode.

RW 0

[0] IGN_TRAIN

Prevents automatic deskew training on the RDAT, RCTL,
RPAR, RPROT pins.

0—Automatically perform training when the training
pattern is received.
1—Ignore training patterns when received.

This field can be modified only when the
RX_FC_SECTION_EN and RX_SECTION_EN bits in the
MSF_CLOCK CONTROL register are disabled

RW 0

Bits Field Description RW Reset
Programmer’s Reference Manual 451

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.32 TRAIN_CALENDAR

This register is used for control and status related to pin deskew training. Train_Calendar is for pins
controlled by RXCCLK/TXCCLK when used for LVDS SPI-4 status channel.

Training is sent at scheduled times under software control. Software can detect an excessively long
training pattern on RDAT and send a training sequence in response.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED ALPHA

S
IN

G
_T

R
A

IN

C
O

N
T

_T
R

A
IN

RESERVED

IG
N

_T
R

A
IN

Bits Field Description RW Reset

[31:16] RESERVED Reserved RO 0

[15:10] ALPHA

Number of repetitions of training sequence. The value
written indicates how many repeats of the 20-word pattern
to do (it represents the α value in the SPI-4 spec). A value
of 0x0 indicates 1 and a value of 0x3F indicates 64.

RW 0

[9] SING_TRAIN

Transmit training pattern Train_Calendar[Alpaha] times on
signals timed to TXCCLK.

• 0—No effect.
• 1—Transmit training pattern. On assertion of this bit the

current calendar transmission is completed before
beginning the training pattern.

WO 0

[8] CONT_TRAIN

Transmit training pattern continuously on signals timed to
TXCCLK.

0—No effect.
1—Transmit training pattern. On assertion of this bit the
current calendar transmission is completed before
beginning transmission of the training pattern. On
deassertion of this bit the current training pattern
sequence (as specified by Alpha field) is completed
before resuming normal transmit operation.

RW 0

[7:1] RESERVED Reserved RO

[0] IGN_TRAIN

Prevents automatic deskew training on the RXCDAT pin.
0—Automatically perform training when the training
pattern is received.
1—Ignore training patterns when received.

RW 0
452 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.33 TRAIN_FLOW_CONTROL

This register is used for control and status related to pin deskew training. Train_Flow_Control is
for pins controlled by RXCCLK/TXCCLK when used for CSIX Flow Control. It is possible for
conditions to exist that simultaneously force fc training, dead cycles, and/or idle cycles. In that
event the following rules apply:

• For Simplex configurations, the precedence is FC Training cycles (Highest), Dead cycles, then
Idle cycles.

• For Duplex configurations, the precedence is Idle cycles (Highest), Dead cycles, then FC
Training cycles."

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

F
O

R
C

E
_F

C
D

E
A

D

F
O

R
C

E
_F

C
ID

LE

ALPHA

S
IN

G
_T

R
A

IN

C
O

N
T

_T
R

A
IN

R
E

S
E

R
V

E
D

T
D

_E
N

_C
D

E
A

D

D
E

T
_F

C
D

E
A

D

D
E

T
_F

C
ID

LE

D
E

T
_T

X
C

F
C

_S
U

S

T
R

A
IN

_E
N

_C
F

C

R
X

C
F

C
_E

N

IG
N

_T
R

A
IN

Bits Field Description RW Reset

[31:18] RESERVED Reserved RO 0

[17] FORCE_FCDEAD

Force sending Dead Cycle on TXC pins.
0—No effect.
1—Send back to back Dead Cycles. On assertion of
this bit the current CFrame transmission is completed
before beginning the Dead Cycles.

This bit and Force_Idle must not both be set.

RW 0

[16] FORCE_FCIDLE

Force sending Idle CFrames on TXC pins.
0—No effect.
1—Send back to back Idle CFrames. On assertion of
this bit the current CFrame transmission is completed
before beginning the Idle CFrames.

This bit and Force_Dead must not both be set.

RW 0

[15:10] ALPHA

Number of repetitions of training sequence. The value
written indicates how many repeats of the 20-word pattern
to do (it represents the α value in the SPI-4 spec). A value
of 0x0 indicates 1 and a value of 0x3F indicates 64.

RW 0

[9] SING_TRAIN

Transmit training pattern once on signals timed to TXCCLK.
0—No effect.
1—Transmit training pattern. On assertion of this bit the
current CFrame transmission is completed before
beginning the training pattern.

WO 0
Programmer’s Reference Manual 453

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[8] CONT_TRAIN

Transmit training pattern continuously on signals timed to
TXCCLK.

0—No effect.
1—Transmit training pattern. On assertion of this bit the
current element transmission is completed before
beginning the training pattern. On deassertion of this bit
the current training pattern sequence (as specified by
Alpha field) is completed before resuming normal
transmit operation.

RW 0

[7] RESERVED Reserved RO 0

[6] TD_EN_CDEAD

Enable to automatically force TXC pins.
0—Disable Training on the TXC pins (Ignore the
TRAIN_DATA[DETECT_CDEAD] bit).
1— Perform training on the TXC pins according to
Duplex Mode.

If Full Duplex Mode
Transmit Dead Cycles while
TRAIN_DATA[DETECT_CDEAD] bit is asserted. On
assertion of that bit the current element transmission is
completed before beginning transmission of the dead
cycles.

If Simplex Mode
Transmit training pattern while
TRAIN_DATA[DETECT_CDEAD] bit is asserted. On
assertion of the DETECT_CDEAD bit, the current
element transmission is completed before beginning
transmission of the training pattern. On deassertion of
either this bit or DETECT_CDEAD bit, the current
training pattern is completed before resuming normal
transmit operation.

Training does not necessarily begin on assertion of the
TRAIN_DATA[DETECT_CDEAD] bit. If the training pattern
does not begin because it is waiting for the current
transmission to complete, and during that time the
TRAIN_DATA[DETECT_CDEAD] bit is desasserted, then
training may never be sent.

RW 0

[5] DET_FCDEAD

RXCDAT pins status.

This bit dynamically changes as dead cycles are received
on the RXCDAT pins.

0—RXCDAT input has received Dead Cycles for less
than 2 consecutive cycles.
1—RXCDAT input has received Dead Cycles for 2 or
more consecutive cycles.

RO 0

[4] DET_FCIDLE

RXCDAT pins status.
0—RXCDAT input has received less than two
consecutive Idle CFrames.
1—RXCDAT input has received 2 or more consecutive
Idle CFrames.

RO 0

[3] DET_TXCFC_SUS

TXCFC link disabled indicator.
0—TXCFC input has been asserted for 32 or less
consecutive cycles.
1—TXCFC input has been asserted for more than 32
consecutive cycles.

RO 0

Bits Field Description RW Reset
454 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.34 RX_PHASEMON_# (# = pin name)

The RX_PHASEMON_# registers allow the user to monitor which dll output clock phase is being
used to sample the data. The sampling phase can be set by software, by deskew training cycles, or
by the dynamic deskew adjust circuitry.

.

[2] TRAIN_EN_CFC

Enable to automatically transmit training pattern.
0—Ignore DETECT_TXCFC_SUSTAINED bit.
1—Transmit training pattern while
DETECT_TXCFC_SUSTAINED bit is asserted. On
assertion of DETECT_TXCFC_SUSTAINED bit the
current CFrame transmission is completed before
beginning the training pattern. On deassertion of either
this bit or DETECT_TXCFC_SUSTAINED bit the
current training pattern is completed before resuming
normal transmit operation.

RW 0

[1] RXCFC_EN
RXCFC Enable.

0—RXCFC is held statically asserted.
1—RXCFC is used to send FCIFIFO status.

RW 0

[0] IGN_TRAIN

Prevents automatic deskew training on the RXCDAT,
RXCSOF, RXCPAR pins.

0—Automatically perform training when the training
pattern is received.
1—Ignore training patterns when received

RW 0

Bits Field Description RW Reset

Table 5-54. List of RX_PHASEMON_# Registers

RX_PHASEMON_# - Replace # With the Following

RDAT0 RDAT7 RDAT14 RXCDAT1

RDAT1 RDAT8 RDAT15 RXCDAT2

RDAT2 RDAT9 RCTL RXCDAT3

RDAT3 RDAT10 RPAR RXCPAR

RDAT4 RDAT11 RPROT RXCSRB

RDAT5 RDAT12 RXCSOF

RDAT6 RDAT13 RXCDAT0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

T
R

_S
TA

T
U

S

C
LK

_P
H

A
S

E

Programmer’s Reference Manual 455

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31:5] RESERVED Reserved RO 0

[4] TR_STATUS

Training Status: a value of 1 means a failure occurred on
this bit during the last training sequence received. Most
likely cause of this failure is that the training edge was
skewed too far from the other signals in the training group,
or no edge occurred at all.

RO 0

[3:0] CLK_PHASE

This field dynamically indicates which of the 16 dll output
clocks is being used to sample the most significant bit of the
incoming data. The clock phase 180 degrees from this
phase is used to sample the least significant bit of the
incoming data. Note that each increment is 22.5 degrees.

Value - Degree dll clock phase
0x0 - 90 degree
0x1 - 112.5 degree
0x2 - 135 degree
0x3 - 157.5 degree
0x4 - 180 degree
0x5 - 202.5 degree
0x6 - 225.0 degree
0x7 - 247.5 degree
0x8 - 270 degree
0x9 - 292.5 degree
0xA - 315 degree
0xB - 337.5 degree
0xC - 0 degree
0xD - 22.5degree
0xE - 45 degree
0xF - 67.5 degree

RO 0
456 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.35 MSF_IO_BUF_CTL

This register is used for RCOMP control for the MSF Interface.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

M
S

F
_R

C
O

M
P

_F
B

_R
E

A
D

M
S

F
_R

C
O

M
P

_V
C

O
M

P
L_O

U
T

M
S

F
_R

C
O

M
P

_O
U

T

M
S

F
_R

C
O

M
P

_R
E

A
D

M
S

F
_S

W
_W

A
R

O
U

N
D

M
S

F
_D

Y
N

_D
E

S
K

E
W

_D
IS

M
S

F
_R

C
O

M
P

_V
A

LU
E

M
S

F
_R

C
O

M
P

_O
V

E
R

R
ID

E

M
S

F
_P

R
E

_E
Q

_V
A

LU
E

Bits Field Description RW Reset

[31:25] RESERVED Reserved RO undef

[24:20] MSF_RCOMP_FB_READ

This is the 5-bit binary value (converted from a 25-
bit thermometer code) generated by the MSF
receivers’ auto-Rcomp circuit (shared by all MSF -
actual control back to Rcomp (in feedback)

RO undef

[19] MSF_RCOMP_VCOMPL_OUT
This signal indicates the status of the 1.0V
comparator output of the auto-Rcomp circuit
(shared by all MSF LVDS receiver pins)

RO undef

[18] MSF_RCOMP_OUT
This signal indicates the status of the 1.4V
comparator output of the auto-Rcomp circuit
(shared by all MSF LVDS receiver pins)

RO undef

[17:13] MSF_RCOMP_READ

This is the 5-bit binary value (converted from a 25-
bit thermometer code) generated by the MSF
receivers’ auto-Rcomp circuit (shared by all MSF
LVDS receiver pins)

RO undef

[12] MSF_SW_WAROUND
Select the external control for the internal 100-
ohm resistance (workaround mode - interfere with
the feedback)

RW undef

[11] MSF_DYN_DESKEW_DIS

0 - MSF dynamic de-skew (in receiver) enabled
(reset)

1 - MSF dynamic de-skew (in receiver) disabled

This field can be modified only when the
RX_SECTION_EN and RX_FC_SECTION_EN
bits in the MSF_CLOCK CONTROL register aer
disabled

RW undef
Programmer’s Reference Manual 457

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.36 FC_IO_BUF_CTL

This register is used for RCOMP control for the MSF Interface.

[10:6] MSF_RCOMP_VALUE

This 5-bit binary value (converted to a 25-bit
thermometer code) determines the MSF receivers’
Rcomp setting - needs bit[5] to be set (shared by
all MSF LVDS receiver pins)

RW undef

[5] MSF_RCOMP_OVERRIDE

0 - MSF auto-Rcomp is applied to receiver (reset)

1 - Rcomp value programmed in bits [10:6] is
applied to MSF LVDS receivers (i.e. auto-Rcomp
setting is ignored)

RW undef

[4:0] MSF_PRE_EQ_VALUE

Sets the pre-equalization amount to be set for the
MSF LVDS drivers.

0 - Pre-equalization is off

Any non-zero value - Corresponding pre-
equalization is applied to output signals.

RW undef

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

F
C

_R
C

O
M

P
_F

B
_R

E
A

D

F
C

_R
C

O
M

P
_V

C
O

M
P

L_O
U

T

F
C

_R
C

O
M

P
_O

U
T

F
C

_R
C

O
M

P
_R

E
A

D

F
C

_S
W

_W
A

R
O

U
N

D

F
C

_D
Y

N
_D

E
S

K
E

W
_D

IS

F
C

_R
C

O
M

P
_V

A
LU

E

F
C

_R
C

O
M

P
_O

V
E

R
R

ID
E

F
C

_P
R

E
_E

Q
_V

A
LU

E

Bits Field Description RW Reset

[31:25] RESERVED Reserved RO undef

[24:20] FC_RCOMP_FB_READ

This is the 5-bit binary value (converted from a 25-bit
thermometer code) generated by the FC receivers’
auto-Rcomp circuit (shared by all FC - actual control
back to Rcomp (in feedback)

RO undef

[19] FC_RCOMP_VCOMPL_OUT
This signal indicates the status of the 1.0V
comparator output of the auto-Rcomp circuit (shared
by all FC LVDS receiver pins)

R0 undef

[18] FC_RCOMP_OUT
This signal indicates the status of the 1.4V
comparator output of the auto-Rcomp circuit (shared
by all MSF LVDS receiver pins)

RO undef

[17:13] FC_RCOMP_READ

This is the 5-bit binary value (converted from a 25-bit
thermometer code) generated by the FC receivers’
auto-Rcomp circuit (shared by all FC LVDS receiver
pins)

RO undef
458 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.7.37 MSF Initial Setup Procedure for the IX2800 Rev A

This section explains the CSR settings required to make the MSF ready for operation.

1. Program the Clock Control Register with the desired clock ratio. If TCLK is being generated
internally, the ratio should be microengine frequency / MSF bus frequency. If TCLK is taken
from TCLK_REF, the MSF frequency will be the same as the input clock.

2. Clear bit 7 of IXP_RESET0 to bring the MSF out of reset.

3. Reset timer columns in test debug registers. Write a 1 and then a 0 to bit 10 of MSF CSRs
0x80f4-0x8104. Only required for A step devices.

4. Initialize SPI-4 calendar if needed. TX_CALENDAR_LENGTH, TX_CALENDAR_#,
RX_CALENDAR_LENGTH

5. Initialize the lower 28 bits of MSF_RX_CONTROL and MSF_TX_CONTROL, this value
will vary per implementation.

6. Write 0x10 into MSF_CLOCK_CONTROL, this enables the output of TCLK.

7. Initialize devices connected to MSF and enable their clocks that serve as inputs to the IXP2800
and wait for RCLK to stabilize.

8. Write 0x1490 into MSF_CLOCK_CONTROL, this selects the RCLK input, enables the
RCLK DLL and enables the RCLK_REF output clock.

9. Wait 1mS for RCLK DLL to lock.

10. If you are not using the flow control bus, skip forward to step 15

11. Write 0x14D0 into MSF_CLOCK_CONTROL, this enables the TXCCLK output. The output
clock is selected by MSF_TX_CONTROL[TXCCLK_SOURCE].

[12] FC_SW_WAROUND
Select the external control for the internal 100-ohm
resistance (workaround mode - interfere with the
feedback)

RW undef

[11] FC_DYN_DESKEW_DIS

0 - FC dynamic de-skew (in receiver) enabled (reset)

1 - FC dynamic de-skew (in receiver) disabled

This field can be modified only when the
RX_SECTION_EN bit and RX_FC_SECTION_EN
bit in the MSF_CLOCK CONTROL register are
disabled

RW undef

[10:6] FC_RCOMP_VALUE

This 5-bit binary value (converted to a 25-bit
thermometer code) determines the FC receivers’
Rcomp setting - needs bit[5] to be set (shared by all
FC LVDS receiver pins)

RW undef

[5] FC_RCOMP_OVERRIDE

0 - FC auto-Rcomp is applied to receiver (reset)

1 - Rcomp value programmed in bits [10:6] is applied
to FC LVDS receivers (i.e. auto-Rcomp setting is
ignored)

RW undef

[4:0] FC_PRE_EQ_VALUE

Sets the pre-equalization amount to be set for the
FC LVDS drivers.

0 - Pre-equalization is off

Any non-zero value - Corresponding pre-
equalization is applied to output signals.

RW undef

Bits Field Description RW Reset
Programmer’s Reference Manual 459

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
12. Start RXCCLK and wait for it to stabilize.

13. Write 0x3CD0 into MSF_CLOCK_CONTROL, this selects the RXCCLK input, enables the
RXCCLK DLL.

14. Wait 1mS for RXCCLK DLL to lock.

15. OR 0x32F into MSF_CLOCK_CONTROL (or an applicable subset), in this case this enables
the receive and transmit calendars, enables the RSCLK output and enables the MSF and Flow
Control receive and transmit sections.

16. Train all interfaces as described in HRM section 8.6.3.

17. Initialize CSIX_TYPEMAP, HWM_CONTROL, RX_PORTMAP, and
RX_THREAD_FREELIST_TIMEOUT with values applicable to your application.

18. If using CSIX, enable flow control as described in HRM section 8.7.

19. OR in the appropriate enables in the upper 4 bits of MSF_RX_CONTROL and
MSF_TX_CONTROL, this enables the SPI4/CSIX receive and transmit.

20. Clear all MSF Interrupts by writing 0xFFFFFFFF to MSF_INTERRUPT_STATUS.

21. Enable appropriate MSF interrupts by initializing MSF_INTERRUPT_ENABLE

22. Enable microengine receive threads and begin frame processing.

5.7.38 MSF Initial Setup Procedure for the IX2800 Rev B

Perform the following steps to initialize the MSF interface for a B stepping:

1. Program the Clock Control Register with the desired clock ratio. If TCLK is generated
internally, the ratio should be microengine frequency / MSF bus frequency. If TCLK is taken
from TCLK_REF, the MSF frequency will be the same as the input clock.

2. Clear bit 7 of IXP_RESET0 to bring the MSF out of reset.

3. If needed, initialize the SPI-4 calendar, using TX_CALENDAR_LENGTH,
TX_CALENDAR_#, RX_CALENDAR_LENGTH.

4. Initialize the lower 28 bits of MSF_RX_CONTROL and MSF_TX_CONTROL; this
initialization value depends on the implementation.Note:In the B stepping, the
RSTAT_OV_VALUE bits [19:18], RSTAT_OVERRIDE bit [17], and
RX_CALENDAR_MODE bit [11], registers have been modified and must be programmed
appropriately for the desired calendar mode. Additionally,
RX_PORT_CALENDAR_STATUS_# must be programmed with the desired status value for
each port. Refer to the Intel® IXP2800 Network Processor Programmers Reference Manual
for more information.

5. Write 0x10 into MSF_CLOCK_CONTROL to enable the output of TCLK; Figure 3 begins
with this step.

6. Initialize devices connected to the MSF and enable their clocks that serve as inputs to the
Intel® IXP2800; wait for RCLK to stabilize.

7. Write 0x1010 into MSF_CLOCK_CONTROL to take the MSF DLL out of reset. Note: the
RCLK input clock must be present and stable before taking the MSF DLL out of RESET.

8. Wait 1 ms.

9. Write 0x1490 into MSF_CLOCK_CONTROL to select the RCLK input, enable the RCLK
DLL, and enable the RCLK_REF output clock.
460 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
10. If you are not using the flow control bus, go to step 16.

11. Write 0x14D0 into MSF_CLOCK_CONTROL to enable the TXCCLK output. The output
clock is selected by MSF_TX_CONTROL[TXCCLK_SOURCE].

12. Start RXCCLK and wait for it to stabilize.

13. Write 0x34D0 into MSF_CLOCK_CONTROL to take the FC DLL out of reset. Note: the
RXCCLK input clock must be present and stable before taking the FC DLL out of RESET.

14. Wait 1 ms.

15. Write 0x3CD0 into MSF_CLOCK_CONTROL to select the RXCCLK input and enable the
RXCCLK DLL.

16. OR 0x32F into MSF_CLOCK_CONTROL (or an applicable subset). In this case, the receive
and transmit calendars, the RSCLK output, and the MSF and Flow Control receive and
transmit sections are all enabled; Figure 3 ends with this step.

17. Train all interfaces as described in the appropriate section in Chapter 8 of the Intel® IXP2800
Network Processor Hardware Reference Manual.

18. Initialize CSIX_TYPEMAP, HWM_CONTROL, RX_PORTMAP, and
RX_THREAD_FREELIST_TIMEOUT with appropriate values for your application.

19. If using CSIX, enable flow control as described in the appropriate section in Chapter 8 of the
Intel® IXP2800 Network Processor Hardware Reference Manual.

20. OR in the appropriate enables in the upper four bits of MSF_RX_CONTROL and
MSF_TX_CONTROL, to enable the SPI4/CSIX receive and transmit operations.

21. Clear all MSF interrupts by writing 0xFFFFFFFF to MSF_INTERRUPT_STATUS.

22. Enable appropriate MSF interrupts by initializing MSF_INTERRUPT_ENABLE.

23. Enable microengine receive threads and begin frame processing.
Programmer’s Reference Manual 461

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8 Media and Switch Fabric Interface(MSF) - IXP2400

5.8.1 IXP2400 MSF Address Map

Table 5-55. IXP2400 MSF Address Map

Register Offset Notes Section

MSF_Rx_Control 0x0000 Section 5.8.2

MSF_Tx_Control 0x0004 Section 5.8.3

MSF_Interrupt_Status 0x0008 Section 5.8.4

MSF_Interrupt_Enable 0x000C Section 5.8.5

CSIX_Type_Map 0x0010 Section 5.8.6

FC_Egress_Status 0x0014 Section 5.8.7

FC_Ingress_Status 0x0018 Section 5.8.8

reserved 0x001C

reserved 0x0020

HWM_Control 0x0024 Section 5.8.9

SRB_Override 0x0028 Section 5.8.10

reserved 0x002C

Rx_Thread_Freelist_0 0x0030 Section 5.8.11

Rx_Thread_Freelist_1 0x0034 Section 5.8.11

Rx_Thread_Freelist_2 0x0038 Section 5.8.11

Rx_Thread_Freelist_3 0x003C not used in IXP2800 Section 5.8.11

reserved 0x0040 Rx_Port_Map in IXP2800

RBUF_Element_Done 0x0044 Section 5.8.12

Rx_MPHY_Poll_Limit 0x0048 Rx_Calendar_Length in
IXP2800 Section 5.8.13

FCEFIFO_Validate 0x004C Section 5.8.14

Rx_Thread_Freelist_Timeout_0 0x0050 Section 5.8.15

Rx_Thread_Freelist_Timeout_1 0x0054 Section 5.8.15

Rx_Thread_Freelist_Timeout_2 0x0058 Section 5.8.15

Rx_Thread_Freelist_Timeout_3 0x005C not used in IXP2800 Section 5.8.15

Tx_Sequence_0 0x0060 Section 5.8.16

Tx_Sequence_1 0x0064 Section 5.8.16

Tx_Sequence_2 0x0068 Section 5.8.16

Tx_Sequence_3 0x006C not used in IXP2800 Section 5.8.16

Tx_MPHY_Poll_Limit 0x0070 Tx_Calendar_Length in
IXP2800 Section 5.8.17

Tx_MPHY_Status 0x0074 Rx_Pin_Deskew_0 in IXP2800 Section 5.8.18

Tx_MPHY_Status_Extension
(Reserved in Rev A) 0x0078 Rx_Pin_Deskew_1 in IXP2800 Section 5.8.19
462 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
reserved 0x007C Rx_Pin_Deskew_2 in IXP2800

Rx_UP_Control_0 0x0080 not used in IXP2800 Section 5.8.20

Rx_UP_Control_1 0x0084 not used in IXP2800 Section 5.8.20

Rx_UP_Control_2 0x0088 not used in IXP2800 Section 5.8.20

Rx_UP_Control_3 0x008C not used in IXP2800 Section 5.8.20

Tx_UP_Control_0 0x0090 not used in IXP2800 Section 5.8.21

Tx_UP_Control_1 0x0094 not used in IXP2800 Section 5.8.21

Tx_UP_Control_2 0x0098 not used in IXP2800 Section 5.8.21

Tx_UP_Control_3 0x009C not used in IXP2800 Section 5.8.21

Rx_FIFO_Control_0 0x00A0 Section 5.8.22

Rx_FIFO_Control_1 0x00A4 Section 5.8.22

Rx_FIFO_Control_2 0x00A8 Section 5.8.22

Rx_FIFO_Control_3 0x00AC Section 5.8.22

reserved 0x00B0 -
0x00EC

MSF_Rx_RCOMP_Status 0x00F0 Rx IO buffers RCOMP Status Section 5.8.23

MSF_Tx_RCOMP_Status 0x00F4 Tx IO buffers RCOMP Status Section 5.8.24

MSF_Rx_RCOMP_Override 0x00F8 Used to override the drive
settings of the Rx IO buffers. Section 5.8.25

MSF_Tx_RCOMP_Override 0x00FC Used to override the drive
settings of the Tx IO buffers. Section 5.8.26

FCIFIFO 0x0100 -
0x013C

FCIFIFO has 16 addresses for
burst access. Burst must start
at the lowest address.

Section 5.8.27

FCEFIFO
0x0140 -

0x017C

FCEFIFO has 16 addresses
for burst access. Burst must
start at the lowest address.

Section 5.8.28

reserved 0x1000 -
0x13FC Tx_Calendar_# in IXP2800

reserved 0x1400 -
0x17FC Tx_Port_Status_# in IXP2800

TBUF_ELEMENT_CONTROL_#

(# range is 0 to 127, 0 to 63, or 0
to 31, for TBUF element size of
64, 128, or 256 bytes,
respectively)

0x1800–
0x1BFC

Write
TBUF_ELEMENT_CONTROL
_# and set Element Valid. If
done as 2 separate 32-bit
writes, the write to the upper
half of the register sets
Element Valid.

Section 5.8.29

reserved

(used to be
TBUF_Element_Control_NV_#)

0x1C00 -
0x1FFC

RBUF/TBUF 0x2000 -
0x3FFC read = RBUF, write = TBUF

Register Offset Notes Section
Programmer’s Reference Manual 463

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.2 MSF_Rx_Control

This control register defines a number of receive configuration parameters.

For IXP2400, the user may not write the RX_ENABLE bit at the same time as the remaining bits in
the register. In other words, the first time the registers are written, the RX_ENABLE bit must be
zero, to give the RX logic time to configure itself. The second time the registers are written, the
interface may be enabled. (Note: This does not apply to IXP2800, where RX interfaces can be
configured and enabled at the same time.)

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

R
X

_E
N

[3:0]

 RESERVED

R
X

_M
O

D
E

R
X

_W
ID

T
H

R
X

_M
P

H
Y

_E
N

R
X

_M
P

H
Y

_M
O

D
E

R
X

_M
P

H
Y

_P
O

LL_M
O

D
E

T
X

_C
B

U
S

_M
O

D
E

R
E

S
E

R
V

E
D

R
x
_
M
P
H
Y
_
L
e
v
e
l
2

T
X

_C
B

U
S

_W
ID

T
H

R
E

S
E

R
V

E
D

C
S

IX
_F

R
E

E
LIS

T

RESERVED

R
B

U
F

_E
LE

M
E

N
T

_S
IZ

E

R
E

S
E

R
V

E
D

Bits Field Description RW Reset

[31:28] Rx_En[3:0]

Receive Enable.

0–Receive section ignores the rx pins.

1–Receive section enabled to receive transfers as
defined.

The mapping is as follows:

[0] - channel 0 (SPHY), all channels (MPHY-4/-16 for
Rev A and MPHY-4/-32 for Rev B), CSIX

[1] - channel 1 (SPHY, MPHY-4)

[2] - channel 2 (SPHY, MPHY-4)

[3] - channel 3 (SPHY, MPHY-4)

The RX_En bits should be set to 1 only after all the
other RX configuration bits have been properly set,
including other bits in this register. Set the other bits
first, then rewrite this register with the appropriate
RX_En bits set. These bits are not meant to be used
dynamically. Once set, these bits should be left set.
Moreover, the setting of these bits must be consistent
with the mode and configuration of the MSF Receive
interface that the user has set up. Otherwise, undefined
behavior may result.

For MPHY-4 mode, if a channel is not enabled but the
slave device sends data to this channel, the IXP2400
will accept the data. This is a usage or slave device
error, and will result in wasted RBUF space.

RW 0
464 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[27:23] reserved RO 0

[22] Rx_Mode

Controls the use of receive bus pins.

0: UTOPIA/POS Mode

1: CSIX Mode

RW 0

[21:20] Rx_Width

Used to control use of the receive pins. Applicable only
when running in UTOPIA/POS mode.

00: 1x32

01: 2x16

10: 4x8

11: 1x16_2x8

RW 0

[19] Rx_MPHY_En

Used to enable MPHY operation on the receive
interface.

0: single PHY mode

1: multi PHY mode

RW 0

[18] Rx_MPHY_Mode

Used to select MPHY mode on the receive interface.
This is ignored for POS-PHY Level 3 MPHY mode.

0: MPHY-4; a maximum of four ports.

1: MPHY-32; a maximum of thirty-two ports (For Rev A,
MPHY-16; a maximum of sixteen ports).

For Rev B MPHY-32 setting, the maximum number of
ports for UTOPIA/POS Level 3 is 32 and for UTOPIA/
POS Level 2 is 31.

RW 0

[17] Rx_MPHY_Poll_Mod
e

Used to select FIFO status polling method on the
receive interface in MPHY mode. From functionality
perspective this bit is ignored for POS-PHY Level 3
MPHY-4 and MPHY-32 modes. Nevertheless, for
IXP2400 rev B, this bit must be set to 0 for POS-PHY
MPHY-4 configuration, due to implementation specific
reason.

0: Direct status; FIFO status is carried on the RXFA[3:0]
pins. May only be used in MPHY-4 mode.

1: Polled status; FIFO status must be polled and is
carried on the RXPFA pin. May be used in either
MPHY-4 or MPHY-32 (MPHY-16 in Rev A) modes.

RW 0

[16] Tx_CBus_Mode

Determines operating mode for CBus transmit logic.
• 0 - Simplex mode.
• 1 - Full duplex mode.

Simplex mode:
• ME or Intel XScale core writes to FCEFIFO

address.
• TXCSRB output pin not used.
• TXCFC input pin ignored.
• TM_CRDY and TM_DRDY.

Full Duplex mode:
• CFrames routed from pins into FCEFIFO.
• TXCSRB output pin used to send TM_xRDY and

SF_xRDY bits to ingress processor.
• TXCFC input pin used to flow control CBus

transmission.

RW 1

[15] reserved RO 0

Bits Field Description RW Reset
Programmer’s Reference Manual 465

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.3 MSF_Tx_Control

This control register defines a number of transmit configuration parameters.Table 5-56 summarizes
Table 5-56 summarizes all the allowable major bus modes based on the contents of the
MSF_Rx_Control/MSF_Tx_Control register. There are eight distinct major bus modes.
Programming the register values for any illegal mode will result in undefined behavior.

For IXP2400, the user may not write the TX_ENABLE bit at the same time as the remaining bits in
the register. In other words, the first time the registers are written, the TX_ENABLE bit must be
zero, to give the TX logic time to configure itself. The second time the registers are written, the
interface may be enabled. (Note: This does not apply to IXP2800, where TX interfaces can be
configured and enabled at the same time.)

[14] Rx_MPHY_Level2

When MSF is configured for UTOPIA or POS MPHY
operation, this bit is used to select between Level 2 or
Level 3 operation.

0: Level 3 operation

1: Level 2 operation

This bit is Reserved in Rev A.

RW 0

[13] Tx_Cbus_Width
0 --> 4-bit mode

1 --> 8-bit mode.
RW 0

[12:10] reserved RO 0

[9] CSIX_Freelist

Determines how CFrames are mapped to
Rx_Thread_Freelists

0: Data and Control CFrames go to different
Rx_Thread_Freelists.

1: Data and Control CFrames go to the same
Rx_Thread_Freelist.

RW 0

[8:4] reserved RO 0

[3:2] RBUF_Element_Size

Indicates element size for RBUF. When MSF is
configured for UTOPIA or POS, all elements have the
same size. In CSIX mode with RBUF being divided into
two partitions, both partitions have the same size
elements.

00–64 bytes each

01–128 bytes each

10–256 bytes each

11–Reserved

Note that in POS-PHY L3 MPHY configurations, the
PHY device must send data in a burst size that
matches with the configured RBUF_Element_Size. The
only exception is when end of packet is reached. In this
case, the burst size can be less than the
RBUF_Element_Size.

RW 0

[1:0] reserved RO 0

Bits Field Description RW Reset
466 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

TX_EN[3:0]

 T
X

_F
LU

S
H

[3:0]

R
E

S
E

R
V

E
D

T
X

_M
O

D
E

T
X

_W
ID

T
H

T
X

_M
P

H
Y

_E
N

T
X

_M
P

H
Y

_M
O

D
E

T
X

_M
P

H
Y

_P
O

LL_M
O

D
E

R
X

_C
B

U
S

_M
O

D
E

R
E

S
E

R
V

E
D

T
x
_
M
P
H
Y
_
:
L
e
v
e
l
2

R
X

_C
B

U
S

_W
ID

T
H

RESERVED

T
B

U
F

_E
LE

M
E

N
T

_S
IZ

E

R
E

S
E

R
V

E
D

Bits Field Description RW Reset

[31:28] Tx_En[3:0]

Transmit Enable.

0–Transmit section disabled, tx pins are static.

1–Transmit section transmits TBUF elements as defined.

The bits are mapped as follows:

[0] - TBUF segment 0

[1] - TBUF segment 1

[2] - TBUF segment 2

[3] - TBUF segment 3

The TX_En bits should be set to 1 only after all the other TX
configuration bits have been properly set, including other bits
in this register. Set the other bits first, then rewrite this register
with the appropriate TX_En bits set.

These bits are not meant to be used dynamically. Once set,
these bits should be left set. Moreover, the setting of these
bits must be consistent with the mode and configuration of the
MSF Transmit interface that the user has set up. Otherwise,
undefined behavior may result.

RW 0x0

[27:24] Tx_Flush[3:0]

These bits can be written to flush valid entries from TBUF.
When a 1 is written to these bits, all valid bits of
corresponding TBUF elements are cleared, and the internal
element pointers used by that section of TBUF are reset.

Tx_Flush[3] for TBUF partition 3

Tx_Flush[2] for TBUF partition 2

Tx_Flush[1] for TBUF partition 1

Tx_Flush[0] for TBUF partition 0

WO 0

[23] reserved RO 0

[22] Tx_Mode

Controls the use of transmit bus pins.

0: UTOPIA/POS Mode

1: CSIX Mode

RW 0
Programmer’s Reference Manual 467

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[21:20] Tx_Width

Used to control use of transmit pins. Applicable only when
running in UTOPIA/POS mode.

00: 1x32

01: 2x16

10: 4x8

11: 1x16_2x8

RW 0

[19] Tx_MPHY_En

Used to enable MPHY operation on the transmit interface.

0: single PHY mode

1: multi PHY mode

RW 0

[18] Tx_MPHY_Mode

Used to select MPHY mode on the transmit interface.

0: MPHY-4; a maximum of four ports.

1: MPHY-32; a maximum of thirty-two ports (For Rev A,
MPHY-16; a maximum of sixteen ports).

For Rev B MPHY-32 setting, the maximum number of ports
for UTOPIA/POS Level 3 is 32 and for UTOPIA/POS Level 2
is 31.

RW 0

[17] Tx_MPHY_Poll_Mod
e

Used to select FIFO status polling method on the transmit
interface in MPHY mode.

0: Direct status indication; FIFO status is carried on the
TXFA[3:0] pins. May only be used in MPHY-4 mode.

1: Polled status; FIFO status must be polled and is carried on
the TXPFA pin. May be used in either MPHY-4 or MPHY-32
(MPHY-16 in Rev A) modes.

RW 0

[16] Rx_CBus_Mode

Determines operating mode for CBus receive logic.
• 0 - Simplex mode.
• 1 - Full duplex mode.

Simplex mode:
• CFrames come directly from switch fabric.
• RXCSRB input pin ignored.
• RXCFC output pin not used.
• SF_CRDY and SF_DRDY extracted from incoming

CFrames.

Full Duplex mode:
• CFrames come from egress processor.
• RXCSRB input pin used to receive SF_xRDY and

TM_xRDY from egress processor.
• RXCFC output pin used to flow control CBus

transmission.

RW 1

[15] reserved RO 0

[14] Tx_MPHY_Level2

When MSF is configured for UTOPIA or POS MPHY
operation, this bit is used to select between Level 2 or Level 3
operation.

0: Level 3 operation

1: Level 2 operation

This bit is Reserved in Rev A.

RW 0

[13] Rx_Cbus_Width
0 --> 4-bit mode

1 --> 8-bit mode
RW 0

[12:4] reserved RO 0

Bits Field Description RW Reset
468 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[3:2] TBUF_Element_Size

Indicates element size for TBUF. When MSF is configured for
UTOPIA or POS, all elements have the same size. In CSIX
mode with TBUF being divided into two partitions, both
partitions have the same size elements.

00–64 bytes each

01–128 bytes each

10–256 bytes each

11–Reserved

RW 0

[1:0] reserved RO 0

Table 5-56. IXP2400 MSF Allowable Major Bus Modes

{Rx,Tx}
_Mode

{Rx,Tx}_
Width[1:0]

{Rx,Tx}_
MPHY_En

{Rx,Tx}_
MPHY_
Mode

{Rx,Tx}_
MPHY_P
oll_Mod

e

Operating
Mode Notes

0 00 0 X X U/P, 1x32,
SPHY

Rx_UP_Control_0 and Tx_UP_Control_0
are used to configure port behavior.

0 00 1 0 0
U/P, 1x32,
MPHY-4,

direct status

Rx_UP_Control_0 and Tx_UP_Control_0
are used to configure port behavior.

0 00 1 0 1
U/P, 1x32,
MPHY-4,

polled status

Rx_UP_Control_0 and Tx_UP_Control_0
are used to configure port behavior.

0 00 1 1 0 illegal Direct status not allowed for MPHY-32
(MPHY-16 in Rev A) mode.

0 00 1 1 1

U/P, 1x32,
MPHY-32

(MPHY-16 in
Rev A),

polled status

Rx_UP_Control_0 and Tx_UP_Control_0
are used to configure port behavior.

0 01 0 X X U/P, 2x16,
SPHY

Rx_UP_Control_{0,2} and
Tx_UP_Control_{0,2} are used to configure
port behavior.

0 01 1 0 0 illegal

0 01 1 0 1 illegal

0 01 1 1 0 illegal

0 01 1 1 1

U/P, 1x16
MPHY-32

polled status
and 1x16

SPHY

X16 MPHY mode

illegal in Rev A

0 10 0 X X U/P, 4x8,
SPHY

Rx_UP_Control_{0,1,2,3} and
Tx_UP_Control_{0,1,2,3} are used to
configure port behavior.

0 10 1 X X illegal X8 MPHY mode not supported.

0 11 0 X X
U/P,

1x16+2x8,
SPHY

Rx_UP_Control_{0,2,3} and
Tx_UP_Control_{0,2,3} are used to
configure port behavior.

0 11 1 0 0 illegal

Bits Field Description RW Reset
Programmer’s Reference Manual 469

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.4 MSF_Interrupt_Status

This register holds error status. When any of these bits is set, MSF generates an interrupt to the
Intel XScale core.

0 11 1 0 1 illegal

0 11 1 1 0 illegal

0 11 1 1 1

U/P, 1x16
MPHY-32

polled status
and 2x8
SPHY

X16 MPHY mode

illegal in Rev A

1 00 X X X CSIX, 1x32

1 01 X X X illegal CSIX mode only supported for 1x32.

1 10 X X X illegal CSIX mode only supported for 1x32.

1 11 X X X illegal CSIX mode only supported for 1x32.

Table 5-56. IXP2400 MSF Allowable Major Bus Modes (Continued)

{Rx,Tx}
_Mode

{Rx,Tx}_
Width[1:0]

{Rx,Tx}_
MPHY_En

{Rx,Tx}_
MPHY_
Mode

{Rx,Tx}_
MPHY_P
oll_Mod

e

Operating
Mode Notes

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED FCEFIFO_OVERFLOW

R
B

U
F

_O
V

E
R

F
LO

W
_C

O
U

N
T

R
E

S
E

R
V

E
D

F
C

IF
IF

O
_E

R
R

O
R

R
E

S
E

R
V

E
D

T
B

U
F

_E
R

R
O

R

R
E

S
E

R
V

E
D

V
P

_E
R

R
O

R

H
P

_E
R

R
O

R

470 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31:24] reserved RO 0

[23:16] FCEFIFO_Overflow

Full Duplex Mode: CSIX CFrame mapped to
FCEFIFO arrived and FCEFIFO did not have

sufficient room. The entire CFrame was discarded.
This field counts up by 1 for every discarded CFrame.
FCEFIFO can hold up to 256 CWords.

Simplex Mode: Software attempted to write data into
FCEFIFO and it is completely full. (FCEFIFO can hold
up to 255 entries in this mode). This field counts up
by 1 for every discarded CWord.

This field saturates at 0xFF. In other words, when the
count reaches 0xFF, it will stop counting, so as to not
roll over to zero.

Note that these bits need to be cleared all at the same
time by writing 0xFF to them.

RW1C 0

[15:8] RBUF_Overflow_Co
unt

Data was received on Rx pins successfully but no
RBUF element was free to accept it. The data may get
discarded, if more data arrives at the Rx pins but not
enough RBUF entries get freed up. This field counts
up by 1 for every mpacket that is received while no
free RBUF element is available. This incrementing
field saturates at 0xFC. In other words, when the
count reaches 0xFC, it will stop incrementing.Note
that the IXP2400 and IXP2800 behavior for this field
differs.

Note that these bits need to be cleared all at the same
time by writing 0xFF to them.

RW1C 0

[7] reserved RO 0

[6] FCIFIFO_Error

FCIFIFO CFrame was discarded due to either:
• Horizontal parity error
• Vertical parity error
• Premature RXCSOF (before entire payload length

was received)
• Overflow - CFrame with Payload Size greater

than space available in FCIFIFO. Once the
overflow condition occurs, subsequent Cframes
get dropped until more space in FCIFIFO
becomes available and the overflow condition
disappears. Only one interrupt is sent during the
entire duration of the overflow condition,
regardless of the number of dropped CFrames
due to the overflow condition.

RW1C 0

[5] reserved RO 0

[4] TBUF_Error

Transmit Control Word programming error. Set by
either:

• Prepend Length + Payload Length > TBUF
element size. Total number of bytes sent is
truncated to element size.

• Prepend Length + Payload Length not an integer
multiple of bus width and the EOP bit is not set in
the Transmit Control Word. A full mpacket’s worth
of data will be transmitted, regardless of the value
of Prepend Length + Payload Length.

RW1C 0
Programmer’s Reference Manual 471

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.5 MSF_Interrupt_Enable

This register holds enable bits for individual error types. This register is ANDed with
MSF_Interrupt_Status. If the result is not zero MSF generates an interrupt signal to the Intel
XScale core.

[3:2] reserved RO 0

[1] VP_Error Incorrect Vertical Parity on a received CFrame in CSIX
mode. RW1C 0

[0] HP_Error Incorrect Horizontal Parity received in UTOPIA, POS-
PHY, or CSIX modes. RW1C 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

F
C

E
F

IF
O

_O
V

E
R

F
LO

W

RESERVED

R
B

U
F

_O
V

E
R

F
LO

W
_C

O
U

N
T

R
E

S
E

R
V

E
D

F
C

IF
IF

O
_E

R
R

O
R

R
E

S
E

R
V

E
D

T
B

U
F

_E
R

R
O

R

R
E

S
E

R
V

E
D

V
P

_E
R

R
O

R

H
P

_E
R

R
O

R

Bits Field Description RW Reset

[31:17] reserved RO 0

[16] FCEFIFO_Overflow RW 0

[15:9] reserved RO 0

[8] RBUF_Overflow_Co
unt RW 0

[7] reserved RO 0

[6] FCIFIFO_Error RW 0

[5] reserved RO 0

[4] TBUF_Error RW 0

[3:2] reserved RO 0

[1] VP_Error RW 0

[0] HP_Error RW 0
472 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.6 CSIX_Type_Map

This register is determines how CSIX CFrames are mapped to RBUF elements. This register must
not be changed while CSIX CFrames are being received.

5.8.7 FC_Egress_Status

This register holds the link level flow control information received from the Switch Fabric, and the
status of RBUF and FCEFIFO. In Full Duplex mode, this information is transmitted out of the
egress processor on TXCSRB.

Note: The actual update into bits [1:0] of this register is only done when the CFrame is received error-
free. If there is an error on a CFrame then those two bits are cleared. Errors will set bits as defined
in MSF_Interrupt_Status.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

CSIX_TYPE_MAP

Bits Field Description RW Reset

[31:0] CSIX_Type_Map

These pairs of bits map CFrame Type field to either RBUF
or FCEFIFO as show. Bits [1:0] is for type 0x0, bits [3:2] is
for type 0x1, etc.

• 00 - Discard
• 01 - RBUF Control
• 10 - RBUF Data
• 11 - FCEFIFO

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

F
C

E
F

IF
O

_F
U

LL

T
M

_D
R

E
A

D
Y

T
M

_C
R

E
A

D
Y

S
F

_D
R

E
A

D
Y

S
F

_C
R

E
A

D
Y

Bits Field Description RW Reset

[31:5] reserved RO 0

[4] FCEFIFO_Full
Indicates in FCEFIFO is full or not, based on
HWM_Control[FCEFIFO_HWM]. Note that this bit is only
applicable in Simplex mode.

RO 0
Programmer’s Reference Manual 473

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.8 FC_Ingress_Status

This register holds the link level flow control information received on RXCSRB. It is used as ready
information on CSIX base headers, and used to enable or disable transmission of CFrames to the
switch fabric.

[3] TM_DReady

Value for ingress IXP2400 to use for DRDY in CFrames
sent to the switch fabric. Deasserted when RBUF CSIX
data partition is full (based on
HWM_Control[RBUF_D_HWM]).

Full Duplex mode: transmitted on TXCSRB bit 8.

Simplex mode: DRDY value to transmit (in bit 7of byte 0) of
CSIX base headers sent on TXCDAT.

RO 0

[2] TM_CReady

Value for Ingress IXP2400 to use for CRDY in CFrames
sent to Switch Fabric. In Full Duplex Mode, deasserted
when RBUF CSIX Control Partition is full (based on
HWM_Control[RBUF_C_HWM]) or when FCEFIFO is full
(based on HWM_Control[FCEFIFO_HWM]). In Simplex
Mode deasserted only when RBUF CSIX Control Partition
is full.

In Full Duplex Mode -- transmitted on TXCSRB bit 7.

In Simplex Mode -- CRDY value to transmit (in bit 6 of byte
0) in CSIX Base Headers sent on TXCDAT.

RO 0

[1] SF_DReady

Data Ready receive in CSIX base headers (bit 7 of byte 0),
updated after CFrame is received. Cleared if an error is
detected on a received CFrame.

Full Duplex mode: transmitted on TXCSRB bit 6.

RO 0

[0] SF_CReady

Control Ready receive in CSIX base headers (bit 6 of byte
0), updated after CFrame is received. Cleared if an error is
detected on a received CFrame.

Full Duplex mode: transmitted on TXCSRB bit 5.

RO 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

T
M

_D
R

E
A

D
Y

T
M

_C
R

E
A

D
Y

S
F

_D
R

E
A

D
Y

S
F

_C
R

E
A

D
Y

Bits Field Description RW Reset

[31:4] reserved RO 0

[3] TM_DReady

Simplex mode: Always 0.

Full Duplex mode: CRDY value to transmit (in bit 7 of byte
0) of CSIX base headers. This value is received on
RXCSRB bit 8.

RO 0
474 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.9 HWM_CONTROL

This register is used to control high watermarks for RBUF, FCEFIFO, and FCIFIFO. This register
must not be changed while data is being received.

[2] TM_CReady

Simplex mode: The number of free CWords in FCIFIFO is
below the high watermark as programmed in
HWM_Control[FCIFIFO_Ext_HWM].

Full Duplex mode: CRDY value to transmit (in bit 6 of byte
0) of CSIX base headers. This value is received on
RXCSRB bit 7.

RO 0

[1] SF_DReady

Hardware control of transmission of CSIX data elements.
• 0 - stop sending data CFrames to the switch fabric.
• 1 - OK to send data CFrames to the switch fabric.

Full Duplex mode: received on RXCSRB bit 6.

Simplex mode: CRDY of CSIX base headers (bit 7 of byte
0) received on RXCDATA, updated as each CFrame is
received. Cleared if an error is detected on a received
CFrame.

RO 0

[0] SF_CReady

Hardware control of transmission of CSIX control
elements.

• 0 - stop sending control CFrames to the switch fabric.
• 1 - OK to send control CFrames to the switch fabric.

Full Duplex mode: received on RXCSRB bit 5.

Simplex mode: CRDY of CSIX base headers (bit 6 of byte
0) received on RXCDATA, updated as each CFrame is
received. Cleared if an error is detected on a received
CFrame.

RO 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

F
C

IF
IF

O
_E

X
T

_H
W

M

F
C

IF
IF

O
_IN

T
_H

W
M

F
C

E
F

IF
O

_H
W

M

R
E

S
E

R
V

E
D

R
B

U
F

_D
_H

W
M

R
B

U
F

_C
_H

W
M

Bits Field Description RW Reset

[31:12] reserved RO 0
Programmer’s Reference Manual 475

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[11:10] FCIFIFO_Ext_HWM

Flow Control Ingress FIFO High Watermark for external use.

Simplex mode: TM_CRDY to the switch fabric is deasserted
if the number of CWord entries used in the FCIFIFO is > the
programmed high watermark. Full duplex mode: RXCFC is
asserted if the number of CWord entries used in the FCIFIFO
is > the programmed watermark.

Note this is different than the IXP2800.

00: 32 CWord entries are used

01: 64 CWord entries are used

10: 128 CWord entries are used

11: 192 CWord entries are used

RW 0

[9:8] FCIFIFO_Int_HWM

Flow Control Ingress FIFO High Watermark for internal use.
FCI_Near_Full signal to the MEs is asserted if the number of
CWords entries used in the FCIFIFO > the programmed
watermark. Note this is different than the IXP2800.

00: 16 CWord entries are used

01: 32 CWord entries are used

10: 64 CWord entries are used

11: 128 CWord entries are used

RW 0

[7:6] FCEFIFO_HWM

Flow Control Egress FIFO High Watermark.
FC_Egress_Status[FCEFIFO_Full] is asserted if Simplex
mode is configured and the number of CWord entries used in
the FCEFIFO is > the programmed water mark. For Full-
duplex configuration, the TM_CRDY bit of outgoing CFrames
gets deasserted when the number of CWord entries used in
the FCEFIFO is > the programmed water mark.

For Full-duplex configuration:

00: 64 CWord entries are used

01: 128 CWord entries are used

10: 184 CWord entries are used

11: 216 CWord entries are used

For Simplex configuration:

00: 64 CWord entries are used

01: 128 CWord entries are used

10: 192 CWord entries are used

11: 224 CWord entries are used

RW 0

[5:4] reserved RO 0

Bits Field Description RW Reset
476 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[3:2] RBUF_D_HWM

RBUF Data High Watermark. If the number of RBUF entries
used in the data partition is > the number in this field, then the
TM_DRDY bit sent to switch fabric must be deasserted to
flow control the switch fabric and prevent it from sending any
more data CFrames. Note this is different than the IXP2800.
The encoding is as follows:

With 64B element size

00: 24 entries are used

01: 48 entries are used

10: 72 entries are used

11: 84 entries are used

With 128B element size

00: 12 entries are used

01: 24 entries are used

10: 36 entries are used

11: 42 entries are used

With 256B element size

00: 6 entries are used

01: 12 entries are used

10: 18 entries are used

11: 21 entries are used

RW 0

[1:0] RBUF_C_HWM

RBUF Control High Watermark. If the number of RBUF
entries used in the control partition is > the number in this
field, then the TM_CRDY bit sent to switch fabric must be
deasserted to flow control the switch fabric and prevent it
from sending any more control CFrames. Note this is
different than the IXP2800. The encoding is as follows:

With 64B element size

00: 8 entries are used

01: 16 entries are used

10: 24 entries are used

11: 28 entries are used

With 128B element size

00: 4 entries are used

01: 8 entries are used

10: 12 entries are used

11: 14 entries are used

With 256B element size

00: 2entries are used

01: 4 entries are used

10: 6 entries are used

11: 7 entries are used

RW 0

Bits Field Description RW Reset
Programmer’s Reference Manual 477

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.10 SRB_Override

This register allows the TXCSRB and/or RXCSRB pin data to be overridden. These pins are used
only in CBUS full duplex mode, not in simplex mode, so this register has no affect in simplex
mode.

This Register performs its documented functionality in both simplex and full-duplex modes for the
IXP2800. The IXP2400 only supports full-duplex mode.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

T
X

C
S

R
B

_F
O

R
C

E
_E

N

R
X

C
S

R
B

_F
O

R
C

E
_E

N

T
X

C
S

R
B

_F
O

R
C

E

R
X

C
S

R
B

_F
O

R
C

E

Bits Field Description RW Reset

[31:10] reserved RO 0

[9] TXCSRB_Force_En

TXCSRB Enable. Used to tell hardware whether to use
transmit serialized flow control information generated by
hardware or to use the values in the TXCSRB_Force field.
This is valid only if MSF_Rx_Control[Receive_Mode] is
CSIX.

0: Drive TXCSRB output from FC_Egress_Status.

1: Drive TXCSRB output from TXCSRB_Force field.

RW 0

[8] RXCSRB_Force_En

RXCSRB Enable. Used to tell hardware whether to use
serialized flow control information received on the RXCSRB
input or to use the values in the RXCSRB_Force field. This is
valid only if MSF_Tx_Control[Transmit_Mode] is CSIX.

0: Use RXCSRB input signal.

1: Use RXCSRB_Force field.

RW 0

[7:4] TXCSRB_Force

This is used to provide hardware with software-chosen
values to send on the TXCSRB pins in place of the ones
generated by internal hardware.

7: SF_CRDY

6: SF_DRDY

5: TM_CRDY

4: TM_DRDY

RW 0

[3:0] RXCSRB_Force

This is used to provide hardware with software-chosen
values to use in place of the ones received on the RXCSRB
pins.

3: SF_CRDY

2: SF_DRDY

1: TM_CRDY

0: TM_DRDY

RW 0
478 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.11 Rx_Thread_Freelist_{0.3}

MEs write to this register to add a Context to the Rx_Thread_Freelist. Note that the Microengine
number is specified differently for the IXP2800.

Refer to the IXP2400 Hardware Reference Manual (HRM) for definition of the Element status.

[3:0] RXCSRB_Force

This is used to provide hardware with software-chosen
values to use in place of the ones received on the RXCSRB
pins.

3: SF_CRDY

2: SF_DRDY

1: TM_CRDY

0: TM_DRDY

RW 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

S
IG

N
A

L_N
U

M
B

E
R

R
E

S
E

R
V

E
D

M
E

_N
U

M
B

E
R

T
H

R
E

A
D

T
R

A
N

S
F

E
R

_R
E

G

Bits Field Description RW Reset

[31:16] Reserved Read returns 0 RO 0

[15:12] Signal_Number Which signal to deliver when pushing the Element status.
Read returns 0. WO undef

[11:10] reserved RO 0

[9:7] ME_Number

Indicates which ME will get the RBUF Element status pushed
to it. The valid ME numbers for this field are 0 through 7.
Values 0 to 3 correspond to MEs in cluster 0. Values 4 to 7
correspond to MEs in cluster 1. Read returns 0.

WO undef

[6:4] Thread Indicates which thread will get the RBUF Element status
pushed to it. Read returns 0. WO undef

[3:0] Transfer Reg
Indicates which SRAM Transfer Registers will get the RBUF
Element status pushed to it. Two consecutive registers,
starting with the one in this field, are written. Read returns 0.

WO undef
Programmer’s Reference Manual 479

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.12 RBUF_Element_Done

Threads write to this address to free up an RBUF element so that it can be reused.

5.8.13 Rx_MPHY_Poll_Limit

This register is used to tell hardware how many ports are present for MPHY-32 (MPHY-16 in Rev
A) and MPHY-4 modes (with shared status). Note that for MPHY-4 modes, the reset value of 0x1F
(0xF in Rev A) will be too big and the user must configure the Poll_Limit field with the proper
value.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

E
LE

M
E

N
T

_T
O

_F
R

E
E

Bits Field Description RW Reset

[6:0] Element to Free

Indicates the number of the element to free up.

Note: After reset, the RBUF Element Freelist (s) are empty.
As part of the initialization code, the software must write
RBUF numbers into the RBUF_Element_Done CSR to place
RBUF entries into the freelist before enabling receive
operation. Read returns 0.

Note: Each element can only be freed once, until it is used
again when new data is received. Freeing elements multiple
times can result in undefined hardware behavior.

WO undef

[31:7] Reserved Read returns 0. RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

P
O

LL_LIM
IT
480 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.14 FCEFIFO_Validate

This register is used to validate a CFrame written into FCEFIFO by software in simplex mode. The
CFrame will not be transmitted on the TXCDATA pins until it is validated. That data is not used;
any write to this register does the validate.

Bits Field Description RW Reset

[4:0] Poll_Limit

This field is used to inform hardware the number of the
highest port number. It is used to prevent hardware from
polling non-existent ports.

Note that the maximum number of ports have been increased
to 32 in Rev B, from 16 in Rev A. For UTOPIA L2 and POS-
PHY L2, the maximum number of ports is 31.

For example, if there are four ports present, 0x3 should be
written to this field; the polling sequence will then be 0x0,
0x1, 0x2, 0x3, 0x0, 0x1, …

If there are sixteen ports present, 0xf should be written to this
field. The polling sequence will then be 0x0, 0x1, 0x2, 0x3,
…, 0xe, 0xf, 0x0, 0x1, …

If there are 31 ports present, assuming UTOPIA L2 or POS-
PHY L2, 0x1e should be written to this field. The polling
sequence will then be 0x0, 0x1f, 0x1, 0x1f, 0x2,..., 0x1d,
0x1f, 0x1e, 0x1f, 0x0, 0x1f, ... where 0x1f is the null address
which is automatically inserted by the hardware to enforce
dead cycles on RXPFA/TXPFA as required by the UTOPIA
L2 or POS-PHY L2 specifications.

If there are 32 ports present, assuming UTOPIA L3 or POS-
PHY L3, 0x1f should be written to this field. The polling
sequence will then be 0x0, 0x1, 0x2, 0x3, ..., 0x1e, 0x1f, 0x0,
... In this case a null address is not needed because the
connection between IXP2400 and the media device is
assumed to be point to point and no dead cycles are ever
needed.

This implies that port numbers must always start at 0 and
must always be contiguous.

RW
0x1F

(0xF in
Rev A)

[31:5] reserved RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

Bits Field Description RW Reset

[31:0] reserved Read returns 0. WO undef
Programmer’s Reference Manual 481

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.15 Rx_Thread_Freelist_Timeout_{0..3}

There is one Rx_Thread_Freelist_Timeout register associated with each Rx_Thread_Freelist.

5.8.16 Tx_ Sequence_{0..3}

A read of this register provides a wrapping count of the number of TBUF elements that have been
transmitted from the partition. The number of partitions in used is based on
MSF_Tx_Control[Tx_Mode] and MSF_Tx_Control[Tx_Width]. The count advances when the
entire content of the element has been transmitted (i.e. so it is safe to write new data into the
element).

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

TMEOUT_INTERVAL

Bits Field Description RW Reset

[12:0] Timeout_Interval

This is the number of CPP bus clocks, starting from the
autopush of a null or non-null Receive Status Word, that
are allowed to elapse before triggering the autopush of a
null Receive Status Word.

Every time any Receive Status Word is autopushed the
timer is reset and restarted. If no new receive traffic has
come in and the timeout interval has been reached,
hardware will automatically autopush a null Receive
Status Word to the next thread in the Rx_Thread_Freelist.

A value of 0x0000 means that the timer is disabled.

When enabled, the Timeout_Interval value should be set
to be high enough so that the rate of timeout is slower
than the rate of new elements being added to the
corresponding Rx_Thread_Freelist. Otherwise, new
elements to the Rx_Thread_Freelist may continue to
encounter timeout and receive null Receive Status Word.

RW 0x0000

[31:13] Reserved RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

E
M
P
T
Y

RESERVED SEQUENCE
482 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.17 Tx_MPHY_Poll_Limit

This register is used to tell hardware how many ports are present for MPHY-32 (MPHY-16 in Rev
A) and MPHY-4 modes (with shared status). Note that for MPHY-4 modes, the reset value of 0xF
will be too big and the user must configure the Poll_Limit field with the proper value.

Bits Field Description RW Reset

[31] Empty

Indicates if there are any valid elements for this partition.

0: One or more elements are valid.

1: No elements are valid.

RO 1

[30:8] reserved RO 0

[7:0] Sequence
Sequence count of elements transmitted for this partition.
The count always counts from 0 to 255 and then wraps back
to 0, regardless of the number of elements in the partition.

RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

P
O

LL_LIM
IT
Programmer’s Reference Manual 483

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.18 Tx_MPHY_Status

This register is roughly analogous to the Transmit Calendar Queue in IXP2800. It is intended to be
used only in MPHY-16 (Rev A) and MPHY-32 (Rev B) modes to aid in transmit scheduling. In
these MPHY modes, TBUF functions as a single FIFO; all transmit traffic for all the MPHY ports
funnels into this single FIFO. In order to prevent head-of-line blocking, software must use the
Tx_MPHY_Status register to determine when it is “safe” to push traffic for a given port into TBUF.
The status of each transmit FIFO in the PHY is visible to software in the Tx_MPHY_Status
register, as well as other hints; software reads the Tx_MPHY_Status register to determine which
ports can accept traffic, then only sends transmit data to those ports.

Bits Field Description RW Reset

[31:5] reserved RO 0

[4:0] Poll_Limit

This field is used to inform hardware the number of the
highest port number. It is used to prevent hardware from
polling non-existent ports.

Note that the maximum number of ports have been increased
to 32 in Rev B, from 16 in Rev A. For UTOPIA L2 and POS-
PHY L2, the maximum number of ports is 31.

For example, if there are four ports present, 0x3 should be
written to this field; the polling sequence will then be 0x0,
0x1, 0x2, 0x3, 0x0, 0x1, …

If there are sixteen ports present, 0xf should be written to this
field. The polling sequence will then be 0x0, 0x1, 0x2, 0x3,
…, 0xe, 0xf, 0x0, 0x1, …

If there are 31 ports present, assuming UTOPIA L2 or POS-
PHY L2, 0x1e should be written to this field. The polling
sequence will then be 0x0, 0x1f, 0x1, 0x1f, 0x2, ..., 0x1d,
0x1f, 0x1e, 0x1f, 0x0, 0x1f, ... where 0x1f is the null address
which is automatically inserted by the hardware to enforce
dead cycles on RXPFA/TXPFA as required by the UTOPIA
L2 or POS-PHY L2 specifications.

If there are 32 ports present, assuming UTOPIA L3 or POS-
PHY L3, 0x1f should be written to this field. The polling
sequence will then be 0x0, 0x1, 0x2, 0x3, ..., 0x1e, 0x1f, 0x0,
... In this case a null address is not needed because the
connection between IXP2400 and the media device is
assumed to be point to point and no dead cycles are ever
needed.

This implies that port numbers must always start at 0 and
must always be contiguous.

RW
0x1F

(0xF in
Rev A)
484 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

TX_PENDING TX_STATUS

Bits Field Description RW Reset

[31:16] Tx_Pending

UTOPIA Mode:

[0] corresponds to port 0, …, [15] corresponds to port 15.
This bit is set when a cell is pushed into TBUF; it is cleared
automatically by hardware after the assertion of TXSOF on
the pins.

0: TBUF does not contain any cell in flight to the given port.

1: TBUF contains a cell in flight.

POS-PHY Mode:

[0] corresponds to port 0, …, [15] corresponds to port 15.
Hardware maintains a counter for each port; every time an
mpacket for the port is pushed into TBUF, the counter is
incremented; every time the mpacket is drained from TBUF
and sent to the PHY the counter is decremented. The
Tx_Pending bit is asserted whenever the counter is non-
zero.

0: TBUF contains does not contain any mpackets destined
for this port.

1: TBUF contains one or more mpackets destined for this
port.

RO 0
Programmer’s Reference Manual 485

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[15:0] Tx_Status

UTOPIA mode:

[0] corresponds to port 0, …, [15] corresponds to port 15.

0 = PHY’s TX FIFO is full

1 = PHY’s TX FIFO is not full and can accept at least one
more cell.

The TX thread can only send one cell to each port whose
Tx_Status flag is set. When a transmit control word is written,
thereby initiating the transmission of a cell to a certain port,
the Tx_Pending flag for the given port is set; this indicates
that a cell transmit is in progress for that given port and that
Tx_Status is now stale; when hardware sends the cell out on
the TX pins, it will update the Tx_Status bit for that port with
the most current port status before clearing the Tx_Pending
flag.

POS-PHY mode:

[0] corresponds to port 0, …, [15] corresponds to port 15.

0 = PHY’s TX FIFO is near full

1 = PHY’s TX FIFO is not full and can accept at least “n”
more mpackets of data.

This bit corresponds to the TX FIFO status flag in the PHY.
The PHY’s TX FIFO has a programmable threshold which
software initializes to the desired value. Software knows what
the threshold is, and that if the PHY’s TX FIFO contains less
data than this, it can accept at least “n” mpackets worth of
data before overflowing, where “n” is the difference between
the FIFO size and the threshold.

After the transmit logic has been enabled, the polling FSM
will update the contents of this field. The TX thread can send
up to “n” mpackets to each port whose Tx_Status bit is “1”
This will cause the Tx_Pending flag to be set, indicating that
Tx_Status is stale. When all mpackets for a given port have
been transmitted hardware will update the Tx_Status bit for
that port with the most up to date state before letting the
Tx_Pending bit transition from 1 to 0.

Hardware will never drop transmit data when transmitting
data to a port whose Tx_Status flag is 0 due to the presence
of the TXSFA signal; however sub-optimal performance may
result due to head-of-line blocking and stalling.

RO 0

Bits Field Description RW Reset
486 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.19 Tx_MPHY_Status_Extension

This register serves the same function as Tx_MPHY_Status, except that it covers the 16 ports that
are added in Rev B.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

TX_PENDING TX_STATUS

Bits Field Description RW Reset

[31:16] Tx_Pending

UTOPIA Mode:

[0] corresponds to port 16, …, [15] corresponds to port 31.
This bit is set when a cell is pushed into TBUF; it is cleared
automatically by hardware after the assertion of TXSOF on
the pins.

0: TBUF does not contain any cell in flight to the given port.

1: TBUF contains a cell in flight.

POS-PHY Mode:

[0] corresponds to port 16, …, [15] corresponds to port 31.
Hardware maintains a counter for each port; every time an
mpacket for the port is pushed into TBUF, the counter is
incremented; every time the mpacket is drained from TBUF
and sent to the PHY the counter is decremented. The
Tx_Pending bit is asserted whenever the counter is non-
zero.

0: TBUF contains does not contain any mpackets destined
for this port.

1: TBUF contains one or more mpackets destined for this
port.

RO 0
Programmer’s Reference Manual 487

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[15:0] Tx_Status

UTOPIA mode:

[0] corresponds to port 16, …, [15] corresponds to port 31.

0 = PHY’s TX FIFO is full

1 = PHY’s TX FIFO is not full and can accept at least one
more cell.

The TX thread can only send one cell to each port whose
Tx_Status flag is set. When a transmit control word is written,
thereby initiating the transmission of a cell to a certain port,
the Tx_Pending flag for the given port is set; this indicates
that a cell transmit is in progress for that given port and that
Tx_Status is now stale; when hardware sends the cell out on
the TX pins, it will update the Tx_Status bit for that port with
the most current port status before clearing the Tx_Pending
flag.

POS-PHY mode:

[0] corresponds to port 16, …, [15] corresponds to port 31.

0 = PHY’s TX FIFO is near full

1 = PHY’s TX FIFO is not full and can accept at least “n”
more mpackets of data.

This bit corresponds to the TX FIFO status flag in the PHY.
The PHY’s TX FIFO has a programmable threshold which
software initializes to the desired value. Software knows what
the threshold is, and that if the PHY’s TX FIFO contains less
data than this, it can accept at least “n” mpackets worth of
data before overflowing, where “n” is the difference between
the FIFO size and the threshold.

After the transmit logic has been enabled, the polling FSM
will update the contents of this field. The TX thread can send
up to “n” mpackets to each port whose Tx_Status bit is “1”
This will cause the Tx_Pending flag to be set, indicating that
Tx_Status is stale. When all mpackets for a given port have
been transmitted hardware will update the Tx_Status bit for
that port with the most up to date state before letting the
Tx_Pending bit transition from 1 to 0.

Hardware will never drop transmit data when transmitting
data to a port whose Tx_Status flag is 0 due to the presence
of the TXSFA signal; however sub-optimal performance may
result due to head-of-line blocking and stalling.

RO 0

Bits Field Description RW Reset
488 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.20 Rx_UP_Control_{0..3}

There are four of these registers, one per port. The contents of these registers apply only if the chip
is configured for UTOPIA/POS mode.

For MPHY4 mode configurations, all 4 registers, Rx_UP_Control_{0..3}, must be programmed
with the same value. For POS-PHY Level 3 or UTOPIA Level 3 MPHY-32 (MPHY-16 in Rev A)
mode configurations, the content in Rx_UP_Control_0 register applies to all the ports, and the
content of the Rx_UP_Control_{1..3} registers are ignored. The whole 32-bit interface is utilized
in these mode configurations. For POS-PHY Level 2 or UTOPIA Level 2 MPHY-32 (only
available in Rev B) mode configurations, the content in Rx_UP_Control_0 register applies to all
the MPHY ports, and the content of the Rx_UP_Control_1 register is ignored. In these mode
configurations, only 16 bit out of the 32-bit interface is utilized for MPHY operation; the remaining
16 bit is utilized for SPHY operation. The content of the Rx_UP_Control_{2..3} registers applies
to the SPHY ports. When this 16-bit is configured as a single 16-bit SPHY interface, the content of
Rx_UP_Control_3 register is ignored.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

M
S

_M
O

D
E

P
P

_M
O

D
E

C
P

_M
O

D
E

P
A

R
IT

Y
_M

O
D

E

C
E

LL_S
IZ

E

D
R

_T
IM

E

Bits Field Description RW Reset

[31:7] reserved RO 0

[6] MS_Mode

Master/Slave Mode. When a port is configured for SPHY
operation, it can function as either a Rx Master, or as a Tx
Slave.

0 = master mode; the port will function as a Rx master

1 = slave mode; the port will function as a Tx slave;

This bit is Reserved in Rev A.

RW 0
Programmer’s Reference Manual 489

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[5] PP_Mode

When POS-PHY mode is configured (CP_Mode is 1):

Used to select between POS-PHY Level 2 or POS-PHY
Level 3 operation. The two protocols differ in the way the
RXFA status signal is used and have different rules for
RXENB assertion and deassertion

0: POS-PHY Level 2 mode: protocol FSM must check
RXFA[x] signal

1: POS-PHY Level 3 mode: protocol FSM does not check
RXFA[x] signal.

When UTOPIA mode is configured (CP_Mode is 0):

If the link partner is a UTOPIA Level 1 or 2 device, this bit
must always be 0. If the link partner is a UTOPIA Level 3
device, this bit allows the selection of “aggressive RXENB”
vs. “conservative RXENB”. This bit only applies to SPHY
ports, it has no effect in MPHY mode. Aggressive RXENB
mode is recommended, unless the media device cannot
handle it.

0: Aggressive RXENB: RXENB will remain asserted unless
MSF runs out of space in its receive FIFO.

1: Conservative RXENB: RXENB will be deasserted at the
end of every cell transfer, unless RXFA has been asserted,
indicating that another cell is available.

For Rev A, this bit must be programmed to 0 when UTOPIA
mode is configured.

RW 0

[4] CP_Mode

Cell (UTOPIA) or Packet (POS-PHY) mode:

0: cell

1: packet

RW 0

[3:2] Parity_Mode

Parity mode:

00: no parity—don’t check incoming parity. The
corresponding RXPRTY pin must be tied to 0.

01: Reserved

10: single bit odd parity

11: single bit even parity

RW 0

[1] Cell_Size

Cell size; only applicable for UTOPIA mode

0: 52 byte cells

1: 53 (x8), 54 (x16), or 56 (x32) byte cells

RW 0

[0] DR_Time

Decode Response time. This is the time between the
following event pairs:

RXENB -> RXSOF/RXEOF/RXVAL/RXDATA/RXPRTY

RXADDR -> RXPFA

0: 1 clock cycle

1: 2 clock cycles

RW 0

Bits Field Description RW Reset
490 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Table 5-57. IXP2400 Rx Mode Programming

Operating
Mode

MSF_Rx_Control
[Rx_En]

Rx_UP_Control_{0,1,2,
3} applicable

Rx_UP_Control_{0,1,2,3} Notes

[3] [2] [1] [0] 3 2 1 0

U/P, 1x32,
SPHY 0 0 0 1 N/A N/A N/A Y Rx_UP_Control_0 is used to configure port

behavior.

U/P, 1x32,
MPHY-4, direct

status
1 1 1 1 Y Y Y Y

Rx_UP_Control_0, _1, _2, and _3 must be
programmed to identical values; DR_Time
should be set to 1 (decode response of two
cycles); PP_Mode is not used;
MSF_Rx_Control[Rx_MPHY_Level2]
must be configured for Level 3
operation.

U/P, 1x32,
MPHY-4,

polled status
1 1 1 1 Y Y Y Y

Rx_UP_Control_0, _1, _2, and _3 must be
programmed to identical values; DR_Time
should be set to 1 (decode response of two
cycles); PP_Mode is not used;
MSF_Rx_Control[Rx_MPHY_Level2]
must be configured for Level 3
operation.

U/P, 1x32,
MPHY-32,

polled status
0 0 0 1 N/A N/A N/A Y

Rx_UP_Control_0 is used to configure port
behavior; DR_Time should be set to 1
(decode response of two cycles);
MSF_Rx_Control[Rx_MPHY_Level2]
must be configured for Level 3
operation.

U/P, 2x16,
SPHY 0 1 0 1 N/A Y N/A Y Rx_UP_Control_{0,2} are used to configure

port behavior.

U/P, 1x16
MPHY-32

polled status
and 1x16

SPHY

(Reserved in
Rev A)

0 1 0 1 N/A Y N/A Y

Rx_UP_Control_0 is used to configure the
behavior of the x16 MPHY port (DR_Time
must be 0); Rx_UP_Control_2 is used to
configure the behavior of the x16 SPHY
port.
MSF_Rx_Control[Rx_MPHY_Level2]
must be configured for Level 2
operation.

U/P, 4x8,
SPHY 1 1 1 1 Y Y Y Y Rx_UP_Control_{0,1,2,3} is used to

configure port behavior.

U/P, 1x16+2x8,
SPHY 1 1 0 1 Y Y N/A Y Rx_UP_Control_{0,2,3} is used to configure

port behavior.

U/P, 1x16
MPHY-32

polled status
and 2x8 SPHY

(Reserved in
Rev A)

1 1 0 1 Y Y N/A Y

Rx_UP_Control_0 is used to configure the
behavior of the x16 MPHY port;
Rx_UP_Control_{2,3} is are used to
configure the behavior of the 2x8 SPHY
ports;
MSF_Rx_Control[Rx_MPHY_Level2] and
MSF_Tx_Control[Tx_MPHY_Level2]
must be configured for Level 2
operation.

CSIX, 1x32 0 0 0 1 N/A N/A N/A N/A Rx_UP_Control_x has no effect in CSIX
mode.
Programmer’s Reference Manual 491

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.21 Tx_UP_Control_{0..3}

There are four of these registers, one per port. The contents of these registers apply only if the chip
is configured for UTOPIA/POS mode.

Note that the Parity_Mode field has a reset value that is Reserved. Users must set it to one of the
valid values during the initialization sequence. In case the user does not want parity support, the
user can leave the TXPRTY pins unconnected.

For MPHY4 mode configurations, all 4 registers, Tx_UP_Control_{0..3}, must be programmed
with the same value. For POS-PHY Level 3 or UTOPIA Level 3 MPHY-32 (MPHY-16 in Rev A)
mode configurations, the content in Tx_UP_Control_0 register applies to all the ports, and the
content of the Tx_UP_Control_{1..3} registers are ignored. The whole 32-bit interface is utilized
in these mode configurations. For POS-PHY Level 2 or UTOPIA Level 2 MPHY-32 (only
available in Rev B) mode configurations, the content in Tx_UP_Control_0 register applies to all
the MPHY ports, and the content of the Tx_UP_Control_1 register is ignored. In these mode
configurations, only 16 bit out of the 32-bit interface is utilized for MPHY operation; the remaining
16 bit is utilized for SPHY operation. The content of the Tx_UP_Control_{2..3} registers applies
to the SPHY ports. When this 16-bit is configured as a single 16-bit SPHY interface, the content of
Tx_UP_Control_3 register is ignored.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

M
S

_M
O

D
E

R
eserved

C
P

_M
O

D
E

P
A

R
IT

Y
_M

O
D

E

C
E

LL_S
IZ

E

D
R

_T
IM

E

Bits Field Description RW Reset

[0] DR_Time

Decode Response time:

0: 1 clock cycle

1: 2 clock cycles

For IXP2400 Rev A:

This bit has no effect for transmit and is here only for
consistency with UTOPIA_POS_Rx_Control.

For IXP2400 Rev B:

This bit configures the response time between TXADDR[4:0]
and TXPFA in MPHY modes. For the 32-bit MPHY modes,
this bit must be set to 1 for consistency with the UTOPIA 3
and POS-PHY L3 specs. For the 16-bit MPHY modes, this bit
can be set to 0 or 1. In this case, setting it to 0 is consistent
with the UTOPIA 2 and POS-PHY L2 specs, and setting it to
1 facilitates overclocking of the media interface beyond the
typical 50MHz for these protocols. For all SPHY modes, this
bit has no effect.

RW 0

[1] Cell_Size

Cell size; only applicable for UTOPIA mode

0: 52 byte cells

1: 53 (x8), 54 (x16), or 56 (x32) byte cells

RW 0
492 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.22 Rx_FIFO_Control_{0,1,2,3}

There are four of these registers, one per port. The contents of these registers support slave mode
operation and apply only when IXP2400 is configured for POS-PHY mode.

In UTOPIA mode, the high watermarks are hardwired by the IXP2400. In CSIX mode, the high
watermarks are determined by HWM_Control[RBUF_C_HWM] and
HWM_Control[RBUF_D_HWM].

In master mode, the default values should be used. They are identical to the values that are
hardwired by the IXP2400 in Rev A.

These registers are Reserved in Rev A.

[3:2] Parity_Mode

Parity mode:

0x: reserved

10: single bit odd parity

11: single bit even parity

RW 0

[4] CP_Mode

Cell (UTOPIA) or Packet (POS-PHY) mode:

0: cell

1: packet

RW 0

[5] Reserved RO 0

[6] MS_Mode

Master/Slave Mode. When a port is configured for SPHY
operation, it can function as either a Tx Master, or as a Rx
Slave.

0 = master mode; the port will function as a Tx master

1 = slave mode; the port will function as a Rx slave

This bit is Reserved in Rev A.

RW 0

[31:7] Reserved RO 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED Rx_D_FIFO_FWM

R
E

S
E

R
V

E
D

R
x_S

_F
IF

O
_H

W
M

Programmer’s Reference Manual 493

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[5:0] Rx_S_FIFO_HWM

Rx Status FIFO High Watermark; applies only to POS-PHY
mode; used to indicate a near full condition in the Rx Status
FIFO, which contains Receive Status Words for each
received mpacket.

In Rx master mode, used to control deassertion of
RXENB(m). If the number of entries in the Rx Status FIFO is
greater than or equal to the value in this field, the protocol
logic will deassert RXENB(m) to stop the flow of data from
the PHY.

In Tx slave mode, used to control deassertion of TXFA(s). If
the number of entries in the Rx Status FIFO is greater than or
equal to the value in this field, the protocol logic will deassert
TXFA(m) to cause the master to stop sending more transmit
data.

Note: In Rx_FIFO_Control_2 and Rx_FIFO_Control_3 CSRs,
only the lower four bits [3:0] are used; [5:4] are not used.

Reset value:

RX_FIFO_Control_0 and Rx_FIFO_Control_1: 0x3B

Rx_FIFO_Control_2 and Rx_FIFO_Control_3: 0xB

RW

0x3B,
0xB
(See
Descr
iption)

[7:6] Reserved RO 0

[15:8] Rx_D_FIFO_HWM

Rx Data FIFO High Watermark; applies only to POS-PHY
mode; used to indicate a near full condition in the Rx Status
FIFO, which contains Receive Status Words for each
received mpacket.

In Rx master mode, used to control deassertion of
RXENB(m). If the number of entries in the Rx Data FIFO is
greater than or equal to the value in this field, the protocol
logic will be asked to deassert RXENB(m) to stop the flow of
data from the PHY.

In Tx slave mode, used to control deassertion of TXFA(s). If
the number of entries in the Rx Data FIFO is greater than or
equal to the value in this field, the protocol logic will be asked
to deassert TXFA(m) to cause the master to stop sending
more transmit data.

Note: In Rx_FIFO_Control_2 and Rx_FIFO_Control_3 CSRs,
only the lower seven bits [6:0] are used; [7] is not used.

Reset value:

RX_FIFO_Control_0 and Rx_FIFO_Control_1: 0xF9

Rx_FIFO_Control_2 and Rx_FIFO_Control_3: 0x79

RW

0xF9,
0x79
(See
Descr
iption)

[31:16] Reserved RO 0
494 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.23 MSF_Rx_RCOMP_Status

This register is used to read the RCOMP values of the receive IO buffers. This register is not used
during normal operation.

.

5.8.24 MSF_Tx_RCOMP_Status

This register is used to read the RCOMP values of the transmit IO buffers. This register is not used
during normal operation.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

R
X

_N
IN

C

R
X

_P
IN

C

R
E

S
E

R
V

E
D

RX_N_STRENGTH

R
E

S
E

R
V

E
D

RX_P_STRENGTH

Bits Field Description RW Reset

[31:18] reserved read as 0 RO 0

[17] Rx_NINC Output of N Comparator RO undef

[16] Rx_PINC Output of P Comparator RO undef

[15] reserved read as 0 RO 0

[14:8] Rx_n_Strength Receive RComp_n Strength RO undef

[7] reserved read as 0 RO 0

[6:0] Rx_p_Strength Receive RComp_p Strength RO undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

T
X

_N
IN

C

T
X

_P
IN

C

R
E

S
E

R
V

E
D

TX_N_STRENGTH

R
E

S
E

R
V

E
D

TX_P_STRENGTH
Programmer’s Reference Manual 495

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.25 MSF_Rx_RCOMP_Override

This register is used to override the drive settings of the receive IO buffers. This register is not used
during normal operation.

Bits Field Description RW Reset

[31:18] reserved read as 0 RO 0

[17] Tx_NINC Output of N Comparator RO undef

[16] Tx_PINC Output of P Comparator RO undef

[15] reserved read as 0 RO 0

[14:8] Tx_n_Strength Transmit RComp_n Strength RO undef

[7] reserved read as 0 RO 0

[6:0] Tx_p_Strength Transmit RComp_p Strength RO undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

R
X

_R
C

O
M

P
_O

V
R

_E
N

R
X

_R
C

O
M

P
_S

LE
W

_O
V

R

R
E

S
E

R
V

E
D

RX_RCOMP_N_OVR

R
E

S
E

R
V

E
D

RX_RCOMP_P_OVR

Bits Field Description RW Reset

[31:21] reserved read as 0 RO 0

[20] Rx_RComp_OVR_En Receive RComp Override Enable RW 0

[19:16] Rx_RComp_Slew_OVR Receive RComp Slew Override RW 0

[15] reserved read as 0 RO 0

[14:8] Rx_RComp_n_OVR Receive RComp_n Override RW 0

[7] reserved read as 0 RO 0

[6:0] Rx_RComp_p_OVR Receive RComp_p Override RW 0
496 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.26 MSF_Tx_RCOMP_Override

This register is used to override the drive settings of the transmit IO buffers. This register is not
used during normal operation.

5.8.27 FCIFIFO

This register is used by MEs to read CFrames, one CWord at a time, from the FCIFIFO. When
valid CWords are read they are removed from the FCIFIFO. If FCIFIFO is empty when it is read, it
substitutes an Idle CWord for the read data.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

T
X

_R
C

O
M

P
_O

V
R

_E
N

T
X

_R
C

O
M

P
_S

LE
W

_O
V

R

R
E

S
E

R
V

E
D

TX_RCOMP_N_OVR

R
E

S
E

R
V

E
D

TX_RCOMP_P_OVR

Bits Field Description RW Reset

[31:21] reserved read as 0 RO 0

[20] Tx_RComp_OVR_En Transmit RComp Override Enable RW 0

[19:16] Tx_RComp_Slew_OVR Transmit RComp Slew Override RW 0

[15] reserved read as 0 RO 0

[14:8] Tx_RComp_n_OVR Transmit RComp_n Override RW 0

[7] reserved read as 0 RO 0

[6:0] Tx_RComp_p_OVR Transmit RComp_p Override RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

CWORD

Bits Field Description RW Reset

[31:0] CWord Data from head entry of FCIFIFO, or Idle CWord if FCIFIFO
is empty. RO 0xFF

FF
Programmer’s Reference Manual 497

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.8.28 FCEFIFO

This register is used by MEs to write CFrames, one CWord at a time, to the FCEFIFO, when
MSF_Rx_Control[Tx_CBus_Mode] is Simplex mode. It is up to the MEs to test for room in
FCEFIFO by reading FC_Egress_Status[FCEFIFO_Full].

Software must ensure that all flow-control CFrames (type 0x6) written out this way must have a
length that is a multiple of 4 bytes. In addition, software must ensure that the exact number of
CWords gets written as specified in the payload length of the corresponding CFrame. Otherwise,
undefined behavior may result.

Software must ensure that FCEFIFO does not overflow. Otherwise, the behavior is undefined. For
instance, CFrames with corrupted data but valid parity may get transmitted when FCEFIFO
overflows.

Software can avoid FCEFIFO overflow by utilizing the FC_Egress_Status[FCEFIFO_Full] bit.
Moreover, there is a delay between a CFrame getting written out and the
FC_Egress_Status[FCEFIFO_Full] bit reflecting the resulting status. As a result, after sending out
some CFrames, software should wait before checking the FC_Egress_Status[FCEFIFO_Full] bit in
order to prepare for sending additional CFrames. An upper bound of the amount of time to wait
exists but needs to be found out empirically.

5.8.29 TBUF_ELEMENT_CONTROL_$_# ($= A, B, # = Element No)

This write-only registers are used to set the control information for TBUF elements. The
TBUF_ELEMENT_CONTROL is 64-bits and can be address via two registers referred to as “A”
and “B”. There is also one set of TBUF_ELEMENT_CONTROL registers per element.

The TBUF_ELEMENT_CONTROL registers are a contiguous block of 128 64-bit (8-byte)
registers. When the element size is set to 64 bytes, each TBUF_ELEMENT_CONTROL register is
indexed on 8-byte boundaries from the base address specified in Section 4. When the element size
is set to either 128 or 256 bytes, the number of TBUF elements is reduced and therefore the number
of TBUF_ELEMENT_CONTROL registers required is also reduced. Moreover, the offset for
accessing TBUF entries scale by 2x or 4x, depending on whether the TBUF element size is set to
128-byte or 256-byte, respectively. Nevertheless, since the size of TBUF_ELEMENT_CONTROL
registers is fixed, the offset or element number for accessing TBUF_ELEMENT_CONTROL
registers does not scale up along with the TBUF element size on the IXP2400 network processor.
Note that this is different from IXP2800; on IXP2800, the offset for accessing
TBUF_ELEMENT_CONTROL registers scales along with the TBUF element size.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

CWORD

Bits Field Description RW Reset

[31:0] CWord Data written to tail entry of FCEFIFO. WO 0
498 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
The fields in the TBUF_ELEMENT_CONTROL are interpreted differently depending on whether
the TX interface is configured as POS-PHY, UTOPIA, or CSIX.

Writing to TBUF_ELEMENT_CONTROL_A_# and TBUF_ELEMENT_CONTROL_B_# with a
single instruction validates the TBUF element. If two separate instructions are used, the write to the
TBUF_ELEMENT_CONTROL_B_# of the register validates the TBUF element.

When the TX interface is configured as UTOPIA, the Control Word format is in Table 5-58:

Table 5-58. UTOPIA Transmit Control Word Format

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Payload Length Prepend
Offset Prepend Length Payload

Offset

R
E

S
E

R
V

E
D

S
kip

E
R

R

S
O

P

E
O

P

M
3
2
C
I

RES
ERV
ED

Channel

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

RESERVED

Field Definition

Payload Length

Indicates the number of bytes in the payload, from 1 to 256 bytes, in the element. The
value of 0x00 means 256 bytes. The sum of Prepend Length and Payload Length will be
sent, and should be equal to the cell size, as specified by
MSF_Tx_Control[Transmit_Width] and Tx_UP_Control_{0..3}[Cell_Size]. The only valid
cell sizes in UTOPIA mode are 52, 53, 54, and 56 bytes.

Prepend Offset Indicates the first valid byte of the prepend, from 0 to 7 bytes.

Prepend Length Indicates the number of bytes of the prepend from 0 to 31 bytes.

Payload Offset Indicates the first valid byte of the payload, with respect to the last valid quadword of the
prepend.

Skip

Allows software to allocated a TBUF element and then not transmit any data from it.

0: transmit data according to other fields of the Control Word

1: free the element without transmitting any data

ERR Error bit. If this bit is set, the transmit logic will force bad parity on the entire cell. This is
useful for testing only; this bit should never be set during normal operation.

SOP Indicates if the element is the start of a packet. This field is ignored by hardware in
UTOPIA mode, as each element must contain a complete cell.

EOP Indicates if the element is the end of a packet. This field is ignored by hardware in
UTOPIA mode, as each element must contain a complete cell.

M32CI

MPHY-32 Channel Identifier (Reserved in Rev A)

This bit, when set, is used to indicate that the mpacket is intended for the MPHY-32 port
(port 0). This bit is used by the hardware to differentiate between channels 0x00 to 0x1f of
the MPHY-32 channel, and SPHY channels 0x1, 0x2, and 0x3. It is intended for use in x8
and x16 MPHY-32 modes; in x32 MPHY-32 mode, it is a don’t care. In any MPHY-4 mode,
it is a don’t care.

Channel
In MPHY modes other than MPHY4, the port number to which the data is directed. In
SPHY or MPHY4 mode, this field has no effect. The maximum number of ports have been
increased from 16 in Rev A to 32 in Rev B.
Programmer’s Reference Manual 499

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
When the TX interface is configured as POS-PHY, the Control Word format is in Table 5-59:

Table 5-59. POS-PHY Transmit Control Word Format

When the TX interface is configured as CSIX, the Control Word format is in Table 5-60:

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Payload Length Prepend
Offset Prepend Length Payload

Offset

R
E

S
E

R
V

E
D

S
kip

E
R

R

S
O

P

E
O

P

M
3
2
C
I

RES
ERV

ED Channel

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

RESERVED

Field Definition

Payload Length
Indicates the number of bytes in the payload, from 1 to 256 bytes, in the element. The
value of 0x00 means 256 bytes. The sum of Prepend Length and Payload Length will be
sent, and must be an integral multiple of the bus width (in bytes), except if EOP = 1.

Prepend Offset Indicates the first valid byte of the prepend, from 0 to 7 bytes.

Prepend Length Indicates the number of bytes of the prepend from 0 to 31 bytes.

Payload Offset Indicates the first valid byte of the payload, with respect to the last valid quadword of the
prepend.

Skip

Allows software to allocated a TBUF element and then not transmit any data from it.

0: transmit data according to other fields of the Control Word

1: free the element without transmitting any data

ERR

Error bit. If this bit is set, the transmit logic will force the TXERR signal to be asserted
during the last word of the packet, when TXEOF is asserted. This bit is only valid if EOP is
set, otherwise it is ignored. This is useful for testing only; this bit should never be set
during normal operation.

SOP Indicates if the element is the start of a packet.

EOP Indicates if the element is the end of a packet.

M32CI

MPHY-32 Channel Identifier (Reserved in Rev A)

This bit, when set, is used to indicate that the mpacket is intended for the MPHY-32 port
(port 0). This bit is used by the hardware to differentiate between channels 0x00 to 0x1f of
the MPHY-32 channel, and SPHY channels 0x1, 0x2, and 0x3. It is intended for use in x8
and x16 MPHY-32 modes; in x32 MPHY-32 mode, it is a don’t care. In any MPHY-4 mode,
it is a don’t care.

Channel
In MPHY modes other than MPHY4, the port number to which the data is directed. In
SPHY or MPHY4 mode, this field has no effect. The maximum number of ports have been
increased from 16 in Rev A to 32 in Rev B.
500 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Table 5-60. CSIX Transmit Control Word Format

CS

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Payload Length Prepend
Offset Prepend Length Payload

Offset

R
E

S
E

R
V

E
D

S
kip

R
E

S
E

R
V

E
D

C
R P reserved Type

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Extension Header

Field Definition

Payload Length
Indicates the number of bytes in the payload, from 1 to 256 bytes, in the element. The
value of 0x00 means 256 bytes. The sum of Prepend Length and Payload Length will be
sent, and also put into the CSIX base header Length field.

Prepend Offset Indicates the first valid byte of the prepend, from 0 to 7 bytes.

Prepend Length Indicates the number of bytes of the prepend from 0 to 31 bytes.

Payload Offset Indicates the first valid byte of the payload, with respect to the last valid quadword of the
prepend.

Skip

Allows software to allocate a TBUF element and then not transmit any data from it.

0: transmit data according to other fields of the Control Word

1: free the element without transmitting any data

CR CR (CSIX Reserved) bit to put into the CSIX Base Header.

P P (Private) bit to put into the CSIX Base Header.

Type Type Field to put into the CSIX Base Header. Idle type is not legal here.

Extension Header
The Extension Header to be sent with the CFrame. For flow control CFrames this field is
not used by the hardware because flow control CFrames do not have an extension
header.
Programmer’s Reference Manual 501

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9 PCI

The PCI CSRs are divided into two groups: PCI Configuration Cpace registers and PCI Control
and Status Registers.

5.9.1 PCI Configuration Space

Table 5-61 shows the offset addresses of the PCI Configuration Register set as defined in PCI 2.2.
Refer to Chapter 4, “Address Maps” for the base address and details on how they are accessed.
These CSRs can be accessed by the Intel XScale core, PCI and MEs.

Table 5-61. PCI Configuration Register Map

Abbreviation Address[7:0] Name Description Section

PCI_VEN_DEV_ID 0x00 PCI Device and Vendor
Register

Provides Device ID (0x9001 for
IXP2400, 0x9004 for IXP2800) and
Vendor ID (0x8086)

Section 5.9.1.1

PCI_CMD_STAT 0x04 PCI Command and Status
Register

Provides device Status and
Command Section 5.9.1.2

PCI_REV_CLASS 0x08 PCI Class Code Register Provides chip’s Class Code
(0x0B4001) and Revision ID (0x0) Section 5.9.1.3

PCI_CACHE_LAT_HDR_
BIST 0x0C PCI Miscellaneous

Defines BIST, Header Type,
Latency Timer, and Cache Line
Size fields

Section 5.9.1.4

PCI_CSR_BAR 0x10 PCI Base Address
Register for CSRs Maps CSR address range from PCI Section 5.9.1.5

PCI_SRAM_BAR 0x14 PCI Base Address
Register for SRAM Maps SRAM address range Section 5.9.1.6

PCI_DRAM_BAR 0x18 PCI Base Address
Register for DRAM Maps DRAM address range Section 5.9.1.7

Reserved 0x1C-28

PCI_SUBSYS 0x2C PCI Subsystem ID Provides PCI Subsystem ID and
Vendor ID Section 5.9.1.8

Reserved 0x30-38

PCI_INT_LAT 0x3C PCI Interrupt Latency Defines MAX_LAT, MIN_GNT,
INT_PIN, and INT_LINE Section 5.9.1.9

Reserved 0x40-5C

PCI_RCOMP_OVERIDE 0x60 PCI RCOMP Override Used to override the drive settings
of the IO buffers Section 5.9.1.10

PCI_RCOMP_STATUS 0x64 PCI RCOMP STATUS Used to the status of the drive
settings of the IO buffers

Section 5.9.1.11

Section 5.9.1.12

Reserved 0x68-74

PCI_IXP_ PARAM 0x78 IXP Parameters Register Special configuration bits for IXP
use Section 5.9.1.13

Reserved 0x7C-FF
502 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.1.1 PCI_VEN_DEV_ID

This is the Vendor and Device ID register specified in the PCI Local Bus Specification, Revision
2.2.

5.9.1.2 PCI_CMD_STAT

This is the Command and Status register specified in the PCI Local Bus Specification, Revision 2.2.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

DEV_ID VEND_ID

Bits Field Description RW Reset

[31:16] DEV_ID Device ID. Identifies the IXP2800 / IXP2400 as the
device. 0x9004 for IXP2800. 0x9001 for IXP2400. RO 0x9001

0x9004

[15:0] VEND_ID Vendor ID. Identifies Intel as the vendor of this device.
Internally hardwired to be 0x8086. RO 0x8086

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

P
E

R
R

_2

S
IG

_S
E

R
R

R
X

_M
A

R
X

_TA

S
IG

_TA

D
E

V
S

E
L[1:0]

P
E

R
R

FA
S

T
_B

A
C

K
_T

U
D

F

66M
H

Z

RESERVED

FA
S

T
_B

A
C

K
_I

S
E

R
R

_E
N

S
T

E
P

_E
N

P
E

R
R

_R
E

S
P

V
G

A
_E

N

W
R

_IN
V

_E
N

S
P

E
C

_C
Y

C

B
U

S
_M

A
S

T
E

R

M
E

M
_S

P
A

C
E

IO
_S

P
A

C
E

Bits Field Description RW Reset

[31] PERR_2 Sets if this device detected a parity error in read cycle and
even if [6] is cleared.

RW
1C 0

[30] SIG_SERR Indicates that this device signalled SERR RW
1C 0

[29] RX_MA
Indicates that the external device terminated a transaction
with master-abort (time-out) as a master (except for Special
Cycle)

RW
1C 0

[28] RX_TA Indicates that this device received target-abort as a master. RW
1C 0

[27] SIG_TA Indicates that this device signalled target-abort as a target. RW
1C 0

[26:25] DEVSEL[1:0] Indicates DEVSEL speed for this device. (medium) RO 01

[24] PERR
Sets if PERR_RESP is set and as a master, this device
either asserted PCI_PERR or saw PCI_PERR asserted for
one of its data phases.

RW
1C 0

[23] FAST_BACK_T Indicates target is capable of accepting fast back-to-back. RO 1
Programmer’s Reference Manual 503

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.1.3 PCI_REV_CLASS

This is the Revision and Class ID register specified in the PCI Local Bus Specification, Revision
2.2.

[22] UDF Indicates User Definable Features. Not supported. RO 0

[21] 66MHZ Indicates 66 Mhz capability. 66 MHz capable. RO 1

[20:10] RESERVED Reserved RO 0

[9] FAST_BACK_I

Enables fast back-to-back transactions to different targets.
Note that the integrated PCI controller does not generate
fast back-to-back transactions on the PCI bus regardless of
the setting of this bit.

RW 0

[8] SERR_EN Enables assertion of PCI_SERR. This bit and PERR_RESP
must be set to detect and report address parity errors. RW 0

[7] STEP_EN Enables bizarre AD stepping. Not supported. RO 0

[6] PERR_RESP When set, enables PCI parity checking and monitoring of
PCI_PERR_L. RW 0

[5] VGA_EN Enables VGA palette snooping. Not supported. RO 0

[4] WR_INV_EN Enables use of Memory Write and Invalidate cycles. Not
supported. RO 0

[3] SPEC_CYC Enables response to PCI Special Cycles. Not supported. RO 0

[2] BUS_MASTER Enables PE to act as a PCI master. Must be set to enable
DMA. RW 0

[1] MEM_SPACE Enables Mem Space response as a target. RW 0

[0] IO_SPACE Enables IO Space response as a target. Not supported. RO 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

CLASS SUB_CLASS INTERFACE REV

Bits Field Description RW Reset

[31:24] CLASS Processor (0x0B) RO 0x0B

[23:16] SUB_CLASS Co-Processor (0x40) RO 0x40

[15:8] INTERFACE Programming Interface (0x01) RO 0x01

[7:0] REV

Chip Revision (starts at 0x00, changes with spins if any);
Attention to Layout for easy metal patch.

For IXP2400 and IXP2800 Rev A, the value is 0x00.

For IXP2400 and IXP2800 Rev B, the value is 0x01.

RO
504 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.1.4 PCI_CACHE_LAT_HDR_BIST

This is the Cache Line Size, Latency Timer, Header Type, and BIST register specified in the PCI
Local Bus Specification, Revision 2.2.

5.9.1.5 PCI_CSR_BAR

This register is used to specify the base address of the PCI accessible CSRs when using a memory
access. The window size is fixed at 1M bytes.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

B
S

U
P

B
S

T
R

T

R
E

S
E

R
V

E
D

BCMPT HDR_TYPE LAT_TMR_
VAL

LAT_

TMR_

FIX

CACHE_LINE

Bits Field Description RW Reset

[31] BSUP

BIST Support Device.

If PROM_BOOT strap = 1: BIST Support

If PROM_BOOT strap = 0: BIST is not supported

RW

RO
0

[30] BSTRT

BIST Start Control Bit

0—IXP processor should reset this bit after BIST completes

1—A BIST interrupt is generated and the IXP2800/IXP2400
should reset this bit. If this bit is not reset 2 second after the
PCI device sets this bit, the IXP2800/IXP2400 has failed the
test.

RW 0

[29:28] RESERVED Reserved. Read as 0x0 RO 0

[27:24] BCMPT

BIST Complete Status

00: IXP processor passed the BIST test.

01 through 0F: IXP processor failed the BIST test.
Definable error code.

RW 0

[23:16] HDR_TYPE Header format code. RO 0

[15:11] LAT_TMR_VAL Latency timer value. The upper 5-bits of the latency timer
as specified by PCI RW 0

[10:8] LAT_TMR_FIX These bits are the low 3 bits of latency timer as specified by
PCI. They are hardwired to b000. RO 0

[7:0] CACHE_LINE
Cache line size in unit of 32-bit Dwords: Accepts only
powers of 2 less than 8 (32 byte). An unsupported value or
zero will default to a cacheLine of a single data phase.

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

BASE ADDR SIZE TYPE
Programmer’s Reference Manual 505

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.1.6 PCI_SRAM_BAR

This register is used to specify the base address of the PCI accessible SRAM when using a memory
access. The supported window sizes are 0 (not accessible via PCI), 128Kbytes to 256MBytes. If the
IXP2800 is booted up form the PROM, the SRAM_BASE_ADDR_MASK register determines the
window size. Else, if the IXP2800 / IXP2400 is booted up from PCI, the PCI_SWIN strap pins
determine the window size. The window size always assumes that there are 4 SRAM channels.

Bits Field Description RW Reset

[31:20] BASE_ADDR
PCI base address for the CSR. Bits[31:20] determine where
the 1M byte window resides in the 4 GB (32-bit) address
space.

RW 0

[19:4] SIZE Reads as 0x0, writes are ignored. RO 0

[3:0] TYPE Not prefetchable; 32-bit address space; MEM space RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

BASE

ADDR
PROG_ADDR FIX_ADDR

P
R

E
F TYPE

Bits Field Description RW Reset

[31:28] BASE_ADDR PCI base address for SRAM RW 0

[27:18] PROG_ADDR

Window size determined by BOOT_PROM strap pin

1: SRAM_BASE_ADDR_MASK register programmable from
256 KByte to 256 MBytes and 0 Byte (disabled)

0: Selected by the PCI_SWIN strap pins of 32/64/128/256
MByte.

The MASK field in “PCI_SRAM_BAR_MASK” CSR determines
if these bits are RW or RO.

*RO
/RW 0

[17:4] FIX_ADDR Read as 0x0 RO 0

[3] PREF

Prefetchable space determined by CFG_PROM_BOOT strap
pin option.

IF CFG_PROM_BOOT strap pin is

1: Program the SRAM_BAR_ADD_MASK register Bit[30] to set
or reset

the pre-fetch (default is prefetch)

0: Pre-fetch

If the DIS bit [31] in the PCI_SRAM_BAR_MASK register is set,
this bit will be read as 0

RO 0x1

[2:0] TYPE Prefetchable; locatable anywhere in 32-bit address space;
MEM space RO 0x8
506 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.1.7 PCI_DRAM_BAR

This register is used to specify the base address of the PCI accessible DRAM when using a
memory access. The supported window sizes are 0 (not accessible via PCI), 1 Mbytes to 1 GBytes.
If the IXP2800 is booted up from the PROM, the DRAM_BASE_ADDR_MASK register
determines the window size. Else, if the IXP2800 / IXP2400 is booted up from PCI, the
PCI_DWIN strap pins determine the window size.

5.9.1.8 PCI_SUBSYS

This is the Subsystem Vendor ID and Subsystem ID register specified in the PCI Local Bus
Specification Revision 2.2.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

B
A

S
E

_A
D

D
R

PROG_ADDR FIX_ADDR

P
R

E
F TYPE

Bits Field Description RW Reset

[31:30] BASE_ADDR PCI base address for DRAM RW 0

[29:20] PROG_ADDR

Window size determined by CFG_PROM_BOOT strap pin

if CFG_PROM_BOOT strap pin is

1: DRAM_BASE_ADDR_MASK register programmable
from 1MByte to 1GBytes and 0 Byte (disabled)

0: Selected by PCI_DWIN Strap Pins for 128/256/512/1024
MByte

The MASK field in “PCI_SRAM_BAR_MASK” CSR
determines if these bits are RW or RO.

*RO
/RW 0

[19:4] FIX_ADDR Read as 0x0 RO 0

[3] PREF

Prefetchable space determined by CFG_PROM_BOOT
strap pinoption.

if CFG_PROM_BOOT strap pin is

1: Program the DRAM_BAR_ADD_MASK register Bit[30] to
set or reset the pre-fetch(default is prefetch)

0: Pre-fetch

If the DIS bit [31] in the PCI_DRAM_BAR_MASK register is
set, this bit will be read as 0

RO 1

[2:0] TYPE Locatable anywhere in 32-bit address space; MEM space RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

SID SVID
Programmer’s Reference Manual 507

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.1.9 PCI_INT_LAT

This is the Interrupt Pin, MIN_GNT, and MAX_LAT register specified in the PCI Local Bus
Specification Revision 2.2.

5.9.1.10 PCI_RCOMP_OVERRIDE

IXP Parameters Register. This register contains configuration bit specific to IXP2400/IXP2800
PCI RCOMP override enable and values.

Bits Field Description
Intel

XScale
Core/ME

PCI Reset

[31:16] SID Subsystem ID. Set by the Intel XScale core or
Microengine software. RW RO 0

[15:0] SVID Subsystem Vendor ID. Set by the Intel XScale
core or Microengine software RW RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

MAX_LAT MIN_GNT INT_PIN INT_LINE

Bits Field Description RW Reset

[31:24] MAX_LAT

Indicates how often this device needs to get to the bus in
units of 0.25us. the time between bus requests. This value
is used to determine Latency Timer Value. A value of 0
indicates no major requirements for the settings of Latency
Timer Value.

RW 0x4

[23:16] MIN_GNT

Indicates the time needed for a burst, in units of 0.25
uS.This value is used to determine Latency Timer Value. A
value of 0 indicates no major requirements for the settings
of Latency Timer Value.

RW 0x1

[15:8] INT_PIN Indicates which interrupt pin is used. We will connect on
INTA#. RO 0x1

[7:0] INT_LINE System interrupt information. RW 0x0
508 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
.

5.9.1.11 PCI_RCOMP_STATUS (IXP2400 Rev A and IXP2800)

IXP Parameters Register. This register contains configuration bit specific to IXP2400/IXP2800
PCI RCOMP status values only. Moreover, this definition applies to IXP2400 A-stepping and
IXP2800 only.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

R
C

O
M

P
_O

R
_E

N

R
C

O
M

P
_S

LE
W

_O
R

R
E

S
E

R
V

E
D

N_RCOMP_OR

R
E

S
E

R
V

E
D

P_RCOMP_OR

Bits Field Description RW Reset

[31:21] RESERVED reserved RO 0x0

[20] RCOMP_OR_EN rcomp override enable RW 0x0

[19:16] RCOMP_SLEW_OR

rcomp_slew_override

19:18 Enables the N slew over-ride

17:16 Enables the P slew over-ride

RW 0x5

[15] RESERVED reserved RO 0

[14:8] N_RCOMP_OR

rcomp_n_override.

Valid values for the IXP2400 are 0x00 to 0x7F.

Valid values for the IXP2800 are 0x00 to 0x0A and
values greater than 0x0A will result in the strength
being set to 0x05 (1/2 max.).

RW 0x32

[7] RESERVED reserved RO 0

[6:0] P_RCOMP_OR rcomp_p_override. Valid values same as
N_RCOMP_OR RW 0x39

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

N
IN

C

R
E

S
E

R
V

E
D

N_STREN

R
E

S
E

R
V

E
D

P_STREN
Programmer’s Reference Manual 509

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
.

Bits Field Description RW Reset

[31:17] RESERVED reserved RO 0

[16] NINC

For IXP2400 Rev A and IXP2800 only

Indicates the digital output of the comparator in the
rcomp buffer. This is from the rcomp buffer called
“incb”

RO undef

[15] RESERVED reserved RO 0

[14:8] N_STREN

n_Strength

Valid values for the IXP2400 are 0x00 to 0x7F.

Valid values for the IXP2800 are bits 0x00 to 0x0A.

RO undef

[7] RESERVED reserved RO 0

[6:0] P_STREN p_Strength. Valid values same as N_STREN RO undef
510 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.1.12 PCI_RCOMP_STATUS (IXP2400 Rev B)

IXP Parameters Register. This register contains configuration bit specific to IXP2400/IXP2800
PCI RCOMP status values only. Moreover, this definition applies to IXP2400 Rev B only.

.

5.9.1.13 PCI_IXP_PARAM

This register contains configuration bit specific to the IXP2400/IXP2800. The D64 bit allows the
IXP2400/IXP2800 to use the PCI 64 bit data path even the PCI system is 32 bit. This allows private
connections on the PCI 64 bit extension bus between multiple IXP2400/IXP2800s.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

N
IN

C

P
IN

C

N
_S

L_E
N

P
_S

L_E
N

R
E

S
E

R
V

E
D

N_STREN

R
E

S
E

R
V

E
D

P_STREN

Bits Field Description RW Reset

[31:22] RESERVED reserved RO 0

[21] NINC

For IXP2400 Rev B only.

Indicates the digital output of the comparator in the
rcomp buffer. This is from the rcomp buffer called
“nincb”

RO undef

[20] PINC

For IXP2400 Rev B only.

Indicates the digital output of the comparator in the
rcomp buffer. This is from the rcomp buffer called
“pdcr40”

RO undef

[19:18] N_SL_EN The N slew override RO 0x1

[17:16] P_SL_EN The P slew override RO 0x1

[16] NINC
Indicates the digital output of the comparator in the
rcomp buffer. This is from the rcomp buffer called
“incb”

RO undef

[15] RESERVED reserved RO 0

[14:8] N_STREN

n_Strength

Valid values for the IXP2400 are 0x00 to 0x7F.

Valid values for the IXP2800 are bits 0x00 to 0x0A.

RO undef

[7] RESERVED reserved RO 0

[6:0] P_STREN p_Strength. Valid values same as N_STREN RO undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

T
W

LE
N

RESERVED

D
P

A
T

H

D
64
Programmer’s Reference Manual 511

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31:9] RESERVED Reserved RO 0

[8] TWLEN

Target write long burst enable

1: PCI write burst transactions do not get disconnected at
64-byte address boundaries, unless internal FIFO or buffer
is busy.

0: PCI write transactions get disconnected at 64-byte
address boundaries.

This bit/feature is added to IXP2xxx rev B. For rev A, this bit
is reserved and the behavior is consistent with setting this
bit to 0.

RW 0

[7:2] RESERVED Reserved RO 0

[1] DPATH

This shows the current PCI Unit 64 bit mode

If D64 (bit0 of this register) is:

1: The current mode is inversion of the system capability

detected

0: This bit is the system capability detected

RO dep

[0] D64

‘1’= attempts D64 transactions if the address is aligned as

an initiator. Overrides the ‘D64-capable’ signal sent by the

system at reset time. Used to do 64-bit peer-to-peer

communication even if the host is only D32.

This bit does not show the system capability. If the host is

64-bit capable then setting this bit has no effect. If the host

is only 32-bit capable but the backplane allows for 64-bit

peer-to-peer activity, setting this bit enables such

transactions. There is no penalty for attempting 64-bit

transactions in 32-bit-only systems.

RW 0

RW 0
512 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.2 PCI Controller CSRs

Table 5-62 shows the offset addresses of the PCI CSRs that are specific to the PCI controller (these
are not defined by the PCI specification). Refer to Chapter 4, “Address Maps” for the base address
and details on how they are accessed. These CSRs can be accessed the Intel XScale core, PCI and
MEs.

Table 5-62. PCI MEM Space CSR Register Map

Abbreviation Address
[7:0] Name Description Section

PCI_OUT_INT_STATUS 0x30 PCI Outbound Interrupt
Status

Provides informations on
outstanding interrupts to the PCI
Bus

Section 5.9.2.1

PCI_OUT_INT_MASK 0x34 PCI Outbound Interrupt
Mask

Provides interrupt masking on
interrupts to the PCI Bus Section 5.9.2.2

MAILBOX_0 0x50 MAILBOX 0 MAILBOX 0

Section 5.9.2.3
MAILBOX_1 0x54 MAILBOX 1 MAILBOX 1

MAILBOX_2 0x58 MAILBOX 2 MAILBOX 2

MAILBOX_3 0x5C MAILBOX 3 MAILBOX 3

XSCALE_DOORBELL 0x60 XScale Doorbell Intel XScale core DOORBELL Section 5.9.2.4

XSCALE_DOORBELL
SETUP 0x64 XScale Doorbell Setup Intel XScale core DOORBELL

SETUP Section 5.9.2.5

PCI_DOORBELL 0x70 PCI Doorbell PCI DOORBELL Section 5.9.2.6

PCI_DOORBELL_SETUP 0x74 PCI Doorbell Setup PCI DOORBELL SETUP Section 5.9.2.7

CHAN_1_BYTE_COUNT 0x80 Channel 1 DMA Byte
Transfer Count DMA Byte Transfer Count Section 5.9.2.8

CHAN_1_PCI_ADDR 0x84 Channel 1 DMA PCI
Address DMA PCI Address Register Section 5.9.2.9

CHAN_1_DRAM_ADDR 0x88 Channel 1 DMA
Memory Address DMA Memory Address Section 5.9.2.10

CHAN_1_DESC_PTR 0x8c Channel 1 DMA
Descriptor Pointer DMA Descriptor Pointer Section 5.9.2.11

CHAN_1_CONTROL 0x90 Channel 1 DMA Control DMA Control Register for
channel owner Section 5.9.2.12

CHAN_1_ME_PARAM 0x94 Channel 1 Microengine
Parameter

DMA Microengine Auto-Push
Parameters Section 5.9.2.13

DMA_INF_MODE 0xE0 DMA Information Mode Channel Ownership Section 5.9.2.14

CHAN_2_BYTE_COUNT 0xA0 Channel 2 DMA Byte
Transfer Count DMA Byte Transfer Count Section 5.9.2.8

CHAN_2_PCI_ADDR 0xA4 Channel 2 DMA PCI
Address DMA PCI Address Register Section 5.9.2.9

CHAN_2_DRAM_ADDR 0xA8 Channel 2 DMA
Memory Address DMA Memory Address Section 5.9.2.10

CHAN_2_DESC_PTR 0xAC Channel 2 DMA
Descriptor Pointer DMA Descriptor Pointer Section 5.9.2.11

CHAN_2_CONTROL 0xB0 Channel 2 DMA Control DMA Control Register for
channel owner Section 5.9.2.12
Programmer’s Reference Manual 513

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
CHAN_2_ME_PARAM 0xB4 Channel 2 Microengine
Parameter

DMA Microengine Auto-Push
Parameters Section 5.9.2.13

CHAN_3_BYTE_COUNT 0xC0 Channel 3 DMA Byte
Transfer Count DMA Byte Transfer Count Section 5.9.2.8

CHAN_3_PCI_ADDR 0xC4 Channel 3 DMA PCI
Address Register DMA PCI Address Register Section 5.9.2.9

CHAN_3_DRAM_ADDR 0xC8 Channel 3 DMA
Memory Address DMA Memory Address Section 5.9.2.10

CHAN_3_DESC_PTR 0xCC Channel 3 DMA
Descriptor Pointer DMA Descriptor Pointer Section 5.9.2.11

CHAN_3_CONTROL 0xD0 Channel 3 DMA Control DMA Control Register for
channel owner Section 5.9.2.12

CHAN_3_ME_PARAM 0xD4 Channel 3 Microengine
Parameter

DMA Microengine Auto-Push
Parameters Section 5.9.2.13

PCI_SRAM_BAR_MASK 0xFC SRAM Address Mask Allows BAR window sizing by
Intel XScale core on SRAM Section 5.9.2.15

PCI_DRAM_BAR_MASK 0x100 DRAM Address Mask Allows BAR window sizing by
Intel XScale core on DRAM Section 5.9.2.16

PCI_CONTROL 0x13C PCI Block CSR Provides the control and status
information in the PCI Blocks

PCI_ADR_EXT 0x140 PCI Address Extension
Provides the upper address bits
for CSR bus direct access to PCI
Bus.

Section 5.9.2.18

ME_PUSH_STATUS 0x148 MicroEngine Auto-Push
Status

Displaying the pending
MicroEngine Auto-Push in
progress.

Section 5.9.2.23

ME_PUSH_ENABLE 0x14C MicroEngine Auto-Push
Enable

Masking the Auto-Push to
MicroEngine

Section 5.9.2.24

XSCALE_ERR_STATUS 0x150 XScale Error Status
Register

Displaying the pending Intel
XScale core Error interrupts.

XSCALE_ERR_ENABLE 0x154 XScale Error Enable Masking the Error interrupt to
Intel XScale core

XSCALE_INT_STATUS 0x158 XScale Interrupt Status
Register

Displaying the pending Intel
XScale core interrupts. Section 5.9.2.21

XSCALE_INT_ENABLE 0x15C XScale Interrupt Enable Masking the interrupt to Intel
XScale core Section 5.9.2.22

Table 5-62. PCI MEM Space CSR Register Map

Abbreviation Address
[7:0] Name Description Section
514 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.2.1 PCI_OUT_INT_STATUS

This register indicates the reason(s) why the IXP2400/IXP2800 is asserting PCI_INTA_L.

5.9.2.2 PCI_OUT_INT_MASK

This register allows the host processor to prevent the IXP2400/IXP2800 from asserting the
PCI_INTA_L pin. Access from the Intel XScale processor is not recommended.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

D
M

A
D

1

D
M

A
D

2

D
M

A
D

3

R
E

S
E

R
V

E
D

W
D

I

P
D

I

X
S

I

P
IS

Bits Field Description RW Reset

[31:11] RESERVED Reserved. Read as 0x0 RO 0

[10] DMAD1
Channel 1 DMA Done Interrupt: Reads as 1 to indicate that
the DMA is done to the host. This is set at the completion of
all the descriptors in the link list.

RO 0

[9] DMAD2

Channel 2 DMA Done Interrupt: Reads as 1 to indicate that
the DMA is done to the host. This is set at the completion of
all the descriptors in the link list. This bit is reserved for the
IXP2800.

RO 0

[8] DMAD3
Channel 3 DMA Done Interrupt: Reads as 1 to indicate that
the DMA is done to the host. This is set at the completion of
all the descriptors in the link list.

RO 0

[7:4] RESERVED Reserved RO 0

[3] WDI

XPI Watchdog timer expired Interrupt. Reads as 1 to
indicate that the Watchdog timer expired interrupt from
Reset unit when RESET_0[24] (see Section 5.6.4.4) is set to
0 (disable Watchdog timer reset).

if IXP RESET_0 Register[24] is set to 1(enable Watchdog
timer reset), then Reset unit will not generate XPI
Watchdog timer expired Interrupt to PCI.

RO 0

[2] PDI PCI Doorbell Interrupt. Reads as 1 to indicate that for at
least one bit position of pci doorbell register have been set. RO 0

[1] XSI Intel XScale core Interrupt. Reads as 1 to indicate a
software interrupt from the Intel XScale core. RO 0

[0] PIS PCI Interrupt Status. Interrupts are re-directed to the PCI
Bus when the Intel XScale core is not present. RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

D
M

A
D

_1M

D
M

A
D

_2M

D
M

A
D

_3M

R
E

S
E

R
V

E
D

W
D

IM

P
D

IM

X
S

IM

P
IS

M

Programmer’s Reference Manual 515

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.2.3 MAILBOX_#

The # symbol in the name indicates one of 4 mailbox registers (0,1,2, or 3). These registers can be
read and written, with byte resolution, form both the Intel XScale processor, the Microengines
and the PCI to exchange messages.

5.9.2.4 XSCALE_DOORBELL

The PCI device writes this register to generate a Doorbell interrupt. Each bit in this register is a
write 1 to set from the Intel XScale core/ME and write 1 to clear from the PCI Bus.

Bits Field Description RW Reset

[31:11] RESERVED Reserved. Read as 0x0 RO 0

[10] DMAD_1M
Channel 1 DMA Done Interrupt Mask:

0:Enable 1:Disable for the corresponding bits in DMAD
RW 1

[9] DMAD_2M

Channel 2 DMA Done Interrupt Mask:

0:Enable

1:Disable for the corresponding bits in DMAD

This bit is reserved for the IXP2800.

RW 1

[8] DMAD_3M
Channel 3 DMA Done Interrupt Mask:

0:Enable 1:Disable for the corresponding bits in DMAD
RW 1

[7:4] RESERVED Reserved RO 0

[3] WDIM

XPI Watchdog timer expired Interrupt Mask.

0:Enable XPI Watchdog timer expired Interrupt

1:Disable XPI Watchdog timer expired Interrupt

RW 1

[2] PDIM

PCI Doorbell Interrupt Mask

0:Enable doorbell PCI interrupts

1:Disable doorbell PCI interrupts

RW 1

[1] XSIM

Intel XScale core Interrupt Mask

0: Enable the interrupt

1: Disable the interrupt

RW 1

[0] PISM
PCI Interrupt Status Mask

0 Enable re-directed the Intel XScale core interrupts to the
PCI Bus when the Intel XScale core is not present.

RW 1

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

MAILBOX_DATA

Bits Field Description RW Reset

[31:0] MAILBOX_DATA

Mailbox Data: Passes messages between the Intel
XScale core/ME and the host processor. Usage is
application dependent. The messages are not used
internally by the IXP2800 any way

RW 0
516 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Internally, the logic is such that a value of 0 in a DOORBELL register bit interrupts the Intel
XScale core. The PCI device writes 1 to clear a bit and interrupt the Intel XScale core and the
Intel XScale core/ME writes 1 to set a bit to clear the interrupt.

5.9.2.5 XSCALE_DOORBELL_SETUP

Doorbell setup is an alias of the doorbell register to allow for initialization and test. It is a read/
write register. Data is directly tied to the data input of the Doorbell register.

To initialize the doorbells: Write doorbell setup register such that all bit positions are written with
1.

5.9.2.6 PCI_DOORBELL

The Intel XScale processor or the ME writes this register to generate a PCI interrupt. Each bit in
this register is a write 1 to set from the Intel XScale processor or the ME and write 1 to clear from
the PCI Bus.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

XSCALE_INT_F_HOST

Bits Field Description PCI
Intel

XScale
Core/ME

Reset

[31:0] XSCALE_INT
_F_HOST Software Interrupt from host to XScale. RW

1C
RW

1S
0xffff ffff

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RW_DATA_ADDR

Bits Field Description RW Reset

[31:0] RW_DATA_ADDR

Read/Write Data Address. Writes to this address place data
directly into the doorbell register.

Reads to this address read the value in the Intel XScale
core doorbell register

RW 0x0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

PCI_SW_INT_T_HOST
Programmer’s Reference Manual 517

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.2.7 PCI_DOORBELL_SETUP

Doorbell setup is an alias of the doorbell register to allow for initialization and test. It is a read/
write register. Data is directly tied to the data input of the Doorbell register.

To initialize the doorbells: Write doorbell setup register such that all bit positions used for the Intel
XScale processor or ME to PCI notification are written with 0.

5.9.2.8 CHAN_#_BYTE_COUNT

The # symbol in the name indicates the DMA channel (1,2, or 3). The IXP2800 Rev A supports
channel 1 only and the IXP2800 Rev B supports channels 1 and 3 only. This register specifies the
byte counts for DMA channels 1, 2, and 3.

Bits Field Description PCI
Intel

XScale

Core/ME
Reset

[31:0] PCI_SW_INT
_T_HOST

Software Interrupt from the IIntel XScale core or
ME to a host on the PCI bus

RW
1C

RW

1S
0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RW_DATA_ADDR

Bits Field Description RW Reset

[31:0] RW_DATA_ADDR

Read/Write Data Address. Writes to this address place data
directly into the doorbell register.

Reads to this address read the value in the PCI doorbell
register

RW 0x0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

E
O

C

C
T

D RESERVED DMA_BYTE_CNT

Bits Field Description RW Reset

[31] EOC

End Of Chain
0: Indicates that more descriptor list entries follow.
1: Indicates that the current operation is the last in the
chain

RW 0
518 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.2.9 CHAN_#_PCI_ADDR

The # symbol in the name indicates the DMA channel (1,2, or 3). The IXP2800 Rev A supports
channel 1 only and the IXP2800 Rev B supports channels 1 and 3 only. These registers contains the
PCI address of a DMA transfer. It is the address of the source of data for PCI-to-DRAM transfers,
and of the destination of data for DRAM-to-PCI transfers.

It is loaded with the start address of the transfer and is updated internally after each PCI transaction
as the transfer proceeds. The initial value does not need to be 32 bit Dword aligned. The PCI byte
enables is adjusted according to the two low-order bits of the address. After the first PCI access, the
updated value is 32 bit aligned.

5.9.2.10 CHAN_#_DRAM_BAR

The # symbol in the name indicates the DMA channel (1,2, or 3). The IXP2800 Rev A supports
channel 1 only and the IXP2800 Rev B supports channels 1 and 3 only. These registers contain the
DRAM address of a DMA transfer. It is the address of the source of data for DRAM-to-PCI
transfers, and of the destination of data for PCI-to-DRAM transfers.

It is loaded with the start address of the transfer and is updated internally after each DRAM
transaction as the transfer proceeds. The initial value does not need to be 32 bit Dword aligned.

[30] CTD
Control (DMA) Transfer Direction

0: PCI to DRAM
1: DRAM to PCI

RW 0

[29:24] RESERVED Reserved. Read as 0x0 R0 0

[23:0] DMA_BYTE_CNT
DMA Byte Count. Indicates the number of bytes to be
transferred. It is updated internally after each read as the
DMA operation progresses

RW 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

PCI_ADDR

Bits Field Description RW Reset

[31:0] PCI_ADDR
PCI Address. Contains the address on the PCI bus for
reads or writes. It is updated internally as the DMA
operation progresses.

RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

DMA_ADDR

Bits Field Description RW Reset

[31:0] DMA_ADDR
DRAM Address. Contains the address of the DRAM for
reads or writes. It is updated internally as the DMA
operation progresses.

RW 0
Programmer’s Reference Manual 519

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.2.11 CHAN_#_DESC_PTR

The # symbol in the name indicates the DMA channel (1,2, or 3). The IXP2800 Rev A supports
channel 1 only and the IXP2800 Rev B supports channels 1 and 3 only. These registers contain the
SRAM address of the next DMA descriptor for this channel. If the end-of chain bit in the DMA
channel n byte count register is 0, the DMA channel reads the next descriptor from SRAM when
the current transfer is done.

The descriptor must be 16 byte aligned, that is, the three low-order bits of the address must be 0.
See Table 5-63.

5.9.2.12 CHAN_#_CONTROL

The # symbol in the name indicates the DMA channel (1,2, or 3). The IXP2800 Rev A supports
channel 1 only and the IXP2800 Rev B supports channels 1 and 3 only. These registers contain
values that control the DMA channels for the duration of a chain operation. This register must be
written at the beginning of the channel operation. It can be read to monitor status of the channel.

Table 5-63. Descriptor Format:

Offset from
Descriptor Pointer Description

0x0 Byte Count

0x4 PCI Address

0x8 DRAM Address

0xC Next Descriptor Address

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

CH DESCR_PTR RESERVE
D

Bits Field Description RW Reset

[31:30] CH SRAM Channel number (0,1,2,3) RW 0

[29:4] DESCR_PTR

Descriptor Pointer: Contains the address of the next
descriptor in SRAM. This field contains an address
expressed in terms of quad DWords (16 bytes); bits 29:0
are viewed as a byte address. This field represents the
offset from the base of the SRAM channel specified in the
CH field [31:30].

Note that the current address space for each SRAM
channel is 64M byte. As such, users should ensure that bits
[29:26] are 0.

RW 0

[3:0] RESERVED Reserved. Read as 0. Effectively aligns the descriptor
address on a 16 byte boundary RO 0
520 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Unlinked (or Unterminated) Descriptor is a descriptor with End of Chain bit =0 and the Next
Descriptor field = 0. This descriptor is not the last one in the chain, but the Next Descriptor field
value of zero is reserved as an indication that the following descriptor has not yet been put into
memory. This feature allows software to start a channel with only part of the descriptor chain
defined. If the channel reads the Unlinked Descriptor prior to software adding to the chain, it will
pause. In addition, the channel will not update the Next Descriptor register with the 0 value; i.e. it
will retain the prior value. This allows the channel to fetch the new descriptor after software has
linked it into the chain and notified the channel by writing the DA bit below.

The UDR, Paused, and DA don’t really need to be visible via a CSR read. They are readable for
debug purpose. The channel’s action when a transfer completes is based on the state of the
Unlinked Descriptor Read, Paused and Descriptor Added bits (see Table 5-64):

Table 5-64. Operation of Unlinked Descriptor

Current Value Next Value
Comments

UDR Paused DA UDR Paused DA

0 0 0 0 0 0 No new descriptor was added. Next is already valid

0 0 1 0 0 0 New descriptor was linked in before channel has read the
Unlinked Descriptor. Next is already valid. Clear DA.

1 0 x 1 1 x New descriptor was not yet linked after channel read Unlinked
descriptor. Go to Paused state.

1 1 0 1 1 0 Channel is in Paused state. Wait here for DA

1 1 1 0 0 0 Channel rereads the descriptor and continues

0 1 x x x x This condition cannot happen.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

CHAN_XFER_DONE_CNT

U
D

R

P
A

U
S

E
D

D
A

R
E

S
E

R
V

E
D

D
W

LE
N

D
R

LE
N

C
C

D

R
E

S
E

R
V

E
D

C
ID

R

C
H

_E
R

R

C
X

D

R
E

S
E

R
V

E
D

C
E

Bits Field Description RW Reset

[31:16] CHAN_XFER_DONE_
CNT

Channel Transfer Done Descriptor Count. Indicates the
number of descriptors whose transfer count have
reached 0. The count will be reset after read of this
register.

RW1S 0

[15] UDR
Set by channel when it reads an Unlinked descriptor.
Note this bit is set when the descriptor is read, not when
the descriptor is completed.

RO 0

[14] PAUSED
Set by channel when it completes an Unlinked descriptor.
This indicates that the channel is waiting for software to
add another descriptor.

RO 0

[13] DA Software writes a 1 to this bit to notify the channel that it
has linked a new descriptor onto an Unlinked descriptor. RW 0
Programmer’s Reference Manual 521

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[12:10] RESERVED Reserved. Read as 0x0 RO 0

[9] DWLEN

DMA write long burst enable

0: Maximum burst size is 64-byte

1: For DMA writes to DRAM from PCI, long burst
transactions are requested beginning with the starting
64-byte aligned address and up to the last 64-byte
aligned address. Once such long burst transactions start
execution, transactions from other DMA channels and
from commands that target the PCI address space will
not get serviced until the end of the burst read from PCI
finishes.

This bit/feature is added to the IXP2xxx rev B. For rev A,
this bit is reserved, and the behavior is consistent with
setting this bit to 0.

RW 0

[8] DRLEN

DMA read long burst enable

0: Maximum burst size is 64-byte

1: For DMA transfers from DRAM to PCI space, the PCI
unit continues the burst transfer as long as the data for
the following 64-byte of address range is already read
from DRAM and is available in the buffer of the PCI unit.

This bit/feature is added to the IXP2xxx rev B. For rev A,
this bit is reserved, and the behavior is consistent with
setting this bit to 0.

RW 0

[7] CCD

Channel chain done. Indicates that a chain has
completed either normally or due to an error condition.
When this bit is a 1, it can interrupt DMA initiator
depending on the ownership of the channel

RW1C 0

[6:5] RESERVED Reserved. Read as 0x0 RO 0

[4] CIDR

Channel initial descriptor in register

0:Indicates that the channel must read the first descriptor
from SRAM

1: Indicates that the DMA channel owner has written the
first descriptor to the channel registers. Channel reads of
subsequent descriptors, if any, are not affected by this
bit.

RW 0

[3] CH_ERR

Channel error. Indicates that the channel detected either
a PCI master abort, target abort, or parity error during a
PCI transfer, or bad parity during a DRAM read.

1: When set, the channel stops operation regardless of
the byte count and/ or end-of-chain bits.

RW1C 0

[2] CXD
Channel transfer done.

1: Indicates that a transfer has completed, that is, the
transfer count form one of the descriptors has reached 0.

RW1C
0

[1] RESERVED Reserved RO 0

[0] CE

Channel enable

0: Channel not active

When written from 0 to 1: Channel fetches the first
descriptor block (unless channel initial descriptor in
register bit 4 of this register is a 1), and then performs
DMA operations until it does a transfer with the end-of-
chain bit equal to 1. This bit is cleared internally when
channel chain done is set.

RW 0

Bits Field Description RW Reset
522 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.2.13 CHAN_#_ME_PARAM

The # symbol in the name indicates the DMA channel (1,2, or 3). Rev A of the IXP2800 only
supports channel 1. Rev B of the IXP2800 supports channels 1 and 3. IXP2400 supports all three
channels. This register is to record the information on the Microengine that sets up the DMA
channel. This allows the DMA engine to signal a Microengine thread at the completion of a DMA.
Specifically, the snapshot of the CHAN_#_CONTROL (# for the same DMA channel) at the DMA
completion is copied into a ME Transfer register and a ME signal is set. The ME thread, signal, and
transfer register to be used are specificed in the ME_CLUS. ME_NO, CTX_NO, REG_NO, and
SIG_NO fields of CHAN_#_ME_PARAM.

5.9.2.14 DMA_INF_MODE

This register specifies whether a PCI device, the MEs, or the Intel XScale processor owns one of
both DMA channels.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

C
T

X RESERVED
M

E
 _C

LU
S

R
E

S
E

R
V

E
D

ME_NO CTX_
NO REG_NO SIG_NO

Bits Field Description RW Reset

[31] CTX_MODE

Number of ME contexts:

0: 8 CTX mode

1: 4 CTX mode

RW 0

[30:17] RESERVED Reserved. Read as 0. RO 0

[16] ME _CLUS ME Cluster RW 0

[15] RESERVED Reserved RW 0

[14:12] ME_NO
Microengine number that will be signaled. Valid IXP2800
ME numbers are 0 - 7. Valid IXP2400 ME numbers are 0 -
3.

RW 0

[11:9] CTX_NO Context Number RW 0

[8:4] REG_NO Register Number RW 0

[3:0] SIG_NO Signal Number RW 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED CH3

M
O

D
E

Programmer’s Reference Manual 523

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.2.15 PCI_SRAM_BAR_MASK

This register is used to specify the window size for the PCI_SRAM_BAR register.

The window sizes are determined as shown in Table 5-65:

Bits Field Description RW Reset

[31:4] RESERVED Reserved RO 0

[3:2] CH3

DMA channel allocation:
11: Reserved
10: PCI owns DMA channel 3
01: Intel XScale core owns DMA channel 3
00: Microengine owns DMA channel 3.

This field is reserved in IXP2800 Rev A

RW 0x1

[1:0] MODE

DMA channel allocation for the first two channels

For the IXP2400 (supports channels 1, 2, and 3):
11: PCI owns both DMA channels 1 and 2
10: Microengine owns both DMA channels
01: Intel XScale core owns both DMA channels
00: Microengine owns DMA channel 2 and Intel
XScale core owns DMA channel 1.

For the IXP2800 Rev A (supports channel 1 only):
11: PCI own channels 1
10: Microengine own channels 1
01: Intel XScale core own channels 1
00: Reserved
wns DMA channel 1.

RW 0x1

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

D
IS

N
P

R

R
E

S
E

R
V

E
D

MASK RESERVED

Bits Field Description RW Reset

[31] DIS
SRAM Window Disable

This bit set plus the MASK bits in this register indicates that
the SRAM is not accessible via the PCI

RW 0

[30] NPR
Non prefetchable

This bit set indicates that the SRAM BAR is non
prefetchable

R/W 0

[29:28] RESERVED Reserved RO 0

[27:18] MASK

Address Window Size Mask
1—the corresponding bit in the BAR register is a read-
only 0 bit.
0—the corresponding bit in the BAR register is a read/
write bit.

RW 0

[17:0] RESERVED Reserved RO 0
524 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.2.16 PCI_DRAM_BAR_MASK

This register is used to specify the window size for the PCI_DRAM_BAR register.

The window sizes are determined as shown in Table 5-66:

Table 5-65. How Window Sizes are Determined (PCI_SRAM_BAR)

Window Size Valid Values for PCI_SRAM_BAR
Mask Bits that are RW in PCI_SRAM_BAR

256 Kbytes 0x0000 0000 31:18

512 Kbytes 0x0004 0000 31:19

1 Mbyte 0x000C 0000 31:20

2 Mbyte 0x001C 0000 31:21

4 Mbyte 0x003C 0000 31:22

8 Mbyte 0x007C 0000 31:23

16 Mbyte 0x00FC 0000 31:24

32 Mbyte 0x01FC 0000 31:25

64 Mbyte 0x03FC 0000 31:26

128 Mbyte 0x07FC 0000 31:27

256 Mbyte 0x0FFC 0000 31:28

0 bytes 0x8FFC 0000 All bits are read as 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

D
IS

N
P

R MASK RESERVED

Bits Field Description RW Reset

[31] DIS
DRAM Window Disable

This bit set plus the MASK bits in this register indicates that
the DRAM is not accessible via the PCI

RW 0

[30] NPR
Non prefetchable

This bit set indicates that the DRAM BAR is non
prefetchable

R/W 0

[29:20] MASK

Address Window Size Mask
1—the corresponding bit in the BAR register is a read-
only 0 bit.
0—the corresponding bit in the BAR register is a read/
write bit.

RW 0

[19:0] RESERVED Reserved RO 0
Programmer’s Reference Manual 525

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.2.17 PCI_CONTROL

This is the PCI control register.

Table 5-66. How Window Sizes are Determined (PCI_DRAM_BAR)

Window Size Valid Values for PCI_DRAM_BAR
Mask Bits that are RW in PCI_DRAM_BAR

1 Mbyte 0x0000 0000 31:20

2 Mbyte 0x0010 0000 31:21

4 Mbyte 0x0030 0000 31:22

8 Mbyte 0x0070 0000 31:23

16 Mbyte 0x00F0 0000 31:24

32 Mbyte 0x01F0 0000 31:25

64 Mbyte 0x03F0 0000 31:26

128 Mbyte 0x07F0 0000 31:27

256 Mbyte 0x0FF0 0000 31:28

512 Mbyte 0x1FF0 0000 31:29

1024 Mbyte 0x3FF0 0000 31:30

0 bytes 0xBFF0 0000 All bits are read as 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

C
F

G
_P

C
I_B

O
O

T

C
F

G
_P

R
O

M
_B

O
O

T

C
F

G
_P

C
I_A

R
B

C
F

G
_R

S
T

_D
IR

D
M

A
_ID

LE

P
IN

_IN
_R

S
T

TA
B

T
_D

IS
A

B
LE

X
S

_IN
T

R
E

E

B
E

_D
E

O

B
E

_D
E

I

B
E

_B
E

O

B
E

_B
E

I

A
T

W
E

IE
E

D
T

E

T
R

B

T
W

R

TA
E

T
D

E

T
S

E

D
D

E

D
S

E

D
C

T

D
P

E

R
TA

R
M

A

D
P

E
D

R
S

P
C

II

A
S

C
A

526 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31] CFG_PCI_BOOT

Boot Host. This bit reflects the value on the
CFG_PCI_BOOT pin;

1—IXP will configure the system
0—External host will configure the system

If CFG_PCI_BOOT_HOST is set to 1 then
CFG_RSTDIR must also be set to 1. (central function)

RO -

[30] CFG_PROM_BOOT

PCI Prom Boot. This bit reflects the value on the
CFG_PCI_BOOT_HOST pin;

 1—IXP will boot from PROM

 0—IXP will boot from DRAM initialized by PCI Host.

RO -

[29] CFG_PCI_ARB

PCI Internal Arbiter pin status. This bit reflects the value
on the CFG_PCI_ARB pin; 1—IXP’s internal arbiter is
used

If CFG_PCI_ARB set to 1 then CFG_RSTDIR must set
to 1 (central function).

RO -

[28] CFG_RST_DIR

PCI central function pin:

1—IXP is supporting central functions.

PCI_RST_L is an output.

(PCI_RST_L is output and SYS_RST_L is input).

PCI_REQ64 is an output.(drive low during PCI reset)

PCI AD[31:0], PCI_BE[3:0], and PCI_PAR drive to
Low during PCI reset After PCI reset all these I/O to tri-
states unless IXP bus parked.

PCI AD[63:32], BE[7:4] and PAR64 during PCI reset or
after PCI reset all these I/O to tristates. if PCI is 32 bits
bus, Board need to support external pull up).

0—External PCI is supporting central functions.

PCI_RST_L is an input.

(Both PCI_RST_L and SYS_RST_L are input. Tie both
reset together).

PCI_REQ64 is an input.

PCI AD[31:0], PCI_BE[3:0], and PCI_PAR during PCI
reset or after PCI reset all these I/O to tristates

PCI AD[63:32], BE[7:4] and PAR64 during PCI reset or
after PCI reset all these I/O to tristates. (if PCI is 32 bits
bus, Board need to support external pull up)

This pin is stored at XSC[31] (XSCALE_CONTROL
Register) at the trailing edge of reset.

RO -

[27] DMA_IDLE DMA Idle: This bit indicates the DMA Engine is in Idle
State RO -

[26] PIN_IN_RST PCI Bus is in reset; All access to PCI Bus will return bad
data on read and data discarded on writes RO 0

[25] TABT_DISABLE Target Abort on PCI Bus disable RW 0

[24] XS_INT Intel XScale core Interrupt: Software writes to this bit
to perform a soft interrupt to PCI RW 0

[23] RESERVED Reserved. Software should not set this bit to 1, because
it is reserved. RW 0
Programmer’s Reference Manual 527

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[22] BE_DEO

Big Endian Data Enable Out—When set, data swapping
is not performed on the outgoing PCI data during:

• External PCI Master reads from SRAM or DRAM
• DMA channel writes to PCI target
• Command Target writes to PCI Mem Space

Memory data [31:0] ={byte0,byte1,byte2,byte3}

0: PCI data [31:0] = {byte3,byte2,byte1,byte0}

1: PCI data [31:0] = {byte0,byte1,byte2,byte3}

Suports I/O cycles in Rev B ONLY. See
PCI_CONTROL[17]

RW 0

[21] BE_DEI

Big Endian Data Enable In—When set, data swapping
is not performed on the incoming PCI data during:

• External PCI Master writes from SRAM or DRAM
• DMA channel reads from PCI target
• Command Target reads from PCI Mem Space

Memory data [31:0] ={byte0,byte1,byte2,byte3}

0: PCI data [31:0] = {byte3,byte2,byte1,byte0}

1: PCI data [31:0] = {byte0,byte1,byte2,byte3}

Suports I/O cycles in Rev B ONLY. See
PCI_CONTROL[17]

RW 0

[20] BE_BEO

Big Endian Byte Enable Out—When set, byte enable
swapping is performed on the outgoing PCI byte
enables during:

• External PCI Master reads from SRAM or DRAM
• DMA channel writes to PCI target
• Command Target writes to PCI Mem Space

Memory byte enable [3:0] ={be0,be1,be2,be3}

0: PCI byte enable [3:0] = {be3,be2,be1,be0}

1: PCI byte enable [3:0] = {be0,be1,be2,be3}

Suports I/O cycles in Rev B ONLY. See
PCI_CONTROL[17]

RW 0

[19] BE_BEI

Big Endian byte enable Enable In—When set, byte
enable swapping is performed on the incoming PCI byte
enable during:

• External PCI Master writes from SRAM or DRAM
• DMA channel reads from PCI target
• Command Target reads from PCI Mem Space

Memory byte enable [3:0] ={be0,be1,be2,be3}

0: PCI byte enable [3:0] = {be3,be2,be1,be0}

1: PCI byte enable [3:0] = {be0,be1,be2,be3}

Suports I/O cycles in Rev B ONLY. See
PCI_CONTROL[17]

RW 0

[18] ATWE

For IXP2xxx Rev B only. Reserved otherwise.

Atomic write enable
When set, PCI burst target writes to memory that
are 64-byte aligned and are less than or equal to 64
bytes long are processed atomically. One
implication is that the size of the queue that keeps
track of outstanding PCI target write transactions
gets reduced to 1.
When cleared, PCI burst target writes may not be
processed atomically, and the queue that keeps
track of PCI target write transactions can track up to
4 outstanding transactions.

RO,

RW for
IXP2400

Rev B

0

Bits Field Description RW Reset
528 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[17] IEE

For IXP2xxx Rev B only. Reserved otherwise.

I/O cycles big endian data swap enable
When set, the big endian data swapping
functionalities of the BE_DEO, BE_DEI, BE_BEO,
and BE_BEI fields also apply to PCI I/O cycles.
When cleared, the byte ordering of PCI I/O
accesses is not affected by the BE_DEO, BE_DEI,
BE_BEO, and BE_BEI fields, and is the same as
the byte ordering of CSR accesses.

RO,

RW for
IXP2400

Rev B

0

[16] DTE

Discard Timer expired. Set when the discard timer
counts to 0 and the IXP processor has discarded read
data. It can cause an interrupt to the Intel XScale core
if enabled in the XSCALE_ERR_ENABLE register.

To clear this error, software must write a 1 to this bit.
Writing a 0 to this bit has no effect.

RW1C 0

[15] TRB

TGT_REG_BE: A Target access of Registers detected
an address byte enable error Only 32 bit data with all
the byte enables set or cleared is allowed for accesses
to PCI_CSR_BAR. No data is written on write and
garbage data is returned on error. It can cause an
interrupt to the Intel XScale core if enabled in the
XSCALE_ERR_ENABLE register.

To clear this error, software must write a 1 to this bit.
Writing a 0 to this bit has no effect.

RW 1C 0

[14] TWR

TGT_WR_PAR - Target write with bad data. It can
cause an interrupt to the Intel XScale core if enabled
in the XSCALE_ERR_ENABLE register.

To clear this error, software must write a 1 to this bit.
Writing a 0 to this bit has no effect.

RW1C 0

[13] TAE

TGT_ADR_ERR-Detected Address Parity Error; would
have generated PCI_SERR#. It can cause an interrupt
to the Intel XScale coreif enabled in the
XSCALE_ERR_ENABLE register.

To clear this error, software must write a 1 to this bit.
Writing a 0 to this bit has no effect.

RW1C 0

[12] TDE

TGT_DRAM_ERR-Detected Parity Error on data from
the DRAM. It can cause an interrupt to the Intel
XScale core if enabled in the
XSCALE_ERR_ENABLE register.

To clear this error, software must write a 1 to this bit.
Writing a 0 to this bit has no effect.

RW1C 0

[11] TSE

TGT_SRAM_ERR-Detected Parity Error on data from
the SRAM. It can cause an interrupt to the Intel
XScale core if enabled in the
XSCALE_ERR_ENABLE register.

To clear this error, software must write a 1 to this bit.
Writing a 0 to this bit has no effect.

RW1C 0

[10] DDE

DMA_DRAM_ERR-Detected Parity Error on data from
the DRAM during data transfer from DRAM. It can
cause an interrupt to the Intel XScale core if enabled
in the XSCALE_ERR_ENABLE register.

To clear this error, software must write a 1 to this bit.
Writing a 0 to this bit has no effect.

RW1C 0

Bits Field Description RW Reset
Programmer’s Reference Manual 529

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[9] DSE

DMA_SRAM_ERR-Detected Parity Error on data from
the SRAM during descriptor fetch. It can cause an
interrupt to the Intel XScale coreif enabled in the
XSCALE_ERR_ENABLE register.

To clear this error, software must write a 1 to this bit.
Writing a 0 to this bit has no effect.

RW1C 0

[8] DCT

DCT is used to indicate that an access to the PCI Bus
from the Intel XScale core or ME has received an
error. Because it is a single bit indication, the type of
error is indicated by other error bits (RTA, RMA, RSE,
DPE, DPED)

This bit dose not generate an interrupt, but it stops the
Intel XScale core/ME PCI accesses. The bit has to be
cleared for the state machine to operate for ME and
Intel XScale core accesses.

The use of this bit is to separate the direct access error
from DMA errors. When an interrupt is generated due to
an error, software can read this bit to tell if it is from the
Intel XScale core/ME generated cycle or not.

If any of the following errors were set during a PCI
access from the Intel XScale core or the Microengine,
this bit will be set. The errors are RTA, RMA, RSE,
DPE, DPED

To clear this bit, software must write a 1 to this bit.
Writing a 0 to this bit has no effect.

RW1C 0

[7] DPE

Detected PCI write parity error. When PCI device write
to external PCI bus, PCI device will detect the parity
error in this write cycle and set this bit. It can cause an
interrupt to the Intel XScale core if enabled in the
XSCALE_ERR_ENABLE register.

To clear this error, software must write a 1 to this bit.
Writing a 0 to this bit has no effect.

RW1C 0

[6] RTA

Received target abort. It can cause an interrupt to the
Intel XScale core if enabled in the
XSCALE_ERR_ENABLE register.

To clear this error, software must write a 1 to this bit.
Writing a 0 to this bit has no effect.

RW1C 0

[5] RMA

Received master abort. It can cause an interrupt to the
Intel XScale core if enabled in the
XSCALE_ERR_ENABLE register.

To clear this error, software must write a 1 to this bit.
Writing a 0 to this bit has no effect.

RW1C 0

[4] DPED

MST_RD_PAR - Data Parity error detected when PCI
Unit is initiating a PCI read. It can cause an interrupt to
the Intel XScale core if enabled in the
XSCALE_ERR_ENABLE register.

To clear this error, software must write a 1 to this bit.
Writing a 0 to this bit has no effect.

RW1C 0

[3] RS

Received SERR. Set when PCI SERR is asserted by an
external device and CFG_PCI_BOOT (hosting) is
asserted. It can cause an interrupt to the IIntel XScale
core if enabled in the XSCALE_ERR_ENABLE register.

To clear this error, software must write a 1 to this bit.
Writing a 0 to this bit has no effect.

RW1C 0

Bits Field Description RW Reset
530 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.2.18 PCI_ADDR_EXT

This register contains the upper PCI address bits during PCI I/O or memory accesses originated by
the Intel XScale processor and MEs.

5.9.2.19 XSCALE_ERR_STATUS

A 1 in any of bits [31:19] of this register indicates that the associated error source is active in
generating the interrupt to the Intel XScale core. The interrupt is reported to bit [25], PCI_ERR,
of the ERR_RAW_STATUS register. These bits can be cleared by writing to the PCI_CONTROL
register and the PCI_CMD_STAT register

Bits [11:0] only apply to IXP2xxx Rev B, which includes the capability to optionally redirect the
Intel XScale core interrupts as PCI_INTA_L. These bits reflect some of the bits of the
{IRQ,FIQ}ERR_STATUS Intel XScale core local CSR, when the corresponding bits in the
XSCALE_ERR_ENABLE register are set

[2] PCII PCI Interrupt to Intel XScale core: Software write to
this bit to perform a soft interrupt to Intel XScale core. RW 0

[1] AS

Assert SERR.

0: Reset value 0.

1: The PCI Unit asserts PCI_SERR# for one cycle if
CFG_PCI_BOOT is de-asserted (not hosting) and
command register bit SERR# enable bit [8] is a 1
(PCI_CMD_STAT[SERR])

RW 0

[0] CA

Clock Active: This indicates the PCI clock is running on
the PCI Bus.

0: No PCI Clock

1: PCI Clock is running. TheIntel XScale core/ME can
clear initialization bit

RO 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

PIO ADD PMSA Reserved

Bits Field Description RW Reset

[31:16] PIO ADD
PCI IO space upper Address Field. These bits provide PCI
address [31:16] during the Intel XScale core and ME
originated PCI IO accesses

RW 0

[15:13] PMSA
PCI Memory Space Address Field. This bit provides PCI
address [31:29] during the IIntel XScale core and ME
originated PCI memory accesses.

RW 0

[12:0] Reserved Read as 0x0 RO 0
Programmer’s Reference Manual 531

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

D
P

E

R
TA

R
M

A

D
P

E
D

D
T

E

R
S

E
R

R

T
R

B

T
W

P

TA
E

T
D

E

T
S

E

D
D

E

D
S

E

Reserved

S
P

_IN
T

M
E

D
IA

_E
R

R

S
R

A
M

3_E
R

R

S
R

A
M

2_E
R

R

S
R

A
M

1_E
R

R

S
R

A
M

0_E
R

R

D
R

A
M

2_E
C

C
_M

A
J

D
R

A
M

2_E
C

C
_M

IN

D
R

A
M

1_E
C

C
_M

A
J

D
R

A
M

1_E
C

C
_M

IN

D
R

A
M

0_E
C

C
_M

A
J

D
R

A
M

0_E
C

C
_M

IN

Bits Field Description RW Reset

[31] DPE

Detected PCI write parity error

This error is cleared by writing 1 to the following bits:

• PCI_CONTROL [7]

• PCI_CONTROL [8] if the error resulted from a
Microengine or an Intel XScale core direct
transaction,

• PCI_CMD_STAT[31]

• PCI_CMD_STAT[24] if PCI_PERR is seen on the PCI
Bus and PERR_RESP bit is set on PCI_CMD_STAT

RO 0

[30] RTA

Received target abort

This error is cleared by writing 1 to the following bits:

• PCI_CONTROL [6]

• PCI_CONTROL [8] if the error resulted from a
Microengine or an Intel XScale core direct
transaction,

• PCI_CMD_STAT[28]

RO 0

[29] RMA

Received master abort

This error is cleared by writing 1 to the following bits:

• PCI_CONTROL [5]

• PCI_CONTROL [8] if the error resulted from a
Microengine or an Intel XScale core direct
transaction,

• PCI_CMD_STAT[29]

RO 0

[28] DPED

Read Data Parity error detected

This error is cleared by writing 1 to the following bits:

• PCI_CONTROL [4]

• PCI_CONTROL [8] if the error resulted from a
Microengine or an Intel XScale core direct
transaction,

• PCI_CMD_STAT[24] if PCI_PERR is seen on the PCI
Bus and PERR_RESP bit is set on PCI_CMD_STAT

RO 0

[27] DTE
Discard timer expired

This error is cleared by writing 1 to PCI_CONTROL [16]
RO 0
532 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[26] RSERR

Received SERR

This error is cleared by writing 1 to the following bits:

• PCI_CONTROL [3]

• PCI_CONTROL [8] if the error resulted from a
Microengine or an Intel XScale core direct
transaction,

RO 0

[25] TRB
TGT_REG_BE - A Slave access of Registers detected a
byte enable error

This error is cleared by writing 1 to PCI_CONTROL [15]
RO 0

[24] TWP
TGT_WR_PAR Target write with bad data

This error is cleared by writing 1 to PCI_CONTROL [14]
RO 0

[23] TAE

TGT_ADR_ERR Detected Address Parity Error; would
have generated PCI_SERR# if command register rserr
enable bit is set

This error is cleared by writing 1 to PCI_CONTROL [13]

RO 0

[22] TDE
TGT_DRAM_ERR - Detected Parity Error on data from the
DRAM

This error is cleared by writing 1 to PCI_CONTROL [12]
RO 0

[21] TSE
TGT_SRAM_ERR - Detected Parity Error on data from the
SRAM

This error is cleared by writing 1 to PCI_CONTROL [11]
RO 0

[20] DDE
DMA_DRAM_ERR - Detected Parity Error on data from the
DRAM

This error is cleared by writing 1 to PCI_CONTROL [10]
RO 0

[19] DSE
DMA_SRAM_ERR- Detected Parity Error on data from the
SRAM

This error is cleared by writing 1 to PCI_CONTROL [9]
RO 0

[18:12] Reserved Read as 0x0 RO 0

[11] SP_INT
Slow Port interrupt. To clear, write 1 to the Slow Port’s fault
status register.

For IXP2xxx Rev B only. Otherwise Reserved.
RO 0

[10] MEDIA_ER
R

Media error indicator. To clear, write 1 to the error bit in the
MSF interrupt status register.

For IXP2xxx Rev B only. Otherwise Reserved.
RO 0

[9] SRAM3_ER
R

Indicates a SRAM parity error has occurred in SRAM
channel 3. To clear, write 1 to the error bit in the SRAM3
parity status register.

For IXP28xx Rev B only. Otherwise Reserved.

RO 0

[8] SRAM2_ER
R

Indicates a SRAM parity error has occurred in SRAM
channel 2. To clear, write 1 to the error bit in the SRAM2
parity status register.

For IXP28xx Rev B only. Otherwise Reserved.

RO 0

[7] SRAM1_ER
R

Indicates a SRAM parity error has occurred in SRAM
channel 1. To clear, write 1 to the error bit in the SRAM1
parity status register.

For IXP2xxx Rev B only. Otherwise Reserved.

RO 0

Bits Field Description RW Reset
Programmer’s Reference Manual 533

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.2.20 XSCALE_ERR_ENABLE

This register is used to mask the interrupt input sources and define which active sources generate
an interrupt request to the Intel XScale core. A one in a particular bit location will enable that
interrupt.

Bits [11:0] only apply to IXP2xxx Rev B, which includes the capability to optionally redirect Intel
XScale core interrupts as PCI_INTA_L. These bits enable the redirection of the Intel XScale
core interrupt that result from the individual error conditions. Note that the PCI Interrupt Mask bit
of the PCI_OUT_INT_MASK register must be 0 to enable the redirection of interrupts to PCI.

[6] SRAM0_ER
R

Indicates a SRAM parity error has occurred in SRAM
channel 0. To clear, write 1 to the error bit in the SRAM0
parity status register.

For IXP2xxx Rev B only. Otherwise Reserved.

RO 0

[5] DRAM2_EC
C_MAJ

Uncorrectable ECC error occurred in DRAM channel 2. To
clear, write 1 to the error bit in the DRAM2 error status
register.

For IXP2800 Rev B only. Otherwise Reserved.

RO 0

[4] DRAM2_EC
C_MIN

Correctable ECC error occurred in DRAM channel 2. To
clear, write 1 to the error bit in the DRAM2 error status
register.

For IXP2800 Rev B only. Otherwise Reserved.

RO 0

[3] DRAM1_EC
C_MAJ

Uncorrectable ECC error occurred in DRAM channel 1. To
clear, write 1 to the error bit in the DRAM1 error status
register.

For IXP2800 Rev B only. Otherwise Reserved.

RO 0

[2] DRAM1_EC
C_MIN

Correctable ECC error occurred in DRAM channel 1. To
clear, write 1 to the error bit in the DRAM1 error status
register.

For IXP2800 Rev B only. Otherwise Reserved.

RO 0

[1] DRAM0_EC
C_MAJ

Uncorrectable ECC error occurred in DRAM channel 0. To
clear, write 1 to the error bit in the DRAM0 error status
register.

For IXP2xxx Rev B only. Otherwise Reserved.

RO 0

[0] DRAM0_EC
C_MIN

Correctable ECC error occurred in DRAM channel 0. To
clear, write 1 to the error bit in the DRAM0 error status
register.

For IXP2xxx Rev B only. Otherwise Reserved.

RO 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

D
P

E
M

R
TA

M

R
M

A
M

D
P

E
D

M

D
T

E
M

R
S

E
R

R
M

T
R

B
M

T
W

P
M

TA
E

M

T
D

E
M

T
S

E
M

D
D

E
M

D
S

E
M

Reserved

S
P

_IN
T

E

M
E

D
IA

_E
R

R
E

S
R

A
M

3_E
R

R
E

S
R

A
M

2_E
R

R
E

S
R

A
M

1_E
R

R
E

S
R

A
M

0_E
R

R
E

D
R

A
M

2_E
C

C
_M

A
JE

D
R

A
M

2_E
C

C
_M

IN
E

D
R

A
M

1_E
C

C
_M

A
JE

D
R

A
M

1_E
C

C
_M

IN
E

D
R

A
M

0_E
C

C
_M

A
JE

D
R

A
M

0_E
C

C
_M

IN
E

534 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31] DPEM Detected PCI parity error RW 0

[30] RTAM Received target abort RW 0

[29] RMAM Received master abort RW 0

[28] DPEDM Data Parity error detected RW 0

[27] DTEM Discard timer expired RW 0

[26] RSERRM Received SERR RW 0

[25] TRBM A Slave access of Registers detected an address byte
enable error RW 0

[24] TWPM Target write with bad data RW 0

[23] TAEM Detected Address Parity Error; would have generated
PCI_SERR# RW 0

[22] TDEM Detected Parity Error on data from the DRAM RW 0

[21] TSEM Detected Parity Error on data from the SRAM RW 0

[20] DDEM Detected Parity Error on data from the DRAM RW 0

[19] DSEM Detected Parity Error on data from the SRAM RW 0

[18:12] Reserved Read as 0x0 RO 0

[11] SP_INTE
Slow Port interrupt redirect enable.

For IXP2xxx Rev B only. Otherwise Reserved.

RO,

RW for
IXP2xxx
Rev B

0

[10] MEDIA_ER
RE

Media error indicator interrupt redirect enable.

For IXP2xxx Rev B only. Otherwise Reserved.

RO,

RW for
IXP2xxx
Rev B

0

[9] SRAM3_E
RRE

Interrupt redirect enable for SRAM parity error occurred in
SRAM channel 3.

For IXP2800 Rev B only. Otherwise Reserved.

RO,

RW for
IXP2xxx
Rev B

0

[8] SRAM2_E
RRE

Interrupt redirect enable for SRAM parity error occurred in
SRAM channel 2.

For IXP28xx Rev B only. Otherwise Reserved.

RO,

RW for
IXP2xxx
Rev B

0

[7] SRAM1_E
RRE

Interrupt redirect enable for SRAM parity error occurred in
SRAM channel 1.

For IXP2xxx Rev B only. Otherwise Reserved.

RO,

RW for
IXP2xxx
Rev B

0

[6] SRAM0_E
RRE

Interrupt redirect enable for SRAM parity error occurred in
SRAM channel 0.

For IXP2xxx Rev B only. Otherwise Reserved.

RO,

RW for
IXP2xxx
Rev B

0

[5] DRAM2_E
CC_MAJE

Interrupt redirect enable for Uncorrectable ECC error
occurred in DRAM channel 2.

For IXP2800 Rev B only. Otherwise Reserved.

RO,

RW for
IXP2xxx
Rev B

0

Programmer’s Reference Manual 535

5.9.2.21 XSCALE_INT_STATUS

The Intel XScale processor Interrupt Status is to generate the interrupt signal to the Intel XScale
processor. A 1 in a bit position indicates that the associated interrupt source is active in generating
the interrupt to the Intel XScale processor.

Bits [23:0] only apply to IXP2xxx Rev B, which includes the capability to optionally redirect Intel
XScale core interrupts as PCI_INTA_L. These bits reflect some of the bits of the
{IRQ,FIQ}STATUS and {IRQ,FIQ}ATTN_STATUS Intel XScale core local CSRs, when the
corresponding bits in the XSCALE_INT_ENABLE register are set.

[4] DRAM2_E
CC_MINE

Interrupt redirect enable for Correctable ECC error occurred
in DRAM channel 2.

For IXP2800 Rev B only. Otherwise Reserved.

RO,

RW for
IXP2xxx
Rev B

0

[3] DRAM1_E
CC_MAJE

Interrupt redirect enable for Uncorrectable ECC error
occurred in DRAM channel 1.

For IXP2800 Rev B only. Otherwise Reserved.

RO,

RW for
IXP2xxx
Rev B

0

[2] DRAM1_E
CC_MINE

Interrupt redirect enable for Correctable ECC error occurred
in DRAM channel 1.

For IXP2800 Rev B only. Otherwise Reserved.

RO,

RW for
IXP2xxx
Rev B

0

[1] DRAM0_E
CC_MAJE

Interrupt redirect enable for Uncorrectable ECC error
occurred in DRAM channel 0.

For IXP2xxx Rev B only. Otherwise Reserved.

RO,

RW for
IXP2xxx
Rev B

0

[0] DRAM0_E
CC_MINE

Interrupt redirect enable for Correctable ECC error occurred
in DRAM channel 0.

For IXP2xxx Rev B only. Otherwise Reserved.

RO,

RW for
IXP2xxx
Rev B

0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

S
B

D
M

A
3N

B

D
M

A
2N

B

D
M

A
1N

B

PIL

P
C

II

R
E
S
E
R
V
E
D

S
P

_F
IN

T

P
M

U
_IN

T

T
M

R
[3:0]_U

F
LW

G
P

IO
_IN

T

U
A

R
T

_IN
T

M
E

1_7

M
E

1_6

M
E

1_5

M
E

1_4

M
E

1_3

M
E

1_2

M
E

1_1

M
E

1_0

M
E

0_7

M
E

0_6

M
E

0_5

M
E

0_4

M
E

0_3

M
E

0_2

M
E

0_1

M
E

0_0

Bits Field Description RW Reset

[31] SB Start BIST RO 0x0

[30] DMA3NB DMA channel 3 not busy RO 0x1

[29] DMA2NB DMA channel 2 not busy. This bit is reserved for the
IXP2800. RO 0x1

[28] DMA1NB DMA channel 1 not busy RO 0x1

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
[27:26] PIL

PCI_INTx_L: Reflects that state of the PCI interrupt pins,
regardless of whether the IXP processor is driving the pin or
not.

bit 26: PCI_INTA_L

bit 27: PCI_INTB_L

RO 0x0

[25] PCII Soft Interrupt from PCI to Intel XScale core; Write 1 to
PCI_Control[2] to set RO 0x0

[24] Reserved Read as 0x0 RO 0x0

[23] SP_FINT

Slow Port interrupt. This interrupt is forwarded from the
external framer. To clear this bit, refer to the manual of the
framer device.

For IXP2xxx Rev B only. Otherwise Reserved.

RO 0

[22] PMU_INT
PMU interrupt. To clear, write 0 to the PMU status register.

For IXP2400 Rev B only. Otherwise Reserved.
RO 0

[21:18] TIMER[3:0]_UFLW

Timer underflow indicator. This bit is set when timer has
decremented to zero. Clear this bit by writing any value to
the TimerClear register.

For IXP2xxx Rev B only. Otherwise Reserved.

RO 0

[17] GPIO_INT
Indicates an interrupt request from the GPIO unit. To clear,
write 1 to the GPIO interrupt status register.

For IXP2xxx Rev B only. Otherwise Reserved.
RO 0

[16] UART_INT

Indicates an UART interrupt request. There are multiple
conditions which triggers the interrupt, refer to the UART
section to clear the interrupt.

For IXP2xxx Rev B only. Otherwise Reserved.

RO 0

[15:12] ME1_4..ME1_7

A 1 in a bit position indicates that the associated interrupt
source is both active and enabled. To clear, write 1 to the
appropriate IRQ_THD_RAW_STATUS_$_3 ($= A orB)
register.

ME1_4 = Cluster 1, ME 4

ME1_7 = Cluster 1, ME 7

For IXP28xx Rev B only. Otherwise Reserved.

RO 0x0

Bits Field Description RW Reset
Programmer’s Reference Manual 537

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.2.22 XSCALE_INT_ENABLE

This register is used to mask the interrupt input sources and define which active sources generate
an interrupt request to the Intel XScale processor. A one in a particular bit location will enable
that interrupt

Bits [23:0] only apply to IXP2xxx Rev B, which includes the capability to optionally redirect Intel
XScale core interrupts as PCI_INTA_L. These bits enable the redirection of the Intel XScale
core interrupt that result from the individual conditions. Note that the PCI Interrupt Mask bit of the
PCI_OUT_INT_MASK register must be 0 to enable the redirection of interrupts to PCI.

[11:8] ME1_0..ME1_3

A 1 in a bit position indicates that the associated interrupt
source is both active and enabled. To clear, write 1 to the
appropriate IRQ_THD_RAW_STATUS_$_2 ($= A orB)
register.

ME1_0 = Cluster 1, ME 0

ME1_3 = Cluster 1, ME 3

For IXP2xxx Rev B only. Otherwise Reserved.

RO 0x0

[7:4] ME0_4..ME0_7

A 1 in a bit position indicates that the associated interrupt
source is both active and enabled. To clear, write 1 to the
appropriate IRQ_THD_RAW_STATUS_$_1 ($= A orB)
register.

ME0_4 = Cluster 0, ME 4

ME0_7 = Cluster 0, ME 7

For IXP28xx Rev B only. Otherwise Reserved.

RO 0x0

[3:0] ME0_0..ME0_3

A 1 in a bit position indicates that the associated interrupt
source is both active and enabled. To clear, write 1 to the
appropriate IRQ_THD_RAW_STATUS_$_0 ($= A orB)
register.

ME0_0 = Cluster 0, ME 0

ME0_3 = Cluster 0, ME 3

For IXP2xxx Rev B only. Otherwise Reserved.

RO 0x0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

S
B

D
M

A
3N

B

D
M

A
2N

B

D
M

A
1N

B

PIL

P
C

II

R
E
S
E
R
V
E
D

S
P

_F
IN

T

P
M

U
_IN

T

T
M

R
[3:0]_U

F
LW

G
P

IO
_IN

T

U
A

R
T

_IN
T

M
E

1_7

M
E

1_6

M
E

1_5

M
E

1_4

M
E

1_3

M
E

1_2

M
E

1_1

M
E

1_0

M
E

0_7

M
E

0_6

M
E

0_5

M
E

0_4

M
E

0_3

M
E

0_2

M
E

0_1

M
E

0_0

Bits Field Description RW Reset

[31] SBM Start BIST RW 0

[30] DMA3NBM DMA channel 3 not busy RW 0

[29] DMA2NBM DMA channel 2 not busy. This bit is reserved for the
IXP2800. RW 0
538 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.9.2.23 ME_PUSH_STATUS

This register is to signal the completion of the DMA channel to wake up the particular Microengine
that started the DMA. A 1 in a bit position indicates that the associated channel is pushing the
Microengine DMA Completion status.

5.9.2.24 ME_PUSH_ENABLE

This register is used to mask the Auto-Push source channels and define which active channels can
push the status to the Microengine. A one in a particular bit location will enable that auto-push.

[28] DMA1NBM DMA channel 1 not busy RW 0

[27:2
6] PILM

PCI_INTA_L: Reflects that state of the PCI interrupt
pins, regardless of whether the IXP processor is
driving the pin or not.

bit 26: PCI_INTA_L enable bit

bit 27: PCI_INTB_L enable bit

RW 0

[25] PCIIM Mask the Soft Interrupt to Intel XScale core from
PCI_Control[2] RW 0

[24] Reserved Read as 0x0 RO 0

[23:0] XSCALE_INT_ENABLE

The individual enable bits for redirecting the Intel
XScale core interrupt as PCI_INTA_L. These bits
correspond to bits [23:0] of the
XSCALE_INT_STATUS register.

For IXP2xxx Rev B only. Otherwise Reserved.

RO,

RW for
IXP2xxx
Rev B

0x0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

D
M

A
3

D
M

A
2

D
M

A
1 RESERVED

Bits Field Description RW Reset

[31] DMA3M DMA channel 3. RO 0

[30] DMA2M DMA channel 2. This bit is reserved for the IXP2800. RO 0

[29] DMA1M DMA channel 1. RO 0

[28:0] RESERVED Reserved. Read as 0x0 RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

D
M

A
3

D
M

A
2

D
M

A
1 RESERVED
Programmer’s Reference Manual 539

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31] DMA3M DMA channel 3 RW 0

[30] DMA2M DMA channel 2, This bit is reserved for the IXP2800. RW 0

[29] DMA1M DMA channel 1 RW 0

[28:0] Reserved Read as 0x0 RO 0
540 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10 Intel XScale Core Local CSRs

There are three classes of Intel XScale core Local CSRs:

• Interrupt Controller (Section 5.10.1)

• Hash Operation (Section 5.10.2)

• Breakpoint (Section 5.10.3)

5.10.1 Interrupt Controller (Intel XScale Core)

Table 5-67 shows the offset addresses of the Interrupt Controller CSRs. Refer to Chapter 4,
“Address Maps” for the base address and details on how they are accessed. These CSRs can only
be accessed by the Intel XScale core.

Note: For the thread related interrupt registers, substitute 0-8 for the # symbol, and A and B for the
$ symbol. Also the enable and enable set registers share the same register address.

Table 5-67. Intel XScale Core Gasket Configuration Register Map

Abbreviation Address
[9:0] Name Description

FIQ_RAW_STATUS 0x00 FIQ Raw Interrupt
Status FIQ un-masked interrupt status Section 5.10.1.1

IRQ_RAW_STATUS 0x00 IRQ Raw Interrupt
Status

IRQ un-masked interrupt
status Section 5.10.1.1

FIQ_STATUS 0x04 FIQ Interrupt
Status FIQ masked interrupt status Section 5.10.1.2

IRQ_STATUS 0x08 IRQ Interrupt
Status IRQ masked interrupt status Section 5.10.1.2

FIQ_ENABLE 0x0C FIQ Enable FIQ interrupt enable Section 5.10.1.3

FIQ_ENABLE_SET 0x0C FIQ Enable Set FIQ interrupt enable set (W1S) Section 5.10.1.4

IRQ_ENABLE 0x10 IRQ Enable IRQ interrupt enable Section 5.10.1.3

IRQ_ENABLE_SET 0x10 IRQ Enable Set IRQ interrupt enable set (W1S) Section 5.10.1.4

FIQ_ENABLE_CLR 0x14 FIQ Enable Clear FIQ interrupt enable clear
(W1C) Section 5.10.1.5

IRQ_ENABLE_CLR 0x18 IRQ Enable Clear IRQ interrupt enable clear
(W1C) Section 5.10.1.5

FIQ_ERR_RAW_STATUS 0x1C FIQ Raw Error
Status FIQ un-masked interrupt status Section 5.10.1.8

IRQ_ERR_RAW_STATUS 0x1C IRQ Raw Error
Status

IRQ un-masked interrupt
status Section 5.10.1.8

FIQ_ERR_STATUS 0x20 FIQ Error Interrupt
Status FIQ masked interrupt status Section 5.10.1.9

IRQ_ERR_STATUS 0x24 IRQ Error Interrupt
Status IRQ masked interrupt status Section 5.10.1.9

FIQ_ERR_ENABLE 0x28 FIQ Error Enable FIQ error interrrupt enable Section 5.10.1.10

FIQ_ERR_ENABLE_SET 0x28 FIQ Error Enable
Set FIQ interrupt enable set (W1S) Section 5.10.1.11
Programmer’s Reference Manual 541

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
IRQ_ERR_ENABLE 0x2C IRQ Error Enable IRQ error interrupt enable Section 5.10.1.10

IRQ_ERR_ENABLE_SET 0x2C IRQ Error Enable
Set

Setting of the IRQ error enable
register. Section 5.10.1.11

FIQ_ERR_ENABLE_CLEAR 0x30 FIQ Error Enable
Clear

Clearing of the FIQ error
enable register. Section 5.10.1.12

IRQ_ERR_ENABLE_CLEAR 0x34 IRQ Error Enable
Clear

Clearing of the IRQ enable
register. Section 5.10.1.12

FIQ_RAW_ATTN_STATUS 0x38 FIQ Raw Attention
Status

FIQ un-masked version of the
ME’s attention interrupt
request.

Section 5.10.1.13

IRQ_RAW_ATTN_STATUS 0x38 IRQ Raw Attention
Status

IRQ un-masked version of the
ME’s attention interrupt
request.

Section 5.10.1.13

FIQ_ATTN_STATUS 0x3C FIQ Attention
Status

FIQ masked version of the
ME’s attention interrupt
request.

Section 5.10.1.14

IRQ_ATTN_STATUS 0x40 IRQ Attention
Status

IRQ masked version of the
ME’s attention interrupt
request.

Section 5.10.1.14

FIQ_ATTN_ENABLE 0x44 FIQ Attention
Enable FIQ attention request enable Section 5.10.1.15

FIQ_ATTN_ENABLE_SET 0x44 FIQ Attention
Enable Set

FIQ attention request enable
set (W1S) Section 5.10.1.16

IRQ_ATTN_ENABLE 0x48 IRQ Attention
Enable IRQ attention request enable Section 5.10.1.15

IRQ_ATTN_ENABLE_SET 0x48 IRQ Attention
Enable Set

IRQ attention request enable
set (W1S) Section 5.10.1.16

FIQ_ATTN_ENABLE_CLEAR 0x4C FIQ Attention
Enable Clear

Clearing the FIQ attention
enable Section 5.10.1.17

IRQ_ATTN_ENABLE_CLEAR 0x50 IRQ Attention
Enable Clear

Clearing the IRQ attention
enable. Section 5.10.1.17

SOFT_INT 0x54 FIQ Soft Interrupt Software triggered FIQ
interrupt Section 5.10.1.6

SCRATCH_RING_STATUS 0x58 FIQ Raw Ring Full
Status

FIQ un-masked version of the
Shac’s ring full indicator Section 5.10.1.7

Table 5-67. Intel XScale Core Gasket Configuration Register Map

Abbreviation Address
[9:0] Name Description
542 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
IRQ_ERR_ENABLE 0x2C IRQ Error Enable IRQ error interrupt enable Section 5.10.1.10

IRQ_ERR_ENABLE_SET 0x2C IRQ Error Enable
Set

Setting of the IRQ error enable
register. Section 5.10.1.11

FIQ_ERR_ENABLE_CLEAR 0x30 FIQ Error Enable
Clear

Clearing of the FIQ error
enable register. Section 5.10.1.12

IRQ_ERR_ENABLE_CLEAR 0x34 IRQ Error Enable
Clear

Clearing of the IRQ enable
register. Section 5.10.1.12

FIQ_RAW_ATTN_STATUS 0x38 FIQ Raw Attention
Status

FIQ un-masked version of the
ME’s attention interrupt
request.

Section 5.10.1.13

IRQ_RAW_ATTN_STATUS 0x38 IRQ Raw Attention
Status

IRQ un-masked version of the
ME’s attention interrupt
request.

Section 5.10.1.13

FIQ_ATTN_STATUS 0x3C FIQ Attention
Status

FIQ masked version of the
ME’s attention interrupt
request.

Section 5.10.1.14

IRQ_ATTN_STATUS 0x40 IRQ Attention
Status

IRQ masked version of the
ME’s attention interrupt
request.

Section 5.10.1.14

FIQ_ATTN_ENABLE 0x44 FIQ Attention
Enable FIQ attention request enable Section 5.10.1.15

FIQ_ATTN_ENABLE_SET 0x44 FIQ Attention
Enable Set

FIQ attention request enable
set (W1S) Section 5.10.1.16

IRQ_ATTN_ENABLE 0x48 IRQ Attention
Enable IRQ attention request enable Section 5.10.1.15

IRQ_ATTN_ENABLE_SET 0x48 IRQ Attention
Enable Set

IRQ attention request enable
set (W1S) Section 5.10.1.16

FIQ_ATTN_ENABLE_CLEAR 0x4C FIQ Attention
Enable Clear

Clearing the FIQ attention
enable Section 5.10.1.17

IRQ_ATTN_ENABLE_CLEAR 0x50 IRQ Attention
Enable Clear

Clearing the IRQ attention
enable. Section 5.10.1.17

SOFT_INT 0x54 FIQ Soft Interrupt Software triggered FIQ
interrupt Section 5.10.1.6

SCRATCH_RING_STATUS 0x58 FIQ Raw Ring Full
Status

FIQ un-masked version of the
Shac’s ring full indicator Section 5.10.1.7

Table 5-67. Intel XScale Core Gasket Configuration Register Map

Abbreviation Address
[9:0] Name Description
Programmer’s Reference Manual 543

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
FIQ_THD_RAW_STATUS_A_# 0x60-0x6C FIQ Thread A
Raw Status

FIQ un-masked thread A
interrupt status

0x60 and 0x68 for the IXP2400
only

Section 5.10.1.18

IRQ_THD_RAW_STATUS_A_# 0x60-0x6C IRQ Thread A
Raw Status

IRQ un-masked thread A
interrupt status.

0x60 and 0x68 for the IXP2400
only

FIQ_THD_RAW_STATUS_B_# 0x80-0x8C FIQ Thread B
Raw Status

FIQ un-masked thread B
interrupt status.

0x80 and 0x88 for the IXP2400
only

IRQ_THD_RAW_STATUS_B_# 0x80-0x8C IRQ Thread B
Raw Status

IRQ un-masked thread B
interrupt status.

0x80 and 0x88 for the IXP2400
only

FIQ_THD_STATUS_A_# 0xA0-0xAC FIQ Thread A
Status

FIQ masked thread A interrupt
status

0xA0 and 0xA8 for the
IXP2400 only

Section 5.10.1.19

FIQ_THD_STATUS_B_# 0xC0-0xCC FIQ Thread B
Status

FIQ masked thread B interrupt
status

0xC0 and 0xC8 for the
IXP2400 only

IRQ_THD_STATUS_A_# 0xE0-0xEC IRQ Thread A
Status

IRQ masked thread A interrupt
status

0xE0 and 0xE8 for the
IXP2400 only

IRQ_THD_STATUS_B_# 0x100-
0x10C

IRQ Thread B
Status

IRQ masked thread B interrupt
status

0x100 and 0x108 for the
IXP2400 only

FIQ_THD_ENABLE_A_# 0x120-
0x12C

FIQ Thread A
Enable

FIQ thread A interrupt enable

0x120 and 0x128 for the
IXP2400 only

Section 5.10.1.20

FIQ_THD_ENABLE_SET_A_# 0x120-
0x12C

FIQ Thread A
Enable Set

Setting of the FIQ thread A
interrupt enable

0x120 and 0x128 for the
IXP2400 only

Section 5.10.1.21

FIQ_THD_ENABLE_B_# 0x140-
0x14C

FIQ Thread B
Enable

FIQ thread B interrupt enable

0x140 and 0x148 for the
IXP2400 only

Section 5.10.1.20

FIQ_THD_ENABLE_SET_B_# 0x140-
0x14C

FIQ Thread B
Enable Set

Setting of the FIQ thread B
interrupt enable

0x140 and 0x148 for the
IXP2400 only

Section 5.10.1.21

IRQ_THD_ENABLE_A_# 0x160-
0x16C

IRQ Thread A
Enable

IRQ thread A interrupt enable

0x160 and 0x168 for the
IXP2400 only

Section 5.10.1.20

Table 5-67. Intel XScale Core Gasket Configuration Register Map

Abbreviation Address
[9:0] Name Description
544 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.1.1 {IRQ,FIQ}RAW_STATUS

The {IRQ,FIQ}RAW_STATUS register always contain identical data.

IRQ_THD_ENABLE_SET_A_# 0x160-
0x16C

IRQ Thread A
Enable Set

Setting of the IRQ thread A
interrupt enable

0x160 and 0x168 for the
IXP2400 only

Section 5.10.1.21

IRQ_THD_ENABLE_B_# 0x180-
0x18C

IRQ Thread B
Enable

IRQ thread B interrupt enable

0x180 and 0x188 for the
IXP2400 only

Section 5.10.1.20

IRQ_THD_ENABLE_SET_B_# 0x180-
0x18C

IRQ Thread B
Enable Set

Setting of the IRQ thread B
interrupt enable

0x180 and 0x188 for the
IXP2400 only

Section 5.10.1.21

FIQ_THREAD_ENABLE_CLEAR_A_# 0x1A0-
0x1AC

FIQ Thread A
Enable Clear

Clearing of the FIQ thread A
interrupt enable

0x1A0 and 0x1A8 for the
IXP2400 only

Section 5.10.1.22

FIQ_THREAD_ENABLE_CLEAR_B_# 0x1C0-
0x1CC

FIQ Thread B
Enable Clear

Clearing of the FIQ thread B
interrupt enable

0x1C0 and 0x1C8 for the
IXP2400 only

IRQ_THREAD_ENABLE_CLEAR_A_# 0x1E0-
0x1EC

IRQ Thread A
Enable Clear

Clearing of the IRQ thread A
interrupt enable

0x1E0 and 0x1E8 for the
IXP2400 only

IRQ_THREAD_ENABLE_CLEAR_B_# 0x200-
0x20C

IRQ Thread B
Enable Clear

Clearing of the IRQ thread B
interrupt enable.

0x200 and 0x208 for the
IXP2400 only

Table 5-67. Intel XScale Core Gasket Configuration Register Map

Abbreviation Address
[9:0] Name Description

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVE
D

T
H

D
96-127_B

T
H

D
64-95_B

T
H

D
32-63_B

T
H

D
0-31_B

RESERVE
D

T
H

D
96-127_A

T
H

D
64-95_A

T
H

D
32-63_A

T
H

D
0-31_A

P
C

I_IN
T

M
E

_A
T

T
N

P
C

I_D
B

E
LL

D
M

A
2_D

O
N

E

D
M

A
1_D

O
N

E

D
M

A
0_D

O
N

E

S
P

_F
IN

T

P
M

U
_IN

T

T
M

R
[3:0]_U

F
LW

G
P

IO
_IN

T

U
A

R
T

_IN
T

E
R

R
_S

U
M

S
O

FT
IN

T

Programmer’s Reference Manual 545

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Bits Field Description RW Reset

[31:28] RESERVED Reserved RO 0

[27] THD96-127_B

OR of all interrupt bits in the THD_RAW_STATUS_B_3
register. To clear, write 1 to the THD_RAW_STATUS_B_3
register.

IXP2800 only. Reserved on IXP2400.

RO 0

[26] THD64-95_B
OR of all interrupt bits in the THD_RAW_STATUS_B_2
register. To clear, write 1 to the THD_RAW_STATUS_B_2
register.

RO 0

[25] THD32-63_B

OR of all interrupt bits in the THD_RAW_STATUS_B_1
register. To clear, write 1 to the THD_RAW_STATUS_B_1
register.

IXP2800 only. Reserved on IXP2400.

RO 0

[24] TH0-31_B
OR of all interrupt bits in the THD_RAW_STATUS_B_0
register. To clear, write 1 to the THD_RAW_STATUS_B_0
register.

RO 0

[23:20] RESERVED Reserved RO 0

[19] THD96-127_A

OR of all interrupt bits in the THD_RAW_STATUS_A_3
register. To clear, write 1 to the THD_RAW_STATUS_A_3
register.

IXP2800 only. Reserved on IXP2400.

RO 0

[18] THD64-95_A
OR of all interrupt bits in the THD_RAW_STATUS_A_2
register. To clear, write 1 to the THD_RAW_STATUS_A_2
register.

RO 0

[17] THD32-63_A

OR of all interrupt bits in the THD_RAW_STATUS_A_1
register. To clear, write 1 to the THD_RAW_STATUS_A_1
register.

IXP2800 only. Reserved on IXP2400.

RO 0

[16] THD0-31_A
OR of all interrupt bits in the THD_RAW_STATUS_A_0
register. To clear, write 1 to the THD_RAW_STATUS_A_0
register.

RO 0

[15] PCI_INT The OR of external PCI interrupt A & B. RO 0

[14] ME_ATTN OR of all the bits in the Microengine attention register. RO 0

[13] PCI_DOORBELL A PCI device has set the doorbell interrupt. To Clear, write 1
to the PCI’s Intel XScale core doorbell register. RO 0

[12] DMA2_DONE Completion status from the DMA2 engine. RO 0

[11] DMA1_DONE Completion status from the DMA1 engine. This bit is
reserved for the IXP2800. RO 0

[10] DMA0_DONE Completion status from the DMA0 engine. RO 0

[9] SP_FINT
Slow Port interrupt. This interrupt is forwarded from the
external framer. To clear this bit, refer to the manual of the
framer device.

RO 0

[8] PMU_INT PMU interrupt. To clear, write 0 to the PMU status register. RO 0

[7:4] TIMER[3:0]_UFLW
Timer underflow indicator. This bit is set when timer has
decremented to zero. Clear this bit by writing any value to
the TimerClear register.

RO 0

[3] GPIO_INT Indicates an interrupt request from the GPIO unit. To clear,
write 1 to the GPIO interrupt status register. RO 0
546 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.1.2 {IRQ,FIQ}STATUS

This read-only register is a bit-wise AND of {IRQ,FIQ}RAW_STATUS and {IRQ,FIQ}ENABLE.

5.10.1.3 {IRQ,FIQ}ENABLE

This read-only register is used to mask the interrupt input sources and defines which active sources
generate an interrupt request to the Intel XScale core. The value of this register can only be
changed by writing to the {IRQ,FIQ}ENABLE_SET and {IRQ,FIQ}ENABLE_CLR registers.

5.10.1.4 {IRQ,FIQ}ENABLE_SET

This write-only register is used to set bits in the {IRQ,FIQ}ENABLE register.

[2] UART_INT
Indicates an UART interrupt request. There are multiple
conditions which triggers the interrupt, refer to the UART
section to clear the interrupt.

RO 0

[1] ERROR_SUM OR of all interrupt bits in the ErrorStatus register. RO 0

[0] SOFTINT
Software is able to generate IRQ or FIQ through this bit. To
set this bit, write 1 to the {IRQ,FIQ}SOFT[0]. To clear this
bit, write 0 to the [IRQ,FIQ}SOFT[0].

RO 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

{IRQ,FIQ}STATUS ref to Section 5.10.1.1 for bit layout

Bits Field Description RW Reset

[31:0] {IRQ,FIQ}STATUS

A 1 in a bit position indicates that the associated interrupt
source is both active and enabled. The IRQ/FIQ will be
asserted to the processor based on the OR of all of the bits
in this register.

RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

{IRQ,FIQ}ENABLES ref to Section 5.10.1.1 for bit layout

Bits Field Description RW Reset

[31:0] {IRQ,FIQ} ENABLE
A 1 indicates that the associated interrupt source is enabled
and allows an interrupt request. A 0 indicates that the
interrupt is disabled.

RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

{IRQ,FIQ}ENABLE_SET ref to Section 5.10.1.1 for bit layout
Programmer’s Reference Manual 547

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.1.5 {IRQ,FIQ}ENABLE_CLR

This write-only register is used to clear bits in the {IRQ,FIQ}ENABLE register.

5.10.1.6 {IRQ,FIQ}SOFT_INT

This write-only register can be used to generate an IRQ/FIQ under software control.

5.10.1.7 SCRATCH_RING_STATUS

This read-only register of the scratch ring full status. A ‘1’ in a particular bit location indicates the
corresponding scratch ring (Scratch rings are numbered from 0 to 15) is full. A zero indicate the
ring is not full and theIntel XScale core can issue a put into the ring.

Bits Field Description RW Reset

[31:0]
{IRQ,FIQ}

ENABLE_SET

When writing to this location, each data bit that is high
causes the corresponding bit in the {IRQ,FIQ}ENABLE
register to be set. Data bits that are low have no effect.

W1S 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

{IRQ,FIQ}ENABLE_CLR ref to Section 5.10.1.1 for bit layout

Bits Field Description RW Reset

[31:0]
{IRQ,FIQ}

ENABLE_CLR

When writing to this location, each data bit that is high
causes the corresponding bit in the {IRQ,FIQ}ENABLE
register to be cleared. Data bits that are low have no effect.

W1
C 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

 S
FT

_IN
T

Bits Field Description RW Reset

[31:1] RESERVED Reserved. Don’t care RO 0

[0] {IRQ,FIQ} SOFT_INT
This bit generates bit[0] (as either 0 or 1) of the
RAW_STATUS register (and its current state can be found
by reading that register).

W 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED RINGFULL
548 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.1.8 {IRQ,FIQ}ERR_RAW_STATUS

This read-only register is an unmasked version of the error status. The
{IRQ,FIQ}ERR_RAW_STATUS read-only register always contain identical data.

Bits Field Description RW Reset

[31:16] RESERVED Reserved RO 0

[15:0] RINGFULL
Scratch ring full indicator. A one indicate when the Scratch
memory ring is full. A zero indicates that it’s safe to issue
put to the ring.

RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

S
P

_IN
T

P
C

I_E
R

R

M
E

D
IA

_E
R

R

RESERVE
D

S
R

A
M

3_E
R

R

S
R

A
M

2_E
R

R

S
R

A
M

1_E
R

R

S
R

A
M

0_E
R

R

RESERVED

D
R

A
M

2_E
C

C
_M

A
J

D
R

A
M

2_E
C

C
_M

IN

D
R

A
M

1_E
C

C
_M

A
J

D
R

A
M

1_E
C

C
_M

IN

D
R

A
M

0_E
C

C
_M

A
J

D
R

A
M

0_E
C

C
_M

IN

Bits Field Description RW Reset

[31:27] RESERVED Reserved RO 0

[26] SP_INT Slow Port interrupt. To clear, write 1 to the Slow Port’s fault
status register. RO 0x0

[25] PCI_ERR

PCI error indicator. To clear, read the
XSCALE_ERR_STATUS register in the PCI unit to identify
the source of the interrupt and then write 1 to the
corresponding bit in the PCI_CONTROL register.

Note that some interrupt sources have to be cleared by
writing 1 to the corresponding bits in the PCI_CONTROL
register and the PCI_CMD_STAT register. for details on the
requirements of clearing each interrupt refer to the bit
description in the XSCALE_ERR_STATUS register. in the
PCI unit.

RO 0

[24] MEDIA_ERR Media error indicator. To clear, write 1 to the error bit in the
MSF interrupt status register. RO 0

[23:20] RESERVED Reserved RO 0

[19] SRAM3_ERR

Indicates a SRAM parity error has occurred in SRAM
channel 3. To clear, write 1 to the error bit in the SRAM3
parity status register.

IXP2800 only. Reserved on IXP2400.

RO 0

[18] SRAM2_ERR

Indicates a SRAM parity error has occurred in SRAM
channel 2. To clear, write 1 to the error bit in the SRAM2
parity status register.

IXP2800 only. Reserved on IXP2400.

RO 0

[17] SRAM1_ERR
Indicates a SRAM parity error has occurred in SRAM
channel 1. To clear, write 1 to the error bit in the SRAM1
parity status register.

RO 0
Programmer’s Reference Manual 549

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Note: For the IXP2400, there are only two SRAM channels and one DRAM channel, therefore bits 19,
18, and 5-2 are reserved bits.

5.10.1.9 {IRQ,FIQ}ERR_STATUS

This read-only register is a bit-wise AND of {IRQ,FIQ}ERR_RAW_STATUS and
{IRQ,FIQ}ERR_ENABLE.

[16] SRAM0_ERR
Indicates a SRAM parity error has occurred in SRAM
channel 0. To clear, write 1 to the error bit in the SRAM0
parity status register.

RO 0

[15:6] RESERVED Reserved RO 0

[5] DRAM2_ECC_MAJ

Uncorrectable ECC error occurred in DRAM channel 3. To
clear, write 1 to the error bit in the DRAM3 error status
register

IXP2800 only. Reserved on IXP2400.

RO 0

[4] DRAM2_ECC_MIN

Correctable ECC error occurred in DRAM channel 3. To
clear, write 1 to the error bit in the DRAM3 error status
register.

IXP2800 only. Reserved on IXP2400.

RO 0

[3] DRAM1_ECC_MAJ

Uncorrectable ECC error occurred in DRAM channel 2. To
clear, write 1 to the error bit in the DRAM2 error status
register

IXP2800 only. Reserved on IXP2400.

RO 0

[2] DRAM1_ECC_MIN

Correctable ECC error occurred in DRAM channel 1. To
clear, write 1 to the error bit in the DRAM1 error status
register.

IXP2800 only. Reserved on IXP2400.

RO 0

[1] DRAM0_ECC_MAJ
Uncorrectable ECC error occurred in DRAM channel 0. To
clear, write 1 to the error bit in the DRAM0 error status
register

RO 0

[0] DRAM0_ECC_MIN
Correctable ECC error occurred in DRAM channel 0. To
clear, write 1 to the error bit in the DRAM0 error status
register.

RO 0

Bits Field Description RW Reset

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

{IRQ,FIQ} ERR_STATUS ref to Section 5.10.1.8 for bit layout

Bits Field Description RW Reset

[31:0]
{IRQ,FIQ}

ERR_STATUS

A 1 in a bit position indicates that the associated interrupt
source is both active and enabled. The IRQ/FIQ will be
asserted to the processor based on the OR of all of the bits
in this register if the error bit in {IRQ,FIQ}ENABLE is set.

RO 0
550 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.1.10 {IRQ,FIQ}ERR_ENABLE

This read-only register is used to mask the error interrupt sources and defines which active errors
can generate an interrupt request to the Intel XScale core. The value of this register can only be
changed by writing to the {IRQ,FIQ}ERR_ENABLE_SET and {IRQ,FIQ}ERR_ENABLE_CLR
registers.

5.10.1.11 {IRQ,FIQ}ERR_ENABLE_SET

This write-only register is used to set bits in the {IRQ,FIQ}ERR_ENABLE register.

5.10.1.12 {IRQ,FIQ}ERR_ENABLE_CLR

This write-only register is used to clear bits in the {IRQ,FIQ}ERR_ENABLE register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

{IRQ,FIQ} ERR_ENABLE ref to Section 5.10.1.8 for bit layout

Bits Field Description RW Reset

[31:0]
{IRQ,FIQ}

ERR_ENABLE

A 1 indicates that the associated error interrupt is enabled
and allows an interrupt request. A 0 indicates that the
interrupt is disabled.

RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

{IRQ,FIQ} ERR_ENABLE_SET ref to Section 5.10.1.8 for bit layout

Bits Field Description RW Reset

[31:0]
{IRQ,FIQ}

ERR_ENABLE_SET

When writing to this location, each data bit that is high
causes the corresponding bit in the
{IRQ,FIQ}ERR_ENABLE register to be set. Data bits that
are low have no effect.

W1
S 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

{IRQ,FIQ} ERR_ENABLE_CLR ref to Section 5.10.1.8 for bit layout

Bits Field Description RW Reset

[31:0]
{IRQ,FIQ}

ERR_ENABLE_CLR

When writing to this location, each data bit that is high
causes the corresponding bit in the
{IRQ,FIQ}ERR_ENABLE register to be cleared. Data bits
that are low have no effect.

W1
C 0
Programmer’s Reference Manual 551

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.1.13 {IRQ,FIQ}RAW_ATTN_STATUS

This read-only register is an unmasked version of the Microengine attention status. The
{IRQ,FIQ}ATTN_RAW_STATUS read-only register always contain identical data.

5.10.1.14 {IRQ,FIQ}ATTN_STATUS

This read-only register is a bit-wise AND of {IRQ,FIQ}ATTNRAWSTATUS and
{IRQ,FIQ}ATTNENABLE.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

M
E

1_7

M
E

1_6

M
E

1_5

M
E

1_4

M
E

1_3

M
E

1_2

M
E

1_1

M
E

1_0

M
E

0_7

M
E

0_6

M
E

0_5

M
E

0_4

M
E

0_3

M
E

0_2

M
E

0_1

M
E

0_0

Bits Field Description RW Reset

[31:16] RESERVED Reserved RO 0

[15:0]
ME0_1..ME0_7

ME1_1..ME1_7

Microengine’s attention request. Attention request is
asserted on conditions when the Microengine is unable to
request an interrupt through micro-code. To clear, write 1 to
the Microengine’s attention clear bit.

ME0_1 = Cluster 0, ME 1 and ME1_7 = Cluster 1, ME 7

MEx_4..MEx_7 are reserved for IXP2400.

RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

M
E

1_7

M
E

1_6

M
E

1_5

M
E

1_4

M
E

1_3

M
E

1_2

M
E

1_1

M
E

1_0

M
E

0_7

M
E

0_6

M
E

0_5

M
E

0_4

M
E

0_3

M
E

0_2

M
E

0_1

M
E

0_0

Bits Field Description RW Reset

[31:16] RESERVED Reserved RO 0

[15:0]
ME0_1..ME0_7

ME1_1..ME1_7

A 1 in a bit position indicates that the associated interrupt
source is both active and enabled. The IRQ/FIQ will be
asserted to the processor based on the OR of all of the bits
in this register if the error bit in {IRQ,FIQ}ATTNENABLE is
set.

ME0_1 = Cluster 0, ME 1 and ME1_7 = Cluster 1, ME 7

MEx_4..MEx_7 are reserved for IXP2400.

RO 0
552 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.1.15 {IRQ,FIQ}ATTN_ENABLE

This read-only register is used to mask the error interrupt sources and defines which active errors
can generate an interrupt request to the Intel XScale core. The value of this register can only be
changed by writing to the {IRQ,FIQ}ATTN_ENABLE_SET and
{IRQ,FIQ}ATTN_ENABLE_CLR registers.

5.10.1.16 {IRQ,FIQ}ATTN_ENABLE_SET

This write-only register is used to set bits in the {IRQ,FIQ}ATTN_ENABLE register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

M
E

1_7

M
E

1_6

M
E

1_5

M
E

1_4

M
E

1_3

M
E

1_2

M
E

1_1

M
E

1_0

M
E

0_7

M
E

0_6

M
E

0_5

M
E

0_4

M
E

0_3

M
E

0_2

M
E

0_1

M
E

0_0

Bits Field Description RW Reset

[31:16] RESERVED Reserved RO 0

[15:0]
ME0_1..ME0_7

ME1_1..ME1_7

A 1 indicates that the associated error interrupt is enabled
and allows an interrupt request. A 0 indicates that the
interrupt is disabled.

ME0_1 = Cluster 0, ME 1 and ME1_7 = Cluster 1, ME 7

MEx_4..MEx_7 are reserved for IXP2400.

RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

M
E

1_7

M
E

1_6

M
E

1_5

M
E

1_4

M
E

1_3

M
E

1_2

M
E

1_1

M
E

1_0

M
E

0_7

M
E

0_6

M
E

0_5

M
E

0_4

M
E

0_3

M
E

0_2

M
E

0_1

M
E

0_0

Bits Field Description RW Reset

[31:16] RESERVED Reserved RO 0

[15:0]
ME0_1..ME0_7

ME1_1..ME1_7

When writing to this location, each data bit that is high
causes the corresponding bit in the
{IRQ,FIQ}ATTN_ENABLE register to be set. Data bits that
are low have no effect.

ME0_1 = Cluster 0, ME 1 and ME1_7 = Cluster 1, ME 7

MEx_4..MEx_7 are reserved for IXP2400.

W1S 0
Programmer’s Reference Manual 553

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.1.17 {IRQ,FIQ}ATTN_ENABLE_CLR

This write-only register is used to clear bits in the {IRQ,FIQ}ATTNENABLE register.

5.10.1.18 {IRQ,FIQ}THD_RAW_STATUS_$_# ($= A, B and # = 0 - 3)

This register is an unmasked version of the {IRQ,FIQ}THD_STATUS_$_# ($=A,B # = 0-3)

Each of the 128 ME threads on IXP2800 or 64 threads on the IXP2400 can interrupt the IIntel
XScale core on two different interrupts. There are four registers for each type of interrupt, each of
which holds interrupt status for 32 threads. For example, for each thread, one interrupt could be
assigned to normal service request, and the other to error condition. The specific use is by software
convention.

For IXP2400, there are 64 ME threads that are numbered from 0 through 31, and 64 through 95. As
a result, only the registers with names that are ended with _0 and _2 are valid. The registers with
names that are ended with _1 or _3 are Reserved.

For a Microengine thread to generate an interrupt, it writes the CAP XSCALE_INT registers using
the fast_wr or cap[write] instruction. The thread number of the thread doing the write selects
which bit is set; the data is unused.

The Intel XScale core reads these registers to determine the source of the interrupt and it clears
the interrupts by writing a 1 to the bit position it wishes to clear. The interrupts can be enabled to
IRQ or FIQ the same as the other types of interrupts.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

M
E

1_7

M
E

1_6

M
E

1_5

M
E

1_4

M
E

1_3

M
E

1_2

M
E

1_1

M
E

1_0

M
E

0_7

M
E

0_6

M
E

0_5

M
E

0_4

M
E

0_3

M
E

0_2

M
E

0_1

M
E

0_0

Bits Field Description RW Reset

[31:16] RESERVED Reserved RO 0

[15:0]
ME0_1..ME0_7

ME1_1..ME1_7

When writing to this location, each data bit that is high
causes the corresponding bit in the
{IRQ,FIQ}ATTN_ENABLE (Section 5.10.1.15) register to
be cleared. Data bits that are low have no effect.

ME0_1 = Cluster 0, ME 1 and ME1_7 = Cluster 1, ME 7

MEx_4..MEx_7 are reserved for IXP2400.

W1C 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

{IRQ,FIQ} THD_RAW_STATUS
554 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.1.19 {IRQ,FIQ}THD_STATUS_$_# ($= A, B and # = 0 - 3)

This read-only register is a bit-wise AND of {IRQ,FIQ}THD_RAW_STATUS_$_# and
{IRQ,FIQ}THREADENABLE_$_#.

5.10.1.20 {IRQ,FIQ}THD_ENABLE_$_# ($= A, B and # = 0 - 3)

This read-only register is used to mask the thread interrupt sources and defines which active thread
interrupts can generate an interrupt request to the Intel XScale core. The value of this register can
only be changed by writing to the {IRQ,FIQ}THD_ENABLE_SET_$_# and
{IRQ,FIQ}THD_ENABLE_CLR_$_# registers.

Bits Field Description RW Reset

[31:0]
{IRQ,FIQ}

THD_RAW_STATUS

Threads 0-31 - THD_RAW_STATUS_A_0
Threads 32-63 - THD_RAW_STATUS_A_1
Threads 64-95 - THD_RAW_STATUS_A_2
Threads 96-127 - THD_RAW_STATUS_A_3
Threads 0-31 - THD_RAW_STATUS_B_0
Threads 32-63 - THD_RAW_STATUS_B_1
Threads 64-95 - THD_RAW_STATUS_B_2
Threads 96-127 - THD_RAW_STATUS_B_3

A 1 in a bit position indicates that the associated thread
initiated an interrupt

For IXP2400, only A_0, A_2, B_0 and B_2 registers are
valid.

RW1C 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

{IRQ,FIQ}THREADSTATUS

Bits Field Description RW Reset

[31:0] {IRQ,FIQ}
THD_STATUS

A 1 in a bit position indicates that the associated thread
interrupt is both active and enabled. The IRQ/FIQ will be
asserted to the processor based on the OR of all of the bits
in this register if the error bit in {IRQ,FIQ}ENABLE is set.

For IXP2400, # must be 0 or 2.

RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

{IRQ,FIQ}THD_ENABLE

Bits Field Description RW Reset

[31:0] {IRQ,FIQ}THREAD
ENABLE

A 1 indicates that the associated thread interrupt is enabled
and allows an interrupt request. A 0 indicates that the
interrupt is disabled.

For IXP2400, # must be 0 or 2.

RO 0
Programmer’s Reference Manual 555

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.1.21 {IRQ,FIQ}THD_ENABLE_SET_$_# ($= A, B and # = 0 - 3)

This write-only register is used to set bits in the {IRQ,FIQ}THD_ENABLE_$_# register.

5.10.1.22 {IRQ,FIQ}THD_ENABLE_CLR_$_# ($= A, B and # = 0 - 3)

This write-only register is used to clear bits in the {IRQ,FIQ}THD_ENABLE register.

5.10.2 Hash Operation (Intel XScale Core)

Table 5-68 lists the Hash Unit Registers that are addressed by the Intel XScale core when
performing has operations. The registers are designed as pairs of operand and result registers. The
Operand registers are write-only and the Results registers are read-only and they use the same
address. Refer to Chapter 4, “Address Maps” for the base address and details on how they are
accessed. These CSRs can only be accessed by the Intel XScale core.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

{IRQ,FIQ}THD_ENABLE_SET

Bits Field Description RW Reset

[31:0] {IRQ,FIQ}THREAD
ENABLESET

When writing to this location, each data bit that is high
causes the corresponding bit in the
{IRQ,FIQ}THREADENABLE register to be set. Data bits
that are low have no effect.

For IXP2400, # must be 0 or 2.

W1S 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

{IRQ,FIQ}THD_ENABLE_CLR

Bits Field Description RW Reset

[31:0] {IRQ,FIQ}THD_
ENABLE_CLR

When writing to this location, each data bit that is high
causes the corresponding bit in the
{IRQ,FIQ}THD_ENABLE register to be cleared. Data bits
that are low have no effect.

For IXP2400, # must be 0 or 2.

W1C 0

Table 5-68. Hash Operation/Result Register Map (Sheet 1 of 2)

Abbreviation Address Description Section

HASH_OP_48_0 0x00 Hash operand and result registers for
48 bit hashing Section 5.10.2.1

HASH_OP_48_1 0x04
556 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.2.1 HASH_OP_48_# (# = 0,1)

These registers contain the operands and results for 48-bit hash keys. HASH_OP_48_1 contains
the most significant 16 bits of the 48-bit hash operand/result. HASH_OP_48_0 contains the least
significant 32 bits of the 48-bit hash operand/result.

HASH_OP_64_0 0x10 Hash operand and result registers for
64 bit hashing Section 5.10.2.2

HASH_OP_64_1 0x14

HASH_OP_128_0 0x20

Hash operand and result registers for
128 bit hashing Section 5.10.2.3

HASH_OP_128_1 0x24

HASH_OP_128_2 0x28

HASH_OP_128_3 0x2C

HASH_DONE 0x30 Hash operation complete status
register Section 5.10.2.4

Table 5-68. Hash Operation/Result Register Map (Sheet 2 of 2)

Abbreviation Address Description Section

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED HASH_OP_48_1

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

HASH_OP_48_0

Bits Field Description RW Reset

[31:16] Reserved RO undef

[15:0] HASH_OP_48_1 The most significant 16 bits of the 48-bit hash operand/
result. RW undef

Bits Field Description RW Reset

[31:0] HASH_OP_48_0 The least significant 32 bits of the 48-bit hash operand/
result. RW undef
Programmer’s Reference Manual 557

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.2.2 HASH_OP_64_# (# = 0,1)

These registers contain the programmable hash operand/result for generating 64-bit hash keys.
HASH_OP_64_1 contains the most significant 32 bits of the 64-bit hash operand/result.
HASH_OP_64_0 contains the least significant 32 bits of the 64-bit hash operand/result.

5.10.2.3 HASH_OP_128_# (# = 0,1,2,3)

These registers contain the programmable hash operand/result for generating 128-bit hash keys.
HASH_OP_128_3 contains the most significant 32 bits of the 128-bit hash operand/result.
HASH_OP_128_0 contains the least significant 32 bits of the 128-bit hash operand/result.

HASH_OP_128_1 and HASH_OP_128_2 contain bit 32 to bit 95 of the 128-bit hash operand/
result.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

HASH_OP_64_2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

HASH_OP_64_1

Bits Field Description RW Reset

[31:0] HASH_OP_64_1 The most significant 32 bits of the 64-bit hash operand/
result. RW undef

Bits Field Description RW Reset

[31:0] HASH_OP_64_2 The least significant 32 bits of the 64-bit hash operand/
result. RW undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

HASH_OP_128_3

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

HASH_OP_128_2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

HASH_OP_128_1
558 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.2.4 HASH_DONE

This register contain the flag which indicates when a Hash Operation has completed. It is cleared
when the hash operands are written to HASH_OP by the Intel XScale core, and set when the
result is written to HASH_OP by the Hash Unit.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

HASH_OP_128_0

Bits Field Description RW Reset

[31:0] HASH_OP_128_3 The most significant 32 bits (127 to 96) of the 128-bit hash
operand/result. RW undef

Bits Field Description RW Reset

[31:0] HASH_OP_128_2 Contains bits 64 to 95 of the 128-bit hash operand/result. RW undef

Bits Field Description RW Reset

[31:0] HASH_OP_128_1 Contains bits 32 to 63 of the 128-bit hash operand/result. RW undef

Bits Field Description RW Reset

[31:0] HASH_OP_128_0 The least significant 32 bits (31 to 0) of the 128-bit hash
operand/result. RW undef

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED

D
O

N
E

Bits Field Description RW Reset

[31:1] RESERVED Reserved RO 0

[0] DONE
Hash result valid flag.

0—Hash result not yet valid.
1—Hash result is valid.

RO 0
Programmer’s Reference Manual 559

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.3 Breakpoint (Intel XScale Core)

This section provides details of a breakpoint feature within the Intel XScale core that allows
multiple sources for the Intel XScale core break signal and allows the break signal to optionally
be used as a Stop Clock source for the JTAG debug scan feature.

There is a second level of breakpoint enables, similar to the second level of enables for the IRQ and
FIQ interrupts. The first level of enables is shared with the FIQ. FIQ and IRQ can remain enabled
while the breakpoint feature is enabled. A control bit is provided that allows the break signal to be
used either to breakpoint the Intel XScale core or to stop the core clocks. When used to stop the
core clocks, the status of this signal can be read out via the JTAG port, and the JTAG debug scan
feature used to read the internal state of the IXP2800/IXP2400 (excluding the Intel XScale core).

The JTAG debug scan feature is a JTAG method for stopping the IXP2800/IXP2400 internal core
clocks and reading out the state of IXP2800/IXP2400 to aid in determining the cause of a failure.
The additional break sources controlled by the Intel XScale core allow the clocks to be stopped
close to an event that can be specified. The additional Stop Clock sources increase the flexibility in
stopping the clocks. They also increase the likelihood of capturing the state information that will
help in determining the cause of a failure, where the failure state is transient.

Stopping the clocks is not a recoverable operation. Once the clocks are stopped, normal operation
cannot be resumed without reset.

The breakpoint sources are derived from the first level of FIQ interrupt sources within the Intel
XScale core. All of the FIQ interrupt sources, except for the Thread Interrupts, can be used to
either breakpoint the Intel XScale core or stop the core clocks. Details are given in the register
descriptions.

Figure 5-3 illustrates the signal flow through the two enable levels for IRQ, FIQ and the break
signal. The first level of interrupt enables is shared with FIQ. The second level of interrupt enables
is separate from FIQ.
560 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
Figure 5-3. Breakpoint Implementation

Table 5-69 lists the Interrupt Controller Registers. For the Intel XScale core accesses, they are
offsets from base address 0xd700 0000.

Table 5-69. Break Point Register Map for the Intel XScale Core

Abbreviation Address Description Section

BRK_RAW_STATUS 0x220 Breakpoint Raw Status
Un-masked breakpoint status

Section 5.10.2.1

BRK_STATUS 0x224 Breakpoint Status
Masked breakpoint status

BRK_ENABLE 0x228 Breakpoint Enable
Section 5.10.2.2

BRK_ENABLE_SET 0x228 Breakpoint Enable Set

BRK_ENABLE_CLEAR 0x22C Breakpoint Enable Clear Section 5.10.2.3
Programmer’s Reference Manual 561

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.3.1 BRK_RAW_STATUS

The bits in this register indicate the raw values of the various breakpoint sources, without being
masked. The lower 16-bit of this CSR always contains identical data to lower 16-bit of the
{IRQ,FIQ}RawStatus CSRs.

This register currently does not include the PMU interrupts because they have not been defined yet
for the FIQ and IRQ. Once defined for IRQ and FIQ, they will be included for the breakpoint in the
identical form used for the interrupts.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

RESERVED
P

C
I_IN

T

M
E

_A
T

T
N

P
C

I_D
O

O
R

B
E

LL

D
M

A
[2:0]_D

O
N

E

S
P

_F
IN

T

P
M

U
_IN

T

T
IM

E
R

[3:0]_U
F

LO
W

G
P

IO
_IN

T

U
A

R
T

_IN
T

E
R

R
O

R
_S

U
M

S
O

FT
IN

T

Bits Field Description RW Reset

[31:16] RESERVED Reserved RO 0

[15] PCI_INT The OR of external PCI interrupt A & B. RO 0

[14] ME_ATTN OR of all the bits in the ME attention register. RO 0

[13] PCI_DOORBELL A PCI device has set the doorbell interrupt. To Clear, write 1
to the PCI’s Intel XScale core doorbell register. RO 0

[12:10] DMA[2:0]_DONE Completion status from the DMA engine. RO 0

[9] SP_FINT
Slow Port framer interrupt. This interrupt is forwarded from
the external framer. To clear this bit, refer to the manual of
the framer device.

RO 0

[8] PMU_INT PMU interrupt. To clear, write 0 to the PMU interrupt status
register. RO 0

[7:4] TIMER[3:0]_UFLOW
Timer underflow indicator. This bit is set when timer has
decremented to zero. Clear this bit by writing any value to
the TimerClear register.

RO 0

[3] GPIO_INT Indicates an interrupt request from the GPIO unit. To clear,
write 1 to the GPIO interrupt status register. RO 0

[2] UART_INT
Indicates an UART interrupt request. There are multiple
conditions which triggers the interrupt, refer to the UART
section to clear the interrupt.

RO 0

[1] ERROR_SUM OR of all interrupt bits in the ErrorStatus register. RO 0

[0] SOFTINT
Software is able to generate a break through this bit. To set
this bit, write 1 to the FIQ Soft[0]. To clear this bit, write 0 to
the FIQ Soft[0].

RO 0
562 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.3.2 BRK_STATUS

This read-only register is a bit-wise AND of BRK_RAW_STATUS and BRK_ENABLE. This
register is only useful when the breakpoint sources are used to generate an Intel XScale core
break. If used to stop the clocks, this register cannot be read after the clocks have been stopped. In
this case, the source that stopped the clocks will be determined by state information that is scanned
out via the JTAG port.

5.10.3.3 BRK_ENABLE

This read-only register is used to mask the breakpoint input sources and defines which active
sources generate the breakpoint signal. The value of this register can only be changed by writing to
the BRK_ENABLE_SET and BRK_ENABLE_CLR registers.

5.10.3.4 BRK_ENABLE_SET

This write-only register is used to set bits in the BRK_ENABLE register.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

BRK_STATUS

Bits Field Description RW Reset

[31:0] BRK_STATUS
A 1 in a bit position indicates that the associated breakpoint
source is both active and enabled. The breakpoint signal will
be asserted based on the OR of all of the bits in this register.

RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

BRK_ENABLE

Bits Field Description RW Reset

[31:0] BRK_ENABLE
A 1 indicates that the associated breakpoint source is
enabled and allows the breakpoint signal to become active.
A 0 indicates that the breakpoint source is disabled.

RO 0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

BRK_ENABLE_SET

Bits Field Description RW Reset

[31:0] BRK_ENABLE_SET
When writing to this location, each data bit that is high
causes the corresponding bit in the BRK_ENABLE register
to be set. Data bits that are low have no effect.

W1S 0
Programmer’s Reference Manual 563

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
5.10.3.5 BRK_ENABLE_CLR

This write-only register is used to clear bits in the BRK_ENABLE register.

5.11 Intel XScale Co-Processors

The Intel XScale Co-Processor register documentation is published as part of the Intel XScale
core Technology documents. This information is not duplicated here.

5.12 MSF differences between IXP2400 and IXP2800

This section describes the differences between IXP2400 and IXP2800 in terms of configuring and
programming the Media and Switch Fabric Interface unit (MSF).

• On IXP2400, the RBUF elements have to be put into the RBUF element freelist before they
can be used, after a reset. This is done by writing RBUF_ELEMENT_DONE with all element
numbers. This is not required for IXP2800, which comes out of reset with all RBUF elements
ready for use.

• In IXP2400, the TCW to TBUF element alignment varies depending on the TBUF size,
whereas in IXP2800, it does not.

The indexing, in terms of (mpacket offset):(TCW offset)
IXP2400:
64 = 0:0, 1:1, 2:2
128 = 0:0, 2:1, 4:2
256 = 0:0, 4:1, 8:2
e.g. to transmit the 3rd mpacket in TBUF when element size = 128, the offset for Tx_Validate
is 2*8 =16, and the offset for TBUF data is 4*64=256

IXP2800:
64 = 0:0, 1:1, 2:2
128 = 0:0, 2:2, 4:4
256 = 0:0, 4:4, 8:8
e.g. to transmit the 3rd mpacket in TBUF when element size = 128, the offset for Tx_Validate
is 4*8 =32, and the offset for TBUF data is 4*64 =256

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

BRK_ENABLE_CLR

Bits Field Description RW Reset

[31:0] BRK_ENABLE_CLR

When writing to this location, each data bit that is high
causes the corresponding bit in the BRK_ENABLE
register to be cleared. Data bits that are low have no
effect.

W1C 0
564 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
• The SRB_OVERRIDE register has different functionality between IXP2400 and IXP2800. In
IXP2400, it only has an effect in full duplex mode. In IXP2800, it has an effect in both full
duplex and simplex mode.

• IXP2400 requires that the receive enable and transmit enable bits to be set only after the user
software completes configurating the MSF unit. These bits are Rx_En[3:0] in the
MSF_Rx_Control register and Tx_En[3:0] in the MSF_Tx_Control register. In other words,
these two registers need to be written twice during the user software initialization sequence,
once to configure the MSF unit by writing to the rest of these registers while keeping the
Rx_En and Tx_En bits at 0, and another time to enable the desired channels using the Rx_En
and Tx_En bits. The IXP2800 does not have this requirement.

• When the FCIFIFO/FCEFIFO is configured in Full-duplex mode, the IXP2800 automatically
transmits idle CFrames over FCIFIFO/FCEFIFO. On the other hand, the IXP2400 does not
automatically transmit idle CFrames in this case. Moreover, for IXP2400 in this case, the
upper 2 ready bits of the CFrames transmitted over FCIFIFO/FCEFIFO should be ignored.

• In the IXP2800, an RBUF_OVERFLOW interrupt indicates lack of any buffer space to accept
an incoming SPI-4 Frame or CFrame, and data is discarded. In the IXP2400, an
RBUF_OVERFLOW interrupt indicates lack of an available RBUF element, and data is not
discarded.

• In the IXP2800, the vertical parity must be counted for when writing the FCEFIFO register.
The trailing bytes of the last CWord must be set to zero by the software. If the vertical parity
does not fit in the last CWord written into the FIFO, an extra CWord equal to zero must be
written as a place holder for the vertical parity. For example, writing a 5 byte data (d) CFrame
with two bytes of header (h), 4 bytes of extension header (e) and 2 bytes of vertical parity (v)
should have the following format: hhhh eeee, eeee dddd, dddd dd00, 0000 vvvv, where the
comma separates the CWords written to this register, v is a place holder for the vertical parity,
and 0 is padding.

Note: The following differences result from UTOPIA/POS-PHY vs. SPI-4 differences.

• IXP2800 implements SPI-4; IXP2400 implements UTOPIA Levels 1/2/3 and POS-PHY
Levels 2/3. The CSIX implementation on both IXP2400 and IXP2800 should appear identical
from a programmer’s viewpoint.

• IXP2800 allows SPI-4 and CSIX modes to coexist; in IXP2400, UTOPIA/POS and CSIX are
mutually exclusive.

• IXP2400 allows channelization; the 32 bit receive and transmit interfaces each may be divided
into one, two, three, or four independent physical channels. IXP2800 does not support
channelization.

• In IXP2800, RBUF may be segmented into one, two, or three segments. In IXP2400, it can be
segmented into one or two, but not three, segments.

• IXP2400 defines distinct Receive Status Word formats for UTOPIA and POS modes. These
formats are a subset of the one described for SPI-4 on IXP2800.

• IXP2400 defines distinct Transmit Control Word formats for UTOPIA and POS modes. These
formats are a subset of the one described for SPI-4 on IXP2800.

• Due to channelization, IXP2400 has four Rx_Thread_Freelists. Each freelist is bound to a
particular channel. IXP2800 has three Rx_Thread_Freelists.

• Due to channelization, IXP2400’s TBUF may be partitioned into one, two, three, or four
sections. Each section is bound to a particular channel. IXP2800’s TBUF may be divided into
one, two, or three segments.
Programmer’s Reference Manual 565

Intel® IXP2400/IXP2800 Network Processor
Control and Status Registers (CSRs)
• IXP2400’s MSF_Rx_Control and MSF_Tx_Control registers have different formats.

• IXP2400 has some additional registers to configure UTOPIA/POS behavior:
Rx_UP_Control_{0..3} and Tx_UP_Control_{0..3}.

• IXP2400 has additional registers to deal with MPHY, especially transmit handling:
Tx_MPHY_Status, Tx_MPHY_Poll_Limit, and Rx_MPHY_Poll_Limit.

• The Rx_Cal_Length, Rx_Calendar, or Rx_Port_Status registers are specific to IXP2800.
These are associated with the SPI-4 protocol.

• The Tx_Cal_Length, Tx_Calendar, or Tx_Port_Status registers only are specific to IXP2800.
These are associated with the SPI-4 protocol. For transmit scheduling, in place of these
registers IXP2400 has Tx_MPHY_Poll_Limit, and Tx_MPHY_Status registers, which
perform a similar function.

• IXP2400 does not have Rx_Pin_Deskew registers, while IXP2800 has.

• For CSIX-L1 operation, IXP2400 only supports a fixed CWord size of 32 bits; IXP2800
supports 64, 96, and 128 bits in addition to 32 bits.
566 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
UCA Warnings A

A.1 Introduction
This section contains the descriptions of the UCA Warnings.

Table A-1. UCA Warnings (Sheet 1 of 2)

Warning
Number Message Section

4101 Register “REG” was defined but never used. Appendix A.2

4700 TYPE NAME is used before being set. Appendix A.3

4701 TYPE NAME may be used before being set. Appendix A.4

4702 Unreachable Code. Appendix A.5

5000 Command line option "OPTION" overrides previous option. Appendix A.6

5002 The qualifier "any" is being ignored due to "--". Make sure Bit-16 is set in the
WAKEUP_EVENTS register. Appendix A.7

5003 Signal SIGNAL is set while already set (FILENAME:LINE). Appendix A.8

5004 Signal SIGNAL may be set while already set (FILENAME:LINE). Appendix A.9

5007 Doubled Signal SIGNAL is used after being consumed. Appendix A.10

5008 TYPE NAME is set but not used. Appendix A.11

5009 Use of TYPE transfer register REGISTER before I/O operation (FILENAME:LINE) is
complete. Appendix A.12

5011 Terminating I/O operation FILENAME:LINE at end of block because of NAME. Appendix A.13

5012 Signal SIGNAL is doubled for ctx_arb/any. Did you really want this? Appendix A.14

5100 REVISION is not a valid chip revision. Automatically using REVISION. Appendix A.15

5101 Option -REVISION=REVISION overrides previous Minimum Revision of REVISION. Appendix A.16

5102 Option -REVISION=REVISION overrides previous Maximum Revision of REVISION. Appendix A.17

5103 Option -REVISION_MIN=REVISION overrides previous Minimum of REVISION. Appendix A.18

5104 Option -REVISION_MAX=REVISION overrides previous Maximum of REVISION. Appendix A.19

5114 WARNING: "CONSTANT_EXPRESSION". Appendix A.20

5115 Manually allocated address for NAME conflicts with NAME at FILENAME:LINE Appendix A.21

5116 Return register may not contain a valid address. Appendix A.22

5117 Unable to determine end of operation: Queue is unknown and no signal is being
generated. Appendix A.23

5118 The use of numbered signals is obsolete and will be removed in future versions. Please
use named signals: NUMBER Appendix A.24

5121 Operand synonym "SYNONYM" hides previous ".import_var" definition. Appendix A.25

5122 Operand synonym "SYNONYM" translated into itself. Appendix A.26

5124 Local register "REGISTER" hides previous ".operand_synonym" definition. Appendix A.27

5125 Local register "REGISTER" hides previous local definition. Appendix A.28
Programmer’s Reference Manual 567

5126 Local register "REGISTER" hides previous global definition. Appendix A.29

5127 Global TYPE NAME is hidden by NAME declared at FILE LINE. Appendix A.30

5128 Declaration for NAME hides global/module NAME declared at FILE LINE Appendix A.31

5129 Changing "all" to "any" for ctx_arb[kill]. Appendix A.32

5130 NAME has been renamed "NAME". Future assembler versions may not support the old
name. Appendix A.33

5131 SIG_BOTH was specified, but the signal was not manually specified with .addr for %s
opcode. Appendix A.34

5132 Value of 2 specified in "TOKEN" qualifier for "cam_lookup" opcode may result in an
address which exceeds the amount of Local Memory. Appendix A.35

5133 Label LABEL is not followed by a valid uword. Appendix A.36

5134 The directives .xfer_order_rd and .xfer_order_wr are obsolete. For sanity checking,
please use ".reg read" or ".reg write". Appendix A.37

5135 CRC type “crc_16” is not supported, defaulting to “crc_ccitt” Appendix A.38

5136 Option -CPU=n will be phased out. Please use OPTION. Appendix A.39

5137 Use of old-style Reflector Tokens will be removed in the next release. Please update
your code. Appendix A.40

5138 The "ffs" operator will be phased out for instruction "alu". Please use the "ffs" instruction
instead. Appendix A.41

5139 The "ffs" operator will be phased out for instruction "alu". Please use the "ffs" instruction
instead. Appendix A.42

5140 Reference to unreachable label "LABEL" was modified. Appendix A.43

5141 Use of operand_synonym is obsolete and will be removed in future versions. Please
use #define instead. Appendix A.44

5142 For this chip version, writes to “REGISTER NAME” also write to the “active” version of
this register. Appendix A.45

5143 A minimum/maximum processor revision was specified when targeting multiple
processor types. Appendix A.46

5144 In the .init directive, the first data item starts with a '+'. Did you mean this to be an
offset? If so, there should be no spaces before the offset. Appendix A.47

5145 Register "NAME" should be declared as an aggregate because it is referenced as such
at “FILENAME(NUMBER)”. Appendix A.48

5146 Register "NAME" should be referenced as an aggregate because it is declared as such
at “FILENAME(NUMBER)”. Appendix A.49

5147 Ignoring repeated instance of specifier “SPECIFIER_NAME” for directive
"DIRECTIVE_NAME". Appendix A.50

5148 If the context for "INDIRECT_REGISTER_NAME" is swapped in, the write will not take
effect because it has been placed in the defer slot of a context swapping instruction. Appendix A.51

5149 Ignoring invalid specifier SPECIFIER for directive "DIRECTIVE". Appendix A.52

5150 Import variable "VARIABLE" does not begin with "i$", so "isimport()" incorrectly
returned false. Appendix A.53

5151 Declaration for "REGISTER" hides previous declaration at FILENAME(NUMBER). Appendix A.54

Table A-1. UCA Warnings (Sheet 2 of 2)

Warning
Number Message Section

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
A.2 UCA Warning (level 4) 4101

Register “REG” was defined but never used.

Description: The specified register was defined but was not referenced.

Example:
.reg x

; no other reference to x

How to Fix: No fix required. To get rid of the warning, delete the specified register declaration.

A.3 UCA Warning (level 1) 4700

TYPE NAME is used before being set.

Description: The specified register or signal is used before being set. The TYPE field identifies the type of
NAME. The TYPE can be “Signal”, “Read Transfer Register”, “Write Transfer Register”, or
“Register”.

This warning indicates that the specified register or signal is definitely being used before it is set.

Example:
.reg x

alu[--,--,b,x]

How to Fix: This warning indicates a programming error. The source code should be rewritten to set the register
to an appropriate value before it is used.

A.4 UCA Warning (level 3) 4701

TYPE NAME may be used before being set.

Description: The specified register or signal may be used before being set. The TYPE field identifies the type of
NAME. The TYPE can be “Signal”, “Read Transfer Register”, “Write Transfer Register”, or
“Register”.

This warning indicates that the specified register or signal is set before being used on some
possible paths of execution, but is used before being set on others. This may be caused by a
programming error, or it may be due to the assembler assuming that all conditionals are
independent.

This warning does not indicate that there is definitely a programming error, but rather that there is a
possibility of a programming error.

For more details, see Section 2.8.10, “Register Allocatior Directives.

Example: Example
.reg r1 r2

… ; set r1
Programmer’s Reference Manual 569

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
.if (r1 == 1)

immed[r2, 0]

.endif

… ; doesn’t change r1

.if (r1 == 1)

alu[--,--,b,r2]

.endif

How to Fix: The programmer should check whether there are any valid paths where the specified register is
used before being set. For example, in the above example, if the second conditional were “.if (r1 ==
2)” then it would be possible for the ALU instruction to be executed without the IMMED. This
indicates a programming problem, and the code should be rewritten to avoid this situation.

If, however, all valid paths do set the register before using it (in the above example, this is true
because either both IFs are taken or both are skipped), then one can put a “.set NAME”
immediately before the first branch, so that all paths back from the use see the set. Note that it is
incorrect to put the .set between an actual assignment and the use. In this case, the assembler would
assume that the actual assignment was irrelevant.

Alternately, the warning-level mechanism (e.g. a command-line argument of –W2) can be used to
suppress this warning.

A.5 UCA Warning (level 2) 4702

Unreachable Code.

Description: This is the first line of a block of code that cannot be reached during normal microcode execution.
This may be due to a gross programming bug, the omission of the TARGETS parameter on JUMP
instructions, or by having invalid values stored in the register used in RTN.

A common situation where this can occur is within a macro that uses the .if construct, but where
the macro is called with a constant rather than a register (see example below).

The presence of this warning may or may not indicate a programming error. It is considered a level-
2 warning, though, because it can cause other spurious warnings to appear. In the present UCA
implementation, the assembler “assumes” that execution can start at the first uword and at all of the
“unreachable code” lines. This second aspect can cause spurious warnings, typically of the “used
but not set” variety.

UCA handling of unreachable code will be improved in a future release.

Example:
#macro incr(arg, count)

.if (arg == 0)

alu[count, count, +, 1]

.else

alu[count, count, +, 2] ; unreachable

.endif

#endm

…

incr[0, count]
570 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
This results in the indicated line being considered unreachable. It also results in COUNT being
considered used without being set at the same line.

How to Fix: If the unreachable line is due to a programming error, then the error needs to be corrected. If it is
due to the situation shown in the example, then one solution would be to rewrite the macro to test
ARG to see if it is a constant, and to use #if rather than .if in this case. Alternately, the warning can
be ignored until handling of unreachable lines is improved. A “#pragma warning” can be used to
disable this particular warning, but there is no good way to prevent spurious warnings generated by
this other than using a “#pragma warning” to disable each one as it occurs.

A.6 UCA Warning (level 1) 5000

Command line option "OPTION" overrides previous option.

Description
Description: The command line option overrides a previous option. This warning is generated when a command

line option was repeated or two mutually exclusive command line options were provided.

Example:
uca -ixp2400 -ixp2800 file.uc

How to Fix: Remove the unwanted option.

A.7 UCA Warning (level 3) 5002

The qualifier "any" is being ignored due to "--". Make sure Bit-16 is set in the
WAKEUP_EVENTS register.

Description: The code contains “ctx_arb[--], any”. Because of the “--”, the “any” qualifier is being ignored. The
programmer needs to make sure that in computing the value that is written into the
WAKEUP_EVENTS register, that bit-16 (which indicates “any”) is being set.

In other words, when used with “ctx_arb[--]”, the “any” token has no functional significance and is
merely a hint to the reader of the code. If this hint is to be accurate, then the programmer must
make sure that bit-16 is set in the WAKEUP_EVENTS register.

This is not an indication of a programming error, it is a reminder to the programmer.

Example:
ctx_arb[--], any

How to Fix: Either the “any” token can be removed, or a “#pragma warning” can be used to disable this
warning.

A.8 UCA Warning (level 1) 5003

Signal SIGNAL is set while already set (FILENAME:LINE).
Programmer’s Reference Manual 571

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
Description: The indicated signal is definitely set while it is already set; i.e. there is a missing CTX_ARB or
“BR_!SIGNAL” between the two sets. The problem here is that one does not know when the
second signal arrives because it will be masked by the first signal.

This warning indicates a programming error.

Example:
sram[read, $x, addr,0, 1], sig_done[sig] ; This sets sig

sram[read, $y, addr,1, 1], sig_done[sig] ; This sets sig again

How to Fix: A CTX_ARB, BR_SIGNAL, or BR_!SIGNAL needs to be inserted as appropriate to clear the
signal between the two settings of it.

A.9 UCA Warning (level 3) 5004

Signal SIGNAL may be set while already set (FILENAME:LINE).

Description: The indicated signal is possibly set while it is already set; i.e. there is a missing CTX_ARB or
“BR_!SIGNAL” between the two sets. This may be caused by a programming error, or it may be
due to the assembler assuming that all conditionals are independent.

This warning does not indicate that there is definitely a programming error, but rather that there is a
possibility of a programming error.

Example:
.set_sig s

.if (a == 0)

sram[read, $x, a,0, 1], sig_done[s]

.endif

nop

.if (a == 0)

ctx_arb[s]

.endif

;;; .io_completed s

sram[read, $x, a,0, 1], ctx_swap[s]

The problem occurs above because the assembler assumes that the first IF can be taken and the
second one skipped, which would result in the last SRAM using the signal before it is cleared.

How to Fix: If the cause is a programming error, then that error needs to be corrected. If it is due to a situation
similar to the above example, then the indicated “.io_completed” can be used to indicate that the I/
O operation is completed and that the signal can be safely re-used. Alternately, after inspection, the
programmer may decide to use the Warning Level or #pragma warning mechanism to mask this
warning.

A.10 UCA Warning (level 1) 5007

Doubled Signal SIGNAL is used after being consumed.
572 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
Description: The indicated signal (which could be “SIGNAL+1”) is a doubled signal, and it is being used in a
context where half of it was consumed on one path but not another. This is indicative of a
programming error.

Example:
sram[swap, $x, a,0], sig_done[s] ; Signal s is doubled

.if (ctx() == 0)

l1#: br_!signal[s,l1#] ; Consumes low half

.endif

ctx_arb[s] ; warning

The problem here is that at the ctx_arb, the assembler doesn’t know whether it should treat s as
being only the “high half” (i.e. s+1) or as “both halves”.

How to Fix: The two (or more) paths should be identified, and the code should be modified so that on all paths
the signal is consumed equivalently (e.g. not consumed, partially consumed, or fully consumed).

A.11 UCA Warning (level 4) 5008

TYPE NAME is set but not used.

Description: The specified register or signal is set but not used. The TYPE field identifies the type of NAME.
The TYPE can be “Signal”, “Read Transfer Register”, “Write Transfer Register”, or “Register”. A
common cause would be setting the register again before it is being used or reading a transfer
register and not using the results.

This warning does not necessarily indicate a programming error; it is of a more informational
nature. However, it is possible that this warning is caused by a programming error.

Example:
immed[x, 0] ; Warning 5008

...

immed[x, 1]

...

alu[--,--,b,x]

The problem is that the value used in the ALU is determined by the second IMMED, and the first
IMMED is therefore immaterial.
alu[dummy,reg,-,5]

bne[label#]

The problem here is that dummy is not referenced and that the ALU is needed to generate a
condition code.
.xfer_order $a $b $c

sram[read, $a, addr,0, 3], ctx_swap[sig]

alu[--,--,b,$a]

alu[--,--,b,$c]

The problem here is that $b is not being used.

How to Fix: If the assignment is not necessary but the ALU is needed for condition codes, then the destination
should be “--”. Otherwise, if the assignment is truly not needed, it can be removed from the code.
Programmer’s Reference Manual 573

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
In the case of the third example, the “.use” directive can be used to generate a “use” of the register
without generating actual microcode.

A.12 UCA Warning (level 1) 5009

Use of TYPE transfer register REGISTER before I/O operation (FILENAME:LINE) is
complete.

Description: A transfer register of the given type (READ/WRITE) is being used in an I/O operation, but it is
being referenced before the I/O operation is known to be complete. This may work some of the
time, but with different loading, this may fail.

Example:
immed[$x, 0]

sram[write, $x, addr,0, 1], sig_done[s]

...

immed[$x, 1] ; Warning 5009

ctx_arb[s]

The problem here is that if the SRAM write is suitably delayed, then the $X can get over-written
with 1 before the SRAM unit fetches the value 0.

sram[read, $x, addr,0, 1], sig_done[s]

ctx_arb[s], defer[1]

alu[--,--,b, $x] ; Warning 5009

Instructions in the defer shadow of a CTX_ARB are executed before the CTX_ARB returns, so
references to the transfer registers in the defer shadow are considered to be executing before the I/
O operation completes. In this case, the ALU will execute before the SRAM/read completes, and
the wrong value of $x will be used.

How to Fix: Wait until the I/O operation completes.

A.13 UCA Warning (level 1) 5011

Terminating I/O operation FILENAME:LINE at end of block because of NAME.

Description: An I/O operation was not completed when the end of a .begin/.end type of block was reached, and
one of the transfer registers or signals being used in the I/O operation was scoped locally to the
block.

The problem is that the registers/signals only have existence within their defining block. After the
block is finished, the associated physical registers/signals are available for reuse. But if the I/O
operation is not really completed, then the associated registers and signals are not really available.

Example:
.sig s

.begin

.reg $x

sram[read, $x, addr,0, 1], sig_done[s]
574 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
nop

nop ; Warning 5011

.end

...

ctx_arb[s]

The problem is that after the “.END”, $x is still going to have a value written into it, but the
programmer has indicated that use of $x should cease outside of that block.

How to Fix: Make sure that all I/O operations are completed before the block is terminated, or declare the
appropriate registers/signals within a higher block/globally.

A.14 UCA Warning (level 3) 5012

Signal SIGNAL is doubled for ctx_arb/any. Did you really want this?

Description: The CTX_ARB instruction was used with a doubled signal with the ANY qualifier. This is
probably not what the programmer intends.

The issue is that the CTX_ARB/ANY mechanism returns when any of the specified signals is
received. But since a doubled signal can come back in either order, there is no useful information
that the programmer can take from this construct. That is, after this CTX_ARB returns, the
programmer doesn’t know which if any of the transfer registers used in the I/O operation are valid
or not.

Example:
dram[read, $$x, addr,0, 4], sig_done[s]

cts_arb[s], any

After this code completes, the programmer still has no idea of whether the I/O operation has
completed or not.

How to Fix: This is probably an inappropriate use of CTX_ARB/ANY. This should probably be changed to a
CTX_ARB/ALL.

A.15 UCA Warning (level 2) 5100

REVISION is not a valid chip revision. Automatically using REVISION.

Description: The chip revision provided on the command line is not valid for this release of the assembler. The
assembler has chosen the nearest revision value.

Example:
uca —REVISION=100 file.uc

How to Fix: Use a valid revision number.
Programmer’s Reference Manual 575

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
A.16 UCA Warning (level 2) 5101

Option -REVISION=REVISION overrides previous Minimum Revision of REVISION.

Description: The minimum revision number was already set by a previous –REVISION or –REVISION_MIN
command line option. Note, the –REVISION option sets both the minimum and maximum target
revisions to the specified value.

Example:
uca —REVISION_MIN=0 —REVISION=1 file.uc

How to Fix: Remove the unwanted revision command line option.

A.17 UCA Warning (level 2) 5102

Option -REVISION=REVISION overrides previous Maximum Revision of REVISION.

Description: The maximum revision number was already set by a previous –REVISION or –REVISION_MAX
command line option. Note, the –REVISION option sets both the minimum and maximum target
revisions to the specified value.

Example:
uca —REVISION=0 —REVISION=1 file.uc

How to Fix: Remove the unwanted revision command line option.

A.18 UCA Warning (level 2) 5103

Option -REVISION_MIN=REVISION overrides previous Minimum of REVISION.

Description: The minimum revision number was already set by a previous –REVISION_MIN or –REVISION
command line option.

Example:
uca —REVISION=0 —REVISION_MIN=1 file.uc

How to Fix: Remove the unwanted revision command line option.
576 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
A.19 UCA Warning (level 2) 5104

Option -REVISION_MAX=REVISION overrides previous Maximum of REVISION.

Description: The minimum revision number was already set by a previous –REVISION_MAX or –REVISION
command line option.

Example:
uca —REVISION_MAX=0 —REVISION_MAX=1 file.uc

How to Fix: Remove the unwanted revision command line option.

A.20 UCA Warning (level 1) 5114

WARNING: "CONSTANT_EXPRESSION".

Description: This warning indicates that the specified constant expression generated a warning. The only
warning at present is:
Future assembler versions will not allow "=" for equality expressions. Please use "=="

Example:
immed[reg, (0=0)]

How to Fix: Replace the “=” with “==”.

A.21 UCA Warning (level 1) 5115

Manually allocated address for NAME conflicts with NAME at FILENAME:LINE

Description: The two registers or signals named had their addresses manually allocated, they are both in use at
the same time, and their addresses conflict.

The warning is reported for one of the address directives and points to the other address directive.

This warning is indicative of a programming error.

Example:
.reg $x $y

.addr $x 0

.addr $y 0

immed[$x,0]

immed[$y,0]

alu[--,--,b,$x]

alu[--,--,b,$y]

How to Fix: Assign one of the registers or signals to a different address or make sure that both registers/signals
are not being used at the same time.
Programmer’s Reference Manual 577

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
A.22 UCA Warning (level 1) 5116

Return register may not contain a valid address.

Description: In order for the assembler to correctly allocate registers and signals, it needs to know where RTN
statements go. In order to do this, there is a requirement that the register used in the RTN
instruction needs to have it’s value loaded with LOAD_ADDR or be a copy of such a value, and it
cannot be used in a previous RTN instruction since being loaded.

For more details, see Section 3.2.42, “RTN.

This warning indicates that this condition was not met. The result is that the flow-graph computed
by the assembler will be incomplete, and there is a strong potential that register/signal allocation
may be faulty.

This warning is indicative of a programming error.

Example:
load_addr[reg, lab#]

alu[reg,reg,+,1] ; this makes the register invalid

...

rtn[reg]

How to Fix: Make sure that the register used in the RTN instruction always has a valid return value in it.

A.23 UCA Warning (level 2) 5117

Unable to determine end of operation: Queue is unknown and no signal is being
generated.

Description: An I/O operation was issued with no signal being generated. In limited cases, this is allowed, but in
general the ordering between separate I/O operations is not guaranteed, so a signal is required.
Otherwise, there is no way to determine when the I/O operation completes.

Example:
sram[read, $x, addr,0, 1]

How to Fix: Supply a signal, either through CTX_SWAP or SIG_DONE.

A.24 UCA Warning (level 2) 5118

The use of numbered signals is obsolete and will be removed in future versions.
Please use named signals: NUMBER

Description: In an earlier version of the assembler, signals could be specified as numeric values. This usage has
been replaced with named signals. There is no longer any reason to use numeric signals, and use of
these may cause strange effects (for example, if a numeric signal is used in the context of a doubled
signal).
578 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
Example:
sram[read, $x, addr,0, 1], sig_done[3]

How to Fix: Replace the signal with a named signal. In necessary, use the .ADDR directive to assign it to
desired numerical value. For example:

.sig SIG3

.addr SIG3 3

sram[read, $x, addr,0, 1], sig_done[SIG3]

A.25 UCA Warning (level 3) 5121

Operand synonym "SYNONYM" hides previous ".import_var" definition.

Description: An operand_synonym directive has defined a name that matches a previous import_var name.
Future references to the name will refer to the operand_synonym value rather than the imported
variable.

This may or may not indicate a programming error.

Example:
.import_var x

.operand_synonym x y

.reg y

alu[--,--,b,x]

The ALU refers to the variable Y rather than the imported X.

How to Fix: For clarity, it is a good idea to not use the same name in this manner. If the programmer’s intent is
that future references to X should really be Y, then nothing needs to be done. Otherwise, the name
of the operand_synonym should be changed.

A.26 UCA Warning (level 4) 5122

Operand synonym "SYNONYM" translated into itself.

Description: An operand synonym is equivalent either directly or indirectly to itself.

Example:
.operand_synonym x y

.operand_synonym y x

Y maps to X which maps back to Y.

How to Fix: Identify the loop and change the code to break it.
Programmer’s Reference Manual 579

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
A.27 UCA Warning (level 4) 5124

Local register "REGISTER" hides previous ".operand_synonym" definition.

Description: A local register’s name matches that of a previous operand_synonym. Future references will refer
to the local register rather than the operand synonym.

Example:
.operand_synonym x y

.local x

immed[y,0]

alu[--,--,b,x]

.endlocal

The ALU references local X rather than Y.

How to Fix: Use a different name.

A.28 UCA Warning (level 4) 5125

Local register "REGISTER" hides previous local definition.

Description: A register declared with .local matches the name of a similar register declared at a higher scope.
Future references will be to the newly-defined register.

This warning is informative and does not indicate that a programming error exists.

Example:
.local x

immed[x,0]

.local x

immed[x,0]

.endlocal

.endlocal

How to Fix: Either a different name can be used, or this warning can be suppressed.

A.29 UCA Warning (level 4) 5126

Local register "REGISTER" hides previous global definition.

Description: A register declared with .local matches the name of a similar register declared at a global scope.
Future references will be to the newly-defined register.

This warning is informative and does not indicate that a programming error exists.
580 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
Example:
.reg global x

immed[x,0]

.local x

immed[x,0]

.endlocal

Description: Either a different name can be used, or this warning can be suppressed.

A.30 UCA Warning (level 4) 5127

Global TYPE NAME is hidden by NAME declared at FILE LINE

Description: A global register is declared within the scope of a register with local scope. References to this name
will refer to the local one until the scope of that local register is exited.

Example:
.begin

.reg x

.reg global x

immed[x,0] ; This refers to the local x, NOT the global one

.end

How to Fix: If the programmer wants to reference the global variable, then one of the names needs to be
changed.

A.31 UCA Warning (level 4) 5128

Declaration for NAME hides global/module NAME declared at FILE LINE

Description: A local register is declared with the same name as a global register. References to this name will
refer to the local one until the scope of that local register is exited.

This is an informational warning and does not indicate a programming problem.

Example:
.begin

.reg global x

.reg x

immed[x,0] ; This refers to the local x, NOT the global one

.end

How to Fix: If the programmer wants to reference the global variable, then one of the names needs to be
changed.
Programmer’s Reference Manual 581

A.32 UCA Warning (level 2) 5129

Changing "all" to "any" for ctx_arb[kill].

Description: The “ctx_arb[kill]” must have no optional tokens or the “any” token. If the code uses the “all”
token, then the assembler changes it to “any” and generates this warning.

Example:
ctx_arb[kill], all

How to Fix: Remove the “all” token or change it to “any”.

A.33 UCA Warning (level 2) 5130

NAME has been renamed "NAME". Future assembler versions may not support the
old name.

Description: During development of the assembler, some names have changed. For compatibility with earlier
releases, this version still accepts the old name, but such support will be removed in future
versions.

Example:
l#: br_inp_state[fcififo_full, l#]

How to Fix: Change the name as indicated.

A.34 UCA Warning (level 1) 5131

SIG_BOTH was specified, but the signal was not manually specified with .addr for
%s opcode.

Description: When SIG_BOTH is specified for a reflector operation, the signal needs to be manually allocated
(to the same address) in both MEs. If it is not manually allocated in the ME containing the reflect
command, then this warning is generated.

This warning indicates a programming error. It is unlikely that the code will function correctly.

Example:
reg $x

.reg remote $r

.sig s

reflect[read, $x, 0, $r, 0, 1], sig_both, ctx_swap[s]

How to Fix: The signal needs to be manually allocated (using the .addr directive) to the same address in both
this and the remote ME.

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
A.35 UCA Warning (level 2) 5132

Value of 2 specified in "TOKEN" qualifier for "cam_lookup" opcode may result in an
address which exceeds the amount of Local Memory.

Description: The optional lm_addr0 or lm_addr1 token indicates that the lookup result should also be loaded
into the given local memory address register. The immediate value provided by the token is written
to bits[11:10] of the register. A lm_addr token value of two results in a base DWORD address of
512. Since the size of local memory is only 640 DWORDs, the result of the lookup could result in
an address that exceeds the valid local memory range.

Example:
cam_lookup [dest, src], lm_addr0[2]

How to Fix: No fix is required if it is known that the lookup result will not exceed the valid memory range.

A.36 UCA Warning (level 3) 5133

Label LABEL is not followed by a valid uword.

Description: A label is applied to a directive that is not followed an actual uword/instruction. Thus, the label
really applies to an undefined instruction following the assembled code.

Example:
nop

l#: .import_var y

; end of file

How to Fix: Either remove the label or add more uwords at the end of the input.

A.37 UCA Warning (level 4) 5134

The directives .xfer_order_rd and .xfer_order_wr are obsolete. For sanity checking,
please use ".reg read" or ".reg write".

Description: In previous versions of the assembler, a transfer register could be declared as “read-only” or “write-
only” by using the .xfer_order_rd or .xfer_order_wr directives. This was supported for backwards
compatibility and in order to support implicit register declarations. The preferred mechanism is to
declare them with either “.reg read” or “.reg write”.

In the current version of the assembler, the lifetimes of transfer registers that are declared
(implicitly or explicity) as BOTH (i.e. both READ and WRITE) are tracked separately, so the only
benefit of using .xfer_order_rd or .xfer_ordre_wr was checking that a read-transfer register was not
written-to, and vice versa.

This feature is no longer supported. In particular, code with uses .xfer_order_rd or .xfer_order_wr
to make transfer registers read or write only should still assemble in the same manner as before.
The only feature lacking is that if source code changes use one of these registers in the “wrong”
manner, this change would not generate an error. If this checking is desired, the code must be
changed to use “.reg read” or “.reg write”.
Programmer’s Reference Manual 583

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
Example:
.xfer_order_rd $x

How to Fix: Use “.reg read” or “.reg write”.

A.38 UCA Warning (level 1) 5135

CRC type “crc_16” is not supported, defaulting to “crc_ccitt”.

Description: In previous versions of the assembler, the CRC-CCITT polynomial was misnamed CRC-16.
Specifying CRC type “crc_16” actually results in a CRC-CCITT calculation. Future versions of the
assembler will generate an error when “crc_16” is specified as a CRC type.

Example:
crc_be [crc_16, dest, src]

How to Fix: Replace the “crc_16” operand with “crc_ccitt”, for example:

crc_be [crc_ ccitt, dest, src].

A.39 UCA Warning (level 1) 5136

Option -CPU=n will be phased out. Please use OPTION.

Description: When using the assembler from the command line, the processor type is no longer specified using
the “-CPU” option. The new command line options, “-ixp2400”, “ixp2800”, and “ixp2xxx” should
be used instead.

Example:
uca –CPU=2 filename.uc

How to Fix: Use the appropriate “-ixpDDDD” option, for example:

uca –ixp2800 filename.uc

A.40 UCA Warning (level 1) 5137

Use of old-style Reflector Tokens will be removed in the next release. Please update
your code.

Description: The syntax for the sig_initiator, sig_both, and sig_remote tokens for the reflector mode of the cap
instruction has changed. Please refer to section 3.2.20 for the new syntax. The old syntax will not
be supported in future releases.

Example:
reflect[write, $xfer0, 0, $reflect_in0, 0, 1], ctx_swap [reflect_done],
sig_initiator
584 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
reflect[write, $xfer0, 0, $reflect_in0, 0, 1], ctx_swap [reflect_done], sig_both

reflect[write, $xfer0, 0, $reflect_in0, 0, 1], sig_done [reflect_done], sig_remote

How to Fix: Update the syntax for the sig_initiator, sig_both, and sig_remote tokens.

A.41 UCA Warning (level 1) 5138

The "ffs" operator will be phased out for instruction "alu". Please use the "ffs"
instruction instead.

Description: Previous versions of the assembler supported the ffs operator for the alu instruction in addition to
the ffs instruction. Future versions of the assembler will only support the ffs instruction.

Example:
alu [dest, --, ffs, src]

How to Fix: Use the ffs instruction, for example:

ffs [dest, src]

A.42 UCA Warning (level 1) 5139

The "vnop" instruction will be phased out. Please use "nop".

Description: In previous versions of the assembler, the optimizer would remove vnop instructions but not nop
instructions. Since the optimizer now removes nop instructions, there is no difference between the
two, making the vnop instruction obsolete.

Example:
crc_be [crc_16, dest, src]

vnop

crc_be [crc_16, dest, src]

How to Fix: Replace vnop instructions with nop instructions.

A.43 UCA Warning (level 1) 5140

Reference to unreachable label "LABEL" was modified.

Description: This warning is generated when a load_addr instruction references an unreachable label. This
indicates that the register loaded by the load_addr instruction was never used by a rtn instruction.

Example:

load_addr [rtn_addr, rtn_label#]
br [subroutine#]

rtn_label#:
Programmer’s Reference Manual 585

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
alu [--, --, b, 0]

…
ctx_arb [kill]

subroutine#:
alu [--, --, b, 1]
; missing rtn [rtn_addr]

How to Fix: Add a rtn instruction (if missing) or remove the unnecessary load_addr instruction and the
unreachable code.

A.44 UCA Warning (level 1) 5141

Use of operand_synonym is obsolete and will be removed in future versions.
Please use #define instead.

Description: The operand_synonym directive has been obsolete for many releases. The operand_synonym was
created to allow the illusion of an arbitrarily large register set by allowing a single physical register
to be referenced by many different names. The register allocator handles this automatically. In
addition, the #define preprocessor directive can be used wherever text substitution is required.

Example:
.operand_synonym $header $xfer0

.operand_synonym constant 0

How to Fix: For new registers, simply declare them with the “.reg” directive. For text substitution, simply use
the #define directive. For example:

.reg $header

.#define constant 0

A.45 UCA Warning (level 1) 5142

For this chip revision, writes to “REGISTER NAME” also write to the “active”
version of this register.

Description: For IXP2400 and IXP2800 revisions earlier than B0, writing any of the following registers:
indirect_lm_addr_0, indirect_lm_addr_0_byte_index, indirect_lm_addr_1,
indirect_lm_addr_1_byte_index also writes the active version of the register: active_lm_addr_0,
active_lm_addr_0_byte_index, active_lm_addr_1, active_lm_addr_1_byte_index, respectively.

Example:
local_csr_wr [indirect_lm_addr_0, 0]

How to Fix: The active version of the register should be written or rewritten after any write to the indirect
register. The warning can be disabled with the #pragma warning directive. For example:

#if (__REVISION_MIN < __REVISION_B0)

.reg original_value

local_csr_rd [active_lm_addr_0]
586 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
immed [original_value,0]

#endif

#pragma warning (push) ; save warning settings

#pragma warning (disable: 5142)

local_csr_wr [indirect_lm_addr_0, value]

#pragma warning (pop) ; restore warning settings

#if (__REVISION_MIN < __REVISION_B0)

local_csr_wr [active_lm_addr_0, original_value]

#endif

A.46 UCA Warning (level 1) 5143

A minimum/maximum processor revision was specified when targeting multiple
processor types.

Description: In general, specifying a minimum or maximum processor revision does not make sense when
targeting multiple processor types, because processor revisions are not correlated across processor
types. Note: IXP2800 revisions are correlated, but no warning is generated in this case.

Example:
uca -ixp2XXX -REVISION_MIN=B0 filename.uc

How to Fix: Remove the revision parameter or specify a specific processor type, For example:

uca -ixp2XXX filename.uc

uca -ixp2800 -REVISION_MIN=B0 filename.uc

A.47 UCA Warinng (level 3) 5144

In the .init directive, the first data item starts with a ’+’. Did you mean this to be an
offset? If so, there should be no spaces before the offset.

Description: A ’+’ on a data item is interpreted as being the sign for the data item. When the assembler finds a "+’
on the the first data item, it is likely that a space has been inadvertently inserted between the region
name and the optional offset, so the assembler reports a warning.

Example:
.local_mem samp_block DRAM 100

.init samp_block +1 -1

.init samp_block +16 0x1234

How to Fix: Either remove the space or the ’+’:

.local_mem samp_block DRAM 100

.init samp_block 1 -1

.init samp_block+16 0x1234
Programmer’s Reference Manual 587

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
A.48 UCA Warning (level 1) 5145

Register "NAME" should be declared as an aggregate because it is referenced as
such at “FILENAME(NUMBER)”.

Description: Previous versions of the assembler somewhat supported aggregate notation by removing brackets
from register names that were in aggregate notation, e.g. $name[0] would become $name0. This
meant that register references could use aggregate notation, but declarations could not. Now that
the assembler has true support for aggregates, the assembler will first try to match an aggregate
reference to an aggregate declaration. If the register is not found, the assembler will default to the
old behavior and remove the brackets. Microcode should be updated to take advantage of the
aggregate support.

Example:
; "aggregate" declaration prior to full aggregate support

.reg $name0 $name1 $name2 $name3

immed[$name[0],0]

How to Fix: Replace declarations with aggregates:

; aggregate declaration now supported

.reg $name[4]

immed [$name[0],0]

A.49 UCA Warning (level 1) 5146

Register "NAME" should be referenced as an aggregate because it is declared as
such at “FILENAME(NUMBER)”.

Description: Previous versions of the assembler somewhat supported aggregate notation by removing brackets
from register names that were in aggregate notation, e.g. $name[0] would become $name0. This
meant that aggregate and non-aggregate names (e.g. $name[0] and $name0) could be used inter-
changeably. If a declaration is updated to use aggregate notation (perhaps in response to warning
#5145), any non-aggregate references which do not match another register will match the
aggregate declaration, but generate this warning. Microcode should be updated to take advantage
of the full support for aggregates.

Example:
; declaration updated to use aggregate notation

.reg $name[4]

immed[$name[0], 0]

immed[$name1, 0] ; non-aggregate reference of register will match $name[1], but
trigger warning

How to Fix: Update all non-aggregate references to use aggregate notation. The example above becomes:

.reg $name[4]

588 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
immed[$name[0], 0]

immed[$name[1], 0]

A.50 UCA Warning (level 1) 5147

Ignoring repeated instance of specifier “SPECIFIER_NAME” for directive
"DIRECTIVE_NAME".

Description: A specifier for the given directive was provided more than once.

Example:
#pragma optimize ("dd", off)

How to Fix: Remove extra instance of specifier:

#pragma optimize ("d", off)

A.51 UCA Warning (level 2) 5148

If the context for "INDIRECT_REGISTER_NAME" is swapped in, the write will not
take effect because it has been placed in the defer slot of a context swapping
instruction.

Description: Due to the latency in writing local CSRs, the active CSR for the swapped in context will be loaded
with the indirect CSR before the write to the indirect CSR has completed. If the swapped in context
is the same as the indirect write context (CSR_CTX_POINTER), then the indirect write is
effectively dropped.

Example:
ctx_arb[signal], defer[1]

local_csr_wr [indirect_lm_addr_0, value]

How to Fix: If by design, the swapped in context can never match the context selected by
CSR_CTX_POINTER, then the warning can be disabled by:

#pragma warning (disable: 5148)

Otherwise, the local_csr_wr should be moved out of the defer shadow.
Programmer’s Reference Manual 589

A.52 UCA Warning (level 2) 5149

Ignoring invalid specifier SPECIFIER for directive "DIRECTIVE".

Description: The given specifier is not one recognized by the given directive, and it is therefore being ignored.

Example:
#pragma optimize ("g", off)

How to Fix: Provide the correct specifier. If the directive is in an include file processed by another tool (e.g. a
compiler) the warning can be ignored or disabled.

A.53 UCA Warning (level 1) 5150

Import variable "VARIABLE" does not begin with "i$", so "isimport()" incorrectly
returned false.

Description: The preprocessor function isimport() looks for an “i$” prefix in order to determine whether a token
is an import variable or not. The preprocessor must rely on this naming convention because it has
no knowledge of microcode syntax and therefore does not understand .import_var directives. The
function and naming convention were introduced with version 3.5 of the assembler.

To assist the programmer, the preprocessor maintains a list of tokens for which isimport() returned
false. If an import variable is later declared with one of those token names, the assembler reports
this warning. This warning may occur when using standard macros, as they make use of the
isimport() function.

For more information on the new naming convention, please see the description for the .import_var
directive.

Example:
#macro mymacro(a)

 #if (isimport(a))

 ; do something

 #else

 ; do something else

 #endif

#endm

.import_var noprefix

mymacro(noprefix)

How to Fix: Add the “i$” prefix to the import variable:

.import_var i$withprefix

mymacro (i$withprefix)

Intel® IXP2400/IXP2800 Network Processor
UCA Warnings
A.54 UCA Warning (level 4) 5151

Declaration for "REGISTER" hides previous declaration at FILENAME(NUMBER).

Description: A local register is declared with the same name as another local register in an enclosing begin/end
block. References to this name will refer to the one in the innermost block until the scope of that
local register is exited.

This is an informational warning and does not necessarily indicate a programming problem.
However, this warning may be useful in detecting the situation where a macro declares a register
with the same name as a macro parameter.

Example:
#macro mymacro(result)

.begin

 .reg tmp

 immed[tmp, 0x1234]

 alu[result,--,b,tmp]

.end

#endm

.begin

 .reg tmp

 mymacro(tmp)

.end

How to Fix: If the programmer wants to reference the outermost variable, then one of the names needs to be
changed. Otherwise, this warning can be ignored or disabled.
Programmer’s Reference Manual 591

	Intel® IXP2400/IXP2800 Network Processor
	Introduction 1
	1.1 About this Document
	1.2 Related Documentation

	Assembler 2
	2.1 Acronyms
	2.2 Definitions
	2.3 Source File Elements
	2.3.1 Instructions
	2.3.2 Directives
	2.3.3 Comments

	2.4 Block Structure
	2.5 Assembly Process Steps
	2.6 Assembler Preprocessor
	2.6.1 Preprocessor Reserved Labels
	2.6.2 Preprocessor Operation
	2.6.3 Constant Expressions (const-expr)
	2.6.3.1 Preprocessor Binary & Unary Operators
	2.6.3.2 Preprocessor: Functions
	2.6.3.3 STRING Operator
	2.6.3.4 LOG2() Function
	2.6.3.5 Preprocessor Function Examples

	2.6.4 Macros and Expansion Token Restriction
	2.6.5 Syntax for Argument and Token lists
	2.6.6 Leading and Trailing Spaces in Macros
	2.6.7 Environment Variables
	2.6.8 Predefined Processor Type and Revision Symbols
	2.6.9 Predefined Import Variables

	2.7 Preprocessor Usage Techniques
	2.7.1 Branching into a Macro
	2.7.2 Constructing Names from Numbers

	2.8 Registers and Signals
	2.8.1 Register Naming Conventions
	2.8.1.1 Indexed Registers
	2.8.1.2 Mixing Indexed and Named Register Usage
	2.8.1.3 Transfer Registers (xfer)

	2.8.2 Register Declarations
	2.8.2.1 Preferred Register Declaration Syntax
	2.8.2.2 Details of Volatile and Visible
	2.8.2.3 Compatible Register Declaration Syntax
	2.8.2.4 Dealing with self-write neighbor regs

	2.8.3 Aggregate and Array Support
	2.8.3.1 Register Arrays
	2.8.3.2 Compatibility with Earlier Releases
	2.8.3.3 Doubled Signal References
	2.8.3.4 Usage Notes
	2.8.3.5 Compatibility Issues

	2.8.4 Transfer Order(.xfer_order)
	2.8.5 Register Lifetime Details
	2.8.5.1 MEv2 Queue Information

	2.8.6 Signal Declarations
	2.8.7 Use of REMOTE Keyword
	2.8.8 Address Operator
	2.8.8.1 Accumulating Results for ctx_arb[--]
	2.8.8.2 Examples of Address Operator and Visible/Volatile Signals

	2.8.9 Signal Lifetime Details
	2.8.10 Register Allocatior Directives
	Register Used Before Being Set
	Determining when I/O operations complete
	Using registers indirectly
	Use of .set and .use with transfer registers

	2.8.11 GPR A/B Bank Conflicts
	2.8.11.1 Automatic A/B Bank Conflict Resolution

	2.8.12 GPR Spilling
	2.8.13 Lifetime Out-Of-Register Errors
	2.8.13.1 Transfer Register Lifetimes

	2.9 Assembler Optimizer
	2.10 Assembler Directives
	2.10.1 Summary of Directives

	2.11 Directives Definitions
	2.11.1 Token Replacement (#define, #undef)
	2.11.2 Optimization Directives
	2.11.3 Loops
	2.11.3.1 For Loops (#for, #endloop)
	2.11.3.2 Repeat Loops (#repeat, #endloop)
	2.11.3.3 While Loops (#while, #endloop)

	2.11.4 Macros (#macro, #endm)
	2.11.5 Conditional Assembly (#Ifdef, #If, #else, #elif, #endif)
	2.11.6 Error Reporting (#error)
	2.11.7 File Inclusion (#include)
	2.11.8 Import Variable (.import_var)
	2.11.9 Code block directive (.begin, .end)
	2.11.10 Manual Register Allocation (.addr)
	2.11.11 Memory Allocation Directives
	2.11.12 Memory Block and Register Initialization
	2.11.13 Local Memory Mode Directives
	2.11.14 Number of Contexts Directive
	2.11.15 Initial Next Neighbor Mode Directive
	2.11.16 Operand Synonym (.operand_synonym)
	2.11.17 Structured Assembly
	2.11.17.1 Conditional (.if, .elif, .else, .endif, if_unsigned, .elif_unsigned)
	2.11.17.2 Repeat Loops (.repeat, .until)
	2.11.17.3 While Loops (.while, .endw)
	2.11.17.4 Break and Continue
	2.11.17.5 Conditional Expressions
	2.11.17.6 Errors

	2.11.18 Structured Assembly Usage Considerations
	2.11.19 Warning Directives

	2.12 Subroutine Definition (.subroutine, .endsub)
	2.13 Linker Directives

	MEv2 Instruction Set 3
	3.1 Instruction Syntax
	3.1.1 Restricted and Unrestricted Src and Dest Operands
	3.1.1.1 Two Source Operand Selection Rules

	3.1.2 I/O Instruction Format
	3.1.2.1 Source Operands (src_op1, src_op2)
	3.1.2.2 Reference Count (ref_cnt)
	3.1.2.3 Optional Tokens (opt_tok)
	3.1.2.3.1 Indirect References
	3.1.2.3.2 Changing the Ref_Cnt using Indirect References
	3.1.2.3.3 Indirect References to another ME

	3.1.2.4 Event Signals

	3.1.3 Condition Codes
	3.1.4 Branch Defer (defer[n])
	3.1.5 Coding Restrictions
	3.1.5.1 Branch or I/O Command in Defer Slot
	3.1.5.2 Condition Codes after Swap
	3.1.5.3 CAM after Conditional P3 Branch
	3.1.5.4 Dram with Swap
	3.1.5.5 BCC after Conditional P3 branch
	3.1.5.6 LOCAL_CSR_RD cannot be in last defer slot.
	3.1.5.7 LOCAL_CSR_WR to ACTIVE_LM_ADDR, or CAM_LOOKUP
	3.1.5.8 LOCAL_CSR_RD must be followed by an IMMED op
	3.1.5.9 I/O Command Op after LOCAL_CSR_WR
	3.1.5.10 LOCAL_CSR_WR to CTX_WAKEUP_EVENTS

	3.1.6 MEv2 Permitted Coding Sequences
	3.1.6.1 Swap after P3 Branch
	3.1.6.2 Memory Command after P3 Branch
	3.1.6.3 Swap after Voluntary Swap.
	3.1.6.4 A LOCAL_CSR_WR in defer slot
	3.1.6.5 LOCAL_CSR_WR can be followed by a LOCAL_CSR_RD or LOCAL_CSR_WR.

	3.2 Instruction Set
	3.2.1 ALU
	3.2.2 ALU_SHF
	3.2.3 ASR
	3.2.4 BCC (BRANCH CONDITION CODE)
	3.2.5 BR
	3.2.6 BR_BCLR, BR_BSET
	3.2.7 BR=BYTE, BR!=BYTE
	3.2.8 BR=CTX, BR!=CTX
	3.2.9 BR_INP_STATE, BR_!INP_STATE
	3.2.10 BR_SIGNAL, BR_!SIGNAL
	3.2.11 BYTE_ALIGN_BE, BYTE_ALIGN_LE
	3.2.12 CAM_CLEAR
	3.2.13 CAM_LOOKUP
	3.2.14 CAM_READ_TAG
	3.2.15 CAM_READ_STATE
	3.2.16 CAM_WRITE
	3.2.17 CAM_WRITE_STATE
	3.2.18 CAP (Enumerated CSR Addressing)
	3.2.19 CAP (Calculated Addressing)
	3.2.20 CAP (Reflect)
	3.2.21 CRC_LE, CRC_BE
	3.2.22 CTX_ARB
	3.2.23 DBL_SHF
	3.2.24 DRAM (Read and Write)
	3.2.25 DRAM (RBUF and TBUF)
	3.2.26 FFS
	3.2.27 HALT
	3.2.28 HASH
	3.2.29 IMMED
	3.2.30 IMMED_B0, IMMED_B1, IMMED_B2, IMMED_B3
	3.2.31 IMMED_W0, IMMED_W1
	3.2.32 JUMP
	3.2.33 LD_FIELD, LD_FIELD_W_CLR
	3.2.34 LOAD_ADDR
	3.2.35 LOCAL_CSR_RD
	3.2.36 LOCAL_CSR_WR
	3.2.37 MSF (Media Switch Fabric)
	3.2.38 MUL_STEP
	3.2.39 NOP
	3.2.40 PCI
	3.2.41 POP_COUNT
	3.2.42 RTN
	3.2.43 SCRATCH (Read & Write)
	3.2.44 SCRATCH (Atomic Operations)
	3.2.45 SCRATCH (Ring Operations)
	3.2.46 SRAM (Read & Write)
	3.2.47 SRAM (Atomic Operations)
	3.2.48 SRAM (CSR)
	3.2.49 SRAM (Read Queue Descriptor)
	3.2.50 SRAM (Write Queue Descriptor)
	3.2.51 SRAM (Enqueue)
	3.2.52 SRAM (Dequeue)
	3.2.53 SRAM (Ring Operations)
	3.2.54 SRAM (Journal Operations)

	Address Maps 4
	4.1 Intel XScale“ Address Map
	4.1.1 DRAM Memory and Intel XScale“ Core Flash ROM (2GB)
	4.1.2 SRAM Memory (1GB)
	4.1.3 CAP-CSRs (32MB)
	4.1.3.1 ME Transfer and Local CSRs
	4.1.3.2 Peripherals
	4.1.3.3 CAP CSRs

	4.1.4 SlowPort - Flash ROM (64M)
	4.1.5 MSF (32M)
	4.1.6 Scratch (32M)
	4.1.7 SRAM CSRs and Queue Array (64MB)
	4.1.8 DRAM CSRs (32M)
	4.1.9 Intel XScale“ Core Local CSRs (32M)
	4.1.9.1 Hash Operations

	4.1.10 PCI IO (32M)
	4.1.11 PCI CFG (32M)
	4.1.12 PCI Special Cycles / IACK (32M)
	4.1.13 PCI Configuration Registers (32M)
	4.1.14 PCI Controller CSRs
	4.1.15 PCI Memory (1/2GB)

	4.2 PCI Address Map
	4.2.1 DRAM Memory Space
	4.2.2 SRAM Memory Space
	4.2.3 CSR Memory Space

	4.3 Microengine Address Map

	Control and Status Registers (CSRs) 5
	5.1 Introduction
	5.1.1 IXP2800 and IXP2400 CSR Summary
	5.1.2 Register Notation Conventions
	5.1.3 Reserved Fields

	5.2 Microengine Local CSRs
	5.2.1 USTORE_ADDRESS
	5.2.2 USTORE_DATA_LOWER, USTORE_DATA_UPPER
	5.2.3 USTORE_ERROR_STATUS
	5.2.4 ALU_OUT
	5.2.5 TIMESTAMP_HIGH, TIMESTAMP_LOW
	5.2.6 ACTIVE_CTX_FUTURE_COUNT
	5.2.7 INDIRECT_CTX_FUTURE_COUNT
	5.2.8 ACTIVE_FUTURE_COUNT_SIGNAL
	5.2.9 INDIRECT_FUTURE_COUNT_SIGNAL
	5.2.10 PROFILE_COUNT
	5.2.11 PSEUDO_RANDOM_NUMBER
	5.2.12 NEXT_NEIGHBOR_SIGNAL
	5.2.13 PREV_NEIGHBOR_SIGNAL
	5.2.14 SAME_ME_SIGNAL
	5.2.15 ACTIVE_CTX_STS
	5.2.16 INDIRECT_CTX_STS
	5.2.17 CTX_ARB_CNTL
	5.2.18 CTX_ENABLES
	5.2.19 CC_ENABLE
	5.2.20 CSR_CTX_POINTER
	5.2.21 ACTIVE_CTX_SIG_EVENTS
	5.2.22 INDIRECT_CTX_SIG_EVENTS
	5.2.23 ACTIVE_CTX_WAKEUP_EVENTS
	5.2.24 INDIRECT_CTX_WAKEUP_EVENTS
	5.2.25 ACTIVE_LM_ADDR_0
	5.2.26 ACTIVE_LM_ADDR_1
	5.2.27 INDIRECT_LM_ADDR_0
	5.2.28 INDIRECT_LM_ADDR_1
	5.2.29 BYTE_INDEX
	5.2.30 T_INDEX
	5.2.31 T_INDEX_BYTE_INDEX
	5.2.32 INDIRECT_LM_ADDR_0_BYTE_INDEX
	5.2.33 INDIRECT_LM_ADDR_1_BYTE_INDEX
	5.2.34 ACTIVE_LM_ADDR_0_BYTE_INDEX
	5.2.35 ACTIVE_LM_ADDR_1_BYTE_INDEX
	5.2.36 NN_PUT
	5.2.37 NN_GET
	5.2.38 CRC_REMAINDER
	5.2.39 LOCAL_CSR_STATUS

	5.3 RDR DRAM Controller - IXP2800
	5.3.1 RDRAM_CONTROL (# = 0,1,2)
	5.3.2 RDRAM_ERROR_STATUS_1 (# = 0,1,2)
	5.3.3 RDRAM_ERROR_STATUS_2 (# = 0,1,2)
	5.3.4 RDRAM_ECC_TEST (# = 0,1,2)
	5.3.5 RDRAM_SERIAL_COMMAND (# = 0,1,2)
	5.3.6 RDRAM_SERIAL_DATA (# = 0,1,2)
	5.3.7 RDRAM_CONFIG_1 (# = 0,1,2)
	5.3.8 RDRAM_CONFIG_2 (# = 0,1,2)
	5.3.9 RDRAM_CONFIG_3 (# = 0,1,2)
	5.3.10 RDRAM_RAC_INIT (# = 0,1,2)
	5.3.11 RDRAM_MISC_RAC_CONTROL
	5.3.12 RDRAM_RAC_CONFIG
	5.3.13 RDRAM_1066_CONFIG_GROUP (# = 0,1,2)
	5.3.14 RDRAM_SERIAL_CONFIG (# = 0,1,2)
	5.3.15 RDRAM_K0 through RDRAM_K11 (# = 0,1,2)

	5.4 DDR SDRAM Controller - IXP2400
	5.4.1 DDR SDRAM Register Map
	5.4.2 DRAM Controller Control Register (DU_CONTROL)
	5.4.3 DRAM Error Status Register 1 (DU_ERROR_STATUS_1)
	5.4.4 DRAM Error Status Register 2 (DU_ERROR_STATUS_2)
	5.4.5 DRAM ECC Test Register (DU_ECC_TEST)
	5.4.6 DRAM Initialization Register (DU_INIT)
	5.4.7 DRAM Controller Control Register 2 (DU_CONTROL2)
	5.4.8 DRAM RCOMP & I/O Registers
	5.4.8.1 DDR_Rx_DLL
	5.4.8.2 DDR_Rx_Deskew
	5.4.8.3 DDR_RDDLYSEL_RECVEN

	5.5 SRAM QDR Controller
	5.5.1 SRAM_CONTROL
	5.5.2 SRAM_PARITY_STATUS_1
	5.5.3 SRAM_PARITY_STATUS_2
	5.5.4 SPARE
	5.5.5 QDR_INTERNAL_PIPELINE
	5.5.6 QDR_RX_DLL
	5.5.7 QDR_RX_DESKEW
	5.5.8 QDR_RD_PTR_OFFSET
	5.5.9 QDR RCOMP Registers
	5.5.9.1 Q_RCMP_SETUP_CONTROL
	5.5.9.2 Q_RCMP_PMOS_MEASURED
	5.5.9.3 Q_RCMP_NMOS_MEASURED
	5.5.9.4 Q_RCMP_PMOS_OVERRIDE
	5.5.9.5 Q_RCMP_NMOS_OVERRIDE
	5.5.9.6 Q_RCMP_PMOS_NMOS_SCOMP_OVERRIDE (IXP2400 and IXP2800 Rev A)
	5.5.9.7 Q_RCMP_PMOS_NMOS_SCOMP_OVERRIDE(IXP2800 Rev B)
	5.5.9.8 Q_RCMP_STRENGTH_SLEW_INDEX_SEL
	5.5.9.9 Q_RCMP_ADDR_PMOS_PU_OFFSET
	5.5.9.10 Q_RCMP_ADDR_NMOS_PD_OFFSET
	5.5.9.11 Q_RCMP_DATA _PMOS _PU_OFFSET
	5.5.9.12 Q_RCMP_DATA_NMOS_PD_OFFSET
	5.5.9.13 Q_RCMP_K_CLK_PMOS_PU_OFFSET
	5.5.9.14 Q_RCMP_KCLK_NMOS_PD_OFFSET
	5.5.9.15 Q_RCMP_DQ_PMOS_PU_OFFSET
	5.5.9.16 Q_RCMP_DQ_NMOS_PD_OFFSET
	5.5.9.17 Q_RCMP_PMOS_NMOS_VERT_OVERRIDE
	5.5.9.18 Slew Rate Tables

	5.5.10 QDR unit initialization
	5.5.10.1 IXP2800 A Steppings QDR initial setup procedure
	5.5.10.2 IXP2800 B Steppings - QDR initial setup procedure
	5.5.10.3 IXP2400 QDR initial setup procedure

	5.6 CSR Access Proxy (CAP)
	5.6.1 Scratchpad Memory CSRs (CAP CSR)
	5.6.1.1 SCRATCH_RING_BASE_# (# = 0 -15)
	5.6.1.2 SCRATCH_RING_HEAD_# (# = 0 - 15)
	5.6.1.3 SCRATCH_RING_TAIL_# (#= 0 - 15)

	5.6.2 Hash Configuration (CAP CSR)
	5.6.2.1 HASH_MULTIPLIER_48_# (# = 0,1)
	5.6.2.2 HASH_MULTIPLIER_64_# (# = 0,1)
	5.6.2.3 HASH_MULTIPLIER_128_# (# = 0,1,2,3)

	5.6.3 Fast Write CSRs (CAP CSR)
	5.6.3.1 THD_MSG (Generic)
	5.6.3.2 THD_MSG_CLR_#_$_& (# = {0,1}, $= {0,7 or 3}, & = {0,7})
	5.6.3.3 THD_MSG_#_$_& (# = {0,1}, $ = {0,7 or 3}, & = {0,7})
	5.6.3.4 THD_MSG_SUMMARY_#_$ (# = {0,1}, $ = {0,1})
	5.6.3.5 SELF_DESTRUCT_# (# = 0 -1)
	5.6.3.6 INTERTHREAD_SIG
	5.6.3.7 XSCALE_INT_# (# = A, B)

	5.6.4 Global Control (CAP CSR)
	5.6.4.1 PRODUCT_ID
	5.6.4.2 MISC_CONTROL
	5.6.4.3 MSF Clock Control CSR (MCCR) - IXP2400 only
	5.6.4.4 IXP_RESET_0
	5.6.4.5 IXP_RESET_1
	5.6.4.6 CLOCK_CONTROL
	5.6.4.7 STRAP_OPTIONS
	5.6.4.8 WATCHDOG_HISTORY

	5.6.5 Timer (CAP CSR)
	5.6.5.1 T#_CTL (# = 1,2,3,4)
	5.6.5.2 T#_CLD, (# = 1,2,3,4)
	5.6.5.3 T#_CSR, (# = 1,2,3,4)
	5.6.5.4 T#_CLR(# = 1,2,3,4)
	5.6.5.5 TWDE

	5.6.6 GPIO (CAP CSR)
	5.6.6.1 GPIO_PLR
	5.6.6.2 GPIO_PDPR
	5.6.6.3 GPIO_PDSR
	5.6.6.4 GPIO_PDCR
	5.6.6.5 GPIO_POPR
	5.6.6.6 GPIO_POSR, GPIO_POCR
	5.6.6.7 GPIO_REDR, GPIO_FEDR
	5.6.6.8 GPIO_EDSR
	5.6.6.9 GPIO_LSHR, GPIO_LSLR
	5.6.6.10 GPIO_LDSR
	5.6.6.11 GPIO_INER
	5.6.6.12 GPIO_INSR
	5.6.6.13 GPIO_INCR
	5.6.6.14 GPIO_INST

	5.6.7 UART (CAP CSR)
	5.6.7.1 UART_RBR
	5.6.7.2 UART_THR
	5.6.7.3 UART_DLRL, UART_DLRH
	5.6.7.4 UART_IER
	5.6.7.5 UART_IIR
	5.6.7.6 UART_FCR
	5.6.7.7 UART_LCR
	5.6.7.8 UART_LSR
	5.6.7.9 UART_SPR

	5.6.8 PMU (Performance Monitor UNit) (CAP CSR)
	5.6.8.1 PMUCONTCFG—PMU Control Bus Configuration Register
	5.6.8.2 PMUSTAT—PMU Counter Interrupt Status Registers
	5.6.8.3 PMUMASK—PMU Counters Interrupt Mask Registers
	5.6.8.4 PMUINTEN—PMU Interrupt Enable Register
	5.6.8.5 CHAPCMDN—CHAP Command N Register (N = 0...5)
	5.6.8.6 CHAPEVN—CHAP Events N Register (N = 0...5)
	5.6.8.7 CHAPSTAT# (# = 0...5)
	5.6.8.8 CHAPDATAN—CHAP Data N Register (N = 0...5)

	5.6.9 SlowPort (CAP CSR)
	5.6.9.1 SP_CCR
	5.6.9.2 SP_WTC1
	5.6.9.3 SP_WTC2
	5.6.9.4 SP_RTC1
	5.6.9.5 SP_RTC2
	5.6.9.6 SP_FSR
	5.6.9.7 SP_PCR
	5.6.9.8 SP_ADC
	5.6.9.9 SP_FAC
	5.6.9.10 SP_FRM
	5.6.9.11 SP_FIN
	5.6.9.12 SP_TXE
	5.6.9.13 SP_RXE

	5.7 Media and Switch Fabric Interface (MSF) - IXP2800
	5.7.1 MSF_RX_CONTROL
	5.7.2 MSF_TX_CONTROL
	5.7.3 MSF_INTERRUPT_STATUS
	5.7.4 MSF_INTERRUPT_ENABLE
	5.7.5 CSIX_TYPE_MAP
	5.7.6 FC_EGRESS_STATUS
	5.7.7 FC_INGRESS_STATUS
	5.7.8 FC_STATUS_OVERRIDE
	5.7.9 MSF_CLOCK_CONTROL
	5.7.10 FCIFIFO
	5.7.11 FCEFIFO
	5.7.12 RX_DESKEW_# (# = pin name)
	5.7.13 SPI4_DYNFILT_THRESH
	5.7.14 MSF_DLL_DATA_DELAY_CTL
	5.7.15 FC_DYNFILT_THRESH
	5.7.16 FC_DLL_DATA_DELAY_CTL
	5.7.17 HWM_CONTROL
	5.7.18 RX_THREAD_FREELIST_# (# = 0,1,2)
	5.7.19 RX_PORT_MAP
	5.7.20 RBUF_ELEMENT_DONE
	5.7.21 RX_CALENDAR_LENGTH
	5.7.22 FCEFIFO_VALIDATE
	5.7.23 TX_SEQUENCE_# (# = 0,1,2)
	5.7.24 RX_THREAD_FREELIST_TIMEOUT_# (# = 0,1,2)
	5.7.25 RX_PORT_CALENDAR_STATUS_# (0 TO 255)
	5.7.26 TX_CALENDAR_LENGTH
	5.7.27 TX_CALENDAR_# (# = 0 - 255)
	5.7.28 TX_PORT_STATUS_# (# = 0 - 255)
	5.7.29 TX_MULTIPLE_PORT_STATUS_# (# = 0 - 15)
	5.7.30 TBUF_ELEMENT_CONTROL_$_# ($ = A, B, # = Element No)
	5.7.31 TRAIN_DATA
	5.7.32 TRAIN_CALENDAR
	5.7.33 TRAIN_FLOW_CONTROL
	5.7.34 RX_PHASEMON_# (# = pin name)
	5.7.35 MSF_IO_BUF_CTL
	5.7.36 FC_IO_BUF_CTL
	5.7.37 MSF Initial Setup Procedure for the IX2800 Rev A
	5.7.38 MSF Initial Setup Procedure for the IX2800 Rev B

	5.8 Media and Switch Fabric Interface(MSF) - IXP2400
	5.8.1 IXP2400 MSF Address Map
	5.8.2 MSF_Rx_Control
	5.8.3 MSF_Tx_Control
	5.8.4 MSF_Interrupt_Status
	5.8.5 MSF_Interrupt_Enable
	5.8.6 CSIX_Type_Map
	5.8.7 FC_Egress_Status
	5.8.8 FC_Ingress_Status
	5.8.9 HWM_CONTROL
	5.8.10 SRB_Override
	5.8.11 Rx_Thread_Freelist_{0.3}
	5.8.12 RBUF_Element_Done
	5.8.13 Rx_MPHY_Poll_Limit
	5.8.14 FCEFIFO_Validate
	5.8.15 Rx_Thread_Freelist_Timeout_{0..3}
	5.8.16 Tx_ Sequence_{0..3}
	5.8.17 Tx_MPHY_Poll_Limit
	5.8.18 Tx_MPHY_Status
	5.8.19 Tx_MPHY_Status_Extension
	5.8.20 Rx_UP_Control_{0..3}
	5.8.21 Tx_UP_Control_{0..3}
	5.8.22 Rx_FIFO_Control_{0,1,2,3}
	5.8.23 MSF_Rx_RCOMP_Status
	5.8.24 MSF_Tx_RCOMP_Status
	5.8.25 MSF_Rx_RCOMP_Override
	5.8.26 MSF_Tx_RCOMP_Override
	5.8.27 FCIFIFO
	5.8.28 FCEFIFO
	5.8.29 TBUF_ELEMENT_CONTROL_$_# ($= A, B, # = Element No)

	5.9 PCI
	5.9.1 PCI Configuration Space
	5.9.1.1 PCI_VEN_DEV_ID
	5.9.1.2 PCI_CMD_STAT
	5.9.1.3 PCI_REV_CLASS
	5.9.1.4 PCI_CACHE_LAT_HDR_BIST
	5.9.1.5 PCI_CSR_BAR
	5.9.1.6 PCI_SRAM_BAR
	5.9.1.7 PCI_DRAM_BAR
	5.9.1.8 PCI_SUBSYS
	5.9.1.9 PCI_INT_LAT
	5.9.1.10 PCI_RCOMP_OVERRIDE
	5.9.1.11 PCI_RCOMP_STATUS (IXP2400 Rev A and IXP2800)
	5.9.1.12 PCI_RCOMP_STATUS (IXP2400 Rev B)
	5.9.1.13 PCI_IXP_PARAM

	5.9.2 PCI Controller CSRs
	5.9.2.1 PCI_OUT_INT_STATUS
	5.9.2.2 PCI_OUT_INT_MASK
	5.9.2.3 MAILBOX_#
	5.9.2.4 XSCALE_DOORBELL
	5.9.2.5 XSCALE_DOORBELL_SETUP
	5.9.2.6 PCI_DOORBELL
	5.9.2.7 PCI_DOORBELL_SETUP
	5.9.2.8 CHAN_#_BYTE_COUNT
	5.9.2.9 CHAN_#_PCI_ADDR
	5.9.2.10 CHAN_#_DRAM_BAR
	5.9.2.11 CHAN_#_DESC_PTR
	5.9.2.12 CHAN_#_CONTROL
	5.9.2.13 CHAN_#_ME_PARAM
	5.9.2.14 DMA_INF_MODE
	5.9.2.15 PCI_SRAM_BAR_MASK
	5.9.2.16 PCI_DRAM_BAR_MASK
	5.9.2.17 PCI_CONTROL
	5.9.2.18 PCI_ADDR_EXT
	5.9.2.19 XSCALE_ERR_STATUS
	5.9.2.20 XSCALE_ERR_ENABLE
	5.9.2.21 XSCALE_INT_STATUS
	5.9.2.22 XSCALE_INT_ENABLE
	5.9.2.23 ME_PUSH_STATUS
	5.9.2.24 ME_PUSH_ENABLE

	5.10 Intel XScale“ Core Local CSRs
	5.10.1 Interrupt Controller (Intel XScale“ Core)
	5.10.1.1 {IRQ,FIQ}RAW_STATUS
	5.10.1.2 {IRQ,FIQ}STATUS
	5.10.1.3 {IRQ,FIQ}ENABLE
	5.10.1.4 {IRQ,FIQ}ENABLE_SET
	5.10.1.5 {IRQ,FIQ}ENABLE_CLR
	5.10.1.6 {IRQ,FIQ}SOFT_INT
	5.10.1.7 SCRATCH_RING_STATUS
	5.10.1.8 {IRQ,FIQ}ERR_RAW_STATUS
	5.10.1.9 {IRQ,FIQ}ERR_STATUS
	5.10.1.10 {IRQ,FIQ}ERR_ENABLE
	5.10.1.11 {IRQ,FIQ}ERR_ENABLE_SET
	5.10.1.12 {IRQ,FIQ}ERR_ENABLE_CLR
	5.10.1.13 {IRQ,FIQ}RAW_ATTN_STATUS
	5.10.1.14 {IRQ,FIQ}ATTN_STATUS
	5.10.1.15 {IRQ,FIQ}ATTN_ENABLE
	5.10.1.16 {IRQ,FIQ}ATTN_ENABLE_SET
	5.10.1.17 {IRQ,FIQ}ATTN_ENABLE_CLR
	5.10.1.18 {IRQ,FIQ}THD_RAW_STATUS_$_# ($= A, B and # = 0 - 3)
	5.10.1.19 {IRQ,FIQ}THD_STATUS_$_# ($= A, B and # = 0 - 3)
	5.10.1.20 {IRQ,FIQ}THD_ENABLE_$_# ($= A, B and # = 0 - 3)
	5.10.1.21 {IRQ,FIQ}THD_ENABLE_SET_$_# ($= A, B and # = 0 - 3)
	5.10.1.22 {IRQ,FIQ}THD_ENABLE_CLR_$_# ($= A, B and # = 0 - 3)

	5.10.2 Hash Operation (Intel XScale“ Core)
	5.10.2.1 HASH_OP_48_# (# = 0,1)
	5.10.2.2 HASH_OP_64_# (# = 0,1)
	5.10.2.3 HASH_OP_128_# (# = 0,1,2,3)
	5.10.2.4 HASH_DONE

	5.10.3 Breakpoint (Intel XScale“ Core)
	5.10.3.1 BRK_RAW_STATUS
	5.10.3.2 BRK_STATUS
	5.10.3.3 BRK_ENABLE
	5.10.3.4 BRK_ENABLE_SET
	5.10.3.5 BRK_ENABLE_CLR

	5.11 Intel XScale“ Co-Processors
	5.12 MSF differences between IXP2400 and IXP2800

	UCA Warnings A
	A.1 Introduction
	A.2 UCA Warning (level 4) 4101
	A.3 UCA Warning (level 1) 4700
	A.4 UCA Warning (level 3) 4701
	A.5 UCA Warning (level 2) 4702
	A.6 UCA Warning (level 1) 5000
	A.7 UCA Warning (level 3) 5002
	A.8 UCA Warning (level 1) 5003
	A.9 UCA Warning (level 3) 5004
	A.10 UCA Warning (level 1) 5007
	A.11 UCA Warning (level 4) 5008
	A.12 UCA Warning (level 1) 5009
	A.13 UCA Warning (level 1) 5011
	A.14 UCA Warning (level 3) 5012
	A.15 UCA Warning (level 2) 5100
	A.16 UCA Warning (level 2) 5101
	A.17 UCA Warning (level 2) 5102
	A.18 UCA Warning (level 2) 5103
	A.19 UCA Warning (level 2) 5104
	A.20 UCA Warning (level 1) 5114
	A.21 UCA Warning (level 1) 5115
	A.22 UCA Warning (level 1) 5116
	A.23 UCA Warning (level 2) 5117
	A.24 UCA Warning (level 2) 5118
	A.25 UCA Warning (level 3) 5121
	A.26 UCA Warning (level 4) 5122
	A.27 UCA Warning (level 4) 5124
	A.28 UCA Warning (level 4) 5125
	A.29 UCA Warning (level 4) 5126
	A.30 UCA Warning (level 4) 5127
	A.31 UCA Warning (level 4) 5128
	A.32 UCA Warning (level 2) 5129
	A.33 UCA Warning (level 2) 5130
	A.34 UCA Warning (level 1) 5131
	A.35 UCA Warning (level 2) 5132
	A.36 UCA Warning (level 3) 5133
	A.37 UCA Warning (level 4) 5134
	A.38 UCA Warning (level 1) 5135
	A.39 UCA Warning (level 1) 5136
	A.40 UCA Warning (level 1) 5137
	A.41 UCA Warning (level 1) 5138
	A.42 UCA Warning (level 1) 5139
	A.43 UCA Warning (level 1) 5140
	A.44 UCA Warning (level 1) 5141
	A.45 UCA Warning (level 1) 5142
	A.46 UCA Warning (level 1) 5143
	A.47 UCA Warinng (level 3) 5144
	A.48 UCA Warning (level 1) 5145
	A.49 UCA Warning (level 1) 5146
	A.50 UCA Warning (level 1) 5147
	A.51 UCA Warning (level 2) 5148
	A.52 UCA Warning (level 2) 5149
	A.53 UCA Warning (level 1) 5150
	A.54 UCA Warning (level 4) 5151

