
Intel® IXP2400/IXP2800 Network
Processors
 Microengine C Language Support Reference Manual

November 2003

Order Number: 278734-009

2 Microengine C Language Support Reference Manual

Revision History

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/
OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The software described in this User’s Guide may contain software defects which may cause the product to deviate from published specifications.
Current characterized software defects are available on request.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4,
IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium, Pentium II
Xeon, Pentium III Xeon, Pentium M, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2002–2003.

Date Revision Description

January 2002 001 Pre-Release 2 (PR2)

May 2002 002 Release for IXA SDK 3.0

August 2002 003 Release for IXA SDK 3.0 Pre-Release 4

November 2002 004 Release for IXA SDK 3.0 Pre-Release 5

January 2003 005 Release for IXA SDK 3.0 Pre-Release 6

May 2003 006 Release for IXA SDK 3.1 for VmWorks

June 2003 007 Release for IXA SDK 3.1 Pre-Release 2

September 2003 008 Release for IXA SDK 3.5

November 2003 009 Release for IXA SDK 3.5

Intel® IXP2400/IXP2800 Network Processors
Contents
Contents
1 Introduction..11

1.1 Purpose ..11
1.2 Features..11
1.3 Nonfeatures ..11
1.4 Conventions Used in this Manual ...12

1.4.1 Version-Specific References ...12

2 Overview...13
2.1 Network Processor Architecture Overview ...13

2.1.1 Data Terminology ..13
2.1.2 Register Model...13
2.1.3 Next Neighbor Registers..14
2.1.4 Local Memory ..16
2.1.5 External Memory..16
2.1.6 FIFO Queues ...16
2.1.7 Signals ...17
2.1.8 Reflector ..17
2.1.9 Indirect Register Access ..17
2.1.10 Threading Model ..17
2.1.11 Features Not Supported ..18

2.2 Compilation Model ..18
2.2.1 Number of Contexts ...18
2.2.2 Inlining ...19

2.3 Running the C Compiler ...19
2.3.1 The Command Line ...19
2.3.2 Supported Compilations ..20
2.3.3 Supported Compiler Option Switches..20

2.3.3.1 Environment Variables...24
2.3.4 Input and Output File Types ..25
2.3.5 Linking a Microengine .UOF file...25
2.3.6 Util.c ...26

2.3.6.1 Utility Functions (util.c) ...26
2.3.6.2 Multi-threading restrictions...27

2.3.7 Example–Using the C Compiler...27
2.3.7.1 The C File ..27
2.3.7.2 Compiling the File ..28
2.3.7.3 Linking the File...28
2.3.7.4 Running the File...28
2.3.7.5 Initialization File ...28

2.3.8 C Compiler Graphical User Interface from Developer Workbench29
2.3.8.1 Build Features..29
2.3.8.2 Debug Feature ...29

2.4 Running and Debugging Under the Developer Workbench..30

3 C Language Support ...33
3.1 Standard Data Types..33

3.1.1 Basic Data Types...33
 Microengine C Language Support Reference Manual 3

Intel® IXP2400/IXP2800 Network Processors
Contents
3.1.2 Pointer Representation .. 33
3.1.3 Bitfields .. 33
3.1.4 Floating Point Types .. 34
3.1.5 String Literals... 34
3.1.6 Size of Data Types .. 34
3.1.7 Alignment of Data Types ... 35
3.1.8 Packed Aggregates ... 36
3.1.9 Pointer Alignment Assumptions and Unaligned Pointers 37
3.1.10 Endian Support .. 38

3.1.10.1 Compiler Limitations of Endian Support... 38
3.2 Data Allocation.. 40

3.2.1 Register Regions ... 41
3.2.1.1 General Purpose Registers.. 41
3.2.1.2 Transfer Registers ... 41
3.2.1.3 Next Neighbor Registers.. 42
3.2.1.4 Volatile Registers ... 43

3.2.2 Memory Regions.. 43
3.2.3 Shared Data... 44
3.2.4 Global data .. 45
3.2.5 Load Time Constants... 45
3.2.6 Signals ...45

3.2.6.1 Signal Variable Restrictions ... 46
3.2.7 Local Memory Allocation.. 47

3.2.7.1 Overview.. 47
3.2.7.2 Placement of Variables .. 47
3.2.7.3 Thread Local vs. Shared Storage .. 48
3.2.7.4 Viewing Local Memory Usage ... 48
3.2.7.5 Alignment Information for Local Memory Pointers 50
3.2.7.6 Suggestions for Improving Local Memory Use 50

3.3 Reflector Inputs/Outputs ... 51
3.4 Summary of Allowed Data Attribute Combinations... 52
3.5 Expressions .. 52
3.6 Statements.. 52
3.7 Functions .. 52

3.7.1 Supported .. 52
3.7.2 Not Supported.. 52
3.7.3 Extended Function Attributes... 53
3.7.4 Optimizing Pointer Arguments ... 53

3.7.4.1 The “restrict” Qualifier .. 54
3.8 User Assisted Live Range Analysis .. 55
3.9 Viewing Live Ranges .. 57

3.9.1 Limitations and Restrictions on Viewing Live Ranges ... 58
3.10 Critical Path Annotation and Code Layout.. 59

3.10.1 Multiple Critical Paths .. 61
3.11 User-Guided switch() Statement Optimization.. 62

3.11.1 Default Case Removal... 63
3.11.2 Switch Block Packing... 63

3.12 Creating Context Swap-Free Regions of Code .. 64
3.13 Loop unrolling control ... 64
3.14 Mixing C and Microcode in One Microengine ... 66

3.14.1 Command Line Options and Usage model.. 66
4 Microengine C Language Support Reference Manual

Intel® IXP2400/IXP2800 Network Processors
Contents
3.14.2 Naming and Calling Conventions ..67
3.14.2.1 Register Variable Naming Conventions ...67
3.14.2.2 Sharing Variables Between C and Assembly ..68
3.14.2.3 Calling Conventions ...68

3.14.3 Mixed C and Microcode Examples ..69
3.14.3.1 Function Parameter Passing..69
3.14.3.2 Register Usage ..70

3.14.4 Restrictions on Mixing C and Microcode..70
3.15 Unsupported ANSI C99 Features ...71

4 Intrinsic Functions ..73
4.1 Intrinsic Syntax Conventions ..74
4.2 Unaligned Data Access ..75

4.2.1 Unaligned Get Functions ...75
4.2.2 Unaligned Set Functions..78
4.2.3 Unaligned Memory Copy Functions...80

4.3 Memory I/O Functions ..82
4.3.1 Transfer Register Modifiers..82
4.3.2 Memory I/O Data types..83

4.3.2.1 sync_t...85
4.3.2.2 bytes_specifier_t ..86
4.3.2.3 reflect_signal_t ...87
4.3.2.4 pci_read_write_ind_t, sram_read_write_ind_t88
4.3.2.5 scratch_read_write_ind_t, scratch_ring_ind_t, sram_read_qdesc_ind_t,

sram_ring_ind_t, sram_journal_ind_t, cap_read_write_ind_t,
msf_read_write_ind_t, reflect_read_write_ind_t89

4.3.2.6 dram_read_write_ind_t ..91
4.3.2.7 sram_atomic_ind_t...92
4.3.2.8 scratch_atomic_ind_t, sram_csr_read_write_ind_t,

cap_csr_read_write_ind_t93
4.3.2.9 dram_rbuf_tbuf_ind_t...94
4.3.2.10 sram_enqueue_ind_t ...95
4.3.2.11 sram_dequeue_ind_t ...96
4.3.2.12 hash_ind_t ...97
4.3.2.13 generic_ind_t ...98

4.3.3 Memory I/O Functions ...99
4.3.3.1 Scratch Operations ..100
4.3.3.2 SRAM Operations ..138
4.3.3.3 DRAM Operations..204
4.3.3.4 MSF Operations...211
4.3.3.5 PCI Operations ..222
4.3.3.6 Reflector Operations ..227

4.3.4 Limitations on Some I/O Functions..232
4.4 Synchronization Functions..234

4.4.1 Synchronization Data Types..234
4.4.1.1 signal_t...234
4.4.1.2 SIGNAL_MASK..234
4.4.1.3 inp_state_t ...234

4.4.2 Synchronization Functions...235
4.4.2.1 __signals() ...236
4.4.2.2 signal_test() ...237
4.4.2.3 ctx_swap()..238
4.4.2.4 ctx_wait()..239
 Microengine C Language Support Reference Manual 5

Intel® IXP2400/IXP2800 Network Processors
Contents
4.4.2.5 __wait_for_any(), __wait_for_all().. 240
4.4.2.6 signal_same_ME ... 241
4.4.2.7 signal_same_ME_next_ctx .. 242
4.4.2.8 signal_prev_ME ... 243
4.4.2.9 signal_prev_ME_this_ctx ... 244
4.4.2.10 signal_next_ME ... 245
4.4.2.11 signal_next_ME_this_ctx ... 246

4.5 Control and Status Register (CSR) Access Functions ... 247
4.5.1 CAP Data Types .. 247

4.5.1.1 cap_csr_t ... 247
4.5.1.2 local_csr_t.. 248
4.5.1.3 cap_read_write_ind_t... 249

4.5.2 CAP Functions... 250
4.5.2.1 cap_csr_read(), cap_csr_read_D() .. 252
4.5.2.2 cap_csr_read_ind(), cap_csr_read_D_ind() .. 253
4.5.2.3 cap_csr_write(), cap_csr_write_D() ... 254
4.5.2.4 cap_csr_write_ind(), cap_csr_write_D_ind().. 255
4.5.2.5 cap_read(), cap_read_D().. 256
4.5.2.6 cap_read_ind(), cap_read_D_ind() .. 257
4.5.2.7 cap_write(), cap_write_D()... 258
4.5.2.8 cap_write_ind(), cap_write_D_ind() ... 259
4.5.2.9 cap_fast_write() ... 260
4.5.2.10 local_csr_read() ... 261
4.5.2.11 local_csr_write()... 262

4.6 Hash Access Functions .. 263
4.6.1 Data Types .. 263
4.6.2 Functions ... 264

4.6.2.1 hash_48(), hash_48_D() .. 265
4.6.2.2 hash_48_ind(), hash_48_D_ind() .. 266
4.6.2.3 hash_64(), hash_64_D() .. 267
4.6.2.4 hash_64_ind(), hash_64_D_ind() .. 268
4.6.2.5 hash_128(), hash_128_D() .. 269
4.6.2.6 hash_128_ind(), hash_128_D_ind() .. 270

4.6.3 Limitations on Hash Functions... 271
4.7 CAM (Content Addressable Memory) Access Functions.. 272

4.7.1 Data Types .. 272
4.7.1.1 cam_lookup_t... 272

4.7.2 Functions ... 273
4.7.2.1 cam_clear() .. 274
4.7.2.2 cam_lookup() ... 275
4.7.2.3 cam_read_tag().. 276
4.7.2.4 cam_read_state()... 277
4.7.2.5 cam_write_state() .. 278
4.7.2.6 cam_write() .. 279

4.8 CRC Access Functions... 280
4.8.1 Data Types .. 280

4.8.1.1 bytes_specifier_t .. 280
4.8.2 Functions ... 280

4.8.2.1 crc_5_be().. 284
4.8.2.2 crc_5_be_bit_swap().. 285
4.8.2.3 crc_5_le() ... 286
4.8.2.4 crc_5_le_bit_swap()... 287
4.8.2.5 crc_10_be().. 288
6 Microengine C Language Support Reference Manual

Intel® IXP2400/IXP2800 Network Processors
Contents
4.8.2.6 crc_10_be_bit_swap()..289
4.8.2.7 crc_10_le() ...290
4.8.2.8 crc_10_le_bit_swap() ...291
4.8.2.9 crc_16_be() ..292
4.8.2.10 crc_16_be_bit_swap()..293
4.8.2.11 crc_16_le() ...294
4.8.2.12 crc_16_le_bit_swap() ...295
4.8.2.13 crc_ccitt_be..296
4.8.2.14 crc_ccitt_be_bit_swap..297
4.8.2.15 crc_ccitt_le ...298
4.8.2.16 crc_ccitt_le_bit_swap...299
4.8.2.17 crc_32_be() ..300
4.8.2.18 crc_32_be_bit_swap()..301
4.8.2.19 crc_32_le() ...302
4.8.2.20 crc_32_le_bit_swap() ...303
4.8.2.21 crc_iscsi_be() ...304
4.8.2.22 crc_iscsi_be_bit_swap()...305
4.8.2.23 crc_iscsi_le() ..306
4.8.2.24 crc_iscsi_le_bit_swap() ..307
4.8.2.25 crc_read()...308
4.8.2.26 crc_write() ..309

4.9 Miscellaneous Functions ..310
4.9.1 Functions ...310

4.9.1.1 dbl_shr() ...313
4.9.1.2 dbl_shl() ...314
4.9.1.3 __ctx() ..315
4.9.1.4 __ME() ...316
4.9.1.5 __n_ctx() ..317
4.9.1.6 __nctx_mode() ...318
4.9.1.7 sleep() ..319
4.9.1.8 ffs() ...320
4.9.1.9 __LoadTimeConstant() ..321
4.9.1.10 __global_label() ...322
4.9.1.11 multiply_24x8()...323
4.9.1.12 multiply_16x16()...324
4.9.1.13 multiply_32x32_lo() ..325
4.9.1.14 multiply_32x32_hi() ..326
4.9.1.15 multiply_32x32()...327
4.9.1.16 __set_timestamp() ...328
4.9.1.17 __timestamp_start(), __timestamp_stop..329
4.9.1.18 __set_profile_count() ...330
4.9.1.19 __profile_count_start(), __profile_count_stop......................................331
4.9.1.20 __signal_number() ...332
4.9.1.21 __xfer_reg_number() ...333
4.9.1.22 __assign_relative_register()...334
4.9.1.23 __implicit_read() ..335
4.9.1.24 __implicit_write() ..336
4.9.1.25 __free_write_buffer()..337
4.9.1.26 inp_state_test() ..338
4.9.1.27 bit_test() ...339
4.9.1.28 nn_ring_dequeue_incr() ...340
4.9.1.29 nn_ring_dequeue()...341
4.9.1.30 nn_ring_enqueue_incr() ...342
4.9.1.31 byte_align_block_le() ...343
 Microengine C Language Support Reference Manual 7

Intel® IXP2400/IXP2800 Network Processors
Contents
4.9.1.32 byte_align_block_be().. 344
4.9.1.33 __no_spill_begin().. 345
4.9.1.34 __no_spill_end() .. 346
4.9.1.35 assert()... 347
4.9.1.36 __critical_path() ... 348
4.9.1.37 pop_count().. 349
4.9.1.38 __switch_pack ... 350
4.9.1.39 __impossible_path ... 351
4.9.1.40 __no_swap_begin.. 352
4.9.1.41 __no_swap_end... 353

4.10 Restrictions On Intrinsics .. 354
4.10.1 Intrinsic Function Arguments that Map to Transfer Registers in Microcode 354

5 Inline Assembly Language ... 357
5.1 Single __asm Instruction .. 358
5.2 Block of __asm Assembly Code... 359
5.3 Instruction Format... 360
5.4 Operand Syntax.. 361

5.4.1 Register Operands... 361
5.4.2 Immediate Operands ... 362
5.4.3 Usage Examples.. 362

5.5 Restrictions on Use Of Assembly Language .. 365

6 Compiler Optimizations .. 367
6.1 Machine Independent Optimizations .. 367
6.2 Network Processor Specific Optimizations ... 367

6.2.1 Registrations.. 367
6.2.2 Read/Write Combining... 367
6.2.3 Peephole Optimization... 368
6.2.4 Defer Slot Filling .. 368
6.2.5 Local Memory Grouping .. 368
6.2.6 Local Memory Autoincrement/Autodecrement Conversion 369
6.2.7 Scheduling ... 370
6.2.8 I/O Parallelization... 370

7 Tips for Optimization, Troubleshooting, and Debugging .. 373
7.1 Optimizing Your Code... 373
7.2 Things to Remember When Writing Microengine C Code.. 374
7.3 Troubleshooting .. 378

7.3.1 Program Does Not Fit .. 378
7.3.2 Program Does Not Run Correctly .. 378

7.4 Debugging Inline Functions .. 378

8 Mutual Exclusion Library.. 379
8.1 Introduction ... 379
8.2 MUTEXLV Usage ... 379
8.3 MUTEXG Usage... 380
8.4 Functions .. 380

8.4.1 MUTEXLV_init (MUTEXLV)... 380
8.4.2 MUTEXLV_destroy(MUTEXLV,MUTEXID) ... 380
8.4.3 MUTEXLV_lock(MUTEXLV, MUTEXID).. 381
8 Microengine C Language Support Reference Manual

Intel® IXP2400/IXP2800 Network Processors
Contents
8.4.4 MUTEXLV_unlock(MUTEXLV, MUTEXID) ..381
8.4.5 MUTEXLV_trylock(MUTEXLV, MUTEXID, ERRCODE)......................................381
8.4.6 MUTEXLV_testlock(MUTEXLV, MUTEXID, ERRCODE)381
8.4.7 MUTEXG_init (MUTEXG) ..382
8.4.8 MUTEXG_destroy (MUTEXG)...382
8.4.9 MUTEXG_lock (MUTEXG) ..382
8.4.10 MUTEXG_unlock (MUTEXG) ..383
8.4.11 MUTEXG_trylock (MUTEXG, ERRCODE) ..383
8.4.12 MUTEXG_testlock (MUTEXG, ERRCODE)...383

9 Semaphore Library ..385
9.1 Semaphore Data Types..385
9.2 Semaphore Functions...385

9.2.1 SEML_init(SEML, SEMVALUE)...385
9.2.2 SEML_destroy(SEML) ...385
9.2.3 SEML_post(SEML)

SEML_dec(SEML)386
9.2.4 SEML_wait(SEML) ..386
9.2.5 SEML_trywait(SEML, ERRCODE)...386
9.2.6 SEML_barrier(SEML,n) ...387
9.2.7 SEML_trybarrier(SEML, ERRCODE)...387
9.2.8 SEML_getvalue(SEML) ...387
9.2.9 SEML_set_barrier_at(SEML,n) SEML_clr_barrier_at(SEML,n)...........................387

A -Qperfinfo Output Information..397
A.1 -Qperfinfo=1..397
A.2 -Qperfinfo=2..398
A.3 -Qperfinfo=4..400
A.4 -Qperfinfo=8..401
A.5 -Qperfinfo=16..402
A.6 -Qperfinfo=32..404
A.7 -Qperfinfo=64..405
A.8 -Qperfinfo=128..406
A.9 -Qperfinfo=256..407
A.10 -Qperfinfo=512..408
A.11 -Qperfinfo=1024..409
A.12 -Qperfinfo=2048..410
A.13 -Qperfinfo=4096..411
A.14 -Qperfinfo=8192..412

Figures
1 Microengine Block Diagram..15
2 Local Memory Layout ...48
3 Local Memory Layout for Program 1 ..49

Tables
1 Conventions..12
2 Supported CLI Option Switches..20
3 Input File Types ..25
 Microengine C Language Support Reference Manual 9

Intel® IXP2400/IXP2800 Network Processors
Contents
4 Output File Types ... 25
5 Supported ucld CLI Option Switches.. 26
6 Summary of Data Types... 34
7 Summary of Allowed Combinations of Attributes on Data.. 52
8 Unaligned Get Functions .. 75
9 Unaligned Set Functions Summary .. 78
10 Unaligned memcpy Functions .. 80
11 Memory I/O Data Types ... 83
12 Scratch Operation Summary ..100
13 SRAM Operations Summary .. 138
14 DRAM Operations Summary .. 204
15 MSF Operations Summary ...211
16 PCI Operations Summary... 222
17 Reflector Operations Summary .. 227
18 Synchronization Functions Summary ... 235
19 CSR Access Functions Summary .. 250
20 Hash Functions Summary .. 264
21 CAM Access Functions Summary .. 273
22 CRC Access Functions Summary .. 281
23 Miscellaneous Functions Summary.. 310
10 Microengine C Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Introduction
Introduction 1

1.1 Purpose
This document specifies the subset of the C language supported by the Intel® Microengine C
Compiler and the extensions to the language to support the unique features of the Intel® IXP2XXX
network processor line.

Note: For simplicity throughout this document, the Microengine C Compiler will be referred to as the C
compiler, or in some cases simply the compiler. Also, the IXP2XXX Network Processor may be
referred to as the NPU.

1.2 Features
• The C compiler provides a high-level language programming environment for the network

processor to reduce application development time and reduce the need for specialized
knowledge.

• The compiler supports programming for the network processor microengines by supporting a
combination of the standard C language, language extensions, and intrinsic functions. It
supports unique features of the processor through language extensions, intrinsic functions, and
inline assembly.

• All existing reference designs currently written in assembly language can be converted to C
for the compiler to handle.

• The compiler works with existing tools, including the microcode linker loader and the
Developer Workbench.

1.3 Nonfeatures
• The C compiler is not a complete ANSI C implementation.

• There are many features of ANSI C, for example floating point operations, that are outside the
realm of applications on the network processor architecture. The compiler omits these
features.

• The compiler may not compile existing general purpose C code.

• The compiler does not support the full standard C runtime library.

• It implements useful or necessary functions according to the C runtime library specification,
but it does not fully implement the library.

• The compiler does not implement automatic parallelization of code.

• It expects explicitly multithreaded code as input.

• The compiler does not support separate compilation and linking of C code with assembler
code.
 Language Support Reference Manual 11

Intel® Microengine C Compiler Language Support
Introduction
• The compiler does not support C++.

• The compiler does not support floating point data types (float and double).

• The compiler does not support function pointers and recursion.

• The compiler does not support functions with a variable number of arguments (varargs).

1.4 Conventions Used in this Manual
The following conventions are used in this manual.

1.4.1 Version-Specific References
Wherever version-specific files or commands are shown in this book, versions are shown as x and
point release numbers are shown as y, as in the following example:

Example: A typical compile command could take this form:
uccl -Qnctx=1 -I\IXA_SDK_x.y\MicroengineC\include

Where x.y = the current software release that is installed on your system.

Table 1. Conventions

... Ellipsis indicates that an item may be repeated

[Option] Items in square brackets are optional

[Option1...] Optional items can have multiples.
The equivalent of [Option1 [Option2]...]

Option=1..5 Range of allowable values.
Equivalent to Option=1, 2, 3, 4, or 5

Command1|Command2|Command3

(For Windows*) Selecting cascading options.
Indicates that you should follow these steps:
Click on Command1, which offers options including Command2
Click on Command2, which offers options including Command3
Click on Command3.

For example:
Start|Programs|Accessories|Command Prompt

SDK x.y The x represents the current version, and y the latest point release of
SDK that is installed on your system. This could be 3.5, for example

IXP2800 file Keyboard input, keywords and code items are shown in
monospaced font.

IXP2400/IXP2800 PRM [3] Pointer to another document. In this example, the
INTEL® IXP2400 /IXP2800 Programmer’s Reference Manual,
Chapter 3

IXP2XXX The family of Intel® IXP2XXX network processors, where 2XXX=the
four-digit designator of the target chip.
12 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Overview
Overview 2

2.1 Network Processor Architecture Overview
The Intel® IXP2XXX Network Processor contains an Intel XScale® core processor and multiple
microengines (8 or 16). This manual is concerned only with compilation of application programs
for microengines. Each microengine has hardware support for up to 8 contexts with zero latency
task-switches. The microengine can be set up to run 4 contexts instead of 8 by setting a bit in the
CTX_ENABLE CSR. In this mode, the 4 contexts that are enabled are context 0, 2, 4, and 6.

For more information on the IXP2XXX Network Processor and the Intel XScale® core processor,
refer to the IXP2400/IXP2800 Programmer’s Reference Manual.

2.1.1 Data Terminology
The following data terminology appears in this document and in the IXP2XXX Network Processor
documentation, but not in the Microengine C data types:

Note: Section 3.1, “Standard Data Types” on page 33 details the data types and their naming conventions
supported by the C compiler.

2.1.2 Register Model
Each Microengine supports 256 General Purpose Registers (GPR) split into two banks (A and B),
and 512 Transfer Registers (XFR) that are used to communicate with memory and I/O devices. The
transfer registers are designated as follows:

• 128 SRAM (Scratch) Read XFR registers for I/O

• 128 SRAM (Scratch) Write XFR registers for I/O

• 128 DRAM Read registers

• 128 DRAM Write registers

In addition to these registers, there are also 128 Next Neighbor registers for communication
between neighboring microengines. Refer to Figure 1 on page 15 for more information.

The microengines (MEs) support two modes for accessing registers: relative and absolute.

Term Words Bytes Bits

Byte 1/2 1 8

Word 1 2 16

Longword 2 4 32

Quadword 4 8 64
 Language Support Reference Manual 13

Intel® Microengine C Compiler Language Support
Overview
In relative mode, the registers are divided equally between the eight contexts so that each context
effectively has its own set of registers. Each context may refer to relative general purpose registers
in banks A and B and relative transfer registers without conflicting with the registers of another
context.

In absolute mode a context may refer to any of the 256 GPRs. In this mode, some of the registers
may be shared among contexts, and others may be context specific.

By setting up a microengine to run in 4-context mode, each context can access twice as many
context relative registers. In this mode, odd contexts 1,3, 5, and 7 are disabled and the even
contexts 0, 2, 4, and 6 have full access to their registers.

GPRs are located in two separate registers banks (A/B). Only one register from each bank may be
read or written in any one clock cycle. Therefore, a typical binary instruction (w=r0+r1) may only
reference alternating banks for their read operands. The compiler enforces this restriction by
potentially adding register moves.

Absolute (ME shared) registers may require extra assembler move instructions as the instruction
set is asymmetric (i.e. many instructions do not take absolute registers as operands).

2.1.3 Next Neighbor Registers
Each microengine has 128 next neighbor registers that can be written in one of two ways as
selected by the NN_MODE bit in the CTX_ENABLE CSR. When the NN_MODE bit is 0, a write
to a next neighbor register goes out of the ME to the corresponding next neighbor register of the
next neighbor ME. In this mode, the next neighbor registers of an ME are read-only. When
NN_MODE bit is 1, and a next neighbor register is specified as a destination in an instruction, the
selected next neighbor register in the same ME is written. When an ME writes to its own Neighbor
register, it must wait 5 cycles (or instructions) before it executes the instruction that reads the same
register in order to get the newly written value.

Caution: Changing the NN_MODE bit at runtime is not allowed for a Microengine C program and the
behavior is undefined.

The next neighbor register can be specified directly as a context-relative register or indirectly
through an index register. In the direct access mode the 128 registers are partitioned between the 8
contexts (or 4 contexts in 4-context mode) each addressing its own set (0-15 or 0-31) of context
relative registers. In the indirect mode, one of the 128 next neighbor registers is selected through
either a local CSR NN_Put (*n$index++ used as destination) or NN_Get (*n$index or *n$index++
used as source). The compiler supports the indirect access mode through intrinsic functions.
14 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Overview
Figure 1. Microengine Block Diagram

A9351-01

128
GPRs

(A Bank)

d
e
c
o
d
e

128
GPRs

(B Bank)

128
Next

Neighbor

128
D

XFER
Out

128
D

XFER
In

NNData_In
(from previous ME)

D_Push
(from DRAM) S_Push

(from SRAM
Intel® XScale®

Architecture,
Scratchpad, MSF,
Hash, CAP)

128
S

XFER
In

640
Local
Mem

A_Src
B_Src

Immed

NN_Data_Out
(to next ME)

Dest

Control
Store

Lm_addr_1
Lm_addr_0

CRC_Reminder

A_Operand B_Operand

ALU_Out

S_Push

S_PullD_Pull

CRC Unit

Local
CSRs

T_Index
NN_Get

Execution
Datapath

(Shift, Add, Subtract, Multiply Logicals,
Find First Bit, CAM)

128
S

XFER
Out

Control
Data
 Language Support Reference Manual 15

Intel® Microengine C Compiler Language Support
Overview
2.1.4 Local Memory
Each microengine has a local memory area that is private to it. This memory holds 640 longwords
and can be addressed through one of two local memory address CSRs. These CSRs can be
configured as either being local to each context or shared among contexts. The local memory can
be accessed as operands in microcode instructions (with some restrictions) by setting up one of the
two local memory pointers. Hence, it serves as a register set that can be addressed indirectly. There
is a 3 cycle latency that must be observed between the setup of the local memory address CSR and
its use in dereferencing local memory.

See Section 3.2.7, “Local Memory Allocation” on page 47 for details on local memory layout and
allocation.

2.1.5 External Memory
External memory accesses are asynchronous. When memory is read, the thread must do one of the
following:

• Swap itself out, allowing other threads to run

• Wait until the operation signals completion before using the data read.

Similarly, when memory is written, care must be taken not to read it or write a new value before the
write has completed.

Memory is also divided into three separate regions, each with its own address space. These are:

Notes: 1. The memory is only accessed on a 32-bit (SRAM Scratch) or 64-bit (DRAM) boundary.
However, the address specified is a byte address, with the lower 2 bits (3 bits for DRAM) ignored
by the memory subsystem.

2. You always read and write memory through transfer registers (XFRs). The transfer registers are
divided into read transfer and write transfer registers. The read XFRs are written by external units
then used as source, while the write XFRs are read by external units after they are used as a
destination. (See Figure 1 on page 15.)

2.1.6 FIFO Queues
In addition to memory, there are two FIFO queues for sending and receiving data. These operate
similar to the memory. R_FIFO and T_FIFO refer to RBUF and TBUF respectively. Both can be
accessed by either dram[rbuf_rd,...], dram[tbuf_wr,...], or msf[read,...], msf[read64,...],

Memory
Region Speed Size Description

DRAM slowest largest directly addressable on quadword boundaries
(64-bits) only1

SRAM to to directly addressable on longword boundaries
(32-bits) only1

Scratch fastest smallest directly addressable on longword boundaries
(32-bits) only1
16 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Overview
msf[write,...], msf[write64,...]. Users access them using the above mentioned inline-assembly or
intrinsics, or declare variables with __declspec(tbuf, rbuf, r_fifo, t_fifo) and use them like C
variables.

2.1.7 Signals
The IXP2XXX Network Processor architecture provides a set of 15 signals per context that can be
associated with certain hardware events. These signals might be used to notify the execution
context that a certain request has been completed. The choice of hardware signal to use is specified
in the microcode. Hence these signals are like hardware registers that can be allocated and used by
software. Certain events such as DRAM access, or accesses that involve a pull and a push from
transfer registers require specification of two signal registers (an even-odd pair) on which the event
completion is signaled.

2.1.8 Reflector
The IXP2XXX Network Processor architecture supports an operation called Reflector, which
provides the ability for one microengine thread to read its SRAM or DRAM transfer register from
the SRAM transfer register or local CSR of another microengine context or write its SRAM
transfer register to the SRAM or DRAM transfer register or local CSR of another microengine
context. Access completion signals can optionally be requested for one or both of the sending and
receiving threads.

2.1.9 Indirect Register Access
The MEv2 architecture supports indirect register access, using the T_INDEX, NN_PUT, and
NN_GET registers. Because the value of these registers generally cannot be determined at compile
time, the use of indirect register access in inline assembly is not recommended. The compiler will
perform register allocation and live range analysis without taking the indirect register access into
account, and, as a result, the values read or written using indirect access may be incorrect. For
access to the next-neighbor registers in ring mode, you can use the intrinsic functions designed for
this purpose. See Section 4.9, “Miscellaneous Functions” on page 310 for additional information.

2.1.10 Threading Model
The programming model for the IXP2XXX Network Processor architecture involves programs
running on multiple microengines, each running multiple threads. Each microengine can be
configured to run either in 4-context mode or 8-context mode by setting a bit in the
CTX_ENABLE CSR. In the 4-context mode, twice as many context relative registers are available
to each of the 4 threads. The multithreading is explicit; that is, you must partition the tasks across
threads. You also need to partition the program across microengines and manage all interthread and
interprocess communication.

The IXP2XXX Network Processor is designed to handle a very large number of packets of data in
communications routing applications. The threading model contributes to this bandwidth by
allowing useful work to be done by another thread while one thread is waiting for completion of a
memory or I/O transfer. Thus, the usual case is, when you read or write memory, your thread is
swapped out, allowing other tasks to run.
 Language Support Reference Manual 17

Intel® Microengine C Compiler Language Support
Overview
2.1.11 Features Not Supported
Several features generally found on all general-purpose processors are not supported on the
IXP2XXX Network Processor microengines. There is:

• No support for either a data stack or a subroutine call stack.

• No data or instruction cache

• No traps or exception support.

• No misalignment support

• No direct support for byte aligned access (direct access must be aligned on longword (SRAM
or Scratch) and quadword (DRAM).

A stack could be implemented in SRAM with software, but due to the long memory latency and
multiple instructions required for stack manipulation it would be prohibitively slow. Local memory
is not well suited for implementing the stack either, because of its limited size (80 longwords per
context). Hence this architecture is not amenable to function recursion and standard caller/callee
register partitioning. Consequently, the compiler does not support recursion, and resorts to whole
program register allocation to avoid or reduce the overhead of spilling/filling registers.

Function calls are implemented by loading a register with the return address and jumping to the
function. The load of the return address is placed in the delay slot of the jump instruction to
minimize the overhead.

2.2 Compilation Model
Since microengine programs are necessarily very small, the C compiler always compiles the entire
program for a microengine. This is done through the Inter-Procedural Optimization (IPO) feature
of the compiler. In this model, you can separately compile C source code, but instead of generating
code, the compiler writes the intermediate language to an object file. Then when you link the
program, the driver calls the compiler for all of the precompiled objects. The compiler performs a
global analysis and calls the code generator for each function in the complete program. At this
point, the entire call graph and global usage of all variables is known, allowing for much better
code generation than would be possible compiling one function or even one source module at a
time.

This compilation model allows the compiler to optimize the linkage between functions based on its
knowledge of both the caller and called function. The compiler can allocate static variables to
registers, fine tune calling sequences, and avoid the stacking of return addressing and the saving
and restoring of registers across calls except when absolutely necessary.

2.2.1 Number of Contexts
When 4 or fewer contexts are needed in the microengine program, it is beneficial to set the
microengine to run in 4-context mode. This is done using the compiler switch -Qnctx_mode=4. In
this mode each context has twice as many context relative registers available, potentially leading to
fewer spills and better performance. The exact number of contexts also needs to be specified
through a command line option. It is important to remember that in 4 context mode, the contexts
are numbered 0, 2, 4, 6. This impacts any code that checks the context number. For example, in 4-
context mode the following line of code never evaluates to true:

if (__ctx() == 1)
18 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Overview
2.2.2 Inlining
The compiler performs inlining of functions. This feature of the compiler is controllable through
compiler options as well as through the use of directives in the C source code. The keywords
__inline and __forceinline appearing in the function definition (as shown in the example below),
indicate to the compiler that the function is to be inlined in all the places it is called from. The
__forceinline keyword forces the compiler to inline the function regardless of the size of the
function as long as inlining has not been turned off via the -Ob compiler switch or in debug code
via the -Od switch. The __inline keyword allows the compiler to decide whether or not to inline the
function based on cost/benefit analysis performed by the compiler.

Example:

__forceinline int foo() {...}

__inline int bar() {...}

The function to be force inlined with a __forceinline keyword should normally be in the same file
as the caller to the function. If however the caller and callee are in different files, either a prototype
for the function with the "extern" keyword should be present (or included) in the file containing the
callee, or the function definition should specify the "extern" keyword in addition to the
__forceinline keyword.

Example:

__forceinline extern int foo() {...}

Without this, the force inlined function is treated as if it were a static function and hence is not
externally visible or inlined in other files.

The keyword __noinline can be used to prevent the compiler from inlining a function. This can be
used to control code size.

Note: Use the -Obn compiler option switch to control the amount of automatic inlining the compiler will
perform. See Table 2, “Supported CLI Option Switches” on page 20 for more information on the -
Obn compiler switch.

2.3 Running the C Compiler
You can compile your C source code in one of two ways, by using one of the following:

• Compiler command line interface (CLI)

• Developer Workbench

2.3.1 The Command Line
You can use the compiler command line interface from a command prompt window on your
system. Do the following:

1. Open a command prompt window.

2. Go to the folder containing the C source files, typically:
 Language Support Reference Manual 19

Intel® Microengine C Compiler Language Support
Overview
C:\IXA_SDK_3.y\me_tools\bin>

3. Invoke the C compiler using this command:
uccl [options] filename...

Note: C:\IXA_SDK_3.y\me_tools\bin should be on your PATH. On a system with IXA SDK 2.y and IXA
SDK 3.y installed, the Micro C compiler runs on either the V2.y or V3.y DevWorkbench. If you
want to run the V3.y C compiler from the command line, the system path needs to be set up
accordingly.

2.3.2 Supported Compilations
Two kinds of compilations are supported:

• Compile one or more source files (*.c, *.i) into separate object (*.obj) files.

• Compile any combinations of source file (*.c, *.i) and/or object file (*.obj) into one list file
(*.list).

In the first case, you must use the -c switch in the command line in order to compile .c files into
separate .obj files. You might want to use this method to compile .c files that don’t change very
often, for example, rtl.c, so that you don’t have to recompile them every time you make a .list file.

Example: uccl -c file1.c file2.i

In the second case, do not use the -c switch. In the following example, two source files (.c and .i)
and an object file (*.obj) are compiled to produce a .list file.

Example: uccl file1.c file2.i rtl.obj

2.3.3 Supported Compiler Option Switches
Table 2 lists and defines all the supported C compiler command line switches. The Command Line
Interface (CLI) warns and ignores unknown options. The CLI honors the last option if it conflicts
with a previous one, for example,

uccl -c -O1 -O2 file.c

this generates the following warnings and proceeds:

uccl: Command line warning: overriding '-O1' with '-O2'

If you enter other conflicting switches such as -E and -EP, the last switch entered always prevails.

Options that do not take a value argument, such as -E, -c, etc., are off by default and are enabled
only if specified on the command line.

Table 2. Supported CLI Option Switches (Sheet 1 of 5)

Switch Definition

-?
-help Lists all the available options.

-c Compiles each .c or .i file to a .obj file (rather than compile and link).

-Dname[=value] Specifies a #define symbol. The value, if omitted is 1.
20 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Overview
-DSDK_3_y_COMPATIBLE

Uses the IXA SDK 3.y version of the hash intrinsics (with the read and
write parameters swapped) and removes error checking for generic
(“void *”) typecasts in intrinsics library parameters. If possible, SDK 3.y
code should be changed to work with the new versions of the hash
intrinsics and any generic typecasts should be changed to the correct
types.

-E
-EP
-P

Preprocess to stdout.
Preprocess to stdout, omitting #line directives.
Preprocess to file.

-Fa<filename>

Produces a .uc file containing the generated microcode intermixed with
the source program lines. The resulting assembly file is for reference
only; the compiler does not guarantee that the file will pass through the
assembler. If an assembler-compatible file is required, the -uc option
should be used instead. This may have a negative impact on
performance, however; certain optimizations cannot be performed
when compiling for the assembler.

-Fo<file> -Fo<Dir\> Name of object file or directory for multiple files.

-Fe<file>
Base name of executable (.list, .ind) file. Defaults to the base name of
the first file (source or object) specified on the command line followed
by the extension (.list).

-Fi<file> Overrides the base name of the .ind file.

-FI<file> Forces inclusion of file.

-Gx2XXX
(where 2XXX=the target NPU
model)

Specifies the target processor. IXP2800 is the default.
The compiler adds -DIXP2XXX as appropriate.

-I path[;path2...] Path(s) to include files, prepended before path(s) specified in
environment variable UCC_INCLUDE.

-link[linker options]

Calls the microengine image linker (ucld) after successful compilation,
passing any specified linker options. The default linker options are:

-u 0
-sc 0x00000004:0x00003ff4
-dr 0x00000010:0x07fffffe8
-sr0 0x00000004:0x03fffffc
-sr1 0x00000004:0x03fffffc
-sr2 0x00000004:0x03fffffc
-sr3 0x00000004:0x03fffffc”

-Obn
Inlining control: n=0, none; n=1, explicit (inline functions declared with
__inline or __forceinline (default)); n=2, any (inline functions based on
compiler heuristics, and those declared with __inline or __forceinline)

-On Optimize for: n=1, size (default); n=2, speed; n=d, debug (turns off
optimizations and inlining, overriding -Obn below).

-Qbigendian
Compile big-endian byte order (default). Compiler adds -DBIGENDIAN,
-ULITTELENDIAN. All other command line BIGENDIAN/
LITTLEENDIAN symbol definitions and undefinitions are ignored.

-Qdefault_sr_channel=<0...3>
Specify the SRAM channel that should be used when allocating
compiler-generated SRAM variables and variables that are specified as
__declspec(sram). The default is channel 0.

-Qerrata Report when the compiler-generated code triggers a known processor
erratum.

Table 2. Supported CLI Option Switches (Continued) (Sheet 2 of 5)

Switch Definition
 Language Support Reference Manual 21

Intel® Microengine C Compiler Language Support
Overview
-Qip_no_inlining Turns off all inter-procedural inlining. Inter-procedural inlining is on by
default.

-Qlittleendian
Compiles little endian byte order. Compiler adds -DLITTLEENDIAN -
UGIBIGENDIAN. All other command line LITTLEENDIAN/BIGENDIAN
symbol definitions and undefinitions are ignored.

-Qliveinfo Equivalent to -Qliveinfo=all

-Qliveinfo=gr,sr,...

Print detailed liveness information for a given set of register classes:
gr: general purpose registers
sr: SRAM read registers
sw: SRAM write registers
srw: SRAM read/write registers
dr: DRAM read registers
dw: DRAM write registers
drw: DRAM read/write registers
nn: neighbor registers (only when -Qnn_mode=1)
sig: signals
all: all of the above

-Qlm_start=<n>
Provides a means for user to reserve local memory address [0, n-1] (in
longwords) for direct use in inline assembly. Compiler does not allocate
any variables to this address range.

-Qlm_unsafe_addr
Disables the compiler's use of local memory auto increment
addressing. Used when user code writes local memory pointers with
invalid values. See Section 6.2.6 for more information.

-Qlmpt_reserve Reserve local memory base pointer l$index1 for user inline assembly
code.

-Qmapvr Prints out pseudo-assembly code with annotations that map physical
registers to user variables and compiler-generated temporary variables.

-Qnctx=<1, 2, 3, 4, 5, 6, 7, 8>

Specifies the number of contexts that will be made active in your
program. Unused contexts will be made to execute the ctx_arb[kill]
instruction and terminate. Compiler-allocated resources such as
memory will not be allocated to unused threads. The underlying number
of contexts supported by the hardware will not be changed, so
hardware-managed resources such as registers will still be allocated to
all threads. Defaults to the value of –Qnctx_mode (which defaults to 4).
If –Qnctx is set greater than the value of –Qnctx_mode, -Qnctx_mode
will be changed to the higher value.

-Qnctx_mode=<4, 8>
Specifies the number of contexts that the hardware will support.
Changing this value from 4 to 8 halves the number of available context-
specific registers. Defaults to 4.

-Qnn_mode=<0, 1>
Sets NN_MODE in CTX_ENABLE for setting up next neighbor access
mode. (See Next Neighbor Register section in Chapter 3). 0=neighbor
(default), 1 = self).

-Qnolur=<func_name>

Turns off loop unrolling on specified functions. You can supply one or
more function names to the option. For example:

-Qnolur="_main"; turn off loop unrolling for main().
-Qnolur="_main,_foo"; turn off loop unrolling for main() and foo().

The supplied function name must have the preceding underscore ('_').

-Qold_revision_scheme Generates hardware revision numbers that are compatible with IXA
SDK 3.0 and below.

Table 2. Supported CLI Option Switches (Continued) (Sheet 3 of 5)

Switch Definition
22 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Overview
-Qperfinfo=n

Prints performance information.
n=0 - No information (similar to not specifying)
n=1 - Register candidates spilled (not allocated to registers) and the
spill type
n=2 - Instruction-level symbol liveness and register allocation
n=4 - <deprecated>
n=8 - Function sizes
n=16 - Local memory allocation
n=32 - Live range conflicts causing SRAM spills
n=64 - Instruction scheduling statistics
n=128 - Warn if the compiler cannot determine the size of a memory I/O
transfer
n=256 - Display information for "restrict" pointer violations
n=512 - Print offsets of potential jump[] targets
n=1024 - Information about the Boolean propagation optimization
n=2048 - Register requirements report
n=4096 - Information on switch statement optimizations
n=8192 - Print information on I/O parallelization

-Qrevision_min=n
-Qrevision_max=m

The version arguments allow the compiler to generate code that works
on a range of processor versions (steppings).

0x00=A0 (default for -Qrevision_min)
0x01=A1
0x10=B0
0x11=B1

The default revision range is 0x00 to 0xff (all possible processor
versions). The default for -Qrevision_max is 0xff. The compiler adds
-D__REVISION_MIN=n and -D__REVISION_MAX=m. Note: The IXP
program loader reports an error if a program compiled for a specific set
of processors is loaded onto the wrong processor.

-Qspill=<n>

Selects the alternative storage areas ("spill regions") chosen when
variables cannot be allocated to general-purpose or transfer registers:

(LM=local memory, NN=next neighbor registers)

n=0: LM (most preferred) -> NN -> SRAM (least preferred)
n=1: NN->LM->SRAM
n=2: NN only; halt if not enough NN
n=3: LM only; halt if not enough LM
n=4: NN->LM; halt if not enough LM or NN
n=5: LM->NN; halt if not enough LM or NN
n=6: SRAM only
n=7: No spill; halt if any spilling required
n=8: LM->SRAM

Default is n=0. You must set -Qnn_mode=1 to use the NN registers as a
spill region. If the NN registers are used by program code, NN spilling
will be automatically disabled.

-s
Changes the behavior of -uc by not calling uca to assemble the
compiler produced assembly code. Only valid when combined with -uc
option.

Table 2. Supported CLI Option Switches (Continued) (Sheet 4 of 5)

Switch Definition
 Language Support Reference Manual 23

Intel® Microengine C Compiler Language Support
Overview
2.3.3.1 Environment Variables

The following environment variable is recognized by the compiler:
UCC_INCLUDE: A list of directories to be added to the include path. The list is

separated by semicolons: dir1;dir2;dir3..., and is appended after the
directories supplied on the command line using -I.

-uc

Mixing C and microcode programming. Under this option, you can
compile one or more C files as well as one or more microcode files into
one application. The compiler compiles all C files into one microcode
file, then sends this microcode file as well as other microcode files to
UCA to produce a list file.

-Wn n=<0, 1, 2, 3, 4>

Warning level.
0=print only errors
1, 2, 3=print only errors and warnings
4=print errors, warnings, and remarks.
Defaults to 1.

-Zi Produces debug information. The compiler generates a file with a .dbg
extension for each source.

Table 2. Supported CLI Option Switches (Continued) (Sheet 5 of 5)

Switch Definition
24 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Overview
2.3.4 Input and Output File Types

2.3.5 Linking a Microengine .UOF file
Before running a program you must link using the ucld linker. The linker can combine multiple
files into a single executable .uof file. The executable file can contain microcode and data for one
or more microengines.

Example: To link a single microengine program to run on microengine 0 use:

ucld -u 0 -dr 0x00000010:0x07fffffe8 file.list

Example: Using the -link switch:

uccl file.c -link
You can override linker options after -link. The default supplied by uccl is:

-u 0 -sc 4:0x00003ff4 -dr 0x10:0x07fffffe8 -sr0 4:0x03fffffc -sr1 4:0x03fffffc
-sr2 4:0x03fffffc -sr3 4:0x03fffffc

Table 3. Input File Types

Extension File type

.c source file

.h header file

.i source file after preprocessing

.obj object generated by the compiler invoked by the
-c switch

Table 4. Output File Types

Extension File type Command switch

.list output file from compiler used by linker -Fe<file>

.obj object generated by the compiler invoked by the
-c switch

.uc assembler input generated by the compiler
invoked by the -Fa switch

.uof linker output file

.ind a Transactor script to assemble and run the
program

-Fe<file> or
-Fi<file>
 Language Support Reference Manual 25

Intel® Microengine C Compiler Language Support
Overview
Table 5 lists and defines all the supported C linker command line switches. The CLI ignores and
issues a warning for unknown options.

You may want the .list file to contain special linker directives that are not directly supported by the
compiler. For example, the “.%image_name” directive is used by the linker to tag the .uof file with
a text label. In this case, you can use the #pragma comment(linker...) directive as follows:

#pragma comment(linker ".%linkerdirective arg1 arg2")

This directive will emit “.%linkerdirective arg1 arg2” directly at the top of the .list file.

2.3.6 Util.c
The util.c file provides functions that can be used to display characters, strings, and numbers in
various formats. These functions use the put() intrinsic to simulate output of a single character. The
put function makes use of Scratch memory 0x3ff8-0x3fff. Output is simulated by setting a watch
point in the simulation script file (.ind) on Scratch memory 0x3ff8 and printing data in longword
0x3ffc.

2.3.6.1 Utility Functions (util.c)

The util.c resides in the MicroengineC\Samples\util underneath the IXA SDK installation
directory. It contains a collection of functions that can be used to display characters, strings, and
numbers in various formats. The functions available are:

void put(int c) Puts a single character.

void puts(char *a) Puts a string of characters in SRAM. A quoted
string can be used as the argument, for
example, puts("Hello world\n");

void putui(unsigned int x) Formats and puts an unsigned int in decimal.

void putsi(int x) Formats and puts out a signed int in decimal.

void putull(unsigned long long x) Formats and puts out an unsigned long long in
decimal.

void putsll(long long x) Formats and puts out a signed long long in
decimal.

void puthi(int x) Formats and puts out an unsigned int in hex.

Table 5. Supported ucld CLI Option Switches

Switch Definition

-u Specifies the Microengine the program is meant
for.

-sr0, -sr1,
-sr2, -sr3,

Specifies location in SRAM memory (channel 0,
1, 2, 3) to allocate variables.

-sc Specifies location in Scratch memory to allocate
variables.

-dr Specifies location in DRAM memory to allocate
variables.
26 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Overview
void puthll(unsigned long long x) Formats and puts out an unsigned long long in
hex.

If you run a program through the Transactor from the command line, use the .ind file generated by
the compiler to run the program. The output will appear in your Command Line window.

If you run from the Workbench, the util.ind script file in the util directory needs to be included in
your project in order to have the output appear in the Command Line window.

Note: This script should be included as an additional initialization script in the project.

2.3.6.2 Multi-threading restrictions

All of these functions are thread-safe at the character level (that is, multiple threads can be writing
characters without interfering with each other). But if you have multiple threads writing, for
instance a number, the digits will get intermixed as thread swaps occur. To avoid this, use a thread
lock mechanism to control how output from multiple threads are intermixed. Refer to Chapter 8,
“Mutual Exclusion Library”, for information on appropriate locking mechanisms.

The following facilitates multiple I/O data types in a Microengine thread-safe manner, similar to
printf. In these examples, the IO_ macros are defined in util.h. The pm_printf() function is define in
util.c.

io_item io[2];

IO_ADD_STRING(io[0],"This is a test");

IO_ADD_INT(io[1], 123);

pm_printf(2, io_dlmtr_nl, io);

IO_ADD_CHAR(x,v)// add char to print

IO_ADD_UINT(x,v) // add unsigned int

IO_ADD_INT(x,v) // add int

IO_ADD_ULL(x,v) // unsigned long long

IO_ADD_LL(x,v) // long long

IO_ADD_ULLH(x,v) // unsigned long long in hex

IO_ADD_INTH(x,v) // int in hex

IO_ADD_STRING(x,v)// string

IO_ADD_PTR(x,v) // generic pointer

2.3.7 Example–Using the C Compiler
A simple C program, hello.c, displays “Hello World” on the screen.

2.3.7.1 The C File

Hello.c looks like this:
 #include <util.h>

 void main()

 {

 puts("Hello world\n");

 }
 Language Support Reference Manual 27

Intel® Microengine C Compiler Language Support
Overview
2.3.7.2 Compiling the File

To compile, the command line looks like this:
 uccl -Qnctx=1 -I\IXA_SDK_3.y\MicroengineC\include \

-I\IXA_SDK_3.y\MicroengineC\samples\util hello.c \

\IXA_SDK_3.y\MicroengineC\samples\util\util.c \

\IXA_SDK_3.y\MicroengineC\src\rtl.c \

\IXA_SDK_3.y\MicroengineC\src\intrinsic.c

or if util and rtl are pre-compiled:

 uccl -Qnctx=1 -I\IXA_SDK_3.y\MicroengineC\include \

-I\IXA_SDK_3.y\MicroengineC\samples\util hello.c \

\IXA_SDK_3.y\MicroengineC\lib\util.obj \

\IXA_SDK_3.y\MicroengineC\lib\rtl.obj \

\IXA_SDK_3.y\MicroengineC\lib\intrinsic.obj

Note: Use the slash character (/) in place of the backslash character (\) as the directory delimiter under the
Linux operating system.

2.3.7.3 Linking the File

To link, enter the following command on the command line:
ucld -u 0 -dr 0x00000000:0x8000000 hello.list

Note: You can skip this step by specifying the -link switch during compilation.

2.3.7.4 Running the File

The hello.ind file is generated during linking. To run the hello world program, type the following
command:

IXP2800 < hello.ind

or

IXP2400 < hello.ind

The system displays a screenful of text from the Transactor initialization, followed by the text
“Hello world” and a count of the cycles it took to execute.

For more extensive example code, refer to rtl.c and util.c.

2.3.7.5 Initialization File

The initialization (script) file util.ind resides in \MicroengineC\samples\util and is used
with the Developer Workbench for simulating output to stdout.
28 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Overview
2.3.8 C Compiler Graphical User Interface from Developer
Workbench
The Developer Workbench supports an integrated microengine C compiler for creating, compiling,
testing, and debugging Microengine C applications.

2.3.8.1 Build Features

The Developer Workbench supports the following Microengine C build features:

• Support for creating, editing, and managing C source files.
— Inserting C sources into project.
— Dependency checking for .c and .h files.
— Syntax coloring for .c and .h files.
— FileView for .c files.

• Support for setting up projects to include producing microstore images from C source files and
Assembler .uc files.
— Build setting/compiler dialog.
— GUI control for specifying compile options.
— Support for include paths for C sources separate from Assembler include paths.
— Support for setting target paths for images.
— GUI for preprocessor symbol definition to support #ifdef.
— GUI controls for specifying link options.

• Support for building microstore images from C source files and Assembler .uc files.
— Running compiler and providing parameters.
— Displaying and interpreting output messages.
— Relating errors and warnings to source lines.

• Support for persisting project and option files.
— Persist new project data in dwp file.
— Persist new option data in dwo file.

2.3.8.2 Debug Feature

The compiler supports source level debugging. However, when compiling for debug, optimizations
are generally turned off.

• Support for source-level debugging.

— Display of register and variable values based on scope and live-range.

— Display of memory variables.

— Display of values as C structures.

— Optional expanded display of assembly instructions generated by each C source
statement.
 Language Support Reference Manual 29

Intel® Microengine C Compiler Language Support
Overview
— Single-stepping based on C source statements or expanded assembly instructions.

— Setting breakpoints.

— Run to cursor.

— Current instruction markers.

— Execution coverage.

— Thread history.

— Data watches.

— Go to source.

2.4 Running and Debugging Under the Developer
Workbench
To create and run a project under the Developer Workbench, perform the following steps:

1. Start the Developer Workbench.
Depending on how you installed it, you can usually click Start on the Task bar and then select
Programs-> Intel IXA_SDK_3.y->Developer Workbench.

2. On the File menu, click New Project.

3. Enter the location and project name, select chip type IXP2400 or IXP2800, then click OK.

4. On the Project menu, click Insert compiler source file. Normally, you need to insert rtl.c and
intrinsics.c if want to use intrinsic functions, util.c if you include rtl.c or want to use character
I/O, and libc.c if you want to use string operations. These files are included from the
MicroengineC\src and MicroengineC\samples\util directories.

5. Select the .c file(s) needed for your project and click Insert.

6. On the Build menu, select Settings.

7. Click the C Compiler tab.

8. Click New to specify the path and name of the output (.list) file.

9. Click Choose source files.

10. Select the needed source files for this program.

11. Click the Linker tab.

12. Click the browse button to the left of the Output to target .uof file box.

13. Enter the name of the .uof file you wish to create.

14. From the list under Select files for microengine 0 and select the file you specified in Step 8
and then click OK.

15. Click the General tab and add the compiler include directories. Normally, you need to include
the C:\IXA_SDK_3.y\MicroengineC\include and the
C:\IXA_SDK_3.y\MicroengineC\samples\util directories.

16. On the Build menu, click Build.

17. If you get no errors, you can start debugging by selecting Start Debugging on the Debug
menu.
30 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Overview
Note: The compiler I/O functions provided in MicroengineC\samples\util\util.c such as puts(), etc.
operate by writing to Scratch memory 0x3ffc-0x3fff. This register is also used to signal exit from
function main(). To see this generated output in a simulation session, or to halt simulation on exit
from the main() program, a watch on Scratch memory needs to be included (an example is
provided in MicroengineC\samples\util\util.ind). Note that when used in Workbench the register
name in the .ind file must be prepended with the name of the chip (or nothing if no chip name is
specified).
 Language Support Reference Manual 31

Intel® Microengine C Compiler Language Support
Overview
32 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
C Language Support 3

3.1 Standard Data Types

3.1.1 Basic Data Types
The compiler supports the following standard scalar data types:

• char 8-bit signed and unsigned

• short 16-bit signed and unsigned

• int 32-bit signed and unsigned

• long 32-bit signed and unsigned

• long long 64-bit signed and unsigned

• enum 32-bit signed and unsigned

• pointers 32-bit pointers typed by memory type

As per the C standard, chars are the smallest addressable units, and pointers to successive chars
differ by one. The compiler supports chars and shorts and pointers to them, although at some
potential performance cost. Users are recommended to avoid usage of char and short when
possible, because access of quantities less than 32 bits (64 bits in DRAM) generally involves
additional operations to extract the appropriate bytes from the longword or quadword. Access
through pointers to 8-bit and 16-bit types may also require runtime alignment of data, which is
even more inefficient.

3.1.2 Pointer Representation
All pointers are represented as byte addresses irrespective of the memory region pointed to. The
compiler keeps track of the memory region that a pointer can point to and issues error messages on
inconsistent use. For example, assignment of a pointer to SRAM to a pointer to DRAM will be
flagged as a user error. Pointers with no specified memory region are assumed to point to SRAM.
Further, when performing pointer arithmetic, the compiler will modify the byte value by the
appropriate value. For example, when incrementing a pointer to a long long by one, the compiler
will add 8 to the pointer value. If the pointer is pointing to a user defined data type, the compiler
will also do the right thing. See Section 3.1.9 for more information on how the compiler handles
alignment issues.

3.1.3 Bitfields
The compiler implements arrays and structs. Since the Intel® IXP2XXX processors handle packets
of communication data that are often defined in terms of bit fields, the compiler supports efficient
manipulation of structs with bit fields. Bit fields are supported using standard C syntax. The
compiler also supports packed bit-fields through __declspec(packed_bits) as described in
Section 3.1.7. With this declspec, structures containing bitfields are laid out such that there is never
 Language Support Reference Manual 33

Intel® Microengine C Compiler Language Support
C Language Support
any padding inserted between a bit-field and its previous member in the structure.
__declspec(packed_bits) is helpful in mapping packet header structures accurately onto C
structures. See Section 3.1.7 for more information on packing bit fields within a structure.

3.1.4 Floating Point Types
The compiler does not support floating point types. The lack of hardware support and limited code
space make it virtually impossible to provide any floating point support-nor is any needed for the
type of applications envisioned.

3.1.5 String Literals
String literals are placed into SRAM and accessed through a pointer to SRAM. It is an error to use
a string literal in a position which expects a pointer to a non-SRAM memory region, unless a static
initialization of a character array is being performed. Example:

void foo(__declspec(dram) char *str_in_dram) { ... }

foo("string"); // ERROR: "string" is in SRAM and cannot be passed to foo()

foo((__declspec(dram) char *)"string"); // RUNTIME ERROR: address of "string" is
not a valid DRAM address

{

 __declspec(dram) char *ptr = "string"; // ERROR: "ptr" must be a character
array

 __declspec(dram) char arr[7] = "string"; // CORRECT: static initialization of
character array

 foo(arr); // CORRECT: type of parameter matches
type of argument

}

3.1.6 Size of Data Types
The size of data types, as reported by the sizeof() built-in function, are in bytes, thus:

sizeof(int) == 4

sizeof(long long) == 8

Table 6 lists the standard C built-in data types and indicates which are supported by the
Microengine C compiler.

Table 6. Summary of Data Types (Sheet 1 of 2)

Data Type Supported Size (in bits)

char Yes 8

short Yes 16

int Yes 32

long Yes 32
34 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
3.1.7 Alignment of Data Types
The compiler aligns all chars on 1 byte boundaries, shorts on 2 byte boundaries, int, enum, long,
and pointer data types on a 4 byte boundary, and all long long data types on an 8 byte boundary. In
general, pointer values can be assumed to be aligned based on the type of the data pointed to. The
compiler inserts padding between elements of structures to ensure that each element is aligned
based on its type unless the structure has been declared with the __declspec(packed) qualifier. (See
Section 3.1.8, “Packed Aggregates” on page 36 for more information.)

Bit fields are stored within longwords. The next bit field starts at the next bit position within the
current longword if, and only if, the entire bit-field element fits within the current longword (4
bytes). If the bitfield is too wide to fit, then the remaining bits in the current longword are padded
and the bit-field begins at the next longword. This bitfield padding is avoided, however, if the
structure is declared with a __declspec(packed_bits). In this case, the overflow bits of the bitfield
wrap to the next longword and the bitfield is split between two longwords.

An aggregate (array, union, structure) assumes the strictest alignment of any of its members. Hence
it is aligned on a 8 byte boundary if the aggregate contains a long long member; otherwise, it is
aligned on a 4 byte boundary if it contains an int or long member, etc. A final tail padding is added
to each structure to make its size a multiple of its required alignment. This guarantees that when
you have an array of structs no additional padding is needed between array elements to align all the
element structs. Aggregates (structures/unions/arrays) allocated explicitly in SRAM/Scratch/local
memory are additionally aligned at least on a 4 byte boundary. Similarly, aggregates allocated
explicitly in DRAM are aligned at least on an 8 byte boundary.

The alignment of a given structure can be changed with the __declspec(aligned(n)) directive,
where “n” is a power of two, up to 2048 for memory and 64 for local memory. If the structure's
natural alignment is less than the word size of the structure's storage region (16 for DRAM, 4 for
other types of storage), the performance of whole structure copies can be improved by increasing
the alignment value (padding) to the word size. In the following example the natural alignment is 1,
but it can be changed to 4 by using the align directive.

typedef __declspec(sram, aligned(4)) struct // overrides natural alignment
{

char c; // natural alignment is "1" because of this element

char s;

long long yes 64

enum Yes 32

pointers Yes 32

float No N/A

double No N/A

struct Yes Variable

union Yes Variable

array Yes Variable

Table 6. Summary of Data Types (Continued) (Sheet 2 of 2)

Data Type Supported Size (in bits)
 Language Support Reference Manual 35

Intel® Microengine C Compiler Language Support
C Language Support
} str;

...

str x,y;

...

x = y; // copy performance improved by manually setting alignment

Note: __declspec(...) qualifiers must be placed to the left of the “struct” keyword, as in the example
above.

Structure alignment is not optimized automatically because of the possibility that the structure may
be embedded inside an array or another structure, which calls for the use of the structure's natural
alignment.

If a structure is allocated in NPU local memory, setting the alignment to the closest power of two
greater than the size of the structure (see Section 3.2.7.5, “Alignment Information for Local
Memory Pointers” on page 50) will allow the compiler to generate faster, offset-based addressing
for the structure members. The disadvantage of doing this is an increase in the amount of wasted
space needed to pad such objects.

Note: SRAM and DRAM support access on longword or quadword granularity respectively. Extraction
or modification of bytes within a longword or quadword involves generation of additional
instructions, and consequently results in some performance degradation.

3.1.8 Packed Aggregates
Aggregates (structures, unions, and arrays) are normally aligned on byte boundaries. Padding (up
to 64 bytes) of aggregates is an automatic compiler function to improve performance. (This is
discussed in Section 3.1.7.) Under some conditions you may wish to block padding. A
__declspec(packed) qualifier can be used to avoid the padding between members of the aggregate
and to avoid tail padding.

Note that __declspec(packed) implies __declspec(packed_bits).

The naturally aligned data for an NPU for Scratch and SRAM is 4 bytes; for DRAM on IXP2400 it
is 4 bytes, for IXP2800 it is 8 bytes. SRAM and Scratch rings require alignment to 512 bytes.

Local memory natural alignment is 4 bytes, but when referencing big structures, the performance
will improve with bigger alignment (up to 64 bytes). The reason is the hardware uses an "OR" to
calculate the local memory address. For example, when you use *(p+16), assuming that p is your
base pointer; if p is aligned to 16, then p|16 (p OR 16) is the same as p+16. If p's alignment is
smaller than 16, we have to perform an ADD and reset the local mem base pointer, which is very
time consuming.
36 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
3.1.9 Pointer Alignment Assumptions and Unaligned Pointers
Normally declared pointers will be assumed to point to data with correct alignment based on the
natural alignment of the type they point to. The compiler generates code that correctly dereferences
these pointers only in the case that they are correctly aligned. If they are not correctly aligned, the
behavior is undefined.

Example:

 char *pc; // pc can have any byte address

 int *pi; // pi must be zero mod 4.

 short *ps; // ps must be zero mod 2.

Additional alignment assumptions are made on values of variables declared as pointers to
aggregates in memory. By default variables declared as pointers to aggregates allocated to SRAM,
Scratch, or local memory are assumed to point to objects with a 4-byte minimum alignment.
Variables declared as pointers to aggregates allocated to DRAM are assumed to point to objects
with an 8-byte minimum alignment.

By using __declspec(unaligned) all alignment assumptions on the value of the pointer is avoided
and the compiler will generate correct code to dereference the pointer. This code is considerably
larger / slower than the code for aligned pointers.

Any pointer to a component of a packed aggregate is an unaligned pointer. An unaligned pointer
cannot be assigned to an aligned pointer of the same type. Hence pointers to packed variables can
be assigned only to unaligned pointer variables but not to regular pointer variables. An aligned
pointer can be assigned to an unaligned pointer of the same type, since it is less restrictive.

Example:

 int *pi;

 __declspec(unaligned) int *pui;

 __declspec(packed) struct {char x; int y} z;

 pi = &z.y; // Error since &z.y is an unaligned pointer

 pui = &z.y; // Ok since pui is an unaligned pointer

In this example, “pui” can point to any byte address, whereas “pi” can only point to 4-byte-aligned
addresses.

The __declspec(aligned(n)) attribute can be used to declare the alignment of the objects that a
given pointer will reference. “n” must be a byte value and a power of two. If you know that a
pointer that is normally unaligned (a pointer to char, for instance) will only reference objects that
are aligned on word boundaries, declaring the pointer with a higher alignment
(__declspec(aligned(4)) for SRAM, __declspec(aligned(8)) for DRAM) will allow the compiler to
generate faster code when dereferencing such pointers.
 Language Support Reference Manual 37

Intel® Microengine C Compiler Language Support
C Language Support
For example:

__declspec(packed) struct // structure is 4 bytes long but 1-byte aligned

{
char a, b;
short c;

} *ptr;

...

ptr x, y;

...

*x = *y; // unaligned copy

Since the natural alignment of this struct is 1 (single-byte aligned), the compiler will make no
assumptions about the position of the structure in memory, and will generate code for the copy
operation that will take into account the fact that the structure might span across two memory
words, taking up only part of each word. If __declspec(aligned(4)) is added to the structure
definition:

__declspec(packed, aligned(4)) struct

{
char a, b;
short c;

} *ptr;

...

ptr x, y;

...

*x = *y; // optimized copy

The compiler now assumes that the structure fits entirely into a single word in memory, and
generates code that reads and writes only a single word.

3.1.10 Endian Support
Since the processor supports both big-endian and little-endian applications, and since internet data
structures are typically laid out big-endian, the compiler supports both big-endian and little-endian
layout of aggregates. A compiler switch selects the endian mode. (Refer to Table 2, “Supported
CLI Option Switches” on page 20 for more information.)

3.1.10.1 Compiler Limitations of Endian Support.

There are several cases in which the compiler cannot compensate for inherent little-endian bias in
the IXP2XXX microengine hardware. These are:

• ·Section 3.1.10.1.1, “Hash Instructions and Related Intrinsics” on page 39.

• ·Section 3.1.10.1.2, “DRAM Partial Writes” on page 39.
38 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
The following sections have more information on these issues.

3.1.10.1.1 Hash Instructions and Related Intrinsics

The hash instructions compute a polynomial of input data and hash multipliers on 48, 64, or 128 bit
quantities. The hardware treats the input data and output data as little-endian, that is, if a 48 bit
quantity is used, and the data is in xfer register $0 and $1, the low 32 bits are in $0 and the high 16
bits are in $1. If you use a long long to represent this data, it is correct only in little-endian mode. In
big-endian mode, you have to swap the two longwords of data before the hash and after the hash to
get equivalent results.

The compiler cannot do this swapping automatically, because the hash operation are always
asynchronous (i.e. sig_done is required), and the compiler does not always know when the
operation is finished. For information on hash operations, refer to the IXP2400/IXP2800
Programmer’s Reference Manual.

Example: To do a hash of a 48 bit number in big-endian mode, where bit 0 is the low order bit, do the
following:

typedef union
{

struct
{

int lo, hi;
} s;

long long ll;
} lw;

lw in, out, xfer_in, xfer_out;
SIGNAL_PAIR sp;

/* swap the long long into the xfer register buffer */
xfer_in.s.lo = in.s.hi;
xfer_in.s.hi = in.s.lo;

/* hash it into the xfer register out buffer */
hash_48(&xfer_in, &xfer_out, 1, ctx_swap, &sp);

/* swap back into the out */
out.s.hi = xfer_out.s.lo;
out.s.lo = xfer_out.s.hi;

3.1.10.1.2 DRAM Partial Writes

The DRAM instruction allows you to write any set of the 8 bytes in a quadword. The bytes to be
written are specified by a byte mask.

Example: To write the low byte only, you specify binary 00000001. However, this only writes the lowest
order 8 bits of a long long in little-endian mode. In big-endian mode this writes bits 39:32. To write
bits 7:0 in big-endian mode, you have to use the mask 00010000. Essentially, the byte positions
within a longword are correct in either mode, but the two longwords are reversed in big-endian
mode.

Example: This example sets the lowest 8 bits in DRAM to the value in BIGENDIAN mode. It sets the
variable “mem” to be the hex value 0x00000000 000000ef.

#include <ixp.h>
void main () {

__declspec(dram_write_reg) long long data;
 Language Support Reference Manual 39

Intel® Microengine C Compiler Language Support
C Language Support
__declspec(dram) long long mem;
SIGNAL_PAIR sigpr;
dram_read_write_ind_t ind;
ind.value = 0;
ind.ov_byte_mask = 1;
ind.byte_mask = 0x10; //00010000b;// set up to write lowest order byte.
mem = 0;
data = 0x0123456789abcdef;
dram_write_ind(&data, &mem, 1, ind, sig_done, &sigpr);
__wait_for_all(&sigpr);

}

3.2 Data Allocation
You can declare data with or without allocation attributes. Allocation attributes can describe where
the variable is allocated (allocation region) or the scope of the variable. These allocation attributes
are provided as __declspecs. The allocation region attributes indicate a choice of register or
specific memory types where the data needs to be allocated.

For pointers, allocation attributes can be specified both for the pointer itself as well as for the object
it points to. This implies that pointers are only compatible if they point to the same allocation
region. Pointers declared to types without any allocation region attribute point to SRAM by
default.

In the absence of a region allocation attribute variables are allocated to registers in the following
circumstances:

• They are 64 bytes (128 bytes in 4-context mode) or less in size, and

• Their address is not taken, or if taken, the address reference is optimized away, (note: array
references with non-constant indices implicitly take the address of the array beginning), and

• There are enough registers to accommodate the variables

In the absence of a region allocation attribute, variables are allocated to local memory or SRAM in
the following circumstances:

• If there are not enough registers to accommodate all user variables, some are spilled to local
memory or SRAM. This includes global variables as well as those local to a function, function
arguments, and return values.

• Variables larger than 64 bytes (128 bytes in 4-context mode) are generally allocated to local
memory or SRAM.

• An array is allocated in local memory or SRAM, if it uses an index that is computed at run-
time. There is no way to index variables in a GPR. The compiler can not use T_INDEX to
index into xfer registers for various reasons (T_INDEX is not per-context, availability,
performance, etc.). Similarly addressed variables are allocated to SRAM or local memory if
the address reference cannot be optimized away.

The command line option, -Qperfinfo=2, provides user-defined variables to register/memory
mapping. (See Table 2, “Supported CLI Option Switches” on page 20.”)
40 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
3.2.1 Register Regions
The following __declspec() modifiers can be used to specify allocation to registers:

• __declspec(gp_reg) to allocate to a general purpose register

• __declspec(sram_read_reg) to allocate to an SRAM read transfer register

• __declspec(sram_write_reg) to allocate to an SRAM write transfer register

• __declspec(sram_read_write_reg) to allocate to an SRAM read transfer register and to an
SRAM write transfer register with the same register number.

• __declspec(dram_read_reg) to allocate to a DRAM read transfer register

• __declspec(dram_write_reg) to allocate to a DRAM write transfer register

• __declspec(nn_local_reg) to allocate to a next neighbor register local to this ME

• __declspec(nn_remote_reg) to declare the name of a next neighbor register in the next
neighbor Microengine (this is to be used in -Qnn_mode=0, i.e., NEIGHBOR mode). The
linker patches the physical register number for each reference.

The IXP2XXX NPU cannot allocate a variable to a register under certain situations in which case
an error message is produced and compilation aborts. Example reasons for error are:

• ·If your program takes the address of such a variable

• ·If the variable is too large (greater than 64 bytes, or 128 bytes in 4-context mode)

• ·If there are too many variables requiring allocation to registers

In such cases the compiler in addition to reporting this as a user error, reports an indication why it
was not able to allocate the variable to a register.

In general, pointers to register objects are not guaranteed to compile successfully, because the
compiler needs to be aware of exactly which registers are being accessed at any given time. If the
compiler cannot resolve a register pointer access into a “fixed” register access, an error will be
generated. The exception is indexed transfer register arrays, described in the “Transfer Registers”
section below.

3.2.1.1 General Purpose Registers

The qualifier gp_reg, if used in a variable declaration, causes the compiler to allocate general
purpose register(s) for that variable.

3.2.1.2 Transfer Registers

The qualifiers for read/write transfer registers, if used in a variable declaration, indicate that you
want to associate the variable with specific class of transfer register.

Note: In instructions that normally take a read transfer register, the IXP2XXX has been enhanced to
allow both SRAM and DRAM read registers, but only when -Qnctx_mode=8.

This enhancement is disallowed when there are only 4 contexts because there are not enough bits in
4 context mode to encode these additional registers.
 Language Support Reference Manual 41

Intel® Microengine C Compiler Language Support
C Language Support
For example, SRAM memory read operations, which normally take only SRAM read transfer
registers when -Qnctx_mode=4, can additionally take DRAM read transfer registers when
-Qnctx_mode=8

This is realized in the compiler with additional intrinsics that contain a _D or _S suffix. Several
examples are shown here.

• sram_read_D() - read SRAM using DRAM transfer registers.

• scratch_read_D() - read Scratch using DRAM transfer registers.

• reflect_read_D() - read reflector using DRAM transfer registers.

• dram_read_S() - read DRAM using SRAM transfer registers.

For detailed information on these functions, refer to Chapter 4, “Intrinsic Functions”.

No data can be read from a write transfer register. This implies char, short, and bit field data types
with less than 32 bits in length are illegal to be written into these registers. Note that a write with
less than 32 bits requires reading the missing bits from the write register and packing it to a new 32
bits entity before the write.

A variable declared as __declspec(sram_read_write_reg) takes both SRAM read transfer register
and SRAM write transfer register with the same register number. It is mainly used for inline
assembly code where the operand is required to be both an SRAM read and write transfer register.
You should be careful to ensure that the value written into that variable goes to the SRAM write
transfer register while the value received from that comes from an SRAM read transfer register.

Arrays of transfer registers can be indexed by a variable, as in the following example:

__declspec(sram_write_reg) int a[5];

int i;

for (i = 0; i < 5; i++)

{

a[i] = i;

}

This type of access will be compiled into code that uses the T_INDEX register to access the
transfer register banks.

3.2.1.3 Next Neighbor Registers

The nn_local_reg qualifier causes allocation of the variable to a next neighbor register in this ME.
If the NN_MODE (see option -Qnn_mode in Table 2, “Supported CLI Option Switches” on
page 20) is 0 (NEIGHBOR), this variable is read-only within this ME program. In this mode, the
previous neighbor ME program may declare the same variable with an nn_remote_reg qualifier
and can only write into it.

When -Qnn_mode is 1 (SELF) a variable with the nn_local_reg qualifier cannot be modified from
another ME. (NOTE: there is a 5-cycle latency between a write instruction and a subsequent read
instruction from the same NN register with a new value). It can be both read and written within this
ME program. In this mode one cannot use the nn_remote_reg qualifier.

In the SELF mode all next neighbor registers should be declared with __declspec(nn_local_reg).
Given this, the following is to be followed. In SELF_mode, a nn_local_reg variable can be read or
written, and a nn_remote_reg variable should not be used. In NEIGHBOR mode, a nn_remote_reg
variable can only be written, and a nn_local_reg can only be read.
42 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
Note: If -Qnn_mode=0 (neighbor mode) variables declared as nn_local or nn_remote must be declared in
global scope (i.e., they cannot be declared as local variables within a function) because they are
referred to from a neighbor microengine.

3.2.1.4 Volatile Registers

The volatile attribute can be applied to variables in transfer registers or to signal variables. This
attribute indicates that the register can be read or written by instructions not explicitly referencing
the register. An example of this is the status and signal written by the MSF hardware when an
incoming packet is sent to a thread. Another example is transfer registers that are read or written by
reflect operations from another microengine.

When a register or signal variable is declared volatile, the register or signal that the compiler
assigns to that variable will not be used for any other purpose within the scope of that variable. If
the variable is global, then its register or signal will be assigned to that variable for the entire
program. If it is local to a function, then the register or signal will be assigned to that variable for
the scope of that function. This insures that external MEs or hardware will be able to access the
variable even though that variable may not be "live," or actively in use, within the currently
executing segment of code. If the volatile variable is local to a function, the user will need to
provide a synchronization mechanism to insure that the function does not return until the data is no
longer needed by the external MEs or hardware. Function-local volatiles may allow the compiler to
allocate registers more efficiently than global volatiles, since the register can be reused for other
variables once the function returns. In general, volatile variables limit the efficiency of register
allocation, and should only be used when necessary. If you wish to indicate that a register or signal
variable can be accessed by an external entity only within a certain region of the program, the
__implicit_read() and __implicit_write() intrinsics can be used instead of the volatile attribute.

3.2.2 Memory Regions
The IXP2XXX NPU has six memory regions:

• Local Memory

• SRAM

• DRAM

• Scratch

• R_FIFO

• T_FIFO

• MSF_CTRL

The compiler allows the following __declspec modifiers to specify memory to allocate in:

• __declspec(local_mem) to allocate to LOCAL MEMORY.

• __declspec(sram) to allocate to SRAM

• __declspec(sramN) where n is 0,1,2 or 3 to specify allocation to a particular SRAM bank

• __declspec(dram) or __declspec(sdram) to allocate to DRAM

• __declspec(scratch) to allocate to Scratch

• __declspec(rbuf) or __declspec(r_fifo) when declaring a pointer to the RBUF/R_FIFO MSF
area
 Language Support Reference Manual 43

Intel® Microengine C Compiler Language Support
C Language Support
• __declspec(tbuf) or __declspec(t_fifo) when declaring a pointer to the TBUF/T_FIFO MSF
area

• __declspec(msf_ctrl) when declaring a pointer to the MSF control area

Examples:

__declspec(local_mem) struct msg_header header;

declares a variable of type struct msg_header which resides in Local Memory

__declspec(dram) buffer * buf_ptr;

declares a pointer to a buffer data type in DRAM. buf_ptr is assigned to a register.

__declspec(dram) buffer * __declspec(scratch) buf_ptr_1;

declares a pointer to a buffer data type in DRAM. The pointer resides in Scratch.

Note: The memory type modifier applies to the type to its right, thus the first one indicates that the buffer
is in DRAM, while the second indicates that the pointer to it is in Scratch. Variables declared in
memory using the above syntax can be used with standard C syntax. When the C code reads or
writes a variable, the compiler automatically guarantees synchronization. Typically, if the compiler
reads a variable, it issues a context swap and waits until the data is available. This swap may be
delayed until after other computations that do not depend on the read value to complete. Writes
also generate context swaps to prevent read-after-write or write-after-write interference. The
compiler may issue multiple writes and reads before a context swap in cases where it can
disambiguate the references and guarantee that no conflicts occur.

Note: The msf_ctrl, rbuf/r_fifo, and tbuf/t_fifo regions can only be used to declare pointers; the compiler
cannot allocate memory in those regions since the IXP MSF hardware performs this function.

3.2.3 Shared Data
Because the processor supports multiple contexts, you can declare data to be shared between
contexts or to be local to each context on a microengine. By default, all variables (both within and
outside of a function) are local to a context, thus they are physically duplicated for each of the eight
contexts on the ME. In other words, each context has a separate copy of the variable to work with
no matter where the variable is allocated (i.e., registers or memory). In addition to this, you
sometimes need variables that are shared by all eight contexts on a processor.

The compiler supports this with another __declspec modifier:

__declspec(shared)

The shared attribute can be combined with a memory region attribute in a single __declspec,
example: __declspec(shared sram) int x;

Without a memory region, the shared attribute declares a potential register candidate that is shared
by all contexts and is subject to the normal register restrictions.
44 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
3.2.4 Global data
You can declare data in SRAM, DRAM, or Scratch memory that is shared by all the microengines
on an NPU. One microengine program will "export" (and optionally initialize) the variable with:

__declspec(export sram) int i = 42; // initialization is optional

The other microengine programs will "import" the variable with:

__declspec(import sram) int i; // no initialization possible

Although the variable is not "attached" to the microengine that exports it, the export/import
qualifiers are needed to prevent multiple initializations of the variable.

3.2.5 Load Time Constants
Load-time constants (i.e. constants that are bound to fixed values at load time and used at run time)
are supported through an intrinsic __LoadTimeConstant(string). This is provided as a mechanism
for sharing data with the Intel XScale® core. For example:

C = a + __LoadTimeConstant("LTC");

For each call to __LoadTimeConstant(“LTC”), the compiler generates a pair of immed_w0[t, 0]
and immed_w1[t, 0] instructions, each with a linker directive on source bits, and uses the
temporary variable “t” in the expression (see above example) for the constant “LTC”. The linker
uses a 32-bit constant for “LTC” to patch those bits (upper 16-bit for immed_w1 and lower 16-bit
for immed_w0) when the program is loaded.

This intrinsic is described further in Chapter 4, “Intrinsic Functions”.

3.2.6 Signals
The compiler exposes hardware signal and signal pair registers as special predefined data types,
SIGNAL and SIGNAL_PAIR respectively. Alternatively, you can apply a __declspec(signal) or
__declspec(signal_pair) to a variable of type int or a struct comprised of two ints respectively. You
can declare signal variables and pass them by reference to various intrinsic function calls.

The IXP2XXX NPU microengine provides 15 signals for each execution context. You may have
more than 15 signal variables so long as no more than 15 are in use simultaneously in the program.
This restriction is imposed because there is no efficient mechanism to temporarily store signals in
memory or other registers.

The following example illustrates the use of signal variables.

SIGNAL sig;
SIGNAL_PAIR sp;

...
dram_read(dst1, src1, 1, sig_done, &sp);
sram_read(dst, src, 4, sig_done, &sig);
while (! signal_test(&sig))
{

 Language Support Reference Manual 45

Intel® Microengine C Compiler Language Support
C Language Support
/* do something*/
}
..= dst;
__wait_for_all(&sp);Section 4.9.1
..= dst1;

Signals can be shared across functions or across microengines in a limited way using the support
provided to determine the signal number allocated to a signal variable or by creating a signal mask.
This support is provided through intrinsic functions (__signal_number(), and __signals()
respectively). To associate a signal variable with a specific number, you need to call the
__assign_relative_register intrinsic. When you use these functions you need to convey additional
information to the compiler by using the intrinsics __implicit_read() and __implicit_write() to
indicate the lifetimes of the signals involved. See the description of these intrinsics (Section 4.9.1)
for further details.

3.2.6.1 Signal Variable Restrictions

Signal variables have special properties that make them unlike normal variables. The read access of
a signal variable if the signal has been delivered has the potential side effect of clearing this signal.
Consequently, there are certain restrictions imposed on the usage of signal variables. These
restrictions are listed below.

• These variables cannot be assigned to or used in any way other than as addressed arguments to
specialized intrinsic functions or through inline assembly.

• You cannot take the address of a signal variable, except when passing it as an argument to an
intrinsic function. However, you can get a signal's address as an int through the
__signal_number() intrinsic or as a mask through the __signals() intrinsic. This can then be
passed to a function as an int type parameter. You may also have to insert calls to
__implicit_read()/__implicit_write() to convey the live ranges of indirectly accessed signal
variables, normally in the caller around the call site if there are no other reference to the signal
variable. This is because __implicit_read() and implict_write() accept signal variable, and
callee function taking such int type parameter usually doesn't know what signal variables that
int contains.

• You cannot create an array of signals or __declspec any aggregate variable to be a signal. A
signal variable if declared explicitly using __declspec(signal), must be declared as a 4 byte
quantity such as an int or long. Similarly __declspec(signal_pair) can only be applied to an 8
byte data type.

• You cannot read/write, copy, or pass signals as arguments or return values across user function
boundaries. Furthermore, as hardware signal registers are context specific, one cannot declare
a signal that is shared across contexts. Signal variables can, however, be used for cross-thread
communication by declaring them as __declspec(remote) or __declspec(visible), or by explicit
user allocation using the __assign_relative_register() intrinsic.

• A IXP2XXX microengine, when executing the ctx_arb instruction with the OR token
(__wait_for_any() intrinsic), does not clear any of the signals that are asserted. After the use of
signal variables in a __wait_for_any() intrinsic, you must clear them with calls to
__wait_for_all() or signal_test() intrinsics, prior to reusing the signals.
46 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
3.2.7 Local Memory Allocation

3.2.7.1 Overview

You can allocate variables to local memory by applying the __declspec(local_mem) type qualifier.
These variables may be used in all situations where variables declared in other memory regions
may be used, with a few restrictions. First, data in local memory cannot be exported to other
microengines. Also, local memory is limited in size: each ME only contains 640 32-bit words of
local memory, which must be shared among the running contexts (specified with the -Qnctx= or
Qnthreads= command line options) on that microengine.

In addition to allocating user-qualified variables to local memory, the compiler may also spill
(copy) some variables that normally reside in registers to local memory when not enough registers
are available for computation. The -Qperfinfo=1 command-line option will indicate which
variables, if any, are being spilled.

3.2.7.2 Placement of Variables

The compiler will make decisions on the allocation and layout of variables declared to be in local
memory. The programmer is also allowed to perform manual allocation and access local memory
through addresses hard-coded in the program provided this space has been reserved using the
"-Qlm_start=<n>" command-line option. No assumptions can be made about the layout or relative
ordering of individual variables allocated in local memory by the compiler. For example, with the
following declaration:

__declspec(local_mem) int x, y;

You cannot assume that y is allocated at the next word following x. Any such assumptions should
be confined to be between data members of an aggregate (struct/union/array), where the layout of
the aggregate is defined by the C language definition.

If one or more instructions reference two variables allocated in local memory, then both those
variables can be addressed using the same local memory base register value, provided that the local
memory pointer is aligned on a 16-word (i.e. 64 byte) boundary, and the two variables are within
the same 16-word aligned block. Therefore, to minimize the cost of instructions involved in setting
up a local memory base register, decisions on the placement of variables in local memory relative
to one another are optimized based on the usage pattern of the variables. Variables are grouped into
"buckets," where all the variables in a bucket are indexed with the same base pointer, to minimize
the number of times when a local memory base register has to be reassigned through the
local_csr_write[] instruction. However, the IXP architecture's OR-based offsetting forces buckets
to be aligned on an appropriate word boundary, which can create unused "gaps" between the
buckets.
 Language Support Reference Manual 47

Intel® Microengine C Compiler Language Support
C Language Support
3.2.7.3 Thread Local vs. Shared Storage

Figure 2. Local Memory Layout

The preceding figure illustrates local memory layout. Each "segment" contains "buckets," which
are addressed, in the case of thread-local storage, using one base pointer value for each context, and
in the case of shared storage, one base pointer value for all contexts. The first segment is optional -
you might request that a portion of local memory be excluded from compiler allocation by using
the "-Qlm_start=<n>" command-line option. This tells the compiler not to allocate variables to
local memory addresses in the range [0, n]. If you do not specify this option, the compiler will start
allocating local memory at address 0. The next segment, which the compiler allocates, is the shared
segment, which holds all the local memory objects shared by multiple contexts, i.e. the variables
specified with the "shared" qualifier. The remaining segments contain the thread-local variables for
each context running on the microengine.

3.2.7.4 Viewing Local Memory Usage

The allocation of local memory can be examined with the following compiler option:

-Qperfinfo=16

For example, for this program, which allocates an array of 10 integers in thread-local storage and a
single integer in shared memory:

__declspec(local_mem,shared) int x;

void main() {
__declspec(local_mem) int a[10];

...
a[9] = x;
....
}

The allocation information from "-Qperfinfo=16"will be output as follows:

=> User reserved: 0 bytes, Shared segment: 64 bytes, Local page (including gap): 64 bytes

=> Gap between context pages is 24 bytes The data on the page is 40 bytes

Direct access local mem group 0x180d900

 Maximum offset used: 36 Alignment: 4

 Num members: 1 Total size: 40

 [This group contains thread local symbols]

B0198-01

User
Reserved
Segment

Context 0

Local
Storage

Context N

Local
Storage

Shared
Segment
48 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
 lmem.c(8): a allocated at offset 0

 Direct access local mem group 0x180d9cc

 Maximum offset used: 0 Alignment: 4

 Num members: 1 Total size: 4

 [This group contains shared symbols]

 lmem.c(15): _x allocated at offset 0

This information corresponds to the following memory layout:

Figure 3. Local Memory Layout for Program 1

The first part of the allocation information describes the size and placement of each segment in
local memory. Assuming that you have not reserved any local memory for manual allocation, the
shared segment starts at address 0, and is 64 bytes long. Since there are only four bytes of shared
storage (corresponding to the variable x) that are actually allocated, the other 60 bytes of the shared
segment remain unused. Each thread-local storage segment (called a "local page") is also 64 bytes
long. 40 of these bytes are data (the 10-word array) and 24 bytes are the "gap," or unused space.

The next sections of the allocation information describe the object groups (buckets) contained in
each segment. As described above, a group contains either shared data, or thread-local data, but not
both. If a group contains shared data, all the objects in the group are accessed by all threads using
one base pointer, OR’ed with the same offset. If a group contains thread-local data, all the objects
in that group are accessed using a different base pointer on each thread, OR’ed with the same
offset. So if "group 0" was assigned to thread-local data and contained two objects, a and b, each
thread would contain a base pointer that would point to the beginning of that thread's "group 0,"
each a would be accessed using the same offset for each thread, and each b would be accessed
using the same offset for each thread (but a different offset than a).

The first group in this example contains one thread-local object, the array, a[], declared at source
line 8 in the lmem.c file. The maximum constant offset used in the group is 36 bytes
(corresponding to a[9] in the above code). This affects the spacing between groups, as each group
must be aligned so that all its indexed elements are addressable with OR-based indexing. The
alignment value specified is the C-language-specified alignment of the group's objects; it is 8 bytes
for groups containing 64-bit primitive types and 4 bytes for groups containing 32-bit or smaller
primitive types. The group is 40 bytes long. The given offset (“0” in this case) of the object a is the
object's byte offset from the beginning of the entire local page for a given thread, therefore the
offset of the first object in a group identifies the alignment of the group.

B0246-01

0
Byte address

all
(Thread 0)

all
(Thread 1)

. . .

64 104 128 168 196

Gap between groups
 Language Support Reference Manual 49

Intel® Microengine C Compiler Language Support
C Language Support
The next group described is the group containing the shared variable, x. The information for this
group reads similarly to the other group—the maximum offset used is 0 (since there is only one
word of storage used), the alignment is 4 bytes, there is one object in the group, and the group is 4
bytes long. The object "x" is allocated at offset 0 from the beginning of the shared data segment.

3.2.7.5 Alignment Information for Local Memory Pointers

In certain cases multiple accesses to local memory objects might be driven by a single local_csr_wr
instruction. The compiler will initialize base register once and then use different offsets to access
different data items allocated in close proximity of that base. To do that, however, the compiler
must know the alignment properties of the base address. Without this knowledge, the compiler will
not be able to drive multiple pointer accesses through the same base value. Legal values for local
memory alignment are 8, 16, 32 and 64. All these values will be interpreted by the compiler as byte
addresses. For example:

typedef struct
{

int a;
int b;
int c;
int d;

} MyStruct;

void foo(MyStruct __declspec(local_mem aligned(16)) * P)

... = P->a

... = P->b

... = P->c

... = P->d
}
main()
{

MyStruct __declspec(local_mem aligned(16)) X;
foo (&X);

}

In the example given above the compiler might be able to generate just one local_csr_wr
instruction initializing the base with the value of pointer and then use that base for four different
accesses to the fields of the structure. Without having alignment information on pointer P, the
compiler will have no choice but to drive each single access to a field of the structure through
separate base. Therefore, it will generate four local_csr_wr instructions and this might result in
poor performance. Whenever the same local memory pointer might be used as a base for multiple
different accesses, you should declare the pointer with some alignment information.

3.2.7.6 Suggestions for Improving Local Memory Use

To assist the compiler with optimizing local memory usage, you can apply several techniques:

1. Place large objects in the shared segment. Reducing the alignment restrictions on thread-local
data will provide space savings for each thread, because all threads have the same layout in
their thread-local storage segments.

2. Use __declspec(align(n)) judiciously as described in Section 3.2.7.5. Larger alignments may
cause fragmentation in local memory but it may help the compiler to group several accesses
with constant offset (e.g. p->x, or p[3]) using a single local_csr_wr[] to base pointer. Variable
addressing (e.g. p->[i], where i is a variable) will cause the compiler to do an index calculation
50 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
and generate a local_csr_write[] instruction plus three nops, which trades off runtime
performance for space savings.

3.3 Reflector Inputs/Outputs
A reflector operation involves read/write of transfer registers across MEs and hence across
Microengine C programs. Such variables are SRAM/DRAM transfer register variables that are
visible across MEs. Hence they are declared with the following declspecs:

__declspec(visible sram_read_reg/sram_write_reg/dram_read_reg);
__declspec(remote sram_read_reg/sram_write_reg/dram_read_reg);

A Microengine C variable that has a __declspec(remote sram_read_reg) refers to a context relative
read transfer register in another ME. Note that unlike normal exported variables, which are by
definition shared across the contexts of an ME, remote/visible transfer register variables are
context relative. Also, remote or visible variables must be declared outside function to avoid name
mangling which may confuse the ucld linker when linking.

Signals used for signaling the remote or both MEs are also declared similarly.

__declspec(visible) SIGNAL/SIGNAL_PAIR;
__declspec(remote) SIGNAL/SIGNAL_PAIR;

When you use sig_both to signal both MEs, you must ensure that the same signal number is used
for both signals involved. This is done by manually allocating the same signal number to both
signal variables involved, using the __assign_relative_register() intrinsic as described in Chapter 4:

Notes: A remote read transfer register can only be written in the micro-engine declaring it as remote, and a
remote write transfer register can only be read in the micro-engine declaring it as remote.

Calls to __implicit_write() need to be inserted in the ME1 program to indicate the earliest point in
the ME1 program execution, where ME0 might write the registers associated with visible variables
me1_x and me1_sig.

The receiver ME for a Reflector instruction (the remote ME for Reflector write or the local ME for
Reflector read) can use DRAM/SRAM transfer register as reflector operand under 8 context mode,
and only SRAM transfer register under 4 context mode; the sender ME always uses SRAM transfer
register for reflector instructions.

ME0 Program ME1 Program

__declspec(sram_write_reg) me0_x;
__declspec(remote sram_read_reg) int me1_x;
__declspec(remote) SIGNAL me1_sig;

reflect_write(&me0_x, ME1, me1_x, CTX, 1,
sig_remote, sig_done, &me1_sig);
__free_write_buffer(&me0_x);

__declspec(visible sram_read_reg) int me1_x;
__declspec(visible) SIGNAL me1_sig;
__implicit_write(&me1_sig);
__implicit_write(&me1_x);

__wait_for_all(&me1_sig);
... =me1_x; //use me1_x
 Language Support Reference Manual 51

Intel® Microengine C Compiler Language Support
C Language Support
3.4 Summary of Allowed Data Attribute Combinations

3.5 Expressions
In general, all C expression syntax involving the supported data types is supported. Remote XFR
register variables can only be used in reflect inline asm and reflect intrinsics. Signal variables can
only be used as intrinsic arguments or in inline asm. Function pointers are not supported.

Note: A special note for the implementation of integer divide-by-zero. Because microengines do not
support signals nor exceptions, evaluating an expression such as x/0 or x%0 for any integer x,
signed or unsigned, returns 0xffffffff for 32-bit integers or 0xffffffffffffffff for 64-bit integers.

3.6 Statements
The compiler supports all C statements involving supported expressions.

3.7 Functions

3.7.1 Supported
The compiler supports C functions including:

• Local variables with memory regions (equivalent to static locals)

3.7.2 Not Supported
• Recursion

Table 7. Summary of Allowed Combinations of Attributes on Data

Thread Local Shared Export Remote/Visible

GP Register Yes Yes No No

Transfer Register Yes No No Yes

Signal Register Yes No No Yes

Next Neighbor Yes No No Yes

Local Memory Yes Yes No No

SRAM Yes Yes Yes No

DRAM Yes Yes Yes No

Scratch Yes Yes Yes No

RBUF Yes No No No

TBUF Yes No No No
52 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
• Variable length argument lists

• Pointers to function

• Passing aggregates larger than 64 bytes (or 128 bytes in 4-context mode) as function
arguments or return value

The implementation on recursion and variable length argument lists on the IXP2XXX NPU
impacts performance and is therefore not supported. The restriction on function pointers allows the
compiler to determine the call-graph exactly and optimize every function call. The use of function
pointers requires that all functions that might be called through a pointer have a standard argument
passing and return value mechanism. Since aggregates larger than 64 bytes (or 128 bytes in 4-
context mode) are never allocated to registers, and function arguments and return values are passed
only in registers, the compiler gives an error message on function arguments/return values that are
larger than 64 bytes (or 128 bytes in 4-context mode).

3.7.3 Extended Function Attributes
The following function attributes can be applied to functions to define their characteristics with
respect to inlining.

• __noinline func();

• __forceinline func(), __inline func();

The attribute __noinline indicates that the function should not be inlined. The attribute __inline is a
hint to the compiler to inline the program. The attribute __forceinline is a strong hint for the
compiler to inline the function. Unless optimization or inlining is turned off the function will be
inlined by the compiler. __forceinline functions are by default static functions. See Section 2.2.2,
“Inlining” on page 19 for information on inline __forceinline functions.

3.7.4 Optimizing Pointer Arguments
It is possible to improve the speed of access to function arguments passed in with pointers. For
example:

void foo(MyStruct *p)
{
some code using *p and assigning *p
}

main()
{

MyStruct x;
...code ...
foo(&x);
...code...

}

In the preceding code, you wish to use the function foo to modify the contents of the structure x, by
passing the address of x to foo. Since general-purpose registers cannot be accessed with pointers,
the compiler cannot place the structure x into registers, which significantly slows access to the data
contained in x.

One way to write the preceding code, which still allows “x” to be placed into registers, is as
follows:
 Language Support Reference Manual 53

Intel® Microengine C Compiler Language Support
C Language Support
MyStruct CompilerTemp;

void foo(void)
{
some code directly using and assigning CompilerTemp
}

main()
{
MyStruct x

...code...
CompilerTemp = x; /* copy -in */
foo();
x = CompilerTemp; /* copy-out */

}

In this code, the program copies x into a global temporary structure that is accessible to both main
and foo, allows foo to perform operations on this temporary structure, and copies the results back
into x. Both the temporary structure CompilerTemp and the structure x can be placed into registers,
with a significant performance gain over the first example.

3.7.4.1 The “restrict” Qualifier

The compiler can automatically perform the structure copy optimization described above if the
“restrict” qualifier is applied to the function definition of “foo”:

void foo(MyStruct * restrict p)
{
alias-free code using *p and assigning *p
}

main()
{

MyStruct x;
...code ...
foo(&x);
...code...

}

The “restrict” qualifier must come directly before the variable name. This qualifier informs the
compiler that the memory pointed to by the attached pointer parameter is not accessed through
“unknown” means—either through another pointer whose definition is ambiguous, or from another
thread. The optimization described above is only guaranteed to be possible, and safe, when the
following conditions exist:

• The memory location pointed to by the “restrict” pointer parameter is only accessed using a
dereference of that particular pointer, or with copies of that pointer which are defined within
the function. The pointer is not assigned to a non-restricted pointer, and the restricted pointer
copies, if they exist, are only assigned to once (similar to “const” variables).

• The memory location pointed to by the “restrict” parameter is only accessed from a single
thread and a single microengine while the function is executing.

• The "restrict" pointer parameter is not cast to another type of pointer.

• The “restrict” parameter is dereferenced with a constant offset. For example, in the preceding
code, the function body can contain *p, p->field, and *(p+2), but not *(p+i) where “i” is not a
constant.
54 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support

,

,
The compiler can check for simple violations of the above rules and will not perform the "structure
copy optimization" in those cases, but you must determine whether the "restrict" qualifier is
appropriate (otherwise the qualifier would not be needed). The option "-Qperfinfo=256" will tell
the compiler to print out information on any "restrict rule violations" that it finds.

3.8 User Assisted Live Range Analysis
Register allocation and other compiler optimizations depend on correct live range information of
register variables to make the right decision. A register variable is defined as a variable that could
be assigned to a register (transfer register, signal register, general purpose register). A live range of
a register variable is the period between the definition of this variable and the last use of the
defined value. When a register variable has multiple definitions in the program, and each definition
has sequential reads, multiple live ranges are assigned to the same variable. Each live range covers
one definition and its sequential reads.

The live range of a register variable begins with a write into the variable; and it terminates at the
point where there is no subsequent read of that value, i.e., the last read point. A register variable has
the same physical register assigned to it for the span of one live range. It could have different
physical registers assigned to it across different live ranges. You cannot have another write into the
same variable in the middle of a live range (otherwise the live range would be split), but you could
have multiple reads in the middle of a live range. Once past the last read, the live range is
terminated and the physical register can be released.

A register variable can have a write without a read, or a read without a write. For example:

In example A, x is read without being written, so the compiler assumes the live range starts from
the beginning of the program. In example B, x is written but not read; the compiler concludes that
the write is redundant and can be removed during optimization. Example C is the variation of
example B. X is rewritten before the value from the first sram_read is used. The compiler can
remove the first sram_read as a redundant instruction. Even if it is not removed for other reason,
the compiler will release the physical register x immediately after this instruction.

Example A Example B Example C

main()
{
__declspec(sram_write_reg) x;
 SIGNAL s1;

 // read x without
 // write to x first
 sram_write(&x, &p, 1,
ctx_swap, &s1);
};

main()
{
 __declspec(sram_read_reg) x;
 SIGNAL s1;

 // write into x
 // no read of x
 sram_read(&x, &p, 1, ctx_swap,
&s1);
}

main()
{
__declspec(sram_read_reg) x;
 SIGNAL s1;

 // write into x
 sram_read(&x, &p, 1, ctx_swap
&s1);
 // write into x again
 sram_read(&x, &q, 1, ctx_swap
&s1);
 // read x
... = x
}

 Language Support Reference Manual 55

Intel® Microengine C Compiler Language Support
C Language Support
In summary, a write always terminates an old live range, and may start a new live range if there is a
preceding read. And, a read always extends the live range of a register at least to the read point.

One of the challenges this process brings to the compiler is the implicit read/write of a register.
Normally, you can only modify or reference a register though explicitly expressed names, like
register x in our previous examples. This process provides you with ways to implicitly read and
write a register without referring to the register name. The scenarios include but are not limited to
the following:

• A signal/Xfer register is defined on a remote ME and used on local ME. The definition/write is
not visible from the local program.

• A signal/Xfer register is defined locally and used on a remote ME. The reference/read is not
visible from the local program.

• A signal/Xfer register is assigned an absolute register number. It could be read/written without
referring to the symbolic name.

• A signal has the signal number exposed through signals() or signal_number().It could be read/
written without referring to the symbolic name, for example, though local_csr write.

• A xfer register has address taken and used in indexing reference through T_INDEX (not
supported in PR3).

• A NN register that being referenced indirectly though NN register ring.

• A synchronized I/O operation with sig_done. Fox example:

__asm sram_write[x, &p, 0, 2], sig_done[s1];
...

__asm ctx_arb[s1];

Even if this instruction is the last use of the xfer register(s), you should not release the xfer
register(s) immediately. The semantics of I/O instructions requires you to hold the xfer register(s)
until the signal arrives. So in our example, the live range of x needs to be extended to pass
ctx_arb.

Under certain scenarios the compiler cannot not detect the correct live range of a register. For
example, if the compiler prematurely terminates the live range of a register, it could overwrite the
value currently in use; or if the compiler prolongs the live range of a register, it could run out of
register space unnecessarily. You must supply live range directives for the compiler to make the
right decision.

There are three compiler directives for liveness computation:

• __implicit_read() will prolong the live range to at least the point where
__implicit_read() is called. If there are other reads of the same register after this point,
then adding __implicit_read() does not have any effect on the program.

• __implicit_write() will terminate a live range, and start a new one if there are
following reads. If __implicit_write() is followed by another write, and there is no
read in between, then this __implicit_write() has no effect on the program.

• __free_write_buffer() will free the I/O buffer (xfer register) only if there is
no other read of it after this point. See Section 7.2, “Things to Remember When Writing
Microengine C Code” on page 374 for examples of the use of __free_write_buffer()
and __implicit_read().
56 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
Note: For syntax, please see the intrinsics in Section 4.

3.9 Viewing Live Ranges
The command line option -Qliveinfo displays live-range information about a set of register classes.
You can use -Qliveinfo or -Qliveinfo=all to display live-range information for all register classes,
or use -Qperfinfo=<reg_class,...> to display live-range information for a selected set of register
class. Section 2.3.3, “Supported Compiler Option Switches” on page 20, explains the syntax of the
option in detail.

If a variable is live at some point in a program, this means that the variable's value is used
somewhere after that point in the program, and therefore storage (registers in this case) must be
reserved for that variable. If too many variables are “live” at the same point in a program, not all of
them will be able to be stored in registers, and some of them will have to be “spilled,” or demoted,
into local memory, NN registers, or SRAM. This can adversely affect performance. When this
happens, -Qliveinfo can help you analyze your program and determine which code segments have
a high “register pressure” and thus need to be restructured.

Every object in your program that is assignable to registers, including user variables, is represented
in a common format, the “virtual register.” Virtual registers have a class, ID number, and optionally
a user variable name. Register allocation is the process of mapping virtual registers to physical
ones. The - Qliveinfo printout provides information on these virtual registers in the folloing format:

cls.ID(variable_name)

where “cls” is one of the register class names specified in the -Qliveinfo parameter set, “ID” is the
ID of the VR, and “variable_name” is the name of the corresponding user variable, if any.

-Qliveinfo prints the live-range info for each register class separately. For a given register class, the
first part of its live-range display is a mapping from the virtual registers of that class to the
corresponding user variable names. Not all virtual registers can be mapped to a variable name. For
those that cannot be mapped, an ellipsis (...) is used instead. Some VRs will correspond to
compiler-generated variables (usually of the form “cgt.nnn”). Global variables in your code will
have their names modified slightly.

The following is an example of the virtual register map:

Virtual gpr Registers to User Variables Mapping:

 nn_inl_01a.c(30) _x gr.123

 nn_inl_01a.c(32) _y gr.328

 nn_inl_01a.c(32) _y+4 gr.329

 nn_inl_01a.c(32) ... gr.330

After the virtual register map, the live-range info is printed for each pseudo-assembly instruction in
each function. At the top of each function display, three sets of VRs are printed: the live-in set, the
live-out set, and the live-through set. The “live-in” set is the set of VRs that are live at the points
where the function is called. “Live-out” is the set of VRs that are either “live-in” or defined in the
function, and are used after the function returns. “Live-through” is the set of VRs that are “live-in”
and “live-out,” but not referenced inside the function. “Live-through” reflects the register pressure
from the function's callers. The function-level liveness information is then followed by the live-
 Language Support Reference Manual 57

Intel® Microengine C Compiler Language Support
C Language Support
range information for each pseudo-assembly instruction (pseudo-assembly instructions are used
internally by the compiler, and correspond roughly with IXP assembly instructions, but may have
different syntax).

An example of the live-range info for a function is:

Live info. of gpr registers for Function test1b:
Live in(1):
gr.671(..)

Live out(0):

Live through(0):

Live set(1): gr.671(..)

/******/ puthi(S1); put('\n');
1 immed[gr.348(val) , 65535, <<0]

Live set(2): gr.348(val) gr.671(..)

2 immed_w1[gr.348(val) , 32767]
Live set(2): gr.348(val) gr.671(..)

3 .mcall[_puthi#, gr.663(..)]
Live set(1): gr.671(..)

4 immed[gr.328(c) , 10, <<0]

Live set(2): gr.328(c) gr.671(..)

5 .mcall[_put#, gr.655(..)]
Live set(1): gr.671(..)

/******/ puthi(S1/(1<<0)); put('\n');
6 immed[gr.348(val) , 65535, <<0]

Live set(2): gr.348(val) gr.671(..)

Each pseudo-assembly instruction is preceded by a set of the VRs that are live at the point before
the instruction executes. The numbers that occur after the set names ("Live set(n)") indicate the
number of relative registers needed to allocate the live VRs at that point. "Shared" VRs or variables
will count as a fraction of a register, because several absolute registers can be mapped into a single
relative register. In the above example, the VR gr.348 is live between instructions 1 and 3, and live
after instruction 6. Instruction 1 writes to the VR, which makes it live afterward (recall that
liveness is an indication of whether a VR's value is needed). Instruction 3 is a function call to
puthi(), which uses the value of gr.348 (this fact would be apparent on examination of the live-
range info of the puthi() function). After the function call, gr.348 is no longer live because its value
was only needed for the function call. gr.348 becomes live again after instruction 6, because the VR
is rewritten with different value for the next puthi() call (which is not shown).

3.9.1 Limitations and Restrictions on Viewing Live Ranges
• Pseudo instructions do not exactly reflect the assembly instructions in the final list file.

Register allocation, local memory allocation, scheduling, and other optimizations might
delete, add, modify, or reorder some instructions. Some of the pseudo instructions are compiler
directives only, and will not produce any physical instructions in the final list file.

• At a given program point, register pressure slightly greater than the number of available
registers does not necessarily mean that a spill (demotion to another storage class) will be
generated for one of the live variables. Some variables may be found to be equivalent to each
58 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
other and may share the same register. Conversely, register pressure which is slightly smaller
than the number of available registers does not guarantee that no spilling is needed, because
additional registers may need to be allocated to perform operations such as memory I/O, or to
temporarily hold values from other register classes.

• Not all virtual registers can be mapped back to user variables.

• Some variables have modified names that cannot be found in the original source code. They
are either global variables or compiler-generated variables.

• When the compiler allocates registers to variables, transfer registers are allocated first. If there
are not enough transfer registers to hold all the live transfer register values at a given program
point, some of the values will be stored (spilled) in GPRs instead. This may in turn cause spills
(demotion to NN registers or memory) in the GPRs that are live at that point. Since the
-Qliveinfo output is printed before register allocation, it might show a GPR register pressure
which is smaller than the number of available registers at a given program point, even though
a spill is generated at that point. If this happens, the register pressure of the transfer registers
should be examined. Any transfer register pressure larger than the number of physical registers
should be added into the GPR register pressure.

• If your code contains local memory variables, 2 GPRs are reserved from the allocation pool, so
that local memory address calculations can be performed.

• Variables declared as volatile are marked as live at every point within their scope. Function-
local volatile variables are live within the scope of their defining function, and global volatile
variables are live within the scope of the entire program.

3.10 Critical Path Annotation and Code Layout
On the IXP architecture, there is a penalty paid for each branch that is taken, i.e. each time the code
does not proceed sequentially. This can sometimes be removed by use of branch defer slots, but
the compiler is not always able to completely fill the defer slots.

Code layout is an optimization performed by the compiler that arranges the code in an order that
reduces the number of taken branches. As an example, look at the following code:

if (condition)
{

<statement 1>;
}
else
{

<statement 2>;
}

Typically, the compiler would produce code similar to this:

alu [--, --, b, condition]
bne [lab1#]
<statement_1>
br [lab#]

lab1#:
<statement 2>

lab2#:

Notice that there is a taken branch on each path.
 Language Support Reference Manual 59

Intel® Microengine C Compiler Language Support
C Language Support
Now let's assume that the compiler knows that the 'else' clause is executed far more frequently than
the 'then' clause. The compiler could arrange the code differently as follows:

alu [--, --, b, condition]
beq [lab1#]
<statement 2>

lab2#:

...
lab1#:

<statement 1>
br [lab2#]

Now there are no branches when the 'else' clause is executed and 2 branches when the 'then' clause
is executed. This is a win on the average since the 'else' clause is much more frequently executed.
In fact, this optimization will always win when the 'else' clause is taken 2/3 of the time or greater.

Another case is the switch statement. A switch is fairly expensive to implement because it involves
an indexed branch to a branch. In the case of a switch, if one leg of the switch is taken more than
30% of the time, a test for that leg before doing the switch will improve the code.

The compiler cannot do this optimization without direction from the programmer. This is because
these transformations would hurt performance if the execution ratios were not what the compiler
assumed. For this reason, the compiler provides an intrinsic to mark the “critical path” in the
program, that is the path that is executed most frequently.

Use the intrinsic function:

__critical_path()

to indicate that this point in the program is on the critical path. For code that is on the critical path,
you should mark the leg of a two way branch (e.g. if statement) that is taken 2/3 of the time or
more, and for a switch statement you should mark the most important leg if it is taken 1/3 of the
time or more. You should not mark any two paths that are mutually exclusive as both critical, as
this provides no significant information to the compiler

The compiler is capable of inferring, from the __critical_path() directives that you insert, other
parts of the program that are on the critical path. For example, if you have a series of nested if's
you only need to mark the leg of the innermost one as being on the critical path. If one critical path
will overlap another one, the user may want to set priorities on the paths. Please see Section 3.10.1,
“Multiple Critical Paths” on page 61 for more details.

Here are some rules you should take into consideration when marking the critical path:

• Put a critical path marker inside the main loop of the program, at the top.

• For an if with an else, mark one side or the other if it is executed 2/3 of the time or more.

• For a switch, mark the most often taken case if it is taken 1/3 of the time or more.

• If you have an if without an else, put a critical path marker in the 'then' clause if the if is taken
2/3 of the time or more

• If you have an if that ends with a return or goto statement, and the if (and hence the return or
goto) is not executed 2/3 of the time or more, mark the statement following the statement or
block controlled by the if.
60 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
• If you have a function that is used both on the critical path and off the critical path, do not put
critical path markers in the function.

Basically, you want to walk through the code for your program following the most frequently taken
path, and place a marker whenever the code makes a decision and one path is on the critical path
and the others are not.

3.10.1 Multiple Critical Paths
If several critical paths overlap each other, the branches on the overlapping sections will be laid out
in an arbitrary order. For example:

if (cond1) {
__critical_path();
// block 1: most frequent case

}
else {

if (cond2) {
 __critical_path();
 // block 2: second most frequent case

}
else {
 // block 3: infrequent case
}

}

In the above segment of code, the user wants the "if (cond1)" statement to give preference to "block
1". The user also wants the "if (cond2)" statement to give preference to "block 2". If the
__critical_path() directive is used as above, the critical path choice at "if (cond2)" will be extended
upwards by the compiler and overlap with the critical path choice at "if (cond1)". The compiler will
not know how to choose the default branch direction for "if (cond1)". This is by design; if the
critical paths were not extended in this fashion the user would have to insert a directive inside
every if statement surrounding a given frequently executed block.

When critical paths overlap, the user can tell the compiler which one to give preference to by
assigning a priority to each path. The __critical_path() directive takes an optional integer argument,
which specifies the priority of that path. For example:

if (cond1) {
__critical_path(20);
// block 1: most frequent case

}
else {

if (cond2) {
 __critical_path(1);
 // block 2: second most frequent case

}
else {
 // block 3: infrequent case
}

}

The numbers can range from 0 to 100. The default is 100 if no argument is specified. The critical
path with the higher number is given priority. In the above example, "block 1" will be placed as the
default for "if (cond1)" because it has a higher priority (20) than the critical path that flows through
"if (cond2)".
 Language Support Reference Manual 61

Intel® Microengine C Compiler Language Support
C Language Support
3.11 User-Guided switch() Statement Optimization
You can supply information that will determine how the compiler will perform certain
optimizations. Among these are default case removal and switch block packing.

Given the following code:
void main()
{

__declspec(sram) int mem[10] = {0,1,2,3,4,5,6,7,8,9};
int x = 0;
switch (mem[0])
{
case 0:

x = 1;
break;

case 1:
x = 2;
break;

case 2:
x = 3;
break;

}
}

The compiler will generate code such as the following:

sram[read, $0, a0, 40, 1], ctx_swap[s1]
alu[--, 2, -, $0]
blo[l_10#], defer[1]
alu[a0, --, B, $0]
jump[a0, l_21#], targets[l_23#,l_22#,l_21#]

l_21#:
br[l_4#]

l_22#:
br[l_6#]

l_23#:
br[l_8#]

l_4#:
br[l_10#], defer[1]
immed[a2, 1, <<0]

l_6#:
br[l_10#], defer[1]
immed[a2, 2, <<0]

l_8#:
immed[a2, 3, <<0]

l_10#:
....

The preceding code example shows two possible optimizations that the compiler can perform:

1. The code to test and handle the case where the switch() value does not match any of the other
specified cases is not needed.

2. Instead of having the code jump[] to a jump table which then branches to the code to handle
each case, the jump[] can go directly to the handler code, at an offset based on the value of x.
This optimization can be performed because each case is handled by code that is
approximately of equal length (two instructions). Therefore the offset for each handler is equal
to the value of x times two.

The compiler will perform the above optimizations based on the input you supply.
62 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
3.11.1 Default Case Removal
The first optimization in this example, removal of the handler code for the unmatched (“default”)
case, requires that you select and provide the appropriate value of the switch() argument. You
direct the compiler to remove the “default” case by creating an empty default case and annotating it
with the intrinsic function __impossible_path(). For example:

void main()
{

__declspec(sram) int mem[10] = {0,1,2,3,4,5,6,7,8,9};
int x = 0;
switch (mem[0])
{
case 0:

x = 1;
break;

case 1:
x = 2;
break;

case 2:
x = 3;
break;

default:
__impossible_path();// add default case, and annotate with intrinsic.

}
}

3.11.2 Switch Block Packing
The second optimization in this example (switch block packing) should only be performed if all
case handlers are approximately equal in length, with that length preferably a power of two. If the
__switch_pack() intrinsic function is placed in the default case, the compiler will try to
predict whether the code will benefit from switch block packing, and will perform the optimization
if this is possible. For example:

void main()
{

__declspec(sram) int mem[10] = {0,1,2,3,4,5,6,7,8,9};
int x = 0;
switch (mem[0])
{
case 0:

x = 1;
break;

case 1:
x = 2;
break;

case 2:
x = 3;
break;

default:
__switch_pack(swpack_auto);

}
}

The possible arguments for the __switch_pack() function are described in the swpack_t
enum in the ixp.h header file:
 Language Support Reference Manual 63

Intel® Microengine C Compiler Language Support
C Language Support
typedef enum {
swpack_none, // no pack, jump[] to a jump table
swpack_lmem, // no pack, but use local memory to hold jump table
swpack_auto, // auto pack when appropriate
swpack_0, // pack if no extra registers are required

 // to perform the jump[] offset calculation
swpack_1, // pack if at most 1 register is required to

 // perform the jump[] offset calculation
swpack_2, // pack if at most 2 registers are required

 // to perform the jump[] offset calculation
swpack_3 // pack if at most 3 registers are required

 // to perform the jump[] offset calculation
} swpack_t;

Note that this optimization should not be performed if the case handlers vary
widely in length, because the smaller handlers will have to be padded so that all
handler offsets occur at the same intervals.

3.12 Creating Context Swap-Free Regions of Code
The __no_swap_begin() and __no_swap_end() intrinsics can be used to create a section of code
where the compiler will not create any instructions that incur a context swap, or move any code
into the region that will incur a context swap. This allows the user to write critical sections without
incurring the overhead of explicit synchronization. Note that the other microengines on the NPU
will still continue to execute in parallel. To create a context swap-free region, simply place the
__no_swap_begin() and __no_swap_end() intrinsics at the beginning and the end of the desired
section of code, as shown in the following example:

__no_swap_begin()
... critical section code
__no_swap_end()

If the code within the critical section contains a context swap operation, the compiler will generate
an error message. This includes any access to data structures stored in memory. Function calls
made in the critical section are also checked for this condition. Aside from this checking, the
compiler will also guarantee that no other code that incurs context swaps will be moved into this
region through compiler optimizations.

3.13 Loop unrolling control
When the -O2 (compile for maximum code speed) option is enabled, the compiler can perform an
optimization called "loop unrolling" as shown in the following example.
64 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
Original loop:

for (i = 0; i < 10; i++) {
a[i] = i;
}

Loop unrolled by 2X:

for (i = 0; i < 10; i += 2) { // unroll by 2
a[i] = i;
a[i+1] = i+1;

}

The loop in the second code segment has been unrolled by 2X (the "unroll factor" is 2). Two
iterations of the original loop will execute in one iteration of the unrolled loop. The total number of
branches executed in the loop is halved. Also, the two statements in the loop body can be optimized
together—computation can be reused and more scheduling and pipelining opportunities have been
created. Loop unrolling therefore improves the performance of loops, at a cost in code size.

Loop unrolling is performed only for "for" loops. If loops are nested, only the innermost loop will
be unrolled. The compiler automatically determines, using various heuristics, whether a benefit can
be had for unrolling a given loop, and what the proper "unroll factor" should be. If you want more
precisely controlled unrolling behavior, there are two #pragma directives that you can use, as
shown in the following example::

#pragma nounroll// Don't unroll this loop
#pragma unroll (<unroll factor>)// Unroll this loop by the given unroll factor

These directives are placed directly before the loop to be managed. This loop must be a "for" loop,
and must be the innermost loop in a series of nested loops. This is shown in the following
examples:
 Language Support Reference Manual 65

Intel® Microengine C Compiler Language Support
C Language Support
#pragma nounroll

for (i = 0; i < 10; i ++) // Don't unroll this

...

#pragma unroll(2)
for (i = 0; i < 10; i ++) // Unroll this loop by 2X, exactly as in
// the above example

...

// NOT LEGAL, must be applied to
#pragma unroll(2) // innermost loop
for (i = 0; i < 10; i++)

for (j = 0; j < 6; j++)
...

...

#pragma unroll(2)// NOT LEGAL, must be applied to for loop
while (1)

...

The "unroll factor" parameter is the total number of iterations of the loop body that will be in the
final unrolled loop. If this parameter is 0 or 1, no unrolling will be performed.

3.14 Mixing C and Microcode in One Microengine

3.14.1 Command Line Options and Usage model
A typical application that mixes C and microcode defines one or more functions in C files, and one
or more microcode blocks in assembly file. A main() function must be defined in C. Global
variables require initialization and must be defined in C. Thread local memory variables must be
defined in C files as there is no thread local memory in microcode. A function in microcode is a
label that you can jump to. C functions call microcode functions by first setting arguments and
returning address in symbolic registers, then jumping to the label. Microcode can also call C
functions in a similar way. The returned value is placed in symbolic registers as well.

Any file scope global variables defined in C can be referenced from microcode. Any microcode
module level global register variable, or module level memory variable can be referenced from C
functions. The naming translation scheme between C and microcode is described in Section 3.14.2.

The following command line option supports mixing C and microcode in one compilation:

-uc

With this option on, you can pass a number of C files, together with a number of microcode files to
the compiler. First, all C files are compiled into a single microcode file, usually named as
ipo_out.uc, and a header file, usually named as ipo_out.h. This header file contains macro
definitions of offsets for thread local variables. The compiler then creates a temporary, temp.uc, as
the high-level microcode file. Temp.uc includes ipo_out.uc, ipo_out.h, (unless they are renamed by
-Fa or -o) and all other microcode files passed on the command line. Compiler later invokes UCA
(microcode assembler) to assemble temp.uc into a list file.

After compilation, temp.uc is removed, but ipo_out.uc and ipo_out.h is preserved in the directory.

The following command line options can change the default behavior of mixing compilation:
66 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
-S The driver will not invoke UCA, only generate the uc file.

-Fa <filename> or -o <filename> The microcode file produced by compiler
is renamed to <filename>

-O, -O2, -O1 The driver will invoke UCA with -O

-Zi The driver will invoke UCA with -g

-Gx2800/-Gx2400 The driver will invoke uca with -ixp2800/-ixp2400

-Fe<filename> The list file produced from UCA is renamed to <filename>.

3.14.2 Naming and Calling Conventions
To avoid name conflicts with microcode, the compiler inserts a leading underscore ('_') to all C
variables and functions. For example, a function foo() in C source file is referred as _foo# in
assembly; a global memory variable x is referred as _x in assembly. Additional rules regarding
naming convention on variables are explained in following subsections.

3.14.2.1 Register Variable Naming Conventions

When referencing register variables across the boundary of C and microcode, the following
conventions are to be followed:

• For SRAM transfer registers, the microcode requires a prefix name of “$”. For the same
SRAM xfer variable myvar in C, the corresponding name is $myvar in microcode.

• For DRAM transfer registers, the microcode requires a prefix name of “$$”. For the same
DRAM xfer variable myvar in C, the corresponding name is $$myvar in microcode.

• For next neighbor registers, the microcode requires a prefix name of “n$”. For the same nn reg
variable myvar in C, the corresponding name is n$myvar in microcode.

• For shared registers, the microcode requires a prefix name of “@”. For example, the following
C variable:

__declspec(shared gp_reg) rr;

is translated into microcode as shown:

.reg read @_rr;

In C, register variables can carry a size bigger than a 4 byte word; while in microcode, the size of
each register variable is 4 bytes. When referencing such a variable from microcode, a postfix of
“_ _<n>” where n=0,1,2,…, is appended to distinguish each 4 byte part. For example, the
following C variable

__declspec(sram gp_reg) rr[4];

is translated into microcode:

.reg read $_rr__0
 Language Support Reference Manual 67

Intel® Microengine C Compiler Language Support
C Language Support
.reg read $_rr__1

.reg read $_rr__2

.reg read $_rr__3

3.14.2.2 Sharing Variables Between C and Assembly

All register variables may be shared between the C and assembly source files in the program. All
memory variables declared with the declspec qualifiers “shared’, “import”, or “export” may also be
shared between the C and assembly source files. In the assembly file, all variables being shared
should be prefixed with an underscore “_”. The variables should only be declared once per
program. For example:

.c File:

...

__declspec(sram, shared) int i;

__declspec(sram_write_reg) int reg;

...

.uc File:

; no declarations for i or reg

...

immed[$_reg, 12]; reg is an xfer register

sram[write, $_reg, _i, 0, 1], ctx_swap[somesig]

...

3.14.2.3 Calling Conventions

Due to lack of stack, parameter passing, return address passing and returning value passing for
global functions are via global variables. For example, the call to x = foo(y) will be translated into:

alu [_foo_arg_0, --, B, _y]
load_addr [_foo_raddr, L_123#]
br[_foo#]

L_123#:
alu [gr300, --, B, _foo_ret_0]
...

_foo#:
alu [gr100, --, B, _foo_arg_0]
...
alu [_foo_ret_0, --, B, gr200]
rtn [_foo_raddr]

<func_name>_arg_<n>, <func_name>_raddr, <func_name>_ret_<n> , where <n> is 0,1,2,3… are
compiler generated global variables for passing arguments, return address and return value. Each of
these is a 32-bit register. You must set these variables correctly when calling a C function from
microcode; and you must get the correct arguments and return address when writing a microcode
function callable from C.
68 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
It is possible for C to declare function arguments as transfer registers explicitly or implicitly. In that
case, the corresponding microcode name must have "$" or "$$" inserted to the name begin. The
implicitly declaration of argument variable as transfer register happens with inline assembly. For
example,

Foo(int x)
{

...
__asm sram[write, x, addr1, 0, 1], ctx_swap[s1];
...

}

The compiler will read x as declared as __declspec(sram_write_reg)

For a global function, saying foo(), value passing symbolic variables, such as _foo_arg_0,
_foo_raddr, _foo_ret_0, are defined in the module where the function body is defined. For other
modules that did not see the definition of foo(), but has calls to foo(), these value passing variables
are declared as extern.

This calling convention is not need for C static functions, because they cannot be called from the
assembler.

3.14.3 Mixed C and Microcode Examples

3.14.3.1 Function Parameter Passing

The C file calls an assembly function performing addition of two operands.

int x, y, z;
extern int sum(int a, int b);
main()
{
x = 10;
y = 5;
z = sum(x, y);
}

The assembly file:

;Function _sum: perform add on two argument and return
;the result
.num_contexts 4
.reg global _sum_ret_0
.reg global _sum_raddr
.reg global _sum_arg_1
.reg global _sum_arg_0
.begin
.reg _gpr68
_sum#:

alu[_gpr68, _sum_arg_0, +, _sum_arg_1]
alu[_sum_ret_0, --, B, _gpr68]
rtn[_sum_raddr]

.end
 Language Support Reference Manual 69

Intel® Microengine C Compiler Language Support
C Language Support
3.14.3.2 Register Usage

The C file defines an SRAM transfer register variable.

__declspec(sram_read_reg)x[4];

The microcode function that returns the sum of all elements of x:

.reg extern read $_x__0

.reg extern read $_x__1

.reg extern read $_x__2

.reg extern read $_x__3

.reg global _sum_ret_0

.reg global _sum_raddr

; function sum returns the sum of all elements
; of x
_sum#:
.begin

alu[_sum_ret_0, --, B, $_x__0]
alu[_sum_ret_0, _sum_ret_0, +, $_x__1]
alu[_sum_ret_0, _sum_ret_0, +, $_x__2]
alu[_sum_ret_0, _sum_ret_0, +, $_x__3]
rtn[_sum_raddr]

.end

3.14.4 Restrictions on Mixing C and Microcode
There are several restrictions in mixed C/microcode programming. These restrictions include:

• The C portion must contain main()

• You must give all C files to the compiler at compilation time. Otherwise, global variables and
thread local storage pointer may not be initialized correctly.

• UCA declares and uses paired signals implicitly. If a signal appears in a position where a
paired signal is required, then it is a paired signal and will be allocated two physical signals.
There is no way to reference only the odd/even part of a paired signal. For C programs that
explicitly reference the odd/even part of a paired signal, the behavior is undefined.

• The calling convention implemented for mixing C/microcode is not compatible with the
implementation in inline assembly. This means inline assembly has to follow this convention
to call a function defined in microcode.

• If you change nn-mode in assembly, which is not consistent with the C compiler option, the
result is undefined.

• UCA does not support case sensitive variable/function name yet. All C symbols are translated
into lowercase when referenced from microcode. When local memory is referenced in both C
files and microcode files, you should use -Qlm_start to partition local memory between the
microcode and compiler code to avoid conflicts.
70 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
C Language Support
3.15 Unsupported ANSI C99 Features
The Microengine C compiler is largely based on the ISO/IEC 9899:1990 (C89) standard, with
selected features from ISO/IEC 9899:1999 (C99). The majority of the new features in C99 are not
supported in the current implementation of the Microengine C compiler, which include the
following:

• variable-length arrays

• flexible array members

• static and type qualifiers in parameter array

• complex and imaginary data types

• compound literals

• designated initializers

• preprocessor arithmetic done in intmax_t/uintmax_t

• mixed declarations and code

• new integer constant type rules and integer promotion rules

• macros with a variable number of arguments

• trailing comma allowed in enum declaration

• inline functions (Microengine C compiler does implement __inline, which is similar to the
inline keyword defined in C99)

• boolean type (Microengine C compiler defines bool as int, which is not the same as _Bool
defined in C99)

• idempotent qualifiers

• empty macro arguments

• new struct type compatibility rules

• _Pragma preprocessing operator

• __func__ predefined identifier

• VA_COPY macro

• LIA compatibility annex

• conversion of an array to pointer not limited to lvalues

• relaxed constrains on aggregate and union initializations

• flag error on return without expression in functions return value (and vice versa)

• no implicit function declaration

In addition to these unsupported features, the Microengine C compiler has the following
restrictions:

• It does not support any floating type, including float, double, and long double.

• It does not support recursive function calls.

• It does not support variable function arguments.

• It does not support setjmp/longjmp.
 Language Support Reference Manual 71

Intel® Microengine C Compiler Language Support
C Language Support
• It does not support any signal() functions.

• It does not support taking function address and using function pointers

• Due to the size of control store, it does not support translation limit (such as the number of
identifiers, number of nested blocks, etc.) defined in C89 and C99.

• An array subscription on register variables (gp_reg, nn_reg or xfer reg) can only take a
constant value.

• The address operator (&) can not be applied to register variables (gp_reg, nn_reg or xfer_reg),
except as an argument to intrinsic function calls.

• Read xfer register variables can not be used as an Lvalue except in a call to intrinsic functions.

• Write xfer register variables can not be evaluated (used as Rvalue) except in inline assembly.

• Most standard library headers defined in C89/C99 are not supported at this time. Only
<memory.h>, <string.h> and <stdlib.h> are implemented with significantly fewer functions
supported than required by C89/C99.

• A limited number of standard library functions are implemented in the Microengine C
compiler. Please refer to <memory.h>, <string.h>, and <stdlib.h> in the Microengine C
Compiler LibC Library Reference Manual for information on which functions are
implemented.
72 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
Intrinsic Functions 4

Intrinsic functions support features of the Intel® IXP2XXX Network Processors that are not easily
accessible using standard C. They are either expanded in-line in the compiler or defined and inlined
in intrinsics. Also defined are many enumerated data types and structures to encapsulate signal and
CSR names or other such special information.

The header ixp.h defines the C compiler intrinsic functions. The descriptions here are not intended
to be complete descriptions of the intrinsic functions–they must be supplemented with the
information in the IXP2400/IXP2800 Network Processor Family Microcode Programmer’s
Reference Manual.

There are restrictions placed on the data argument specified to CSR and intrinsic functions. These
restrictions are discussed throughout this chapter and in Section 4.10, “Restrictions On Intrinsics”
on page 354.

The intrinsics fall into the following categories:

• Unaligned data access

• Memory and I/O access

• Synchronization

• Local CSR, CAM, CRC access

• Miscellaneous functions

The intrinsic functions are known to the compiler and do not generate a function call. They
generally translate to one or two machine instructions, excluding evaluation of the arguments.
 Language Support Reference Manual 73

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.1 Intrinsic Syntax Conventions
Many intrinsics described in this chapter can work with data in either SRAM or DRAM transfer
registers. These intrinsics have variant intrinsic names that are denoted with _D (for DRAM
registers) or _S (for SRAM registers). For example,

sram_read()

sram_read_D()

These intrinsics perform the same operation except that sram_read() reads data from an address in
SRAM into an SRAM read transfer register while sram_read_D() reads data from SRAM into a
DRAM read transfer register.

In this chapter, the syntax descriptions of these variants are combined in one description and are
shown as follows:

void sram_read[_D](
__declspec([sram, dram]_read_reg) void * data,
volatile void __declspec(sram) * address,
unsigned int count,
sync_t sync,
SIGNAL* sig_ptr);

The brackets denote the variant syntax. If you use the _D variant above, you must also specify a
DRAM read transfer register for the data argument (i.e., __declspec(dram_read_reg) void *data).

If you use the sram_read() intrinsic, you must specify an SRAM read register for the data argument
(i.e., __declspec(sram_read_reg) void * data).
74 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.2 Unaligned Data Access
The functions described in the following sections allow access to data that is not aligned on natural
boundaries (32 or 64 bits). They also allow access to data types smaller than those supported by the
hardware (8, 16, 32 and 64 bits) at any byte address.

These functions take a two-part address:

• A pointer, aligned or unaligned

• An integer byte offset from the pointer.

For functions that do not specify a particular memory region in its name or argument list, the
pointer may point to any memory region. For example, the following function gets a signed 8-bit
integer addressed by the void pointer “ptr” and the integer “offset”:

int ua_get_s8(void *ptr, unsigned int offset);

This function resolves the void pointer to the appropriate memory region (SRAM, DRAM,
LOCAL_MEM, or Scratch). In almost all situations, you should use these general functions to
access unaligned data. The function names are shorter and you do not have to specify the memory
region in which the data resides.

However, in rare cases, the compiler will be unable to resolve the pointer to a memory region. In
these cases, you should use one of the memory-region-qualified unaligned functions. For example:

int ua_get_s8_dram(DRAM_VOID *p, unsigned int offset);

This function resolves the pointer to the DRAM memory region and returns a signed 8-bit integer
from DRAM.

The following sections summarize all unaligned get, set, and memcpy intrinsics.

4.2.1 Unaligned Get Functions
Table 8 summarizes the unaligned get functions.

Table 8. Unaligned Get Functions (Sheet 1 of 3)

Name (args) Description

int ua_get_s8(void *ptr, unsigned int offset); Gets a signed 8-bit integer addressed by
the pointer and offset from the appropriate
memory region.

int ua_get_s16(void *ptr, unsigned int offset); Gets a signed 16-bit integer addressed by
the pointer and offset from the appropriate
memory region.

int ua_get_s32(void *ptr, unsigned int offset); Gets a signed 32-bit integer addressed by
the pointer and offset from the appropriate
memory region.
 Language Support Reference Manual 75

Intel® Microengine C Compiler Language Support
Intrinsic Functions
long long ua_get_s64(void *ptr, unsigned int offset); Gets a signed 64-bit integer addressed by
the pointer and offset from the appropriate
memory region.

unsigned int ua_get_u8(void *ptr, unsigned int offset); Gets an unsigned 8-bit integer addressed
by the pointer and offset from the
appropriate memory region.

unsigned int ua_get_u16(void *ptr, unsigned int offset); Gets an unsigned 16-bit integer addressed
by the pointer and offset from the
appropriate memory region.

unsigned int ua_get_u32(void *ptr, unsigned int offset); Gets an unsigned 32-bit integer addressed
by the pointer and offset from the
appropriate memory region.

unsigned long long ua_get_u64(void *ptr, unsigned int offset); Gets an unsigned 64-bit integer addressed
by the pointer and offset from the
appropriate memory region.

int ua_get_s8_dram(DRAM_VOID *p, unsigned int offset); Gets a signed 8-bit integer addressed by
the pointer and offset from DRAM.

int ua_get_s8_sram(SRAM_VOID *p, unsigned int offset); Gets a signed 8-bit integer addressed by
the pointer and offset from SRAM.

int ua_get_s8_scratch(SCRATCH_VOID *p, unsigned int offset); Gets a signed 8-bit integer addressed by
the pointer and offset from Scratch.

int ua_get_s8_lmem(LMEM_VOID *p, unsigned int offset); Gets a signed 8-bit integer addressed by
the pointer and offset from LOCAL_MEM.

int ua_get_s16_dram(DRAM_VOID *p, unsigned int offset); Gets a signed 16-bit integer addressed by
the pointer and offset from DRAM.

int ua_get_s16_sram(SRAM_VOID *p, unsigned int offset); Gets a signed 16-bit integer addressed by
the pointer and offset from SRAM.

int ua_get_s16_scratch(SCRATCH_VOID *p, unsigned int offset); Gets a signed 16-bit integer addressed by
the pointer and offset from Scratch.

int ua_get_s16_lmem(LMEM_VOID *p, unsigned int offset); Gets a signed 16-bit integer addressed by
the pointer and offset from LOCAL_MEM.

int ua_get_s32_dram(DRAM_VOID *p, unsigned int offset); Gets a signed 32-bit integer addressed by
the pointer and offset from DRAM.

int ua_get_s32_sram(SRAM_VOID *p, unsigned int offset); Gets a signed 32-bit integer addressed by
the pointer and offset from SRAM.

int ua_get_s32_scratch(SCRATCH_VOID *p, unsigned int offset); Gets a signed 32-bit integer addressed by
the pointer and offset from Scratch.

int ua_get_s32_lmem(LMEM_VOID *p, unsigned int offset); Gets a signed 32-bit integer addressed by
the pointer and offset from LOCAL_MEM.

long long ua_get_s64_dram(DRAM_VOID *p, unsigned int offset); Gets a signed 64-bit integer addressed by
the pointer and offset from DRAM.

long long ua_get_s64_sram(SRAM_VOID *p, unsigned int offset); Gets a signed 64-bit integer addressed by
the pointer and offset from SRAM.

long long ua_get_s64_scratch(SCRATCH_VOID *p, unsigned int offset); Gets a signed 64-bit integer addressed by
the pointer and offset from Scratch.

long long ua_get_s64_lmem(LMEM_VOID *p, unsigned int offset); Gets a signed 64-bit integer addressed by
the pointer and offset from LOCAL_MEM.

unsigned int ua_get_u8_dram(DRAM_VOID *p, unsigned int offset); Gets an unsigned 8-bit integer addressed
by the pointer and offset from DRAM.

unsigned int ua_get_u8_sram(SRAM_VOID *p, unsigned int offset); Gets an unsigned 8-bit integer addressed
by the pointer and offset from SRAM.

Table 8. Unaligned Get Functions (Continued) (Sheet 2 of 3)

Name (args) Description
76 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
unsigned int ua_get_u8_scratch(SCRATCH_VOID *p, unsigned int offset); Gets an unsigned 8-bit integer addressed
by the pointer and offset from Scratch.

unsigned int ua_get_u8_lmem(LMEM_VOID *p, unsigned int offset); Gets an unsigned 8-bit integer addressed
by the pointer and offset from
LOCAL_MEM.

unsigned int ua_get_u16_dram(DRAM_VOID *p, unsigned int offset); Gets an unsigned 16-bit integer addressed
by the pointer and offset from DRAM.

unsigned int ua_get_u16_sram(SRAM_VOID *p, unsigned int offset); Gets an unsigned 16-bit integer addressed
by the pointer and offset from SRAM.

unsigned int ua_get_u16_scratch(SCRATCH_VOID *p, unsigned int offset); Gets an unsigned 16-bit integer addressed
by the pointer and offset from Scratch.

unsigned int ua_get_u16_lmem(LMEM_VOID *p, unsigned int offset); Gets an unsigned 16-bit integer addressed
by the pointer and offset from
LOCAL_MEM.

unsigned int ua_get_u32_dram(DRAM_VOID *p, unsigned int offset); Gets an unsigned 32-bit integer addressed
by the pointer and offset from DRAM.

unsigned int ua_get_u32_sram(SRAM_VOID *p, unsigned int offset); Gets an unsigned 32-bit integer addressed
by the pointer and offset from SRAM.

unsigned int ua_get_u32_scratch(SCRATCH_VOID *p, unsigned int offset); Gets an unsigned 32-bit integer addressed
by the pointer and offset from Scratch.

unsigned int ua_get_u32_lmem(LMEM_VOID *p, unsigned int offset); Gets an unsigned 32-bit integer addressed
by the pointer and offset from
LOCAL_MEM.

unsigned long long ua_get_u64_dram(DRAM_VOID *p, unsigned int offset); Gets an unsigned 64-bit integer addressed
by the pointer and offset from DRAM.

unsigned long long ua_get_u64_sram(SRAM_VOID *p, unsigned int offset); Gets an unsigned 64-bit integer addressed
by the pointer and offset from SRAM.

unsigned long long ua_get_u64_scratch(SCRATCH_VOID *p, unsigned int offset); Gets an unsigned 64-bit integer addressed
by the pointer and offset from Scratch.

unsigned long long ua_get_u64_lmem(LMEM_VOID *p, unsigned int offset); Gets an unsigned 64-bit integer addressed
by the pointer and offset from
LOCAL_MEM.

Table 8. Unaligned Get Functions (Continued) (Sheet 3 of 3)

Name (args) Description
 Language Support Reference Manual 77

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.2.2 Unaligned Set Functions
Table 9 summarizes the unaligned set functions.

Table 9. Unaligned Set Functions Summary (Sheet 1 of 2)

Name (args) Description

void ua_set_8(void *ptr, unsigned int offset, unsigned int value); Sets an 8-bit integer to the address
specified by ptr and offset in the
appropriate memory region.

void ua_set_16(void *ptr, unsigned int offset, unsigned int value); Sets a 16-bit integer to the address
specified by ptr and offset in the
appropriate memory region.

void ua_set_32(void *ptr, unsigned int offset, unsigned int value); Sets a 32-bit integer to the address
specified by ptr and offset in the
appropriate memory region.

void ua_set_64(void *ptr, unsigned int offset, unsigned long long value); Sets a 64-bit integer to the address
specified by ptr and offset in the
appropriate memory region.

void ua_set_8_dram(DRAM_VOID *p, unsigned int offset, unsigned int val); Sets an 8-bit integer to the address
specified by ptr and offset in DRAM.

void ua_set_8_sram(SRAM_VOID *p, unsigned int offset, unsigned int val); Sets an 8-bit integer to the address
specified by ptr and offset in SRAM.

void ua_set_8_scratch(SCRATCH_VOID *p, unsigned int offset, unsigned int val); Sets an 8-bit integer to the address
specified by ptr and offset in Scratch.

void ua_set_8_lmem(LMEM_VOID *p, unsigned int offset, unsigned int val); Sets an 8-bit integer to the address
specified by ptr and offset in
LOCAL_MEM.

void ua_set_16_dram(DRAM_VOID *p, unsigned int offset, unsigned int val); Sets an 16-bit integer to the address
specified by ptr and offset in DRAM.

void ua_set_16_sram(SRAM_VOID *p, unsigned int offset, unsigned int val); Sets an 16-bit integer to the address
specified by ptr and offset in SRAM.

void ua_set_16_scratch(SCRATCH_VOID *p, unsigned int offset, unsigned int val); Sets an 16-bit integer to the address
specified by ptr and offset in Scratch.

void ua_set_16_lmem(LMEM_VOID *p, unsigned int offset, unsigned int val); Sets an 16-bit integer to the address
specified by ptr and offset in
LOCAL_MEM.

void ua_set_32_dram(DRAM_VOID *p, unsigned int offset, unsigned int val); Sets an 32-bit integer to the address
specified by ptr and offset in DRAM.

void ua_set_32_sram(SRAM_VOID *p, unsigned int offset, unsigned int val); Sets an 32-bit integer to the address
specified by ptr and offset in SRAM.

void ua_set_32_scratch(SCRATCH_VOID *p, unsigned int offset, unsigned int val); Sets an 32-bit integer to the address
specified by ptr and offset in Scratch.

void ua_set_32_lmem(LMEM_VOID *p, unsigned int offset, unsigned int val); Sets an 32-bit integer to the address
specified by ptr and offset in
LOCAL_MEM.

void ua_set_64_dram(DRAM_VOID *p, unsigned int offset, unsigned long long val); Sets an 64-bit integer to the address
specified by ptr and offset in DRAM.
78 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
void ua_set_64_sram(SRAM_VOID *p, unsigned int offset, unsigned long long val); Sets an 64-bit integer to the address
specified by ptr and offset in SRAM.

void ua_set_64_scratch(SCRATCH_VOID *p, unsigned int offset, unsigned long long val); Sets an 64-bit integer to the address
specified by ptr and offset in Scratch.

void ua_set_64_lmem(LMEM_VOID *p, unsigned int offset, unsigned long long val); Sets an 64-bit integer to the address
specified by ptr and offset in
LOCAL_MEM.

Table 9. Unaligned Set Functions Summary (Continued) (Sheet 2 of 2)

Name (args) Description
 Language Support Reference Manual 79

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.2.3 Unaligned Memory Copy Functions
Table 10shows the unaligned memory copy functions

.

Table 10. Unaligned memcpy Functions (Sheet 1 of 2)

Name (args) Description

void ua_memcpy(
void *dst,
unsigned int dst_off,
void *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src to the
dst. Both src and dst can
reside in any memory
region.

void ua_memcpy_dram_dram(
DRAM_VOID *dst,
unsigned int dst_off,
DRAM_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src to the
dst. Both src and dst must
reside in DRAM.

void ua_memcpy_dram_sram(
DRAM_VOID *dst,
unsigned int dst_off,
SRAM_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src in
SRAM to the dst in DRAM.

void ua_memcpy_dram_scratch(
DRAM_VOID *dst,
unsigned int dst_off,
SCRATCH_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src in
Scratch to the dst in DRAM.

void ua_memcpy_dram_lmem(
DRAM_VOID *dst,
unsigned int dst_off,
LMEM_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src in
LOCAL_MEM to the dst in
DRAM.

void ua_memcpy_sram_dram(
SRAM_VOID *dst,
unsigned int dst_off,
DRAM_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src in
DRAM to the dst in SRAM.

void ua_memcpy_sram_sram(
SRAM_VOID *dst,
unsigned int dst_off,
SRAM_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src to the
dst. Both src and dst must
reside in SRAM.

void ua_memcpy_sram_scratch(
SRAM_VOID *dst,
unsigned int dst_off,
SCRATCH_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src in
Scratch to the dst in SRAM.

void ua_memcpy_sram_lmem(
SRAM_VOID *dst,
unsigned int dst_off,
LMEM_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src in
LOCAL_MEM to the dst in
SRAM.
80 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
void ua_memcpy_scratch_dram(
SCRATCH_VOID *dst,
unsigned int dst_off,
DRAM_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src in
DRAM to the dst in Scratch.

void ua_memcpy_scratch_sram(
SCRATCH_VOID *dst,
unsigned int dst_off,
SRAM_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src in
SRAM to the dst in Scratch.

void ua_memcpy_scratch_scratch(
SCRATCH_VOID *dst,
unsigned int dst_off,
SCRATCH_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src to the
dst. Both src and dst must
reside in Scratch.

void ua_memcpy_scratch_lmem(
SCRATCH_VOID *dst,
unsigned int dst_off,
LMEM_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src in
LOCAL_MEM to the dst in
Scratch.

void ua_memcpy_lmem_dram(
LMEM_VOID *dst,
unsigned int dst_off,
DRAM_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src in
DRAM to the dst in
LOCAL_MEM.

void ua_memcpy_lmem_sram(
LMEM_VOID *dst,
unsigned int dst_off,
SRAM_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src in
SRAM to the dst in
LOCAL_MEM.

void ua_memcpy_lmem_scratch(
LMEM_VOID *dst,
unsigned int dst_off,
SCRATCH_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src in
Scratch to the dst in
LOCAL_MEM.

void ua_memcpy_lmem_lmem(
LMEM_VOID *dst,
unsigned int dst_off,
LMEM_VOID *src,
unsigned int src_off,
unsigned int length);

Copies the number of bytes
specified in the length
argument from the src to the
dst. Both src and dst must
reside in LOCAL_MEM.

Table 10. Unaligned memcpy Functions (Continued) (Sheet 2 of 2)

Name (args) Description
 Language Support Reference Manual 81

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3 Memory I/O Functions

The memory and I/O functions provide direct access to the machine instructions Scratch, SRAM,
DRAM, PCI, MSF, and REFLECT. The data for memory and I/O operations is generally one or
more longwords or quadwords. The arguments for the data are specified as void * to allow you
to pass any structure or array of the appropriate size for these operations. There are restrictions
placed upon the data argument as described at the end of this chapter (Refer to Section 4.10,
“Restrictions On Intrinsics” on page 354). These restrictions are needed to satisfy the transfer
register operand restrictions imposed by the microcode underlying the intrinsic and to deal with the
asynchronous programming model exposed by the microcode. Take special care to properly call
the __free_write_buffer() intrinsic when performing an asynchronous memory write operation (i.e.
a write that waits on “sig_done”). Without a call to this intrinsic, the compiler may prematurely
reuse the write transfer registers involved in the operation before the write has completed.

For those intrinsics that accept SIGNAL_PAIR, the sync argument must be sig_done; therefore, the
caller must wait for the signal using __wait_for_all(), __wait_for_any(), or signal_test(), etc. Also,
asynchronous memory reads may require the use of __implicit_read() if not all the data is used. See
Section 7.2, “Things to Remember When Writing Microengine C Code” on page 374 for details.

4.3.1 Transfer Register Modifiers
The following __declspec modifiers are used in most memory and CSR accessing intrinsics to
help you cope with the restrictions detailed in Section 4.10. You receive an error if you don’t
specify a declspec modifier to an intrinsic that expects one. If you pass a parameter not annotated
with the appropriate __declspec modifier, the compiler gives both a warning and an error. For
example, if an intrinsic is expecting an sram_read_reg and you pass it an sram_write_reg, you
receive a warning and a compiler error.

__declspec (sram_read_reg)

__declspec (sram_write_reg)

__declspec (dram_read_reg)

__declspec (dram_write_reg)

Some intrinsics expect constant parameters (i.e., count, sync). For count, the compiler now tries to
generate an indirect reference if a non-constant is passed and will run with a loss of performance.
For sync or csr, etc., however, the compiler reports an error if an intrinsic that expects a constant
doesn’t receive one.
82 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.2 Memory I/O Data types
This section describes the data types used with the Memory I/O functions. Table 11 summarizes
these data types.

Table 11. Memory I/O Data Types (Sheet 1 of 2)

Data Type Description

bytes_specifier_t This enumeration type specifies the bytes to be used
with crc operations.

cap_csr_read_write_ind_t Structure that provides additional or overriding
qualifiers on CAP CSR read/write operations on
SRAM channel CSRs with the indirect_ref attribute.

cap_read_write_ind_t Structure that provides additional or overriding
qualifiers on CAP with the indirect_ref attribute.

dram_rbuf_tbuf_ind_t Structure that provides additional or overriding
qualifiers on read/write operations between the
receive/transmit FIFO and DRAM memory.

dram_read_write_ind_t Structure that provides additional or overriding
qualifiers on read/write operations on DRAM memory
with the indirect_ref attribute.

generic_ind_t Union of all indirect qualifier data types and an
unsigned int value field that allows you to set or clear
an entire indirect qualifier with one assignment rather
than setting each field individually.

hash_ind_t Structure that provide additional or overriding qualifiers
on hash operations with the indirect_ref attribute.

msf_read_write_ind_t Structure that provides additional or overriding
qualifiers on MSF (Media Switch Fabric) operations
with the indirect_ref attribute.

pci_read_write_ind_t Structure that provides additional or overriding
qualifiers on PCI read/write operations with the
indirect_ref attribute.

reflect_read_write_ind_t Structure that provides additional or overriding
qualifiers on Reflector operations with the indirect_ref
attribute.

reflect_sig_t This enumeration type specifies the type of signal for
reflect operation

scratch_atomic_ind_t Structure that provides additional or overriding
qualifiers on atomic operations on Scratch memory
with the indirect_ref attribute.

scratch_read_write_ind_t Structure that provides additional or overriding
qualifiers on read/write operations on Scratch memory
with the indirect_ref attribute.

scratch_ring_ind_t Structure that provides additional or overriding
qualifiers on get/put operations on Scratch memory
with the indirect_ref attribute.

sram_atomic_ind_t Structure that provides additional or overriding
qualifiers on atomic operations on SRAM memory with
the indirect_ref attribute.
 Language Support Reference Manual 83

Intel® Microengine C Compiler Language Support
Intrinsic Functions
sram_csr_read_write_ind_t Structure that provides additional or overriding
qualifiers on CSR read/write operations on SRAM
channel CSRs with the indirect_ref attribute.

sram_dequeue_ind_t Structure that provides additional or overriding
qualifiers on dequeue operations on SRAM memory.

sram_enqueue_ind_t Structure that provides additional or overriding
qualifiers on enqueue operations on SRAM memory.

sram_journal_ind_t Structure that provides additional or overriding
qualifiers on Journal operations on SRAM memory
with the indirect_ref attribute.

sram_read_qdesc_ind_t Structure that provides additional or overriding
qualifiers on Read Queue Descriptor operations on
SRAM memory with the indirect_ref attribute.

sram_read_write_ind_t Structure that provides additional or overriding
qualifiers on read/write operations on SRAM memory
operations with the indirect_ref attribute.

sram_ring_ind_t Structure that provides additional or overriding
qualifiers on GET/PUT on SRAM memory with the
indirect_ref attribute.

sync_t Enumeration used to specify the synchronization
option for memory I/O operations.

Table 11. Memory I/O Data Types (Continued) (Sheet 2 of 2)

Data Type Description
84 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.2.1 sync_t

This enumeration type specifies the synchronization option to be used with memory or I/O
operations.

Field Name Description

ctx_swap Swap out until operation is complete.

sig_done Continue operation; set signal when operation is complete.
 Language Support Reference Manual 85

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.2.2 bytes_specifier_t

This enumeration type specifies the bytes to be used with CRC operations.

Field Name
Description

Big Endian Little Endian

bytes_0_3 0, 1, 2, 3 3, 2, 1, 0

bytes_0_2 0, 1, 2 2, 1, 0

bytes_0_1 0, 1 1, 0

byte_0 0 0

bytes_1_3 1, 2, 3 3, 2, 1

bytes_2_3 2, 3 3, 2

byte_3 3 3
86 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.2.3 reflect_signal_t

This enumeration type specifies the type of signal for reflect operation.

Field Name Description

sig_initiator Signal current microengine.

sig_remote Signal remote microengine.

sig_both Signal both microengines.
 Language Support Reference Manual 87

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.2.4 pci_read_write_ind_t, sram_read_write_ind_t

These two structures contain identical fields and provide additional or overriding qualifiers on
read/write operations in PCI and SRAM memory respectively with the indirect_ref attribute. For
further details on this indirect qualifier, refer to the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual. These structures contain the following unsigned int bitfields.

Note: Since the compiler does all register allocation, including all transfer registers, it is an error to set
the ov_xadd field to override the transfer register allocated and specified in the instruction by the
compiler. For this same reason, it is also an error to set the ov_ueng_addr fields.

Field Name Size Description

ctx 3 Specifies context where result will be written and signaled
upon completion.

ov_ctx 1 1 to use the context specified in the ctx field; 0 to use the
current context.

ov_xadd 1 1 to override the transfer register (this should never be set).

xadd 7 The starting transfer register.

byte_mask 4 Mask of bytes to read or write.

reserved 4 Unused.

ov_byte_mask 1 1 to use the byte mask specified in the byte_mask field; 0 to
use the default (all bytes read or written).

ref_count 4 Reference count indicating the number of longwords to read
or write. The value encoded in this field is one less than the
reference count. Hence, valid values are 0 - 15.

ov_ref_count 1 1 to use the count specified in the ref_count field; 0 to use the
count argument to the function.

ueng_addr 5 Specifies the microengine where the result is to be written
and signaled upon completion.

ov_ueng_addr 1 1 to use the microengine specified in the ueng_addr field; 0
to use the issuing microengine (this should never be set)
88 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.2.5 scratch_read_write_ind_t, scratch_ring_ind_t,
sram_read_qdesc_ind_t, sram_ring_ind_t, sram_journal_ind_t,
cap_read_write_ind_t, msf_read_write_ind_t,
reflect_read_write_ind_t

These eight structures contain identical fields and provide additional or overriding qualifiers on
read/write operations on their associated components of the IXP2XXX Network Processor using
the indirect_ref attribute.

The scratch_read_write_ind_t structure provides qualifiers for read and write operations in Scratch
memory.

The scratch_ring_ind_t structure provides qualifiers for get/put operations in Scratch memory.

The sram_read_qdesc_ind_t structure provides qualifiers on Read Queue Descriptor operations.

The sram_ring_ind_t structure provides qualifiers on GET/PUT operations.

The sram_journal_ind_t structure provides qualifiers for Journal operations.

The msf_read_write_ind_t structure provides qualifiers for read and write operations on MSF
(Media Switch Fabric) operations.

The reflect_read_write_ind_t structure provides qualifiers for read and write operations on
Reflector operations.

The cap_read_write_ind_t structure provides additional or overriding qualifiers on CAP with the
indirect_ref attribute.

For further details on the indirect_ref qualifier, refer to the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual. These structures contain the following unsigned int bitfields.

Field Name Size Description

ov_ueng_addr 1 1 to use the microengine specified in the ueng_addr field; 0
to use the issuing microengine (this should never be set)

ueng_addr 5 Specifies the microengine where the result is to be written
and signaled upon completion.

ov_ref_count 1 1 to use the count specified in the ref_count field; 0 to use the
count argument to the function.

ref_count 4 Reference count indicating the number of longwords to read
or write. The value encoded in this field is one less than the
reference count. Hence, valid values are 0 - 15.

reserved 9 Unused.

xadd 7 The starting transfer register.

ov_xadd 1 1 to override the transfer register (this should never be set).

ov_ctx 1 1 to use the context specified in the ctx field; 0 to use the
current context.

ctx 3 Specifies context where result will be written and signaled
upon completion.
 Language Support Reference Manual 89

Intel® Microengine C Compiler Language Support
Intrinsic Functions
Note: Since the compiler does all register allocation, including all transfer registers, it is an error to set
the ov_xadd field to override the transfer register allocated and specified in the instruction by the
compiler. For this same reason, it is also an error to set the ov_ueng_addr fields.
90 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.2.6 dram_read_write_ind_t

This structure provides additional or overriding qualifiers on read/write operations on DRAM
memory with the indirect_ref attribute. For further details on this indirect qualifier, refer to the
IXP2400/IXP2800 Network Processor Programmer’s Reference Manual. This structure contains
the following unsigned int bitfields.

Note: Since the compiler does all register allocation, including all transfer registers, it is an error to set
the ov_xadd field to override the transfer register allocated and specified in the instruction by the
compiler. For this same reason, it is also an error to set the ov_ueng_addr fields.

See Section 3.1.10.1, “Compiler Limitations of Endian Support.” on page 38 for pitfalls when
using ov_byte_mask in big-endian mode.

Field Name Size Description

ctx 3 Specifies context where result will be written and signaled
upon completion.

ov_ctx 1 1 to use the context specified in the ctx field; 0 to use the
current context.

ov_xadd 1 1 to override the transfer register (this should never be set).

xadd 7 The starting transfer register.

byte_mask 8 Mask of bytes to read or write.

ov_byte_mask 1 1 to use the byte mask specified in the byte_mask field; 0 to
use the default (all bytes read or written).

ref_count 4 Reference count indicating the number of longwords to read
or write. The value encoded in this field is one less than the
reference count. Hence, valid values are 0 - 15.

ov_ref_count 1 1 to use the count specified in the ref_count field; 0 to use the
count argument to the function.

ueng_addr 5 Specifies ME where result will be written and signaled upon
completion.

ov_ueng_addr 1 1 to use the microengine specified in the ueng_addr field; 0
to use the issuing microengine (this should never be set)
 Language Support Reference Manual 91

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.2.7 sram_atomic_ind_t

This structure provides additional or overriding qualifiers on atomic operations on SRAM memory
with the indirect_ref attribute. For further details on this indirect qualifier, refer to the IXP2400/
IXP2800 Network Processor Programmer’s Reference Manual. This structure contains the
following unsigned int bitfields.

Note: Since the compiler does all register allocation, including all transfer registers, it is an error to set
the ov_xadd field to override the transfer register allocated and specified in the instruction by the
compiler. For this same reason, it is also an error to set the ov_ueng_addr fields.

Field Name Size Description

ctx 3 Specifies context where result will be written and signaled
upon completion.

ov_ctx 1 1 to use the context specified in the ctx field; 0 to use the
current context.

ov_xadd 1 1 to override the transfer register (this should never be set).

xadd 7 The starting transfer register.

byte_mask 4 Mask of bytes to read or write.

reserved1 4 Unused.

ov_byte_mask 1 1 to use the byte mask specified in the byte_mask field; 0 to
use the default (all bytes read or written).

reserved2 5 Unused.

ueng_addr 5 Specifies ME where result will be written and signaled upon
completion.

ov_ueng_addr 1 1 to use the microengine specified in the ueng_addr field; 0
to use the issuing microengine (this should never be set).
92 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.2.8 scratch_atomic_ind_t, sram_csr_read_write_ind_t,
cap_csr_read_write_ind_t

These three structures provide additional or overriding qualifiers on atomic operations on Scratch
memory and CSR read/write operations on SRAM channel CSRs respectively with the indirect_ref
attribute. For further details on this indirect qualifier, refer to the IXP2400/IXP2800 Network
Processor Programmer’s Reference Manual. This structure contains the following unsigned int
bitfields.

Note: Since the compiler does all register allocation, including all transfer registers, it is an error to set
the ov_xadd field to override the transfer register allocated and specified in the instruction by the
compiler. For this same reason, it is also an error to set the ov_ueng_addr fields.

Field Name Size Description

ctx 3 Specifies context where result will be written and signaled
upon completion.

ov_ctx 1 1 to use the context specified in the ctx field; 0 to use the
current context.

ov_xadd 1 1 to override the transfer register (this should never be set).

xadd 7 The starting transfer register.

reserved 14 Unused.

ueng_addr 5 Specifies ME where result will be written and signaled upon
completion.

ov_ueng_addr 1 1 to use the microengine specified in the ueng_addr field; 0
to use the issuing microengine (this should never be set).
 Language Support Reference Manual 93

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.2.9 dram_rbuf_tbuf_ind_t

This structure provides additional or overriding qualifiers on read and write operations between the
receive and transmit FIFO and DRAM memory. For further details on this indirect qualifier, refer
to the IXP2400/IXP2800 Network Processor Programmer’s Reference Manual. This structure
contains the following unsigned int bitfields.

Note: Since the compiler does all register allocation (including all transfer registers) for each
Microengine, it is an error to set the ov_ueng_addr fields to override the transfer register allocated
(which the compiler doesn’t have knowledge of at compilation) and specified in the instruction by
the compiler.

Field Name Size Description

ctx 3 Specifies context where result will be written and signaled
upon completion.

ov_ctx 1 1 to use the context specified in the ctx field; 0 to use the
current context.

ov_buf_addr 1 1 to override the rbuf/tbuf address.

buf_addr 14 rbuf/tbuf address.

reserved 2 Unused.

ref_count 4 Number of quadwords to read or write.

ov_ref_count 1 1 to use the count specified in the ref_count field; 0 to use the
count argument to the functions.

ueng_addr 5 Specifies ME where result will be written and signaled upon
completion.

ov_ueng_addr 1 1 to use the microengine specified in the ueng_addr field; 0
to use the issuing microengine (this should never be set).
94 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.2.10 sram_enqueue_ind_t

This struct provides additional or overriding qualifiers on enqueue operations on SRAM memory.

Field Name Size Description

reserved1 12 Unused.

seg_count 6 Segment count.

sop 1 Set SOP bit in Q_link.

eop 1 Set EOP bit in Q_link.

ov_eop_sop_seg
_count

1 1 to use the seg_count, sop, and eop above

reserved2 11 Unused.
 Language Support Reference Manual 95

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.2.11 sram_dequeue_ind_t

This struct provides additional or overriding qualifiers on dequeue operations on SRAM memory.

Note: Since the compiler does all register allocation (including all transfer registers) for each
Microengine, it is an error to set the ov_ueng_addr fields to override the transfer register allocated
(which the compiler doesn’t have knowledge of at compilation) and specified in the instruction by
the compiler.

Field Name Size Description

ctx 3 Specifies context where result will be written and signaled
upon completion.

ov_ctx 1 1 to use the context above, 0 to use the current context.

reserved 22 Unused.

ueng_addr 5 Specifies ME where result will be written and signaled upon
completion.

ov_ueng_addr 1 1 to use ueng_addr above, 0 to use the current ueng (this
should never be set).
96 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.2.12 hash_ind_t

Structure that provide additional or overriding qualifiers on hash operations with the indirect_ref
attribute.

Note: Since the compiler does all register allocation, including all transfer registers, it is an error to set
the ov_xadd field to override the transfer register allocated and specified in the instruction by the
compiler. For this same reason, it is also an error to set the ov_ueng_addr fields.

Field Name Size Description

ctx 3 Specifies context where result will be written and signaled
upon completion.

ov_ctx 1 1 to use the context above, 0 to use the current context.

ov_xadd 1 1 to override the transfer register (this should never be set)

xadd 7 The starting transfer register.

reserved1 9 Unused.

hash_count 2 Hash count 1, 2, or 3.

reserved2 2 Unused.

ov_ref_count 1 1 to use the count above, 0 to use the count argument to the
function.

ueng_addr 5 Specifies ME where result will be written and signaled upon
completion.

ov_ueng_addr 1 1 to use ueng_addr above, 0 to use the current ueng_addr
(this should never be set).
 Language Support Reference Manual 97

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.2.13 generic_ind_t

This type is a union of an unsigned integer with all the indirect qualifier data types. By setting/
clearing the unsigned integer field "value" you can set/clear the entire indirect qualifier with one
assignment as opposed to setting each field individually.

typedef union

{

pci_read_write_ind_t pci_rw;

sram_read_write_ind_t sram_rw;

scratch_read_write_ind_t scratch_rw;

dram_read_write_ind_t dram_rw;

sram_atomic_ind_t sram_atomic;

scratch_atomic_ind_t scratch_atomic;

dram_rbuf_tbuf_ind_t dram_rbuf_tbuf;

sram_csr_read_write_ind_t sram_csr_rw;

scratch_ring_ind_t scratch_ring;

sram_read_qdesc_ind_t sram_rd_qdesq;

sram_journal_ind_t sram_journal;

cap_read_write_ind_t csr_rw;

msf_read_write_ind_t msf_rw;

reflect_read_write_ind_t reflect_rw;

sram_ring_ind_t sram_ring;

sram_enqueue_ind_t sram_enqueue;

sram_dequeue_ind_t sram_dequeue;

hash_ind_t hash;

reflect_read_write_ind_t reflect_rw;

unsigned int value;

} generic_ind_t;
98 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3 Memory I/O Functions
This section describes the Memory I/O functions. These functions are divided into the following
categories.

• Scratch Operations

• SRAM Operations

• DRAM Operations

• Media Switch Fabric (MSF) Operations

• PCI Operations

• Reflection Operations

• Generic Operations
 Language Support Reference Manual 99

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1 Scratch Operations

The functions described in this section perform I/O operations in Scratch memory. Table 12
summarizes these functions.

Table 12. Scratch Operation Summary (Sheet 1 of 4)

Name (args) Description

void scratch_read[_D](
__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(scratch) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Reads count longwords from Scratch RAM at the
specified address into the transfer register
specified by data. The _D version of this intrinsic
must be used if the data argument is in DRAM
transfers registers. The _D version is available
only in 8-context mode.

void scratch_read[_D]_ind(
__declspec([sram, dram]_read_reg) void * data,
volatile void __declspec(scratch) * address,
unsigned int max_nn,
scratch_read_write_ind_t ind,
sync_t sync,
SIGNAL* sig_ptr);

Reads up to max_nn longwords from Scratch
RAM at the specified address into the transfer
register specified by data. The _D version of this
intrinsic must be used if the data argument is in
DRAM transfers registers. The _D version is
available only in 8-context mode. The ind
argument provides additional parameters and
overrides.

void scratch_write[_D](
__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(scratch) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Writes count longwords to Scratch RAM at the
specified address from the transfer register
specified by data. The _D version of this intrinsic
must be used if the data argument is in DRAM
transfers registers. The _D version is only
available on IXP28XX Rev B. hardware in 8-
context mode.

void scratch_write[_D]_ind(
__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(scratch) *address,
unsigned int max_nn,
scratch_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Writes up to max_nn longwords to Scratch RAM
at the specified address from the transfer register
specified by data. The ind argument provides
additional parameters and overrides. The _D
version of this intrinsic must be used if the data
argument is in DRAM transfers registers. The _D
version is only available on IXP28XX Rev B.
hardware in 8-context mode.

void scratch_incr(
volatile void __declspec(scratch) *address);

Increments the longword in Scratch RAM at the
specified address by one.

void scratch_incr_ind(
volatile void __declspec(scratch) * address,

scratch_atomic_ind_t ind);

Increments the longword in Scratch RAM at the
specified address by one. The ind argument
provides additional parameters and overrides.

void scratch_decr(
volatile void __declspec(scratch) *address);

Decrements the longword in Scratch RAM at the
specified address by one.

void scratch_decr_ind(
volatile void __declspec(scratch) *address),
scratch_atomic_ind_t ind);

Decrements the longword in Scratch RAM at the
specified address by one. The ind argument
provides additional parameters and
overrides.

void scratch_add[_D](
__declspec([sram, dram]_write_reg) void *data
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL *sig_ptr);

Increments the longword in Scratch RAM at the
specified address by the value specified in data.
The _D version of this intrinsic must be used if
the data argument is in DRAM transfers
registers. The _D version is only available on
IXP28XX Rev B. hardware in 8-context mode.

void scratch_add[_D]_ind(
__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Increments the longword in Scratch RAM at the
specified address by the value specified in data.
The _D version of this intrinsic must be used if
the data argument is in DRAM transfers
registers. The _D version is only available on
IXP28XX Rev B. hardware in 8-context mode.
The ind argument provides additional parameters
and overrides.
100 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
void scratch_sub[_D](
__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL *sig_ptr);

Decrements the longword in Scratch RAM at the
specified address by the value specified in data.
The _D version of this intrinsic must be used if
the data argument is in DRAM transfers
registers. The _D version is only available on
IXP28XX Rev B. hardware in 8-context mode.

void scratch_sub[_D]_ind(
__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Decrements the longword in Scratch RAM at the
specified address by the value specified in data.
The ind argument provides additional parameters
and overrides. The _D version of this intrinsic
must be used if the data argument is in DRAM
transfers registers. The _D version is only
available on IXP28XX Rev B. hardware in 8-
context mode.

void scratch_set_bits[_D]((
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL *sig_ptr);

Sets the bits in the specified mask in the
longword at address in Scratch ram. The _D
version of this intrinsic must be used if the mask
argument is in DRAM transfers registers. The _D
version is only available on IXP28XX Rev B.
hardware in 8-context mode.

void scratch_set_bits[_D]_ind(
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
scratch_atomic_ind ind,
sync_t sync,
SIGNAL *sig_ptr);

Sets the bits in the specified mask in the
longword at address in Scratch ram. The _D
version of this intrinsic must be used if the mask
argument is in DRAM transfers registers. The _D
version is only available on IXP28XX Rev B.
hardware in 8-context mode. The ind argument
provides additional parameters and overrides.

void scratch_clear_bits[_D](
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL *sig_ptr);

Clears the bits in the specified mask in the
longword at address in Scratch ram. The _D
version of this intrinsic must be used if the mask
argument is in DRAM transfers registers. The _D
version is only available on IXP28XX Rev B.
hardware in 8-context mode.

void scratch_clear_bits[_D]_ind(
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
scratch_atomic_ind ind,
sync_t sync,
SIGNAL *sig_ptr);

Clears the bits in the specified mask in the
longword at address in Scratch ram. The ind
argument provides additional parameters and
overrides. The _D version of this intrinsic must
be used if the mask argument is in DRAM
transfers registers. The _D version is only
available on IXP28XX Rev B. hardware in 8-
context mode.

void scratch_test_and_set_bits[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address in Scratch ram. It then sets the bits
specified in mask in the longword at address in
Scratch ram. The _D version of this intrinsic must
be used if the val and mask arguments are in
DRAM transfers registers. The _D version is only
available on IXP28XX Rev B. hardware in 8-
context mode.

void scratch_test_and_set_bits[_D]_ind(
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address in Scratch ram. It then sets the bits
specified in mask in the longword at address in
Scratch ram. The ind argument provides
additional parameters and overrides. The _D
version of this intrinsic must be used if the val
and mask arguments are in DRAM transfers
registers. The _D version is only available on
IXP28XX Rev B. hardware in 8-context mode.

Table 12. Scratch Operation Summary (Continued) (Sheet 2 of 4)

Name (args) Description
 Language Support Reference Manual 101

Intel® Microengine C Compiler Language Support
Intrinsic Functions
void scratch_test_and_clear_bits[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address in Scratch ram. It then clears the bits
specified in mask in the longword at address in
Scratch ram. The _D version of this intrinsic must
be used if the val and mask arguments are in
DRAM transfers registers. The _D version is only
available on IXP28XX Rev B. hardware in 8-
context mode.

void scratch_test_and_clear_bits_ind[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address in Scratch ram. It then clears the bits
specified in mask in the longword at address in
Scratch ram. The _D version of this intrinsic must
be used if the val and mask arguments are in
DRAM transfers registers. The _D version is only
available on IXP28XX Rev B. hardware in 8-
context mode. The ind argument provides
additional parameters and overrides.

void scratch_test_and_add[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address in Scratch ram. It then increments the
longword at address by the value specified by
data. The _D version of this intrinsic must be
used if the val and data arguments are in DRAM
transfers registers. The _D version is only
available on IXP28XX Rev B. hardware in 8-
context mode.

void scratch_test_and_add[_D]_ind(
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address in Scratch ram. It then increments the
longword at address by the value specified by
data. The _D version of this intrinsic must be
used if the val and data arguments are in DRAM
transfers registers. The _D version is only
available on IXP28XX Rev B. hardware in 8-
context mode. The ind argument provides
additional parameters and overrides.

void scratch_test_and_sub[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address in Scratch ram. It then decrements the
longword at address by the value specified by
data. The _D version of this intrinsic must be
used if the val and data arguments are in DRAM
transfers registers. The _D version is only
available on IXP28XX Rev B. hardware in 8-
context mode.

void scratch_test_and_sub[_D]_ind(
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address in Scratch ram. It then decrements the
longword at address by the value specified by
data. The _D version of this intrinsic must be
used if the val and data arguments are in DRAM
transfers registers. The _D version is only
available on IXP28XX Rev B. hardware in 8-
context mode.The ind argument provides
additional parameters and overrides.

void scratch_test_and_incr[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL *sig_ptr);

Loads the initial value of the longword at address
in Scratch RAM into the transfer register
specified by val. It then increments the longword
at address in Scratch RAM by one. The _D
version of this intrinsic must be used if the val
argument is in DRAM transfers registers.

Table 12. Scratch Operation Summary (Continued) (Sheet 3 of 4)

Name (args) Description
102 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
void scratch_test_and_incr[_D]_ind(
__declspec([sram, dram]_read_reg) unsigned int *val,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind
sync_t sync,
SIGNAL *sig_ptr);

Loads the initial value of the longword at address
in Scratch RAM into the transfer register
specified by val. It then increments the longword
at address in Scratch RAM by one. The _D
version of this intrinsic must be used if the val
argument is in DRAM transfers registers. The ind
argument provides additional parameters and
overrides.

void scratch_test_and_decr[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL *sig_ptr);

Loads the initial value of the longword at address
in Scratch RAM into the transfer register pointed
to by val. It then decrements the longword at
address in Scratch RAM by one. The _D version
of this intrinsic must be used if the val argument
is in DRAM transfers registers.

void scratch_test_and_decr[_D]_ind(
__declspec([sram, dram]_read_reg) unsigned int *val,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind
sync_t sync,
SIGNAL *sig_ptr);

Loads into the transfer register pointed to by val
the initial value of the longword at address in
Scratch ram. It then decrements the longword at
address in Scratch RAM by one. The _D version
of this intrinsic must be used if the val argument
is in DRAM transfers registers. The ind argument
provides additional parameters and overrides.

void scratch_swap[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *data
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address. It then writes the value specified in data
to the longword at address. The _D version of
this intrinsic must be used if the val and data
arguments are in DRAM transfers registers. The
_D version is only available on IXP28XX Rev B.
hardware in 8-context mode.

void scratch_swap[_D]_ind(
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *data
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address. It then writes the value specified in data
to the longword at address. The _D version of
this intrinsic must be used if the val and data
arguments are in DRAM transfers registers. The
_D version is only available on IXP28XX Rev B.
hardware in 8-context mode. The ind argument
provides additional parameters and overrides.

void scratch_get_ring[_D](
__declspec([sram, dram]_read_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Gets count longwords of data from the Scratch
ring specified by address and returns it in the
transfer register specified by data. The _D
version of this intrinsic must be used if the data
argument is in DRAM transfers registers.

void scratch_get_ring[_D]_ind(
__declspec([sram, dram]_read_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
unsigned int max_nn,
scratch_ring_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Gets up to max_nn longwords of data from the
Scratch ring specified by address and returns it
in the transfer register specified by data. The _D
version of this intrinsic must be used if the data
argument is in DRAM transfers registers. The ind
argument provides additional parameters and
overrides.

void scratch_put_ring[_D](
__declspec(sram_write_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Puts count longwords from data into the Scratch
ring specified by address. The _D version of this
intrinsic must be used if the data argument is in
DRAM transfers registers. The _D version is only
available on IXP28XX Rev B. hardware in 8-
context mode.

void scratch_put_ring[_D]_ind(
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
unsigned int max_nn,
scratch_ring_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Puts up to max_nn longwords from data into the
Scratch ring specified by address. The _D
version of this intrinsic must be used if the data
argument is in DRAM transfers registers. The _D
version is only available on IXP28XX Rev B.
hardware in 8-context mode. The ind argument
provides additional parameters and overrides.

Table 12. Scratch Operation Summary (Continued) (Sheet 4 of 4)

Name (args) Description
 Language Support Reference Manual 103

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.1 scratch_read(), scratch_read_D()

Function Syntax:
void scratch_read[_D](

__declspec([sram,dram]_read_reg) void * data,
volatile void __declspec(scratch) * address,
unsigned int count,
sync_t sync,
SIGNAL* sig_ptr);

Description:
These functions read count longwords from Scratch RAM at the specified address and
place the data into the structure addressed by data. The scratch_read() intrinsic reads the
data into an SRAM transfer register while the scratch_read_D() variant reads the data into
a DRAM transfer register. The count argument must be in the range of 1 through 16.
Argument count is preferred to be a constant literal; otherwise, the compiler generates an
indirect_ref resulting in a loss of performance. A constant count parameter that is larger
than 8 also results in indirect_ref being generated. The argument sig_ptr, should be the
address of a user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Address of data buffer to read into.
address Address to read from.
count Number of longwords to read/write in the range of 1 - 16.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
104 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.2 scratch_read_ind(), scratch_read_D_ind()

Function Syntax:
void scratch_read[_D]_ind(

__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(scratch) *address,
unsigned int max_nn,
scratch_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions read up to max_nn longwords from Scratch RAM at the specified address
and place the data into the structure addressed by data. The scratch_read_ind() function
reads the data into an SRAM transfer register while the scratch_read_D_ind variant reads
the data into a DRAM transfer register. The max_nn argument must be a constant in the
range of 1 through 16 and specifies the maximum number of longwords to be transferred
while the ind argument specifies the exact number of longwords to be transferred. If the ind
argument does not specify a count, then max_nn represents the number of longwords to be
transferred and must be given as 8 or less. There are restrictions on the value specified in
the override as noted in the description of the scratch_read_write_ind_t data type. The
argument sig_ptr should be the address of a user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Address of data buffer to read into.
address Address to read from
max_nn Number of longwords to read/write in the range of 1 - 16.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 105

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.3 scratch_write(), scratch_write_D()

Function Syntax:
void scratch_write[_D](

__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(scratch) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions write count longwords to Scratch RAM at the specified address from the
transfer register addressed by data. The scratch_write() function transfers the data from an
SRAM transfer register while the scratch_write_D variant transfers the data from a DRAM
transfer register. The count argument must be in the range of 1 through 16. Argument count
is preferred to be a constant; otherwise the compiler generates an indirect_ref, resulting in
a loss of performance. A constant count parameter that is larger than 8 also results in
indirect_ref being generated. The argument sig_ptr should be the address of a user signal
variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Address of data buffer to read from.
address Address to write to.
count Number of longwords to read and write in the range of 1 - 16.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
106 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.4 scratch_write_ind(), scratch_write_D_ind()

Function Syntax:
void scratch_write[_D]_ind(

__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(scratch) *address,
unsigned int max_nn,
scratch_read_write_ind_t ind
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function writes up to max_nn longwords to Scratch RAM at the specified address from
the structure addressed by data. The scratch_write() function transfers the data from an
SRAM transfer register while the scratch_write_D variant transfers the data from a DRAM
transfer register.The max_nn argument must be a constant in the range of 1 through 16 and
specifies the maximum number of longwords to be transferred while the ind argument
specifies the exact number of longwords to be transferred. If the ind argument does not
specify a count, then max_nn represents the number of longwords to be transferred and
must be given as 8 or less. The ind argument provides additional parameters and overrides.
There are restrictions on the value specified in the override as noted in the description of
the scratch_read_write_ind_t data type. The argument sig_ptr should be the address of a
user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Address of data buffer to read from.
address Address to write to.
max_nn Number of longwords to read and write in the range of 1 - 16.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 107

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.5 scratch_incr()

Function Syntax:
void scratch_incr(

volatile void __declspec(scratch) *address)

Description:
This function increments the longword in Scratch RAM at the specified address by one.

Arguments:
address Address of the longword to increment.
108 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.6 scratch_incr_ind()

Function Syntax:
void scratch_incr_ind(

volatile void __declspec(scratch) *address),
scratch_atomic_ind_t ind);

Description:
This function increments the longword in Scratch RAM at the specified address by one.
The ind argument provides additional parameters and overrides. There are restrictions on
the value specified in the override as noted in the description of the scratch_atomic_ind_t
data type.

Arguments:
address Address of the longword to increment.
ind Indirect word.
 Language Support Reference Manual 109

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.7 scratch_decr()

Function Syntax:
void scratch_decr(

volatile void __declspec(scratch) *address)

Description:
This function decrements the longword in Scratch RAM at the specified address by one.

Arguments:
address Address of longword to decrement.
110 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.8 scratch_decr_ind()

Function Syntax:
void scratch_decr_ind(

volatile void __declspec(scratch) *address),
scratch_atomic_ind_t ind);

Description:
This function decrements the longword in Scratch RAM at the specified address by one.
The ind argument provides additional parameters and overrides. There are restrictions on
the value specified in the override as noted in the description of the scratch_atomic_ind_t
data type.

Arguments:
address Address of longword to decrement.
ind Indirect word.
 Language Support Reference Manual 111

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.9 scratch_add(), scratch_add_D()

Function Syntax:
void scratch_add[_D](

__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function increments the longword in Scratch RAM at the specified address by the
argument data. The sig_ptr argument should be the address of a user signal variable passed
by direct reference.

Note: The _D version of this intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Value to add.
address Address to read from.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
112 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.10 scratch_add_ind(), scratch_add_D_ind()

Function Syntax:
void scratch_add[_D]_ind(

__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function increments the longword in Scratch RAM RAM at the specified address by
the argument data. The ind argument provides additional parameters and overrides. There
are restrictions on the value specified in the override as noted in the description of the
scratch_atomic_ind_t data type. The argument sig_ptr should be the address of a user signal
variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Value to add.
address Address to read from.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 113

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.11 scratch_sub(), scratch_sub_D()

Function Syntax:
void scratch_sub[_D](

__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function decrements the longword in Scratch RAM at the specified address by the
argument data. The sig_ptr argument should be the address of a user signal variable passed
by direct reference.

Note: The _D version of this intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Value to subtract.
address Address to read from.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
114 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.12 scratch_sub_ind(), scratch_sub_D_ind()

Function Syntax:
void scratch_sub[_D]_ind(

__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function decrements the longword in Scratch RAM at the specified address by the
argument data. The ind argument provides additional parameters and overrides. There are
restrictions on the value specified in the override as noted in the description of the
scratch_atomic_ind_t data type. The argument sig_ptr should be the address of a user signal
variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Value to subtract.
address Address to read from.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 115

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.13 scratch_set_bits(), scratch_set_bits_D()

Function Syntax:
void scratch_set_bits[_D](

__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function sets the bits in the specified mask in the longword at address in Scratch ram.
The scratch_set_bits() function obtains the mask from an SRAM transfer register while the
scratch_set_bits_D() variant obtains the mask from a DRAM transfer register. The
argument sig_ptr should be the address of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the mask argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
mask Mask to set.
address Address to write.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
116 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.14 scratch_set_bits_ind(), scratch_set_bits_D_ind()

Function Syntax:
void scratch_set_bits[_D]_ind(

__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function sets the bits in the specified mask in the longword at address in Scratch ram.
The scratch_set_bits() function obtains the mask from an SRAM transfer register while the
scratch_set_bits_D() variant obtains the mask from a DRAM transfer register. The ind
argument provides additional parameters and overrides. There are restrictions on the value
specified in the override as noted in the description of the scratch_atomic_ind_t data type.
The argument sig_ptr should be the address of a user signal variable passed by direct
reference.

Note: The _D version of this intrinsic must be used if the mask argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
mask Mask to set.
address Address to write.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 117

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.15 scratch_clear_bits(), scratch_clear_bits_D()

Function Syntax:
void scratch_clear_bits[_D](

__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function clears the bits in the specified mask in the longword at address in Scratch ram.
The scratch_clear_bits() function obtains the mask from an SRAM transfer register while
the scratch_clear_bits_D() variant obtains the mask from a DRAM transfer register. The
argument sig_ptr should be the address of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the mask argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
mask Mask to clear.
address Address to write.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
118 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.16 scratch_clear_bits_ind(), scratch_clear_bits_D_ind()

Function Syntax:
void scratch_clear_bits[_D]_ind(

__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function clears the bits in the specified mask in the longword at address in Scratch ram.
The scratch_clear_bits_ind() function obtains the mask from an SRAM transfer register
while the scratch_clear_bits_D_ind() variant obtains the mask from a DRAM transfer
register.The ind argument provides additional parameters and overrides. There are
restrictions on the value specified in the override as noted in the description of the
scratch_atomic_ind_t data type. The argument sig_ptr should be the address of a user signal
variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the mask argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
mask Mask to clear.
address Address to write.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 119

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.17 scratch_test_and_set_bits(), scratch_test_and_set_bits_D()

Function Syntax:
void scratch_test_and_set_bits[_D](

__declspec([sram, dram]_read_reg) unsigned int *val
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function loads the initial value of the longword located at address in Scratch RAM into
the data buffer pointed to by val. It then sets the bits specified in the buffer mask in the
longword at address in Scratch ram. The argument sig_ptr should be the address of a user
signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used when both the val and mask arguments are in
DRAM transfer registers. This version is only available on IXP28XX Rev. B hardware in
8-context mode.

Arguments:
val Value before write.
mask Mask to set/clear.
address Address to read/write.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
120 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.18 scratch_test_and_set_bits_ind(), scratch_test_and_set_bits_D_ind()

Function Syntax:
void scratch_test_and_set_bits[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int *val
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function loads the initial value of the longword located at address in Scratch RAM into
the data buffer pointed to by val. It then sets the bits specified in the buffer mask in the
longword at address in Scratch ram. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the scratch_atomic_ind_t data type. The argument sig_ptr should be the
address of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used when both the val and mask arguments are in
DRAM transfer registers. This version is only available on IXP28XX Rev. B hardware in
8-context mode.

Arguments:
val Value before write.
mask Mask to set/clear.
address Address to read/write.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 121

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.19 scratch_test_and_clear_bits(), scratch_test_and_clear_bits_D()

Function Syntax:
void scratch_test_and_clear_bits[_D](

__declspec([sram, dram]_read_reg) unsigned int *val
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function loads the initial value of the longword located at address in ScratchScratch
RAM into the data buffer pointed to by val. It then clears the bits specified in the buffer
mask in the longword at address in Scratch ram. The argument sig_ptr should be the address
of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used when both the val and mask arguments are in
DRAM transfer registers. This version is only available on IXP28XX Rev. B hardware in
8-context mode.

Arguments:
val Value before write.
mask Mask to set/clear.
address Address to read/write.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
122 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.20 scratch_test_and_clear_bits_ind(), scratch_test_and_clear_bits_D_ind()

Function Syntax:
void scratch_test_and_clear_bits[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int *val
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function loads the initial value of the longword located at address in Scratch RAM into
the data buffer pointed to by val. It then clears the bits specified in the buffer mask in the
longword at address in Scratch ram. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the scratch_atomic_ind_t data type. The argument sig_ptr should be the
address of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used when both the val and mask arguments are in
DRAM transfer registers. This version is only available on IXP28XX Rev. B hardware in
8-context mode.

Arguments:
val Value before write.
mask Mask to set/clear.
address Address to read/write.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 123

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.21 scratch_test_and_add(), scratch_test_and_add_D()

Function Syntax:
void scratch_test_and_add[_D](

__declspec([sram, dram]_read_reg) unsigned int *val
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function loads the initial value of the longword located at address in Scratch RAM into
the data buffer pointed to by val. It then increments the longword at address in Scratch
RAM by the argument data. The argument sig_ptr should be the address of a user signal
variable passed by direct reference.

Note: The _D version of this intrinsic must be used when both the val and data arguments are in
DRAM transfer registers. This version is only available on IXP28XX Rev. B hardware in
8-context mode.

Arguments:
val Value before write.
data Value to add.
address Address to read/write.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
124 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.22 scratch_test_and_add_ind(), scratch_test_and_add_D_ind()

Function Syntax:
void scratch_test_and_add[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int *val
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function loads the initial value of the longword located at address in Scratch RAM into
the data buffer pointed to by data. It then increments the longword at address in Scratch
RAM by the argument data. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the scratch_atomic_ind_t data type. The argument sig_ptr should be the
address of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used when both the val and data arguments are in
DRAM transfer registers. This version is only available on IXP28XX Rev. B hardware in
8-context mode.

Arguments:
val Value before write.
data Value to add.
address Address to read/write.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 125

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.23 scratch_test_and_sub(), scratch_test_and_sub_D()

Function Syntax:
void scratch_test_and_sub[_D](

__declspec([sram, dram]_read_reg) unsigned int *val
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function loads the initial value of the longword located at address in Scratch RAM into
the data buffer pointed to by val. It then decrements the longword at address in Scratch
RAM by the argument data. The argument sig_ptr should be the address of a user signal
variable passed by direct reference.

Note: The _D version of this intrinsic must be used when both the val and data arguments are in
DRAM transfer registers. This version is only available on IXP28XX Rev. B hardware in
8-context mode.

Arguments:
val Value before write.
data Value to decrement
address Address to read/write.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
126 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.24 scratch_test_and_sub_ind(), scratch_test_and_sub_D_ind()

Function Syntax:
void scratch_test_and_sub[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int *val
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function loads the initial value of the longword located at address in Scratch RAM into
the data buffer pointed to by val. It then decrements the longword at address in Scratch
RAM by the argument data. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the scratch_atomic_ind_t data type. The argument sig_ptr should be the
address of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used when both the val and data arguments are in
DRAM transfer registers. This version is only available on IXP28XX Rev. B hardware in
8-context mode.

Arguments:
val Value before write.
data Value to decrement.
address Address to read/write.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 127

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.25 scratch_test_and_incr(), scratch_test_and_incr_D

Function Syntax:
void scratch_test_and_incr[_D](

__declspec([sram, dram]_read_reg) unsigned int *val
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions load the initial value of the longword located at address in Scratch RAM
into the data buffer pointed to by val. They then increment the longword at address in
Scratch RAM by one. The scratch_test_and_incr() function loads the value into an SRAM
register while the scratch_test_and_incr_D() function loads the value into a DRAM
register. The argument sig_ptr should be the address of a user signal variable passed by
direct reference.

Note: The _D version of the intrinsic must be used if the val argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
val Value before write.
address Address to read/write.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
128 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.26 scratch_test_and_incr_ind(), scratch_test_and_incr_D_ind()

Function Syntax:
void scratch_test_and_incr[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int *val
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions load the initial value of the longword located at address in Scratch RAM
into the data buffer pointed to by val. They then increment the longword at address in
Scratch RAM by one. The scratch_test_and_incr_ind() function loads the value into an
SRAM register while the scratch_test_and_incr_D_ind() function loads the value into a
DRAM register. The ind argument provides additional parameters and overrides. There are
restrictions on the value specified in the override as noted in the description of the
scratch_atomic_ind_t data type. The argument sig_ptr should be the address of a user signal
variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the val argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
val Value before write.
address Address to read/write.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 129

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.27 scratch_test_and_decr(), scratch_test_and_decr_D()

Function Syntax:
void scratch_test_and_decr[_D](

__declspec([sram, ram]_read_reg) unsigned int *val
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These two functions load the initial value of the longword located at address in Scratch
RAM into the data buffer pointed to by val. They then decrement the longword at address
in Scratch RAM by one. The scratch_test_and_decr() function loads the value into an
SRAM register while the scratch_test_and_decr_D() function loads the value into a DRAM
register. The argument sig_ptr should be the address of a user signal variable passed by
direct reference.

Note: The _D version of the intrinsic must be used if the val argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
val Value before write.
address Address to read/write.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
130 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.28 scratch_test_and_decr_ind(), scratch_test_and_decr_D_ind()

Function Syntax:
void scratch_test_and_decr[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int *val
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These two functions load the initial value of the longword located at address in Scratch
RAM into the data buffer pointed to by val. They then decrement the longword at address
in Scratch RAM by one. The scratch_test_and_decr_ind() function loads the value into an
SRAM register while the scratch_test_and_decr_D_ind() function loads the value into a
DRAM register. The ind argument provides additional parameters and overrides. There are
restrictions on the value specified in the override as noted in the description of the
scratch_atomic_ind_t data type. The argument sig_ptr should be the address of a user signal
variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the val argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
val Value before write.
address Address to read/write.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 131

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.29 scratch_swap(), scratch_swap_D()

Function Syntax:
void scratch_swap[_D](

__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function loads the initial value of the longword located at address in Scratch RAM into
the data buffer pointed to by val. It then writes the value in buffer data to the longword at
address in Scratch ram. The argument sig_ptr should be the address of a user signal variable
passed by direct reference.

Note: The _D version of this intrinsic must be used if the val and data arguments are in DRAM
transfer registers. This version is only available on IXP28XX Rev. B hardware in 8-
context mode.

Arguments:
val Value before write.
data Value to add.
address Address to read/write.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
132 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.30 scratch_swap_ind(), scratch_swap_D_ind()

Function Syntax:
void scratch_swap[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
scratch_atomic_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function loads the initial value of the longword located at address in Scratch RAM into
the data buffer pointed to by val. It then writes the value in buffer data to the longword at
address in Scratch RAM. The ind argument provides additional parameters and overrides.
There are restrictions on the value specified in the override as noted in the description of
the scratch_atomic_ind_t data type. The argument sig_ptr should be the address of a user
signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the val and data arguments are in DRAM
transfer registers. This version is only available on IXP28XX Rev. B hardware in 8-
context mode.

Arguments:
val Value before write.
data Value to add.
address Address to read/write.
ind Indirect word
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 133

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.31 scratch_get_ring(), scratch_get_ring_D()

Function Syntax:
void scratch_get_ring[_D](

__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(scratch) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions get count longwords of data from the Scratch ring specified by address and
write the data into the buffer pointed to by val. The scratch_get_ring() function writes the
data into an SRAM register while the scratch_get_ring_D() function writes the data into a
DRAM register. The count argument must be in the range of 1 through 16. Argument count
is preferred to be a constant; otherwise, the compiler generates an indirect_ref, resulting in
a loss of performance. A constant count parameter that is larger than 8 also results in
indirect_ref being generated. The argument sig_ptr should be the address of a user signal
variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Buffer to write contents of Scratch to.
address Address of the Scratch ring.
count Number of longwords to read from the Scratch ring and write

into val in the range of 1 - 16.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
134 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.32 scratch_get_ring_ind(), scratch_get_ring_D_ind()

Function Syntax:
void scratch_get_ring[_D]_ind(

__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(scratch) *address,
unsigned int max_nn,
scratch_ring_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions are the indirect reference form of the scratch_ring_get function. They get
up to max_nn longwords of data from the Scratch ring specified by address and write the
data into the buffer pointed to by val. The scratch_get_ring_ind() function writes the data
into an SRAM register while the scratch_get_ring_D_ind() function writes the data into a
DRAM register. The max_nn argument must be a constant in the range of 1 through 16 and
specifies the maximum number of longwords to be transferred while the ind argument
specifies the exact number of longwords to be transferred. If the ind argument does not
specify a count, then max_nn represents the number of longwords to be transferred and
must be given as 8 or less. The ind argument provides additional parameters and overrides.
There are restrictions on the value specified in the override as noted in the description of
the scratch_ring_ind_t data type. The argument sig_ptr should be the address of a user
signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Buffer to write contents of Scratch to.
address Address of the Scratch ring.
max_nn Number of longwords to read from Scratch ring and write into

val in the range of 1 - 16.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 135

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.33 scratch_put_ring(), scratch_put_ring_D()

Function Syntax:
void scratch_put_ring[_D](

__declspec([sram, dram]_read_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function puts count longwords of data from the buffer pointed to by the data argument
into the Scratch ring specified by address. The count argument must be in the range of 1
through 16. Argument count is preferred to be a constant; otherwise, the compiler generates
an indirect_ref, resulting in a loss of performance. A constant count parameter that is larger
than 8 also results in indirect_ref being generated. The argument sig_ptr should be the
address of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Buffer to read from.
address Address of the Scratch ring to write to.
count Number of longwords to read from buffer val and write into the

Scratch ring pointed to by address in the range of 1 - 16.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
136 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.1.34 scratch_put_ring_ind(), scratch_put_ring_D_ind()

Function Syntax:
void scratch_put_ring[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int *data,
volatile void __declspec(scratch) *address,
unsigned int max_nn,
scratch_ring_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function is the indirect reference form of the scratch_ring_put function. It puts up to
max_nn longwords of data from the buffer pointed to by the data argument into the Scratch
ring specified by address. The max_nn argument must be a constant in the range of 1
through 16 and specifies the maximum number of longwords to be transferred while the ind
argument specifies the exact number of longwords to be transferred. If the ind argument
does not specify a count, then max_nn represents the number of longwords to be transferred
and must be given as 8 or less. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the scratch_ring_ind_t data type. The argument sig_ptr should be the address
of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Buffer to read from.
address Address of the Scratch ring.
max_nn Number of longwords to read from the buffer pointed to by val

and writes it into the Scratch ring pointed to by address in the
range of 1 - 16.

ind Indirect word.
sync Type of synchronization to use.This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 137

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2 SRAM Operations

This section discusses the intrinsic functions that operate in the SRAM memory region. Table 13
summarizes these functions.

Table 13. SRAM Operations Summary (Sheet 1 of 7)

Name (args) Description

void sram_read[_D](
__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Reads count longwords from SRAM at the
specified address into the transfer register
specified by data. The _D version of this intrinsic
must be used if the data argument is in DRAM
transfers registers.

void sram_read[_D]_ind(
__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
sram_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Reads up to max_nn longwords from SRAM at
the specified address into the transfer register
specified by data. The _D version of this intrinsic
must be used if the data argument is in DRAM
transfers registers. The ind argument provides
additional parameters and overrides.

void sram_write[_D](
__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Writes count longwords to SRAM at the specified
address from the structure addressed by data.
The _D version of this intrinsic must be used if
the data argument is in DRAM transfers
registers. The _D version is only available on
IXP28XX hardware in 8-context mode.

void sram_write[_D]_ind(
__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
sram_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Writes up to max_nn longwords to SRAM at the
specified address from the structure addressed
by data. The _D version of this intrinsic must be
used if the data argument is in DRAM transfers
registers. The _D version is only available on
IXP28XX hardware in 8-context mode. The ind
argument provides additional parameters and
overrides.

void sram_set_bits[_D](
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Sets the bits in the specified mask in the
longword at address in SRAM. The _D version of
this intrinsic must be used if the mask argument
is in DRAM transfers registers. The _D version is
only available on IXP28XX hardware in 8-context
mode.

void sram_set_bits[_D]_ind(
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Sets the bits in the specified mask in the
longword at address in SRAM. The ind argument
provides additional parameters and overrides.
The _D version of this intrinsic must be used if
the mask argument is in DRAM transfers
registers. The _D version is only available on
IXP28XX hardware in 8-context mode.

void sram_clear_bits[_D](
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Clears the bits in the specified mask in the
longword at address in SRAM. The _D version of
this intrinsic must be used if the mask argument
is in DRAM transfers registers. The _D version is
only available on IXP28XX hardware in 8-context
mode.

void sram_clear_bits[_D]_ind(
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Clears the bits in the specified mask in the
longword at address in SRAM. The _D version of
this intrinsic must be used if the mask argument
is in DRAM transfers registers. The _D version is
only available on IXP28XX hardware in 8-context
mode. The ind argument provides additional
parameters and overrides.
138 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
void sram_add[_D](
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Increments the longword in SRAM at the
specified address by the value specified in data.
The _D version of this intrinsic must be used if
the data argument is in DRAM transfers
registers. The _D version is only available on
IXP28XX hardware in 8-context mode.

void sram_add[_D]_ind(
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Increments the longword in SRAM at the
specified address by the value specified in data.
The _D version of this intrinsic must be used if
the data argument is in DRAM transfers
registers. The _D version is only available on
IXP28XX hardware in 8-context mode.The ind
argument provides additional parameters and
overrides.

void sram_incr(
volatile void __declspec(sram) *address);

Increments the longword in SRAM at the
specified address by one.

void sram_incr_ind(
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind);

Increments the longword in SRAM at the
specified address by one. The ind argument
provides additional parameters and overrides.

void sram_decr(
volatile void __declspec(sram) *address);

Decrements the longword in SRAM at the
specified address by one.

void sram_decr_ind(
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind);

Decrements the longword in SRAM at the
specified address by one. The ind argument
provides additional parameters and overrides.

void sram_swap[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *data
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address. It then writes the value specified in data
to the longword at address. The _D version of
this intrinsic must be used if the val and data
arguments are in DRAM transfers registers. The
_D version is only available on IXP28XX
hardware in 8-context mode.

void sram_swap[_D]_ind(
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *data
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address. It then writes the value specified in data
to the longword at address. The _D version of
this intrinsic must be used if the val and data
arguments are in DRAM transfers registers. The
_D version is only available on IXP28XX
hardware in 8-context mode. The ind argument
provides additional parameters and overrides.

void sram_test_and_set_bits[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address in SRAM. It then sets the bits specified
in mask in the longword at address in SRAM.
The _D version of this intrinsic must be used if
the val and data arguments are in DRAM
transfers registers. The _D version is only
available on IXP28XX hardware in 8-context
mode.

void sram_test_and_set_bits[_D]_ind(
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address in SRAM. It then sets the bits specified
in mask in the longword at address in SRAM.
The ind argument provides additional parameters
and overrides. The _D version of this intrinsic
must be used if the val and data arguments are
in DRAM transfers registers. The _D version is
only available on IXP28XX hardware in 8-context
mode.

Table 13. SRAM Operations Summary (Continued) (Sheet 2 of 7)

Name (args) Description
 Language Support Reference Manual 139

Intel® Microengine C Compiler Language Support
Intrinsic Functions
void sram_test_and_clear_bits[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address in SRAM. It then clears the bits specified
in mask in the longword at address in SRAM.
The _D version of this intrinsic must be used if
the val and mask arguments are in DRAM
transfers registers. The _D version is only
available on IXP28XX hardware in 8-context
mode.

void sram_test_and_clear_bits[_D]_ind(
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address in SRAM. It then clears the bits specified
in mask in the longword at address in SRAM.
The _D version of this intrinsic must be used if
the val and mask arguments are in DRAM
transfers registers. The _D version is only
available on IXP28XX hardware in 8-context
mode. The ind argument provides additional
parameters and overrides.

void sram_test_and_add[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address in SRAM. It then increments the
longword at address by the value specified by
data. The _D version of this intrinsic must be
used if the val and mask arguments are in DRAM
transfers registers. The _D version is only
available on IXP28XX hardware in 8-context
mode.

void sram_test_and_add[_D]_ind(
__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Loads into val the initial value of the longword at
address in SRAM. It then increments the
longword at address by the value specified by
data. The _D version of this intrinsic must be
used if the val and mask arguments are in DRAM
transfers registers. The _D version is only
available on IXP28XX hardware in 8-context
mode.The ind argument provides additional
parameters and overrides.

void sram_test_and_incr[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Loads into val the initial value of the longword at
address in SRAM. It then increments the
longword at address by one. The _D version of
this intrinsic must be used if the val argument is
in DRAM transfers registers.

void sram_test_and_incr[_D]_ind(
__declspec([sram, dram]_read_reg) unsigned int *val,
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind
sync_t sync,
SIGNAL *sig_ptr);

Loads into val the initial value of the longword at
address in SRAM. It then increments the
longword at address by one. The _D version of
this intrinsic must be used if the val argument is
in DRAM transfers registers. The ind argument
provides additional parameters and overrides.

void sram_test_and_decr[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Loads into val the initial value of the longword at
address in SRAM. It then decrements the
longword at address by one. The _D version of
this intrinsic must be used if the val argument is
in DRAM transfers registers.

void sram_test_and_decr[_D]_ind(
__declspec([sram, dram]_read_reg) unsigned int *val,
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind
sync_t sync,
SIGNAL *sig_ptr);

Loads into val the initial value of the longword at
address in SRAM. It then decrements the
longword at address by one. The _D version of
this intrinsic must be used if the val argument is
in DRAM transfers registers. The ind argument
provides additional parameters and overrides.

void sram_csr_read[_D](
__declspec([sram, dram]_read_reg) unsigned int *data,
unsigned int address,
sync_t sync,
SIGNAL *sig_ptr);

Loads the value in the SRAM channel CSR
specified by address into the transfer register
specified by data. The _D version of this intrinsic
must be used if the data argument is in DRAM
transfers registers.

Table 13. SRAM Operations Summary (Continued) (Sheet 3 of 7)

Name (args) Description
140 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
void sram_csr_read[_D]_ind(
__declspec([sram, dram]_read_reg) unsigned int *data,
unsigned int address,
sram_csr_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Loads the value in the SRAM channel CSR
specified by address into the transfer register
specified by data. The _D version of this intrinsic
must be used if the data argument is in DRAM
transfers registers. The ind argument provides
additional parameters and overrides.

void sram_csr_write[_D](
__declspec([sram, dram]_write_reg) unsigned int *data,
unsigned int address,
sync_t sync,
SIGNAL *sig_ptr);

Writes the value from the transfer register
specified by data to the SRAM channel CSR
specified by address. The _D version of this
intrinsic must be used if the data argument is in
DRAM transfers registers. The _D version is only
available on IXP28XX hardware in 8-context
mode.

void sram_csr_write[_D]_ind(
__declspec([sram, dram]_write_reg) unsigned int *data,
unsigned int address,
sram_csr_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Writes the value from the transfer register
specified by data to the SRAM channel CSR
specified by address. The _D version of this
intrinsic must be used if the data argument is in
DRAM transfers registers. The _D version is only
available on IXP28XX hardware in 8-context
mode.The ind argument provides additional
parameters and overrides.

void sram_read_qdesc_head[_D](
__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Issues a memory reference to an SRAM Channel
to read the Queue Descriptor into the SRAM
Queue Array as described in the IXP2400/
IXP2800 Network Processor Programmer’s
Reference Manual for the microcode instruction
SRAM(Read Queue Descriptor). The _D version
of this intrinsic must be used if the data argument
is in DRAM transfers registers.

void sram_read_qdesc_head[_D]_ind(
__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
sram_read_qdesc_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Issues a memory reference to an SRAM Channel
to read the Queue Descriptor into the SRAM
Queue Array as described in the IXP2400/
IXP2800 Network Processor Programmer’s
Reference Manual for the microcode instruction
SRAM(Read Queue Descriptor). The _D version
of this intrinsic must be used if the data argument
is in DRAM transfers registers. The ind argument
provides additional parameters and overrides.

void sram_read_qdesc_tail[_D](
__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Issues a memory reference to an SRAM Channel
to read the Queue Descriptor into the SRAM
Queue Array as described in the IXP2400/
IXP2800 Network Processor Programmer’s
Reference Manual for the microcode instruction
SRAM(Read Queue Descriptor). The _D version
of this intrinsic must be used if the data argument
is in DRAM transfers registers.

void sram_read_qdesc_tail[_D]_ind(
__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
sram_read_qdesc_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Issues a memory reference to an SRAM Channel
to read the Queue Descriptor into the SRAM
Queue Array as described in the IXP2400/
IXP2800 Network Processor Programmer’s
Reference Manual for the microcode instruction
SRAM(Read Queue Descriptor). The _D version
of this intrinsic must be used if the data argument
is in DRAM transfers registers. The ind argument
provides additional parameters and overrides.

void sram_read_qdesc_other(
volatile void __declspec(sram) *address);

Issues a memory reference to an SRAM Channel
to read the Queue Descriptor into the SRAM
Queue Array as described in the IXP2400/
IXP2800 Network Processor Programmer’s
Reference Manual for the microcode instruction
SRAM(Read Queue Descriptor).

Table 13. SRAM Operations Summary (Continued) (Sheet 4 of 7)

Name (args) Description
 Language Support Reference Manual 141

Intel® Microengine C Compiler Language Support
Intrinsic Functions
void sram_read_qdesc_other_ind(
volatile void __declspec(sram) *address,
sram_read_qdesc_ind_t ind);

Issues a memory reference to an SRAM Channel
to read the Queue Descriptor into the SRAM
Queue Array as described in the IXP2400/
IXP2800 Network Processor Programmer’s
Reference Manual for the microcode instruction
SRAM(Read Queue Descriptor). The ind
argument provides additional parameters and
overrides.

void sram_write_qdesc(
volatile void __declspec(sram) *address);

Issues a memory reference to an SRAM Channel
to move data from the Queue Descriptor into
SRAM as described in the IXP2400/IXP2800
Network Processor Programmer’s Reference
Manual for the microcode instruction
SRAM(Write Queue Descriptor).

void sram_write_qdesc_count(
volatile void __declspec(sram) *address);

Issues a memory reference to an SRAM Channel
to move data from the Queue Descriptor into
SRAM as described in the IXP2400/IXP2800
Network Processor Programmer’s Reference
Manual for the microcode instruction
SRAM(Write Queue Descriptor). This function
differs from the sram_write_qdesc() only in the
fields that are written to SRAM.

void sram_enqueue(
volatile void __declspec(sram) *address);

Performs enqueue operations as described in
the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual for the
microcode instruction SRAM(enqueue).

void sram_enqueue_ind(
volatile void __declspec(sram) *address,
sram_enqueue_ind_t ind);

Performs enqueue operations as described in
the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual for the
microcode instruction SRAM(enqueue). The ind
argument provides additional parameters and
overrides.

void sram_enqueue_tail(
volatile void __declspec(sram) *address);

Performs enqueue operations as described in
the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual for the
microcode instruction SRAM(enqueue).

void sram_enqueue__tail_ind(
volatile void __declspec(sram) *address,
sram_enqueue_ind_t ind);

Performs enqueue operations as described in
the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual for the
microcode instruction SRAM(enqueue). The ind
argument provides additional parameters and
overrides.

void sram_dequeue[_D](
__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Performs a dequeue operation on the SRAM
queue array specified by address, as described
in the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual for the
microcode instruction SRAM(dequeue). The _D
version of this intrinsic must be used if the data
argument is in DRAM transfers registers.

void sram_dequeue[_D]_ind(
__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
sram_read_qdesc_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Performs a dequeue operation on the SRAM
queue array specified by address, as described
in the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual for the
microcode instruction SRAM(dequeue). The _D
version of this intrinsic must be used if the data
argument is in DRAM transfers registers. The ind
argument provides additional parameters and
overrides.

Table 13. SRAM Operations Summary (Continued) (Sheet 5 of 7)

Name (args) Description
142 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
void sram_get_ring[_D](
__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Gets count longwords of data from the ring
specified by address and returns it in data. The
_D version of this intrinsic must be used if the
data argument is in DRAM transfers registers.

void sram_get_ring[_D]_ind(
__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
sram_ring_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Gets up to max_nn longwords of data from the
SRAM ring specified by address and returns it in
data. The _D version of this intrinsic must be
used if the data argument is in DRAM transfers
registers. The ind argument provides additional
parameters and overrides.

void sram_put_ring[_D](
__declspec([sram, dram]_read_reg) unsigned int *status,
__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Puts count longwords of data from val into the
ring specified by address. Returns the ring status
through the status pointer. The _D version of this
intrinsic must be used if the status and data
arguments are in DRAM transfers registers. The
_D version is only available on IXP28XX
hardware in 8-context mode.

void sram_put_ring[_D]_ind(
__declspec([sram, dram]_read_reg) unsigned int *status,
__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
sram_ring_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Puts up to max_nn longwords of data from data
into the SRAM ring specified by address. The ind
argument provides additional parameters and
overrides. Returns the ring status through the
status pointer. The _D version of this intrinsic
must be used if the status and data arguments
are in DRAM transfers registers. The _D version
is only available on IXP28XX hardware in 8-
context mode.

void sram_journal[_D](
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Puts count longwords from data into the journal
ring specified by address. The _D version of this
intrinsic must be used if the data argument is in
DRAM transfers registers. The _D version is only
available on IXP28XX hardware in 8-context
mode.

void sram_journal[_D]_ind(
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
sram_journal_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Puts up to max_nn longwords from data into the
journal ring specified by address. The _D version
of this intrinsic must be used if the data argument
is in DRAM transfers registers. The _D version is
only available on IXP28XX hardware in 8-context
mode.The ind argument provides additional
parameters and overrides.

void sram_fast_journal(
volatile void __declspec(sram) *address);

Puts immediate data into the journal ring. Both
the immediate data and the journal ring are
specified by address.

void sram_fast_journal_ind(
volatile void __declspec(sram) *address,
sram_journal_ind_t ind);

Puts immediate data into the journal ring. Both
the immediate data and the journal ring are
specified by address. The ind argument provides
additional parameters and overrides.

void sram_add_int(
int data,
volatile void __declspec(sram) *address);

(IXP28xx Rev. B and above only) This function
increments the longword at address by the
integer argument data. This integer must be an
11 bits or less in size, and will be sign-extended
to 32 bits.

void sram_clear_bit_pos(
unsigned int bit_pos,
volatile void __declspec(sram) *address);

(IXP28xx Rev. B and above only) This function
clears the bit specified in the integer bit_pos (0 =
LSB, 31 = MSB) in the longword at address in
SRAM.

Table 13. SRAM Operations Summary (Continued) (Sheet 6 of 7)

Name (args) Description
 Language Support Reference Manual 143

Intel® Microengine C Compiler Language Support
Intrinsic Functions
void sram_set_bit_pos(
unsigned int bit_pos,
volatile void __declspec(sram) *address);

(IXP28xx Rev. B and above only) This function
sets the bit specified in the integer bit_pos (0 =
LSB, 31 = MSB) in the longword at address in
SRAM.

void sram_swap_int[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
int data,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

(IXP28xx Rev. B and above only) This function
loads the initial value of the longword located at
address in SRAM into the data buffer pointed to
by val. It then writes the longword data to the
longword at address in SRAM. data must be 11
bits or less, and will be sign-extended to 32 bits.
The _D version of this intrinsic must be used if
the val argument is in DRAM transfers registers.

void sram_test_and_add_int[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
int data,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

(IXP28xx Rev. B and above only) This function
loads the initial value of the longword located at
address in SRAM into the data buffer pointed to
by val. It then increments the longword at
address in SRAM by the longword data. data
must be 11 bits or less, and will be sign-extended
to 32 bits. The _D version of this intrinsic must be
used if the val argument is in DRAM transfers
registers.

void sram_test_and_clear_bit_pos[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
unsigned int bit_pos,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

(IXP28xx Rev. B and above only) This function
loads the initial value of the longword located at
address in SRAM into the data buffer pointed to
by val. It then clears the bit specified with the
integer bit_pos (0 = LSB, 31 = MSB) in the
longword at address in SRAM. The _D version of
this intrinsic must be used if the val argument is
in DRAM transfers registers.

void sram_test_and_set_bit_pos[_D](
__declspec([sram, dram]_read_reg) unsigned int *val,
unsigned int bit_pos,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

(IXP28xx Rev. B and above only) This function
loads the initial value of the longword located at
address in SRAM into the data buffer pointed to
by val. It then sets the bit specified with the
integer bit_pos (0 = LSB, 31 = MSB) in the
longword at address in SRAM. The _D version of
this intrinsic must be used if the val argument is
in DRAM transfers registers.

Table 13. SRAM Operations Summary (Continued) (Sheet 7 of 7)

Name (args) Description
144 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.1 sram_read(), sram_read_D()

Function Syntax:
void sram_read[_D](

__declspec([sram, dram]_read_reg) void * data,
volatile void __declspec(sram) * address,
unsigned int count,
sync_t sync,
SIGNAL* sig_ptr);

Description:
These functions read count longwords from SRAM at the specified address into the
structure addressed by data. The sram_read() function puts the data into an SRAM register
while the sram_read_D() function places the data in a DRAM register. The count argument
must be in the range of 1 through 16. Argument count is preferred to be a constant;
otherwise, the compiler generates an indirect_ref at the cost of performance. A constant
count parameter that is larger than 8 also results in indirect_ref being generated. The
argument sig_ptr, should be the address of a user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Address of data buffer to read into.
address Address to read from.
count Number of longwords to read/write in the range of 1 - 16.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 145

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.2 sram_read_ind(), sram_read_D_ind()

Function Syntax:
void sram_read[_D]_ind(

__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
sram_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions read up to max_nn longwords from SRAM at the specified address and
place the data into the structure addressed by data. The sram_read() function puts the data
into an SRAM register while the sram_read_D() function places the data in a DRAM
register. The max_nn argument must be a constant in the range of 1 through 16 and specifies
the maximum number of longwords to be transferred while the ind argument specifies the
exact number of longwords to be transferred. If the ind argument does not specify a count,
then max_nn represents the number of longwords to be transferred and must be given as 8
or less. The ind argument provides additional parameters and overrides. There are
restrictions on the value specified in the override as noted in the description of the
sram_read_write_ind_t data type. The argument sig_ptr should be the address of a user
signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Address of data buffer to read into.
address Address to read from
max_nn Number of longwords to read/write in the range of 1 - 16.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion
146 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.3 sram_write(), sram_write_D()

Function Syntax:
void sram_write[_D](

__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions write count longwords to SRAM at the specified address from the transfer
register specified by the data argument. The sram_write() function transfers the data from
an SRAM transfer register while the sram_write_D() function transfers the data from a
DRAM register. The count argument must be in the range of 1 through 16. Argument count
is preferred to be a constant; otherwise, the compiler generates an indirect_ref at the cost of
performance. A constant count parameter that is larger than 8 also results in indirect_ref
being generated. The argument sig_ptr should be the address of a user signal variable
passed by direct reference.

Note: The _D version of this intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Address of data buffer to read from.
address Address to write to.
count Number of longwords to read and write in the range of 1 - 16.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 147

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.4 sram_write_ind(), sram_write_D_ind()

Function Syntax:
void sram_write[_D]_ind(

__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
sram_read_write_ind_t ind
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions write up to max_nn longwords to SRAM at the specified address from the
register specified by the data argument. The sram_write() function transfers the data from
an SRAM transfer register while the sram_write_D() function transfers the data from a
DRAM register. The max_nn argument must be a constant in the range of 1 through 16 and
specifies the maximum number of longwords to be transferred while the ind argument
specifies the exact number of longwords to be transferred. If the ind argument does not
specify a count, then max_nn represents the number of longwords to be transferred and
must be given as 8 or less. The ind argument provides additional parameters and overrides.
There are restrictions on the value specified in the override as noted in the description of
the sram_read_write_ind_t data type. The argument sig_ptr should be the address of a user
signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Address of data buffer to read from.
address Address to write to.
max_nn Number of longwords to read and write in the range of 1 - 16.
ind Indirect Word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion
148 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.5 sram_set_bits(), sram_set_bits_D()

Function Syntax:
void sram_set_bits[_D](

__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions set the bits in the specified mask at the specified address in SRAM. The
sram_set_bits() function obtains the mask from an SRAM register while the
sram_set_bits_D() function obtains the mask from a DRAM register. The argument sig_ptr
should be the address of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the mask argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
mask Mask to set.
address Address to write.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 149

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.6 sram_set_bits_ind(), sram_set_bits_D_ind()

Function Syntax:
void sram_set_bits[_D]_ind(

__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions set the bits in the specified mask at the specified address in SRAM. The
ind argument provides additional parameters and overrides. The sram_set_bits_ind()
function obtains the mask from an SRAM register while the sram_set_bits_D_ind()
function obtains the mask from a DRAM register. There are restrictions on the value
specified in the override as noted in the description of the sram_atomic_ind_t data type.
The argument sig_ptr should be the address of a user signal variable passed by direct
reference.

Note: The _D version of this intrinsic must be used if the mask argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
mask Mask to set.
address Address to write.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
150 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.7 sram_clear_bits(), sram_clear_bits_D()

Function Syntax:
void sram_clear_bits[_D](

__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions clear the bits in the specified mask at the specified address in SRAM. The
sram_clear_bits() function obtains the mask from an SRAM register while the
sram_clear_bits_D() function obtains the mask from a DRAM register. The argument
sig_ptr should be the address of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the mask argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
mask Mask to clear.
address Address to write.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 151

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.8 sram_clear_bits_ind(), sram_clear_bits_D_ind()

Function Syntax:
void sram_clear_bits[_D]_ind(

__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions clear the bits in the specified mask at the specified address in SRAM. The
sram_clear_bits_ind() function obtains the mask from an SRAM register while the
sram_clear_bits_D_ind() function obtains the mask from a DRAM register. The ind
argument provides additional parameters and overrides. There are restrictions on the value
specified in the override as noted in the description of the sram_atomic_ind_t data type.
The argument sig_ptr should be the address of a user signal variable passed by direct
reference.

Note: The _D version of this intrinsic must be used if the mask argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
mask Mask to clear.
address Address to write.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
152 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.9 sram_add(), sram_add_D()

Function Syntax:
void sram_add[_D](

__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions increment the longword at address by the value specified in the data
argument. The sram_add() function obtains the value from an SRAM register while the
sram_add_D() function obtains the value from a DRAM register.The argument sig_ptr
should be the address of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Value to add.
address Address to read from.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 153

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.10 sram_add_ind(), sram_add_D_ind()

Function Syntax:
void sram_add[_D]_ind(

__declspec([sram,dram]_write_reg) void *data,
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions increment the longword at address by the value specified in the data
argument. The sram_add_ind() function obtains the value from an SRAM register while the
sram_add_D_ind() function obtains the value from a DRAM register.The ind argument
provides additional parameters and overrides. There are restrictions on the value specified
in the override as noted in the description of the sram_atomic_ind_t data type. The
argument sig_ptr should be the address of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Value to add.
address Address to read from.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
154 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.11 sram_incr()

Function Syntax:
void sram_incr(

volatile void __declspec(sram) *address)

Description:
This function increments the longword at address by one.

Arguments:
address Address to read from.
 Language Support Reference Manual 155

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.12 sram_incr_ind()

Function Syntax:
void sram_incr_ind(

volatile void __declspec(sram) *address,
sram_atomic_ind_t ind)

Description:
This function increments the longword at address by one. The ind argument provides
additional parameters and overrides. There are restrictions on the value specified in the
override as noted in the description of the sram_atomic_ind_t data type.

Arguments:
address Address to read from.
ind Indirect word.
156 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.13 sram_decr()

Function Syntax:
void sram_decr(

volatile void __declspec(sram) *address)

Description:
This function decrements the longword at address in SRAM by one.

Arguments:
address Address to read from.
 Language Support Reference Manual 157

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.14 sram_decr_ind()

Function Syntax:
void sram_decr_ind(

volatile void __declspec(sram) *address,
sram_atomic_ind_t ind)

Description:
This function decrements the longword at address in SRAM by one. The ind argument
provides additional parameters and overrides. There are restrictions on the value specified
in the override as noted in the description of the sram_atomic_ind_t data type.

Arguments:
address Address to read from.
ind Indirect word.
158 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.15 sram_swap(), sram_swap_D()

Function Syntax:
void sram_swap[_D](

__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
These functions swap the contents of the specified SRAM address with the contents of the
transfer register specified by the data argument. Initially, they load the contents located at
the specified address in SRAM into the transfer register specified by the val argument. They
then write the contents of the data argument to the specified SRAM address. The
sram_swap() function loads the value into an SRAM transfer register and writes the
contents from an SRAM transfer register while the sram_swap_D() function loads and
writes the values into and from DRAM transfer registers. The argument sig_ptr should be
the address of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used when both the val and data arguments are in
DRAM transfer registers. This version is only available on IXP28XX Rev. B hardware in
8-context mode.

Arguments:
val Contains the value from the specified SRAM address location

before the swap.
data Contents that are written to the specified SRAM address.
address SRAM address to read from, then write to.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 159

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.16 sram_swap_ind(), sram_swap_D_ind()

Function Syntax:
void sram_swap_ind[_D](

__declspec([sram, dram]_read_reg) unsigned int *val,
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
These functions swap the contents of the specified SRAM address with the contents of the
transfer register specified by the data argument. Initially, they load the contents located at
the specified address in SRAM into the transfer register specified by the val argument. They
then write the contents of the data argument to the specified SRAM address. The
sram_swap() function loads the value into an SRAM transfer register and writes the
contents from an SRAM transfer register while the sram_swap_D() function loads and
writes the values into and from DRAM transfer registers.The ind argument provides
additional parameters and overrides. There are restrictions on the value specified in the
override as noted in the description of the sram_atomic_ind_t data type. The argument
sig_ptr should be the address of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used when both the val and data arguments are in
DRAM transfer registers. This version is only available on IXP28XX Rev. B hardware in
8-context mode.

Arguments:
val Contains the initial value of the SRAM address location before

the swap.
data Contains the contents that are written to the SRAM address.
address SRAM address to read from, then write to.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
160 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.17 sram_test_and_set_bits(), sram_test_and_set_bits_D()

Function Syntax:
void sram_test_and_set_bits[_D](

__declspec([sram, dram]_read_reg) unsigned int *val
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function loads the initial value of the longword located at address in SRAM into the
data buffer pointed to by val. It then sets the bits specified in the buffer mask in the
longword at address in SRAM. The argument sig_ptr should be the address of a user signal
variable passed by direct reference.

Note: The _D version of this intrinsic must be used when both the val and mask arguments are in
DRAM transfer registers. This version is only available on IXP28XX Rev. B hardware in
8-context mode.

Arguments:
val Value before write.
mask Mask to set/clear.
address Address to read/write.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 161

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.18 sram_test_and_set_bits_ind(), sram_test_and_set_bits_D_ind()

Function Syntax:
void sram_test_and_set_bits[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int *val
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function loads the initial value of the longword located at address in SRAM into the
data buffer pointed to by val. It then sets the bits specified in the buffer mask in the
longword at address in SRAM. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the scratch_atomic_ind_t data type. The argument sig_ptr should be the
address of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used when both the val and mask arguments are in
DRAM transfer registers. This version is only available on IXP28XX Rev. B hardware in
8-context mode.

Arguments:
val Value before write.
mask Mask to set/clear.
address Address to read/write.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
162 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.19 sram_test_and_clear_bits(), sram_test_and_clear_bits_D()

Function Syntax:
void sram_test_and_clear_bits[_D](

__declspec([sram, dram]_read_reg) unsigned int *val
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function loads the initial value of the longword located at address in SRAM into the
data buffer pointed to by val. It then clears the bits specified in the buffer mask in the
longword at address in SRAM. The argument sig_ptr should be the address of a user signal
variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the val and mask arguments are in DRAM
transfer registers. This version is only available on IXP28XX Rev. B hardware in 8-
context mode.

Arguments:
val Value before write.
mask Mask to set/clear.
address Address to read/write.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 163

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.20 sram_test_and_clear_bits_ind(), sram_test_and_clear_bits_D_ind()

Function Syntax:
void sram_test_and_clear_bits[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int *val
__declspec([sram, dram]_write_reg) unsigned int *mask,
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function loads the initial value of the longword located at address in SRAM into the
data buffer pointed to by val. It then clears the bits specified in the buffer mask in the
longword at address in scram. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the sram_atomic_ind_t data type. The argument sig_ptr should be the
address of a user signal variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the val and mask arguments are in DRAM
transfer registers. This version is only available on IXP28XX Rev. B hardware in 8-
context mode.

Arguments:
val Value before write.
mask Mask to set/clear.
address Address to read/write.
ind Indirect word.
sync Type of synchronization to use.This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
164 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.21 sram_test_and_add(), sram_test_and_add_D()

Function Syntax:
void sram_test_and_add[_D](

__declspec([sram, dram]_read_reg) unsigned int *val
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function loads the initial value of the longword located at address in SRAM into the
data buffer pointed to by val. It then increments the longword at address in SRAM by the
argument data. The argument sig_ptr should be the address of a user signal variable passed
by direct reference.

Note: The _D version of this intrinsic must be used if the val and data arguments are in DRAM
transfer registers. This version is only available on IXP28XX Rev. B hardware in 8-
context mode.

Arguments:
val Value before write.
data Value to add.
address Address to read/write.
sync Type of synchronization to use. The synchronization argument

must be 'sig_done'. A call to either the __implicit_read() or
__free_write_buffer() intrinsics is required on the write
transfer register argument to prevent the registers from being
reused before the operation has completed. A call to
__implicit_read() on the read transfer register argument will be
needed if not all the data is read. Please refer to Section 7.2,
“Things to Remember When Writing Microengine C Code” for
details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 165

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.22 sram_test_and_add_ind(), sram_test_and_add_D_ind()

Function Syntax:
void sram_test_and_add[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int *val
__declspec([sram, dram]_write_reg) unsigned int *data,
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function loads the initial value of the longword located at address in SRAM into the
data buffer pointed to by val. It then increments the longword at address in SRAM by the
argument data. The ind argument provides additional parameters and overrides. There are
restrictions on the value specified in the override as noted in the description of the
sram_atomic_ind_t data type. The argument sig_ptr should be the address of a user signal
variable passed by direct reference.

Note: The _D version of this intrinsic must be used if the val and data arguments are in DRAM
transfer registers. This version is only available on IXP28XX Rev. B hardware in 8-
context mode.

Arguments:
val Value before write.
data Value to add.
address Address to read/write.
ind Indirect word.
sync Type of synchronization to use. The synchronization argument

must be 'sig_done'. A call to either the __implicit_read() or
__free_write_buffer() intrinsics is required on the write
transfer register argument to prevent the registers from being
reused before the operation has completed. A call to
__implicit_read() on the read transfer register argument will be
needed if not all the data is read. Please refer to Section 7.2,
“Things to Remember When Writing Microengine C Code” for
details and an example.

sig_ptr Signal to raise upon completion.
166 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.23 sram_test_and_incr(), sram_test_and_incr_D()

Function Syntax:
void sram_test_and_incr[_D](

__declspec([sram, dram]_read_reg) unsigned int *val
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions load the initial value of the longword located at address in SRAM into the
data buffer pointed to by val. They then increment the longword at address in SRAM by
one. The sram_test_and_incr() function loads the value into an SRAM register while the
sram_test_and_incr_D() function loads the value into a DRAM register. The argument
sig_ptr should be the address of a user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the val argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
val Value before write.
address Address to read/write.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 167

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.24 sram_test_and_incr_ind(), sram_test_and_incr_D_ind()

Function Syntax:
void sram_test_and_incr[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int *val
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions load the initial value of the longword located at address in SRAM into the
data buffer pointed to by val. They then increment the longword at address in SRAM by
one. The sram_test_and_incr_ind() function loads the value into an SRAM register while
the sram_test_and_incr_D_ind() function loads the value into a DRAM register. The ind
argument provides additional parameters and overrides. There are restrictions on the value
specified in the override as noted in the description of the sram_atomic_ind_t data type.
The argument sig_ptr should be the address of a user signal variable passed by direct
reference.

Note: The _D version of the intrinsic must be used if the val argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
val Value before write.
address Address to read/write.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
168 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.25 sram_test_and_decr(), sram_test_and_decr_D()

Function Syntax:
void sram_test_and_decr[_D](

__declspec([sram, dram]_read_reg) unsigned int *val
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions load the initial value of the longword located at address in SRAM into the
data buffer pointed to by val. They then decrement the longword at address in SRAM by
one. The sram_test_and_decr() function loads the value into an SRAM register while the
sram_test_and_decr_D() function loads the value into a DRAM register. The argument
sig_ptr should be the address of a user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the val argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
val Value before write.
address Address to read/write.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 169

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.26 sram_test_and_decr_ind(), sram_test_and_decr_D_ind()

Function Syntax:
void sram_test_and_decr[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int *val
volatile void __declspec(sram) *address,
sram_atomic_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions load the initial value of the longword located at address in SRAM into the
data buffer pointed to by val. They then decrement the longword at address in SRAM by
one. The sram_test_and_decr_ind() function loads the value into an SRAM register while
the sram_test_and_decr_D_ind() function loads the value into a DRAM register. The ind
argument provides additional parameters and overrides. There are restrictions on the value
specified in the override as noted in the description of the sram_atomic_ind_t data type.
The argument sig_ptr should be the address of a user signal variable passed by direct
reference.

Note: The _D version of the intrinsic must be used if the val argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
val Value before write.
address Address to read/write.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
170 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.27 sram_csr_read(), sram_csr_read_D()

Function Syntax:
void sram_csr_read[_D](

__declspec([sram, dram]_read_reg) unsigned int * data,
unsigned int address,
sync_t sync,
SIGNAL* sig_ptr);

Description:
These functions load the value in the SRAM channel CSR specified by address into the
buffer pointed to by data. The sram_csr_read() function loads the value into an SRAM
register while the sram_csr_read_D() function loads the value into a DRAM register. The
argument sig_ptr, should be the address of a user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Address of the data buffer to load into.
address Address of the SRAM channel CSR to read from.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 171

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.28 sram_csr_read_ind(), sram_csr_read_D_ind()

Function Syntax:
void sram_csr_read[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int * data,
unsigned int address,
sram_csr_read_write_ind_t ind,
sync_t sync,
SIGNAL* sig_ptr);

Description:
These functions load the value in the SRAM channel CSR specified by address into the
buffer pointed to by data. The sram_csr_read_ind() function loads the value into an SRAM
register while the sram_csr_read_D_ind() function loads the value into a DRAM register.
The ind argument provides additional parameters and overrides. There are restrictions on
the value specified in the override as noted in the description of the sram_csr_read_ind_t
data type. The argument sig_ptr, should be the address of a user signal variable passed by
direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Address of the data buffer to load into.
address Address of the SRAM channel CSR to read from.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
172 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.29 sram_csr_write(), sram_csr_write_D()

Function Syntax:
void sram_csr_write[_D](

__declspec([sram, dram]_write_reg) unsigned int * data,
unsigned int address,
sync_t sync,
SIGNAL* sig_ptr);

Description:
These functions write to the SRAM channel CSR specified by address with the value
specified by data. The sram_csr_write() function reads the data from an SRAM register
while the sram_csr_write_D function reads the data from a DRAM register. The argument
sig_ptr, should be the address of a user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Address of data buffer to read from
address Address of the SRAM channel CSR to write to.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 173

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.30 sram_csr_write_ind(), sram_csr_write_D_ind()

Function Syntax:
void sram_csr_write[_D]_ind(

__declspec([sram, dram]_write_reg) unsigned int * data,
unsigned int address,
sram_csr_read_write_ind_t ind,
sync_t sync,
SIGNAL* sig_ptr);

Description:
These functions write to the SRAM channel CSR specified by address from the buffer
specified by data. The sram_csr_write_ind() function reads the data from an SRAM register
while the sram_csr_write_D_ind function reads the data from a DRAM register. The ind
argument provides additional parameters and overrides. There are restrictions on the value
specified in the override as noted in the description of the sram_csr_read_ind_t data type.
The argument sig_ptr, should be the address of a user signal variable passed by direct
reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Address of data buffer to read from.
address Address of the SRAM channel CSR to write to.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
174 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.31 sram_read_qdesc_head(), sram_read_qdesc_head_D()

Function Syntax:
void sram_read_qdesc_head[_D](

__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL* sig_ptr);

Description:
These functions issue a memory reference to an SRAM channel to read the queue descriptor
into the SRAM Queue Array. (Refer to the SRAM(Read Queue Descriptor) instruction
described in the IXP2400/IXP2800 Network Processor Programmer’s Reference Manual
for more information.) The sram_read_qdesc_head() function reads the data from an
SRAM register while the sram_read_qdesc_head_D() function reads the data from a
DRAM register. Argument count is preferred to be a constant; otherwise the compiler
generates an indirect_ref at the cost of performance. A constant count parameter that is
larger than 8 also results in indirect_ref being generated. The argument sig_ptr, should be
the address of a user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Transfer register where the q_count and optional data is read

from.
address Address of the SRAM channel CSR to write to.
count Specifies the number of transfers (2 to 8) in increments of 4

byte words.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 175

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.32 sram_read_qdesc_head_ind(), sram_read_qdesc_head_D_ind()

Function Syntax:
void sram_read_qdesc_head[_D]_ind(

__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
sram_read_qdesc_ind_t ind,
sync_t sync,
SIGNAL* sig_ptr);

Description:
These functions issue a memory reference to an SRAM channel to read the queue descriptor
into the SRAM Queue Array. (Refer to the SRAM(Read Queue Descriptor) instruction
described in the IXP2400/IXP2800 Network Processor Programmer’s Reference Manual
for more information.) The sram_read_qdesc_head_ind() function reads the data from an
SRAM register while the sram_read_qdesc_head_D_ind() function reads the data from a
DRAM register. The max_nn argument must be a constant in the range of 1 through 16 and
specifies the maximum number of longwords to be transferred while the ind argument
specifies the exact number of longwords to be transferred. If the ind argument does not
specify a count, then max_nn represents the number of longwords to be transferred and
must be given as 8 or less. The ind argument provides additional parameters and overrides.
There are restrictions on the value specified in the override as noted in the description of
the sram_read_qdesc_ind_t data type. The argument sig_ptr, should be the address of a user
signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Transfer register where the q_count and optional data is read

from.
address Address of the SRAM channel CSR to write to.
max_nn Specifies the number of transfers (2 to 8) in increments of 4

byte words.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
176 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.33 sram_read_qdesc_tail(), sram_read_qdesc_tail_D()

Function Syntax:
void sram_read_qdesc_tail[_D](

__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL* sig_ptr);

Description:
These functions issue a memory reference to an SRAM channel to read the queue descriptor
into the SRAM Queue Array as described in the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual for the instruction SRAM(Read Queue Descriptor). The
sram_read_qdesc_tail() function reads the data from an SRAM register while the
sram_read_qdesc_head_D() function reads the data from a DRAM register. Argument
count is preferred to be a constant; otherwise, the compiler generates an indirect_ref at the
cost of performance. A constant count parameter that is larger than 8 also results in
indirect_ref being generated. The argument sig_ptr, should be the address of a user signal
variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Transfer register where the q_count and optional data is read

from.
address Address of the SRAM channel CSR to write to.
count Specifies the number of transfers (2 to 8) in increments of 4

byte words.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 177

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.34 sram_read_qdesc_tail_ind(), sram_read_qdesc_tail_D_ind()

Function Syntax:
void sram_read_qdesc_tail[_D]_ind(

__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
sram_read_qdesc_ind_t ind,
sync_t sync,
SIGNAL* sig_ptr);

Description:
These functions issue a memory reference to an SRAM channel to read the queue descriptor
into the SRAM Queue Array as described in the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual for the instruction SRAM(Read Queue Descriptor). The
sram_read_qdesc_tail_ind() function reads the data from an SRAM register while the
sram_read_qdesc_head_D_ind() function reads the data from a DRAM register. The
max_nn argument must be a constant in the range of 1 through 16 and specifies the
maximum number of longwords to be transferred while the ind argument specifies the exact
number of longwords to be transferred. If the ind argument does not specify a count, then
max_nn represents the number of longwords to be transferred and must be given as 8 or
less. The ind argument provides additional parameters and overrides. There are restrictions
on the value specified in the override as noted in the description of the
sram_read_qdesc_ind_t data type. The argument sig_ptr, should be the address of a user
signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Transfer register where the q_count and optional data is

returned.
address Address of the SRAM channel CSR to write to.
max_nn Specifies the number of transfers (2 to 8) in increments of 4

byte words.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
178 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.35 sram_read_qdesc_other()

Function Syntax:
void sram_read_qdesc_other(

volatile void __declspec(sram) *address);

Description:
This function issues a memory reference to an SRAM channel to read the queue descriptor
into the SRAM Queue Array as described in the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual for the instruction SRAM(Read Queue Descriptor).

Arguments:
address Address of the SRAM channel CSR to write to.
 Language Support Reference Manual 179

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.36 sram_read_qdesc_other_ind()

Function Syntax:
void sram_read_qdesc_other_ind(

volatile void __declspec(sram) *address,
sram_read_qdesc_ind_t ind);

Description:
This function issues a memory reference to an SRAM channel to read the queue descriptor
into the SRAM Queue Array as described in the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual for the instruction SRAM(Read Queue Descriptor). The
ind argument provides additional parameters and overrides. There are restrictions on the
value specified in the override as noted in the description of the sram_read_qdesc_ind_t
data type.

Arguments:
address Address of the SRAM channel CSR to write to.
ind Indirect word.
180 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.37 sram_write_qdesc()

Function Syntax:
void sram_write_qdesc(

volatile void __declspec(sram) *address);

Description:
This function issues a memory reference to an SRAM channel to move data from the queue
descriptor into the SRAM as described in the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual for the instruction SRAM(Write Queue Descriptor).

Arguments:
address Address in SRAM to write to.
 Language Support Reference Manual 181

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.38 sram_write_qdesc_count()

Function Syntax:
void sram_write_qdesc_count(

volatile void __declspec(sram) *address);

Description:
This function issues a memory reference to an SRAM channel to move data from the queue
descriptor into the SRAM as described in the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual for the instruction SRAM(Write Queue Descriptor).

Arguments:
address Address in SRAM to write to.
182 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.39 sram_enqueue()

Function Syntax:
void sram_enqueue(

volatile void __declspec(sram) *address);

Description:
This function performs enqueue operations as described in the IXP2400/IXP2800 Network
Processor Programmer’s Reference Manual for the instruction SRAM(enqueue).

Arguments:
address SRAM address.
 Language Support Reference Manual 183

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.40 sram_enqueue_ind()

Function Syntax:
void sram_enqueue_ind(

volatile void __declspec(sram) *address,
sram_enqueue_ind_t ind);

Description:
This function performs enqueue operations as described in the IXP2400/IXP2800 Network
Processor Programmer’s Reference Manual for the instruction SRAM(enqueue). The ind
argument provides additional parameters and overrides. There are restrictions on the value
specified in the override as noted in the description of the sram_enqueue_ind_t data type.

Arguments:
address SRAM address
ind Indirect word.
184 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.41 sram_enqueue_tail()

Function Syntax:
void sram_enqueue_tail(

volatile void __declspec(sram) *address);

Description:
This function performs enqueue operations as described in the IXP2400/IXP2800 Network
Processor Programmer’s Reference Manual for the instruction SRAM(enqueue).

Arguments:
address SRAM address.
 Language Support Reference Manual 185

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.42 sram_enqueue_tail_ind()

Function Syntax:
void sram_enqueue_tail_ind(

volatile void __declspec(sram) *address,
sram_enqueue_ind_t ind);

Description:
This function performs enqueue operations as described in the IXP2400/IXP2800 Network
Processor Programmer’s Reference Manual for the instruction SRAM(enqueue). The ind
argument provides additional parameters and overrides. There are restrictions on the value
specified in the override as noted in the description of the sram_enqueue_ind_t data type.

Arguments:
address SRAM Address.
ind Indirect word.
186 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.43 sram_dequeue(), sram_dequeue_D()

Function Syntax:
void sram_dequeue[_D](

__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions perform an SRAM dequeue operation on the SRAM queue array specified
by address. The sram_dequeue() function reads the data from an SRAM register while the
sram_dequeue_D() function reads the data from a DRAM register. The SRAM dequeue
operation is described in the IXP2400/IXP2800 Network Processor Programmer’s
Reference Manual for the instruction SRAM(dequeue). The argument sig_ptr, should be the
address of a user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Transfer register to read from.
address Address of the SRAM queue array to write to.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 187

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.44 sram_dequeue_ind(), sram_dequeue_D_ind()

Function Syntax:
void sram_dequeue[_D]_ind(

__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
sram_read_qdesc_ind_t ind,
synct_t sync,
SIGNAL *sig_ptr);

Description:
These functions perform an SRAM dequeue operation on the SRAM queue array specified
by address. The sram_dequeue_ind() function reads the data from an SRAM register while
the sram_dequeue_D_ind() function reads the data from a DRAM register. The SRAM
dequeue operation is described in the IXP2400/IXP2800 Network Processor Programmer’s
Reference Manual for the instruction sram(dequeue). The ind argument provides additional
parameters and overrides. There are restrictions on the value specified in the override as
noted in the description of the sram_read_qdesc_ind_t data type. The argument sig_ptr,
should be the address of a user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Transfer register to read from.
address Address of the SRAM queue array to write to.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
188 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.45 sram_get_ring(), sram_get_ring_D()

Function Syntax:
void sram_get_ring[_D](

__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions get count longwords of data from the ring specified by address and returns
it in the buffer pointed to by data. The sram_get_ring_() function returns the data to an
SRAM register while the sram_get_ring_D() function returns the data to a DRAM register.
The count argument must be in the range of 1 through 16. Argument count is preferred to
be a constant; otherwise, the compiler generates an indirect_ref at the cost of performance.
A constant count parameter that is larger than 8 also results in indirect_ref being generated.
The argument sig_ptr, should be the address of a user signal variable passed by direct
reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Data returned from the SRAM ring.
address Address of the SRAM ring to read from.
count Number of longwords to get in the range of 1 - 16.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 189

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.46 sram_get_ring_ind(), sram_get_ring_D_ind()

Function Syntax:
void sram_get_ring[_D]_ind(

__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
sram_ring_ind_t,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These function get up to max_nn longwords of data from the ring specified by address and
returns it in the buffer pointed to by data. The sram_get_ring_ind() function returns the data
to an SRAM register while the sram_get_ring_D_ind() function returns the data to a
DRAM register. The max_nn argument must be a constant in the range of 1 through 16 and
specifies the maximum number of longwords to be transferred while the ind argument
specifies the exact number of longwords to be transferred. If the ind argument does not
specify a count, then max_nn represents the number of longwords to be transferred and
must be given as 8 or less. The ind argument provides additional parameters and overrides.
There are restrictions on the value specified in the override as noted in the description of
the sram_ring_ind_t data type. The argument sig_ptr, should be the address of a user signal
variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Data returned from the SRAM ring.
address Address of the SRAM ring to read from.
max_nn Number of longwords to get in the range of 1 - 16.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
190 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.47 sram_put_ring(), sram_put_ring_D()

Function Syntax:
void sram_put_ring[_D](

__declspec([sram, dram]_read_reg) unsigned int *status,
__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function puts count longwords of data from the buffer pointed to by data into the ring
specified by address. It returns the ring status through the status pointer. The count
argument must be in the range of 1 through 16. Argument count is preferred to be a
constant; otherwise, the compiler generates an indirect_ref at the cost of performance. A
constant count parameter that is larger than 8 also results in indirect_ref being generated.
The argument sig_ptr, should be the address of a user signal variable passed by direct
reference.

Note: The _D version of the intrinsic must be used if the status and data arguments are in DRAM
transfer registers. This version is only available on IXP28XX Rev. B hardware in 8-
context mode.

Arguments:
status Returned 4-byte status word that indicates the current number

of 4-byte words on the ring before the put operation and
whether the put operation was successful. If the put operation
is successful, bit 31 of the status word is set to 1. If not
successful, bit 31 is set to 0.

data Value to write to the specified SRAM ring.
address Address of the SRAM ring.
count Number of longwords to put in the range of 1 - 16.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 191

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.48 sram_put_ring_ind(), sram_put_ring_D_ind()

Function Syntax:
void sram_put_ring[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int *status,
__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
sram_ring_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function puts up to max_nn longwords of data from the buffer pointed to by data into
the ring specified by address. It returns the ring status through the status pointer. The
max_nn argument must be a constant in the range of 1 through 16 and specifies the
maximum number of longwords to be transferred while the ind argument specifies the exact
number of longwords to be transferred. If the ind argument does not specify a count, then
max_nn represents the number of longwords to be transferred and must be given as 8 or
less. The ind argument provides additional parameters and overrides. There are restrictions
on the value specified in the override as noted in the description of the sram_ring_ind_t data
type. The argument sig_ptr, should be the address of a user signal variable passed by direct
reference.

Note: The _D version of the intrinsic must be used if the status and data arguments are in DRAM
transfer registers. This version is only available on IXP28XX Rev. B hardware in 8-
context mode.

Arguments:
status Returned 4-byte status word of the put operation that indicates

the current number of 4-byte words on the ring before the put
operation and whether the put operation was successful. If the
put operation is successful, bit 31 of the status word is set to 1.
If not successful, bit 31 is set to 0.

data Value to write to the specified SRAM ring.
address Address of the SRAM ring.
max_nn Number of longwords to put in the range of 1 - 16.
ind Indirect word.
sync Type of synchronization to use. The synchronization argument

must be 'sig_done'. A call to either the __implicit_read() or
__free_write_buffer() intrinsics is required on the write
transfer register argument to prevent the registers from being
reused before the operation has completed. A call to
__implicit_read() on the read transfer register argument will be
needed if not all the data is read. Please refer to Section 7.2,
“Things to Remember When Writing Microengine C Code” for
details and an example.

sig_ptr Signal to raise upon completion.
192 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.49 sram_journav(), sram_journal_D()

Function Syntax:
void sram_journal[_D](

__declspec([sram, dram]_read_reg) unsigned int *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function puts count longwords of data from the buffer pointed by data into the journal
ring specified by address. The count argument must be in the range of 1 through 16.
Argument count specifies number of longwords if not overridden by ind, or the maximum
number of longwords possibly overridden in ind. The argument sig_ptr should be the
address of a user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Value to write into the SRAM journal ring.
address Address of the SRAM journal.
count Number of longwords to put into the journal in the range of 1 -

16.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 193

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.50 sram_journal_ind(), sram_journal_D_ind()

Function Syntax:
void sram_journal[_D]_ind(

__declspec([sram, dram]_read_reg) unsigned int *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
sram_journal_ind_t,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function puts up to max_nn longwords of data from the buffer pointed to by data into
the ring specified by address. The max_nn argument must be a constant in the range of 1
through 16 and specifies the maximum number of longwords to be transferred while the ind
argument specifies the exact number of longwords to be transferred. If the ind argument
does not specify a count, then max_nn represents the number of longwords to be transferred
and must be given as 8 or less. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the sram_journal_ind_t data type. The argument sig_ptr, should be the
address of a user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
val Value to write into the SRAM journal ring.
address Address of the SRAM journal.
max_nn Number of longwords to put into the journal in the range of 1 -

16.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
194 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.51 sram_fast_journal()

Function Syntax:
void sram_fast_journal(

volatile void __declspec(sram) *address);

Description:
This function puts immediate data into the journal ring. Both the immediate data and the
journal ring are specified by address.

Arguments:
address Address of the immediate data and the journal ring.
 Language Support Reference Manual 195

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.52 sram_fast_journal_ind()

Function Syntax:
void sram_fast_journal_ind(

volatile void __declspec(sram) *address,
sram_journal_ind_t ind);

Description:
This function puts immediate data into the journal ring. Both the immediate data and the
journal ring are specified by address. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the sram_journal_ind_t data type.

Arguments:
address Address of the immediate data and the journal ring.
ind Indirect word.
196 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.53 sram_add_int()

Function Syntax:
void sram_add_int(

int data,
volatile void __declspec(sram) *address);

Description:
(IXP28xx Rev. B and above only) This function increments the longword at address by the
integer argument data. This integer must be 11 bits or less in size, and will be sign-extended
to 32 bits.

Arguments:
data 11-bit sign-extended data to add.
address The memory location to modify.
 Language Support Reference Manual 197

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.54 sram_clear_bit_pos()

Function Syntax:
void sram_clear_bit_pos(

unsigned int bit_pos,
volatile void __declspec(sram) *address);

Description:
(IXP28xx Rev. B and above only) This function clears the bit specified in the integer
bit_pos (0 = LSB, 31 = MSB) in the longword at address in SRAM.

Arguments:
bit_pos The bit to clear. Must be in the range 0:31.
address The memory location to modify.
198 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.55 sram_set_bit_pos()

Function Syntax:
void sram_set_bit_pos(

unsigned int bit_pos,
volatile void __declspec(sram) *address);

Description:
(IXP28xx Rev. B and above only) This function sets the bit specified in the integer bit_pos
(0 = LSB, 31 = MSB) in the longword at address in SRAM.

Arguments:
bit_pos The bit to set. Must be in the range 0:31.
address The memory location to modify.
 Language Support Reference Manual 199

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.56 sram_swap_int(), sram_swap_int_D()

Function Syntax:
void sram_swap_int[_D](

__declspec([sram, dram]_read_reg) unsigned int *val,
int data,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
(IXP28xx Rev. B and above only) This function loads the initial value of the longword
located at address in SRAM into the data buffer pointed to by val. It then writes the
longword data to the longword at address in SRAM. data must be 11 bits or less, and will
be sign-extended to 32 bits. The sram_swap_int() function loads the initial value to SRAM
transfer register while the sram_swap_int_D function loads the initial value to a DRAM
transfer register. The argument sig_ptr should be the address of a user signal variable passed
by direct reference.

Note: The _D version of the intrinsic must be used if the val argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
val The pre-modified value.
data The 11-bit sign-extended data to swap.
address The memory location to modify.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be sig_done. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer toSection 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr The signal to raise upon completion.
200 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.57 sram_test_and_add_int(), sram_test_and_add_int_D()

Function Syntax:
void sram_test_and_add_int[_D](

__declspec([sram, dram]_read_reg) unsigned int *val,
int data,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
(IXP28xx Rev. B and above only.) This function loads the initial value of the longword
located at address in SRAM into the data buffer pointed to by val. It then increments the
longword at address in SRAM by the longword data. data must be 11 bits or less, and will
be sign-extended to 32 bits. The argument sig_ptr should be the address of a user signal
variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the val argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
val The pre-modified value.
data The 11-bit sign-extended data to swap.
address The memory location to modify.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be sig_done. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer toSection 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr The signal to raise upon completion.
 Language Support Reference Manual 201

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.58 sram_test_and_clear_bit_pos(), sram_test_and_clear_bit_pos_D()

Function Syntax:
void sram_test_and_clear_bit_pos[_D](

__declspec([sram, dram]_read_reg) unsigned int *val,
unsigned int bit_pos,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
(IXP28xx Rev. B and above only) This function loads the initial value of the longword
located at address in SRAM into the data buffer pointed to by val. It then clears the bit
specified with the integer bit_pos (0 = LSB, 31 = MSB) in the longword at address in
SRAM. The argument sig_ptr should be the address of a user signal variable passed by
direct reference.

Note: The _D version of the intrinsic must be used if the val argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
val The pre-modified value.
bit_pos The bit to clear. Must be in the range 0:31
address The memory location to modify.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be sig_done. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to1” for details and an example.

sig_ptr The signal to raise upon completion.

1.
202 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.2.59 sram_test_and_set_bit_pos(), sram_test_and_set_bit_pos_D()

Function Syntax:
void sram_test_and_set_bit_pos[_D](

__declspec([sram, dram]_read_reg) unsigned int *val,
unsigned int bit_pos,
volatile void __declspec(sram) *address,
sync_t sync,
SIGNAL *sig_ptr);

Description:
(IXP28xx Rev. B and above only.) This function loads the initial value of the longword
located at address in SRAM into the data buffer pointed to by val. It then sets the bit
specified with the integer bit_pos (0 = LSB, 31 = MSB) in the longword at address in
SRAM. The argument sig_ptr should be the address of a user signal variable passed by
direct reference.

Note: The _D version of the intrinsic must be used if the val argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
val The pre-modified value.
bit_pos The bit to set. Must be in the range 0:31
address The memory location to modify.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be sig_done. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer toSection 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr The signal to raise upon completion.
 Language Support Reference Manual 203

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.3 DRAM Operations

This section discusses DRAM operations. Table 14 provides a summary of these operations.

Table 14. DRAM Operations Summary

Name (args) Description

void dram_read[_S](
__declspec([dram, sram]_read_reg) void *data,
volatile void __declspec(dram) *address,
unsigned int count,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Reads count quadwords from DRAM at the
specified address into the transfer register
addressed by data. The _S version of this
intrinsic must be used if the data argument is in
SRAM transfers registers.

void dram_read[_S]_ind(
__declspec([dram, sram]_read_reg) void *data,
volatile void __declspec(dram) *address,
unsigned int max_nn,
dram_read_write_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Reads up to max_nn quadwords from DRAM at
the specified address into the structure
addressed by data. The _S version of this
intrinsic must be used if the data argument is in
SRAM transfers registers. The ind argument
provides additional parameters and overrides.

void dram_write[_S](
__declspec([dram, sram]_write_reg) void *data,
volatile void __declspec(dram) *address,
unsigned int count,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Writes count quadwords to DRAM at the
specified address from the structure addressed
by data. The _S version of this intrinsic must be
used if the data argument is in SRAM transfers
registers. The _S version is only available on
IXP28XX hardware in 8-context mode.

void dram_write[_S]_ind(
__declspec([dram, sram]_write_reg) void *data,
volatile void __declspec(dram) *address,
unsigned int max_nn,
dram_read_write_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Writes up to max_nn quadwords to DRAM at the
specified address from the structure addressed
by data. The _S version of this intrinsic must be
used if the data argument is in SRAM transfers
registers. The _S version is only available on
IXP28XX hardware in 8-context mode. The ind
argument provides additional parameters and
overrides.

void dram_rbuf_read_ind(
volatile void __declspec(dram) *address,
unsigned int max_nn,
dram_rbuf_tbuf_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Moves max_nn quadwords of data directly from
the receive FIFO to DRAM at address. The ind
argument provides additional parameters and
overrides.

void dram_tbuf_write_ind(
volatile void __declspec(dram) *address,
unsigned int max_nn,
dram_rbuf_tbuf_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Moves max_nn quadwords of data directly from
DRAM at address to the transmit FIFO. The ind
argument provides additional parameters and
overrides.
204 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.3.1 dram_read(), dram_read_S()

Function Syntax:
void dram_read[_S](

__declspec([dram,sram]_read_reg) void *data,
volatile void __declspec(dram) *address,
unsigned int count,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
These functions read count quadwords of data from DRAM at the specified address and
loads the data into the structure addressed by data. The dram_read() function loads the data
in a DRAM register while the dram_read_S() function loads the data in an SRAM register.
The count argument must be in the range of 1 through 16. Argument count is preferred to
be a constant; otherwise, the compiler generates an indirect_ref at the cost of performance.
A constant count parameter that is larger than 8 also results in indirect_ref being generated.
The argument sig_ptr should be the address of a user signal variable passed by direct
reference.

Note: The _S version of the intrinsic must be used if the data argument is in SRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Address of the register to load into.
address Address of the location in DRAM to read from.
count Number of quadwords to read in the range of 1 - 16.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to the __implicit_read() intrinsic may be required if not all
the data is used. Please refer to Section 7.2, “Things to
Remember When Writing Microengine C Code” for details and
an example.

sig_ptr Pointer to signal pair to use.
 Language Support Reference Manual 205

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.3.2 dram_read_ind(), dram_read_S_ind()

Function Syntax:
void dram_read[_S]_ind(

__declspec([dram, sram]_read_reg) void *data,
volatile void __declspec(dram) *address,
unsigned int max_nn,
dram_read_write_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
These functions read count quadwords of data from DRAM at the specified address and
loads the data into the structure addressed by data. The dram_read_ind() function loads the
data in a DRAM register while the dram_read_S_ind() function loads the data in an SRAM
register. The max_nn argument must be a constant in the range of 1 through 16 and specifies
the maximum number of quadwords to be transferred while the ind argument specifies the
exact number of quadwords to be transferred. If the ind argument does not specify a count,
then max_nn represents the number of quadwords to be transferred and must be given as 8
or less. The ind argument provides additional parameters and overrides. There are
restrictions on the value specified in the override as noted in the description of the
dram_read_write_ind_t data type. The argument sig_ptr, should be the address of a user
signal variable passed by direct reference.

Note: The _S version of the intrinsic must be used if the data argument is in SRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Address of the register to load the data into.
address Address of the DRAM location to read from.
ind Indirect word.
max_nn Number of quadwords to read in the range of 1 - 16.
sync Type of synchronization to use. The synchronization argument

must be 'sig_done'. A call to the __implicit_read() intrinsic
may be required if not all the data is used. Please refer to
Section 7.2, “Things to Remember When Writing Microengine
C Code” for details and an example.

sig_ptr Pointer to signal pair to use.
206 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.3.3 dram_write(), dram_write_S()

Function Syntax:
void dram_write[_S](

__declspec([dram, sram]_write_reg) void *data,
volatile void __declspec(dram) *address,
unsigned int count,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function writes count quadwords to DRAM at the specified address from the structure
addressed by data. The count argument must be in the range of 1 through 16. Argument
count is preferred to be a constant; otherwise, the compiler generates an indirect_ref at the
cost of performance. A constant count parameter that is larger than 8 also results in
indirect_ref being generated. The argument sig_ptr, should be the address of a user signal
variable passed by direct reference.

Note: The “_S” version of the intrinsic must be used if the data argument is in SRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Address of data buffer to read from
address Address of the DRAM location to write to.
count Number of quadwords to write in the range of 1 - 16.
sync Type of synchronization to use. The synchronization argument

must be 'sig_done'. A call to either the __implicit_read() or
__free_write_buffer() intrinsics is required to prevent the
transfer registers from being reused by the compiler before the
operation has completed. Please refer to Section 7.2, “Things
to Remember When Writing Microengine C Code” for details
and an example.

sig_ptr Pointer to signal pair to use.
 Language Support Reference Manual 207

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.3.4 dram_write_ind(), dram_write_S_ind()

Function Syntax:
void dram_write[_S]_ind(

__declspec([dram, sram]_write_reg) void *data,
volatile void __declspec(dram) *address,
unsigned int max_nn,
dram_read_write_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function writes up to max_nn quadwords to DRAM at the specified address from the
structure addressed by data. The max_nn argument must be a constant in the range of 1
through 16 and specifies the maximum number of quadwords to be transferred while the
ind argument specifies the exact number of quadwords to be transferred. If the ind argument
does not specify a count, then max_nn represents the number of quadwords to be
transferred and must be given as 8 or less. The ind argument provides additional parameters
and overrides. There are restrictions on the value specified in the override as noted in the
description of the dram_read_write_ind_t data type. The argument sig_ptr, should be the
address of a user signal variable passed by direct reference.

Note: The _S version of the intrinsic must be used if the data argument is in SRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Address of data buffer to read from.
address Address of the DRAM location to write to.
max_nn The number of quadwords to write in the range of 1 - 16.
ind Indirect word.
sync Type of synchronization to use. The synchronization argument

must be 'sig_done'. A call to either the __implicit_read() or
__free_write_buffer() intrinsics is required to prevent the
transfer registers from being reused by the compiler before the
operation has completed. Please refer to Section 7.2, “Things
to Remember When Writing Microengine C Code” for details
and an example.

sig_ptr Pointer to signal pair to use.
208 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.3.5 dram_rbuf_read_ind()

Function Syntax:
void dram_rbuf_read_ind(

volatile void __declspec(dram) *address,
unsigned int max_nn,
dram_rbuf_tbuf_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function moves max_nn quadwords of data directly from the receive FIFO to DRAM
at address. The max_nn argument must be a constant in the range of 1 through 16 and
specifies the maximum number of quadwords to be transferred while the ind argument
specifies the exact number of quadwords to be transferred. If the ind argument does not
specify a count, then max_nn represents the number of quadwords to be transferred and
must be given as 8 or less. The ind argument provides additional parameters and overrides.
There are restrictions on the value specified in the override as noted in the description of
the dram_rbuf_tbuf_ind_t data type. The argument sig_ptr, should be the address of a user
signal variable passed by direct reference.

Arguments:
address Address of the DRAM location to write to.
max_nn The number of quadwords to write in the range of 1 - 16.
ind Indirect word.
sync Type of synchronization to use.
sig_ptr Pointer to signal pair to use.
 Language Support Reference Manual 209

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.3.6 dram_tbuf_write_ind()

Function Syntax:
void dram_tbuf_write_ind(

volatile void __declspec(dram) *address,
unsigned int max_nn,
dram_rbuf_tbuf_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function moves max_nn quadwords of data directly from DRAM at address to the
transmit FIFO. The max_nn argument must be a constant in the range of 1 through 16 and
specifies the maximum number of quadwords to be transferred while the ind argument
specifies the exact number of quadwords to be transferred. If the ind argument does not
specify a count, then max_nn represents the number of quadwords to be transferred and
must be given as 8 or less. The ind argument provides additional parameters and overrides.
There are restrictions on the value specified in the override as noted in the description of
the dram_rbuf_tbuf_ind_t data type. The argument sig_ptr, should be the address of a user
signal variable passed by direct reference.

Arguments:
address Address of the DRAM location to read from.
max_nn The number of quadwords to write in the range of 1 -1 6.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant.
sig_ptr Pointer to signal pair to use.
210 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.4 MSF Operations

This section discusses MSF functions. Table 15 summarizes these operations.

Table 15. MSF Operations Summary (Sheet 1 of 2)

Name (args) Description

void msf_read[_D](
__declspec([sram, dram]_read_reg) void *data,
volatile void *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Reads count longwords from the MSF (media
switch fabric) at the specified address into the
structure addressed by data. The _D version of
this intrinsic must be used if the data argument is
in DRAM transfers registers.

void msf_read[_D]_ind(
__declspec([sram, dram]_read_reg) void *data,
volatile void *address,
unsigned int max_nn,
msf_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Reads up to max_nn longwords from the MSF
(media switch fabric) at the specified address
into the structure addressed by data. The _D
version of this intrinsic must be used if the data
argument is in DRAM transfers registers. The ind
argument provides additional parameters and
overrides.

void msf_read64[_D](
__declspec([sram, dram]_read_reg) void *data,
volatile void *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Reads count quadwords from the MSF (media
switch fabric) at the specified address into the
structure addressed by data. The _D version of
this intrinsic must be used if the data argument is
in DRAM transfers registers.

void msf_read64[_D]_ind(
__declspec([sram, dram]_read_reg) void *data,
volatile void *address,
unsigned int max_nn,
msf_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Reads up to max_nn quadwords from the MSF
(media switch fabric) at the specified address
into the structure addressed by data. The _D
version of this intrinsic must be used if the data
argument is in DRAM transfers registers. The ind
argument provides additional parameters and
overrides.

void msf_write[_D](
__declspec([sram, dram]_write_reg) void *data,
volatile void *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Writes count longwords from data to the MSF
(media switch fabric) at the specified address.
The _D version of this intrinsic must be used if
the data argument is in DRAM transfers
registers. The _D version is only available on
IXP28XX hardware in 8-context mode.

void msf_write[_D]_ind(
__declspec([sram, dram]_write_reg) void *data,
volatile void *address,
unsigned int max_nn,
msf_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Writes up to max_nn longwords from data to the
MSF (media switch fabric) at the specified
address. The _D version of this intrinsic must be
used if the data argument is in DRAM transfers
registers. The _D version is only available on
IXP28XX hardware in 8-context mode.The ind
argument provides additional parameters and
overrides.
 Language Support Reference Manual 211

Intel® Microengine C Compiler Language Support
Intrinsic Functions
void msf_write64[_D](
__declspec([sram, dram]_write_reg) void *data,
volatile void *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Writes count quadwords from data to the MSF
(media switch fabric) at the specified address. he
_D version of this intrinsic must be used if the
data argument is in DRAM transfers registers.
The _D version is only available on IXP28XX
hardware in 8-context mode.

void msf_write64[_D]_ind(
__declspec([sram, dram]_write_reg) void *data,
volatile void *address,
unsigned int max_nn,
msf_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

 Writes up to max_nn quadwords from data to the
MSF (media switch fabric) at the specified
address. he _D version of this intrinsic must be
used if the data argument is in DRAM transfers
registers. The _D version is only available on
IXP28XX hardware in 8-context mode.The ind
argument provides additional parameters and
overrides.

void msf_fast write(
volatile void *address);

Writes immediate data to MSF (media switch
fabric). Both the immediate data and the journal
ring are specified by address.

Table 15. MSF Operations Summary (Continued) (Sheet 2 of 2)

Name (args) Description
212 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.4.1 msf_read(), msf_read_D()

Function Syntax:
void mfs_read[_D](

__declspec([sram, dram]_read_reg) void *data,
volatile void *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions read count longwords of data from the MSF (media switch fabric) address
specified by address and loads the data into the structure addressed by data. The mfs_read()
function loads the data into an SRAM register while the msf_read_D() function loads the
data into a DRAM register. The count argument must be in the range of 1 through 16.
Argument count is preferred to be a constant; otherwise, the compiler generates an
indirect_ref at the cost of performance. A constant count parameter that is larger than 8 also
results in indirect_ref being generated. The argument sig_ptr, should be the address of a
user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Data buffer to read into.
address Address of the location in the MSF to read from.
count Number of longwords to read in the range of 1 - 16.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Pointer to signal to use.
 Language Support Reference Manual 213

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.4.2 msf_read_ind(), msf_read_D_ind()

Function Syntax:
void msf_read[_D]_ind(

__declspec([sram, dram]_read_reg) void *data,
volatile void *address,
unsigned int max_nn,
msf_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions read count longwords of data from the MSF (media switch fabric) address
specified by address and loads the data into the structure addressed by data. The mfs_read()
function loads the data into an SRAM register while the msf_read_D() function loads the
data into a DRAM register. The max_nn argument must be a constant in the range of 1
through 16 and specifies the maximum number of longwords to be transferred while the ind
argument specifies the exact number of longwords to be transferred. If the ind argument
does not specify a count, then max_nn represents the number of longwords to be transferred
and must be given as 8 or less. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the msf_read_write_ind_t data type. The argument sig_ptr, should be the
address of a user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Data buffer to read into.
address Address of the msf location to read from.
max_nn Number of longwords to read in the range of 1 - 16.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to 1” for details and an example.

sig_ptr Pointer to signal to use.

1.
214 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.4.3 msf_read64(), msf_read64_D()

Function Syntax:
void mfs_read64[_D](

__declspec([sram, dram]_read_reg) void *data,
volatile void *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions read count quadwords of data from the MSF (media switch fabric) address
specified by address and loads the data into the structure addressed by data. The mfs_read()
function loads the data into an SRAM register while the msf_read_D() function loads the
data into a DRAM register. The count argument must be in the range of 1 through 16.
Argument count is preferred to be a constant; otherwise, the compiler generates an
indirect_ref at the cost of performance. A constant count parameter that is larger than 8 also
results in indirect_ref being generated. The argument sig_ptr identifies your signal variable
to use for signaling event completion.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Data buffer to read into.
address Address of the location in the MSF to read from.
count Number of quadwords to read in the range of 1 - 16.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Pointer to signal to use.
 Language Support Reference Manual 215

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.4.4 msf_read64_ind(), msf_read64_D_ind()

Function Syntax:
void msf_read64[_D]_ind(

__declspec([sram, dram]_read_reg) void *data,
volatile void *address,
unsigned int max_nn,
msf_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions read count quadwords of data from the MSF (media switch fabric) address
specified by address and loads the data into the structure addressed by data. The mfs_read()
function loads the data into an SRAM register while the msf_read_D() function loads the
data into a DRAM register. The max_nn argument must be a constant in the range of 1
through 16 and specifies the maximum number of longwords to be transferred while the ind
argument specifies the exact number of longwords to be transferred. If the ind argument
does not specify a count, then max_nn represents the number of longwords to be transferred
and must be given as 8 or less. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the msf_read_write_ind_t data type. The argument sig_ptr identifies your
signal variable to use for signaling event completion.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Data buffer to read into.
address Address of the MSF location to read from.
max_nn Number of quadwords to read in the range of 1 - 16.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Pointer to signal to use.
216 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.4.5 msf_write(), msf_write_D()

Function Syntax:
void msf_write[_D](

__declspec([sram, dram]_write_reg) void *data,
volatile void *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function writes count longwords from the structure addressed by data into the MSF
(media switch fabric) address specified by address. The count argument must be in the
range of 1 through 16. Argument count is preferred to be a constant; otherwise, the compiler
generates an indirect_ref at the cost of performance. A constant count parameter that is
larger than 8 also results in indirect_ref being generated. The argument sig_ptr identifies
your signal variable to use for signalling event completion.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Data buffer to read from.
address Address of the location in the MSF to write to.
count Number of longwords to write in the range of 1 - 16.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Pointer to signal to use.
 Language Support Reference Manual 217

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.4.6 msf_write_ind(), msf_write_D_ind()

Function Syntax:
void msf_write[_D]_ind(

__declspec([sram, dram]_write_reg) void *data,
volatile void *address,
unsigned int max_nn,
msf_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function writes up to max_nn longwords from the structure addressed by data into the
MSF (media switch fabric) address specified by address. The max_nn argument must be a
constant in the range of 1 through 16 and specifies the maximum number of longwords to
be transferred while the ind argument specifies the exact number of longwords to be
transferred. If the ind argument does not specify a count, then max_nn represents the
number of longwords to be transferred and must be given as 8 or less. The ind argument
provides additional parameters and overrides. There are restrictions on the value specified
in the override as noted in the description of the msf_read_write_ind_t data type. The
argument sig_ptr identifies your signal variable to use for signaling event completion.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Data buffer to read from.
address Address of the MSF location to write to.
max_nn Number of longwords to read in the range of 1 -16.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Pointer to signal to use.
218 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.4.7 msf_write64(), msf_write64_D()

Function Syntax:
void mfs_write64[_D](

__declspec([sram, dram]_write_reg) void *data,
volatile void *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function writes count quadwords from the structure addressed by data into the MSF
(media switch fabric) address specified by address. The count argument must be in the
range of 1 through 16. Argument count is preferred to be a constant; otherwise, the compiler
generates an indirect_ref at the cost of performance. A constant count parameter that is
larger than 8 also results in indirect_ref being generated. The argument sig_ptr identifies
your signal variable to use for signaling event completion.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Data buffer to read from.
address Address of the location in the MSF to write to.
count Number of quadwords to read in the range of 1 - 16.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Pointer to signal to use.
 Language Support Reference Manual 219

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.4.8 msf_write64_ind(), msf_write64_D_ind()

Function Syntax:
void msf_write64[_D]_ind(

__declspec([sram, dram]_write_reg) void *data,
volatile void *address,
unsigned int max_nn,
msf_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function writes up to max_nn quadwords from the structure specified by data into the
MSF (media switch fabric) address specified by address. The max_nn argument must be a
constant in the range of 1 through 16 and specifies the maximum number of longwords to
be transferred while the ind argument specifies the exact number of longwords to be
transferred. If the ind argument does not specify a count, then max_nn represents the
number of longwords to be transferred and must be given as 8 or less. The ind argument
provides additional parameters and overrides. There are restrictions on the value specified
in the override as noted in the description of the msf_read_write_ind_t data type. The
argument sig_ptr identifies your signal variable to use for signaling event completion.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Data buffer to read from.
address Address of the MSF location to write to.
max_nn Number of quadwords to read in the range of 1 - 16.
ind Indirect word.
sync Type of synchronization to use.This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Pointer to signal to use.
220 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.4.9 msf_fast_write()

Function Syntax:
void mfs_fast_write(

volatile void *address);

Description:
This function writes immediate data to the MSF (media switch fabric). Both the immediate
data and the journal ring are specified by address.

Arguments:
address Address of the location in the MSF to write to.
 Language Support Reference Manual 221

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.5 PCI Operations

This section discusses PCI operations. Table 16 summarizes these operations.

Table 16. PCI Operations Summary

Name (args) Description

void pci_read[_D](
__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Reads count longwords from the specified PCI
address into the structure addressed by data.
The _D version of this intrinsic must be used if
the data argument is in DRAM transfers
registers.

void pci_read[_D]_ind(
__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
pci_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Reads up to max_nn longwords from the
specified PCI address into the structure
addressed by data. The _D version of this
intrinsic must be used if the data argument is in
DRAM transfers registers. The ind argument
provides additional parameters and overrides.

void pci_write[_D](
__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Writes count longwords from data to the
specified PCI address. The _D version of this
intrinsic must be used if the data argument is in
DRAM transfers registers. The _D version is only
available on IXP28XX hardware in 8-context
mode.

void pci_write[_D]_ind(
__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
pci_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Writes up to max_nn longwords from data to the
specified PCI address. The _D version of this
intrinsic must be used if the data argument is in
DRAM transfers registers. The _D version is only
available on IXP28XX hardware in 8-context
mode. The ind argument provides additional
parameters and overrides.
222 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.5.1 pci_read(), pci_read_D()

Function Syntax:
void pci_read[_D](

__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions read count longwords of data from the PCI address specified by the address
argument and load the data into the register specified by the data argument. The pci_read()
function loads the data into an SRAM register while the pci_read_D() function loads the
data into a DRAM register. The count argument must be in the range of 1 through 16.
Argument count is preferred to be a constant; otherwise, the compiler generates an
indirect_ref at the cost of performance. A constant count parameter that is larger than 8 also
results in indirect_ref being generated. The argument sig_ptr, should be the address of a
user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Register to read into.
address Address of the location in PCI to read from.
count Number of longwords to read in the range of 1 - 16.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Pointer to signal to use.
 Language Support Reference Manual 223

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.5.2 pci_read_ind(), pci_read_D_ind()

Function Syntax:
void pci_read[_D]_ind(

__declspec([sram, dram]_read_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
pci_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions read up to max_nn longwords from the PCI address specified by the
address argument into the register specified by the data argument. The pci_read_ind()
function loads the data into an SRAM register while the pci_read_D_ind() function loads
the data into a DRAM register. The max_nn argument must be a constant in the range of 1
through 16 and specifies the maximum number of longwords to be transferred while the ind
argument specifies the exact number of longwords to be transferred. If the ind argument
does not specify a count, then max_nn represents the number of longwords to be transferred
and must be given as 8 or less. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the pci_read_write_ind_t data type. The argument sig_ptr, should be the
address of a user signal variable passed by direct reference.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Data buffer to read into.
address Address of the PCI location to read from.
max_nn Number of longwords to read in the range of 1 - 16.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to 1” for details and an example.

sig_ptr Pointer to signal to use.

1.
224 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.5.3 pci_write(), pci_write_D()

Function Syntax:
void pci_write[_D](

__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int count,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function writes count longwords from the structure addressed by data into the PCI
address specified by address. The count argument must be in the range of 1 through 16.
Argument count is preferred to be a constant; otherwise, the compiler generates an
indirect_ref at the cost of performance. A constant count parameter that is larger than 8 also
results in indirect_ref being generated. The argument sig_ptr identifies your signal variable
to use for signalling event completion.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Data buffer to read from.
address Address of the location in PCI to write to.
count Number of longwords to write in the range of 1 -16.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Pointer to signal to use.
 Language Support Reference Manual 225

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.5.4 pci_write_ind(), pci_write_D_ind()

Function Syntax:
void pci_write[_D]_ind(

__declspec([sram, dram]_write_reg) void *data,
volatile void __declspec(sram) *address,
unsigned int max_nn,
pci_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function writes up to max_nn longwords from the structure addressed by data into the
PCI address specified by address. The max_nn argument must be a constant in the range of
1 through 16 and specifies the maximum number of longwords to be transferred while the
ind argument specifies the exact number of longwords to be transferred. If the ind argument
does not specify a count, then max_nn represents the number of longwords to be transferred
and must be given as 8 or less. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the pci_read_write_ind_t data type. The argument sig_ptr identifies your
signal variable to use for signaling event completion.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Data buffer to read from.
address Address of the PCI location to write to.
max_nn Number of longwords to read in the range of 1 - 16.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Pointer to signal to use.
226 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.6 Reflector Operations

This section discusses Reflector operations. Table 17 summarizes these operations. Refer to
Section 4.5.2 for information on CAP operations with reflect.

Table 17. Reflector Operations Summary

Name (args) Description

void reflect_read[_D](
__declspec(sram_read_reg) void *data,
unsigned int remote_ME,
volatile __declspec(remote [sram, dram]_write_reg) void* remote_xfer,
unsigned int remote_ctx,
unsigned int count,
reflect_sig_t reflect_sig,
sync_t sync,
SIGNAL *sig_ptr);

Reads count longwords from the remote
transfer register specified by the
arguments remote_ME, remote_xfer,
and remote_ctx, into the structure
addressed by data. The _D version of
this intrinsic must be used if the
remote_xfer argument is in DRAM
transfers registers.

void reflect_read[_D]_ind(
__declspec(sram_read_reg) void *data,
unsigned int remote_ME,
volatile __declspec(remote [sram, dram]_write_reg) void* remote_xfer,
unsigned int remote_ctx,
unsigned int max_nn,
reflect_read_write_ind_t ind,
reflect_sig_t reflect_sig,
sync_t sync,
SIGNAL *sig_ptr);

Reads up to max_nn longwords from the
remote transfer register specified by the
arguments remote_ME, remote_xfer,
and remote_ctx, into the structure
addressed by data. The _D version of
this intrinsic must be used if the
remote_xfer argument is in DRAM
transfers registers. The ind argument
provides additional parameters and
overrides.

void reflect_write[_D](
__declspec(sram_write_reg) void *data,
unsigned int remote_ME,
volatile __declspec(remote [sram, dram]_read_reg) void* remote_xfer,
unsigned int remote_ctx,
unsigned int count,
reflect_sig_t reflect_sig,
sync_t sync,
SIGNAL *sig_ptr);

Writes count longwords from the
structure addressed by data to the
remote transfer register specified by the
arguments remote_ME, remote_xfer,
and remote_ctx. The _D version of this
intrinsic must be used if the remote_xfer
argument is in DRAM transfers
registers.

void reflect_write[_D]_ind(
__declspec(sram_write_reg) void *data,
unsigned int remote_ME,
volatile __declspec(remote [sram, dram]_read_reg) void* remote_xfer,
unsigned int remote_ctx,
unsigned int max_nn,
reflect_read_write_ind_t ind,
reflect_sig_t reflect_sig,
sync_t sync,
SIGNAL *sig_ptr);

Writes up to max_nn longwords from the
structure addressed by data to the
remote transfer register specified by
arguments remote_ME, remote_xfer,
and remote_ctx. The _D version of this
intrinsic must be used if the remote_xfer
argument is in DRAM transfers
registers. The ind argument provides
additional parameters and overrides.
 Language Support Reference Manual 227

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.6.1 reflect_read(), reflect_read_D()

Function Syntax:
void reflect_read[_D](

__declspec(sram_read_reg) void *data,
unsigned int remote_ME,
volatile __declspec(remote [sram, dram]_write_reg) void*

remote_xfer,
unsigned int remote_ctx,
unsigned int count,
reflect_sig_t reflect_sig,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions read count longwords of data from the remote transfer registers specified
by the arguments remote_ME, remote_xfer, and remote_ctx, into the SRAM transfer
register specified by the data argument. The reflect_read() function reads the data from a
remote SRAM register while the reflect_read_D() function reads the data from a remote
DRAM register. Arguments remote_ME, remote_ctx, reflect_sig, and sync must be
constants. The count argument must be in the range of 1 through 16 and is preferred to be
a constant; otherwise, the compiler generates an indirect_ref at the cost of performance. A
constant count parameter that is larger than 8 also results in indirect_ref being generated.
Argument sig_ptr identifies your signal variable to use for signaling event completion.

Note: The _D version of the intrinsic must be used if the remote_xfer argument is in DRAM
transfer registers. This version is only available in 8-context mode.

Arguments:
data SRAM Transfer register to read into.
remote_ME Remote ME to read from.
remote_xfer Remote transfer register to read from.
remote_ctx Remote ctx to read from.
count Number of longwords to read in the range of 1 - 16.
reflect_sig Reflect signal delivery type.
sync Type of synchronization to use. If 'sig_done' synchronization is

used, a call to the __implicit_read() intrinsic may be required if
not all the data is used. Please refer to Section 7.2, “Things to
Remember When Writing Microengine C Code” for details and
an example. Regardless of the type of synchronization, a call to
__implicit_write() in the other ME's code may be required to
let the compiler know the start of the lifetime of the transfer
register data.

sig_ptr Pointer to signal to use.
228 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.6.2 reflect_read_ind(), reflect_read_D_ind()

Function Syntax:
void reflect_read[_D]_ind(

__declspec(sram_read_reg) void *data,
unsigned int remote_ME,
volatile __declspec(remote [sram, dram]_write_reg) void*

remote_xfer,
unsigned int remote_ctx,
unsigned int max_nn,
reflect_read_write_ind_t ind,
reflect_sig_t reflect_sig,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions read up to max_nn longwords of data from the remote transfer register
specified by the remote_ME, remote_xfer, and remote_ctx arguments into the SRAM
transfer register specified by data. The reflect_read_ind() function reads the data from a
remote SRAM register while the reflect_read_D_ind() function reads the data from a
remote DRAM register. Arguments remote_ME, remote_ctx, reflect_sig, and sync must be
constants. The max_nn argument must be a constant in the range of 1 through 16 and
specifies the maximum number of longwords to be transferred while the ind argument
specifies the exact number of longwords to be transferred. If the ind argument does not
specify a count, then max_nn represents the number of longwords to be transferred and
must be given as 8 or less. The ind argument provides overrides and additional parameters.
There are restrictions on the value specified in the override as noted in the description of
the reflect_read_write_ind_t datatype. Argument sig_ptr identifies your signal variable to
use for signaling event completion.

Note: The _D version of the intrinsic must be used if the remote_xfer argument is in DRAM
transfer registers. This version is only available in 8-context mode.

Arguments:
data Transfer register to read into.
remote_ME Remote ME to read from.
remote_xfer Remote transfer register to read from.
remote_ctx Remote ctx to read from.
max_nn Number of longwords to read in the range of 1 - 16.
ind Indirect word.
reflect_sig Reflect signal delivery type.
sync Type of synchronization to use. If 'sig_done' synchronization is

used, a call to the __implicit_read() intrinsic may be required if
not all the data is used. Please refer to Section 7.2, “Things to
Remember When Writing Microengine C Code” for details and
an example. Regardless of the type of synchronization, a call to
__implicit_write() in the other ME's code may be required to
let the compiler know the start of the lifetime of the transfer
register data.

sig_ptr Pointer to signal to use.
 Language Support Reference Manual 229

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.6.3 reflect_write(), reflect_write_D()

Function Syntax:
void reflect_write[_D](

__declspec(sram_write_reg) void *data,
unsigned int remote_ME,
volatile __declspec(remote [sram, dram]_read_reg) void*

remote_xfer,
unsigned int remote_ctx,
unsigned int count,
reflect_sig_t reflect_sig,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions write count longwords of data from the SRAM transfer register specified
by the data argument to the remote transfer register specified by arguments remote_ME,
remote_xfer, and remote_ctx. The reflect_write() function writes the data to a remote
SRAM transfer register while the reflect_write_D() function writes the data to a remote
DRAM transfer register. The count argument must be in the range of 1 through 16.
Arguments remote_ME, remote_ctx, reflect_sig, and sync must be constants. Argument
count is preferred to be a constant; otherwise, the compiler generates an indirect_ref at the
cost of performance. A constant count parameter that is larger than 8 also results in
indirect_ref being generated. Argument sig_ptr identifies your signal variable to use for
signaling event completion.

Note: The _D version of the intrinsic must be used if the remote_xfer argument is in DRAM
transfer registers.

Arguments:
data SRAM transfer register to read from.
remote_ME Remote ME to write to.
remote_xfer Remote transfer register to write to.
remote_ctx Remote ctx to write to.
count Number of longwords to write in the range of 1 - 16.
reflect_sig Reflect signal delivery type.
sync Type of synchronization to use. If 'sig_done' synchronization is

used, a call to either the __implicit_read() or
__free_write_buffer() intrinsics is required to prevent the
transfer registers from being reused by the compiler before the
operation has completed. Regardless of the type of
synchronization, a call to __implicit_read() in the other ME's
code may be required to prolong the lifetime of the transfer
register data. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Pointer to signal to use.
230 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.3.6.4 reflect_write_ind(), reflect_write_D_ind()

Function Syntax:
void reflect_write[_D]_ind(

__declspec(sram_write_reg) void *data,
unsigned int remote_ME,
volatile __declspec(remote [sram, dram]_read_reg) void*

remote_xfer,
unsigned int remote_ctx,
unsigned int max_nn,
reflect_read_write_ind_t ind,
reflect_sig_t reflect_sig,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions write max_nn longwords of data from the SRAM transfer register
specified by the data argument to the remote transfer register specified by the arguments
remote_ME, remote_xfer, and remote_ctx. The reflect_write_ind() function writes the data
to a remote SRAM transfer register while the reflect_write_D_ind() function writes the
data to a remote DRAM transfer register. Arguments remote_ME, remote_ctx, and
reflect_sig must be constants. The max_nn argument must be a constant in the range of 1
through 16 and specifies the maximum number of longwords to be transferred while the ind
argument specifies the exact number of longwords to be transferred. If the ind argument
does not specify a count, then max_nn represents the number of longwords to be transferred
and must be given as 8 or less. The ind argument provides overrides and additional
parameters. There are restrictions on the value specified in the override as noted in the
description of the reflect_read_write_ind_t datatype. Argument sig_ptr identifies your
signal variable to use for signaling event completion.

Note: The _D version of the intrinsic must be used if the remote_xfer argument is in DRAM
transfer registers.

Arguments:
data Transfer register to read from.
remote_ME Remote ME to write to.
remote_xfer Remote transfer register to write to.
remote_ctx Remote ctx to write to.
max_nn Number of longwords to write in the range of 1 - 16.
ind Indirect word.
reflect_sig Reflect signal delivery type.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Regardless of
the type of synchronization, a call to __implicit_read() in the
other ME's code may be required to prolong the lifetime of the
transfer register data. Please refer to Section 7.2, “Things to
Remember When Writing Microengine C Code” for details and
an example.

sig_ptr Pointer to signal to use.
 Language Support Reference Manual 231

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.3.4 Limitations on Some I/O Functions
Some hardware instructions only take one operand for both source and destination transfer register
operand, but the intrinsic functions provide two separate parameters. These functions are:

• scratch_swap

• scratch_swap_ind

• scratch_test_and_clear_bits

• scratch_test_and_clear_bits_ind

• scratch_test_and_set_bits

• scratch_test_and_set_bits_ind

• scratch_test_and_add

• scratch_test_and_add_ind

• scratch_test_and_sub

• scratch_test_and_sub_ind

• sram_swap

• sram_swap_ind

• sram_test_and_clear_bits

• sram_test_and_clear_bits_ind

• sram_test_and_set_bits

• sram_test_and_set_bits_ind

• sram_test_and_add

• sram_test_and_add_ind

• sram_put_ring

• sram_put_ring_ind

The compiler internally maps both the read and write transfer registers to the same physical register
number. As a result, certain usage of these functions is not legal. For example:

__declspec(sram_read_reg) int r1[2], r2, r3;

__declspec(sram_wriite_reg) int w1, w2, w3;

__declspec(sram) int p;

SIGNAL s1;

...

sram_swap(&r1[0], &w1, &p, sig_done, &s1); // r1[0] and w1 are mapped to the
 //same physical register number

__wait_for_all(&s1);

sram_swap(&r1[1], &w1, &p, sig_done, &s1); // Error: r1[1] and w1 can not be
 //mapped to the same physical
 //register number

__wait_for_all(&s1);

...
232 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
Another case:

sram_swap(&r2, &w1, &p, ctx_swap, &s1); // r2 and w1 are mapped to the same
 // physical register number

__wait_for_all(&s1);

sram_swap(&r3, &w1, &p, ctx_swap, &s1); // r3 and w1 are mapped to the same
 // physical register number

__wait_for_all(&s1);

__asm alu[X, --, B, r2]// Error: the second sram_swap corrupted
// r2 because r2 and r3 are mapped to the same
// physical register.
 Language Support Reference Manual 233

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.4 Synchronization Functions
This section describes the data types and functions used for synchronization.

4.4.1 Synchronization Data Types

4.4.1.1 signal_t

This enumeration type defines the special type of signals that can be tested by the ctx_wait
functions. The values are:

enum signal_t{
kill,
voluntary,
bpt,
no_load
}

The kill signal puts the context into the Sleep state and does not return to the Ready state.

The voluntary signal puts the context into the Sleep state. The context is put back into the Ready
state in one cycle since the Voluntary Event Signal is always set.

The bpt (breakpoint) stops all contexts, notifies the Intel Xscale® core processor, and puts the
current context into the Sleep state. It also sets the CTX_Enable[Breakpoint] bit. This value is
typically used for debugging purposes. For more information the use of this value, refer to the
ctx_arb instruction in the IXP2400/IXP2800 Network Processor Microcode Programmer’s
Reference Manual.

The no_load value instructs ctx_swap to use the last signal mask written into local CSRs.

4.4.1.2 SIGNAL_MASK

The SIGNAL_MASK data type is used for masks specifying one or more signal registers. It is
typedef’ed as follows

typedef int SIGNAL_MASK;

4.4.1.3 inp_state_t

This enumeration defines the range of state values that can be tested with the inp_state_test()
intrinsic. The values are:

enum inp_state_t{
inp_state_nn_empty,
inp_state_nn_full,
inp_state_scr_ring0_status,
inp_state_scr_ring1_status,
inp_state_scr_ring2_status,
inp_state_scr_ring3_status,
inp_state_scr_ring4_status,
inp_state_scr_ring5_status,
234 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
inp_state_scr_ring6_status,
inp_state_scr_ring7_status,
inp_state_scr_ring8_status,
inp_state_scr_ring9_status,
inp_state_scr_ring10_status,
inp_state_scr_ring11_status,
inp_state_fci_not_empty,
inp_state_fci_full

}

4.4.2 Synchronization Functions
This section describes the synchronization functions. Table 18 lists these functions.

Table 18. Synchronization Functions Summary

Name (args) Description

SIGNAL_MASK __signals(); Takes a variable length argument list and returns
a signal masks for use with ctx_arb.

int signal_test(SIGNAL *sig); Tests whether or not a signal is set. If the signal is
set, it is cleared as a side effect of testing it and a
value of 1 is returned.

ctx_swap(); This is a macro that calls the function
ctx_wait(voluntary), which voluntarily swaps out
the current context.

void ctx_wait(signal_t sig); Swaps out the current context and waits for the
specified signal, either kill, bpt, voluntary, or
no_load.

void __wait_for_any(); Generates a ctx_arb on the set of signals
specified by the arguments.

void __wait_for_all(); Generates a ctx_arb on the set of signals
specified by the arguments.

void signal_same_ME(
unsigned int sig_no,
unsigned int ctx);

Raise sig_no in ctx of the same ME.

void signal_same_ME_next_ctx(unsigned int sig_no); Raise sig_no in next context number of the same
ME.

void signal_prev_ME(
unsigned int sig_no,
unsigned int ctx);

Raise sig_no in ctx of the previous ME.

void signal_prev_ME_this_ctx(unsigned int sig_no); Raise sig_no in the same context number of the
previous ME.

void signal_next_ME(
unsigned int sig_no,
unsigned int ctx);

Raise sig_no in ctx of the next ME.

void signal_next_ME_this_ctx(unsigned int sig_no); Raise sig_no in the same context number of the
next ME.
 Language Support Reference Manual 235

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.4.2.1 __signals()

Function Syntax:
SIGNAL_MASK __signals();

Description:
This function takes a variable length argument list and is useful for generating signal masks
for use with ctx_arb. Each argument must one of the following:

•An address of a SIGNAL or SIGNAL_PAIR variable. For signal pairs, both even and
odd signals are included in the mask

•A signal mask
The function returns a 16 bit signal mask as an int that can be used to generate a ctx_arb
either through the __wait_for_all()/__wait_for_any() intrinsics, or through inline assembly.
This function returns a mask representing the hardware signals allocated to your signal
variables. Any number of signals of type SIGNAL between 1 and 15 can be specified.

Note: When a user passes in a signal mask to a function as an int parameter, the compiler cannot always
figure out what bits are set in the mask and hence does not know the members of the signal set that
is represented by the mask. The compiler does not know the life range of these signals represented
in such a mask. To get register allocation right, you have to insert calls to implicit_read() (see
example below).

SIGNAL sig1, sig2;
int mask;
mask = 0
foo(sig1, mask);
mask = __ signals(&sig1, &sig2);
foo(sig2, mask);
__implicit_read(&sig1); //User needs to insert this since

 //ixp_buf_read() reads the
//signals in the mask

__implicit_read(&sig2); //User needs to insert this
//since ixp_buf_read() reads the
//signals in the mask

Arguments:
<variable list> Up to 15 signals.
236 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.4.2.2 signal_test()

Function Syntax:
int signal_test(

SIGNAL *sig);

Description:
This function tests whether or not a signal is set. Signal is a user signal variable. If the signal
is set, it gets cleared as a side effect of testing it and a value of 1 is returned by this function.
Otherwise, a 0 is returned.

Arguments:
sig1 User signal variable.
 Language Support Reference Manual 237

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.4.2.3 ctx_swap()

Function Syntax:
void ctx_swap();

Description:
This is a C macro that serves as a wrapper around the function call ctx_wait(voluntary). The
ctx_wait(voluntary) function call voluntarily swaps out the current context. The context is
ready to run again immediately.

Arguments:
None.
238 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.4.2.4 ctx_wait()

Function Syntax:
void ctx_wait(signal_t sig);

Description:
This function swaps out the current context and waits for the specified signal, bpt,
voluntary, kill, or no_load (where the signal mask is specified earlier in one of the local csr
CTX_WAKEUP_EVENTS). Please use the __wait_for_all(), __wait_for_any(), or
signal_test() intrinsics to wait for signal variables. The sig argument is one of kill,
voluntary, bpt or no_load.

Arguments:
sig Special signal to wait for.
 Language Support Reference Manual 239

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.4.2.5 __wait_for_any(), __wait_for_all()

Function Syntax:
void __wait_for_any();
void __wait_for_all();

Description:
These two functions take a variable length argument list. Each argument must be one of:

•Address of a SIGNAL or SIGNAL_PAIR variable. For signal pairs, both even and odd
signals are included in the mask used for the ctx_arb.

•Return value from a call to __signals() or an integer variable that was assigned such a
return value.

These functions generate a ctx_arb on the set of signals specified by the arguments. In cases
where one or more arguments is not a direct SIGNAL/SIGNAL_PAIR address, the indirect
form of the ctx_arb may be generated. The AND form of the ctx_arb is generated from a
__wait_for_all(), whereas __wait_for_any() generates the OR form.

Arguments:
<variable length args> SIGNAL or SIGNAL_PAIR variable, or SIGNAL_MASK

returned from the __signals() intrinsic.
240 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.4.2.6 signal_same_ME

Function Syntax:
void signal_same_ME(

unsigned int sig_no,
unsigned int ctx);

Description:
Raise the specified signal number (sig_no) in the specified context (ctx) of the same
Microengine.

Note: A call to the __implicit_write() intrinsic is required immediately after a call to this
intrinsic. The Microengine C compiler can't automatically add a call to the
__implicit_write intrinsic because the sig_no may not always be constant and only you
know precisely which signal is implicated.

Arguments:
sig_no The signal number to raise.
ctx The context in which the signal is to be raised. This context

must be running on the same Microengine.
 Language Support Reference Manual 241

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.4.2.7 signal_same_ME_next_ctx

Function Syntax:
void signal_same_ME_next_ctx(

unsigned int sig_no,);

Description:
Raise the specified signal number (sig_no) in the next context number of the same
Microengine.

Note: A call to the __implicit_write() intrinsic is required immediately after a call to this
intrinsic. The Microengine C compiler can't automatically add a call to the
__implicit_write intrinsic because the sig_no may not always be constant and only you
know precisely which signal is implicated.

Example:

 sig_no = __signal_number(&sig);
 signal_same_ME(sig_no, 4);
 __implicit_write(&sig); //

Arguments:
sig_no The signal number to raise.
242 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.4.2.8 signal_prev_ME

Function Syntax:
void signal_prev_ME(

unsigned int sig_no,
unsigned int ctx);

Description:
Raise the specified signal number (sig_no) in the specified context (ctx) of the previous
Microengine.

Note: A call to the __implicit_write() intrinsic is required immediately after a call to this
intrinsic. The Microengine C compiler can't automatically add a call to the
__implicit_write intrinsic because the sig_no may not always be constant and only you
know precisely which signal is implicated.

Arguments:
sig_no The signal number to raise.
ctx The context in which to raise the signal.
 Language Support Reference Manual 243

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.4.2.9 signal_prev_ME_this_ctx

Function Syntax:
void signal_prev_ME_this_ctx(

unsigned int sig_no);

Description:
Raise the specified signal number (sig_no) in the same context number of the previous
Microengine.

Note: A call to the __implicit_write() intrinsic is required immediately after a call to this
intrinsic. The Microengine C compiler can't automatically add a call to the
__implicit_write intrinsic because the sig_no may not always be constant and only you
know precisely which signal is implicated.

Arguments:
sig_no The signal number to raise.
244 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.4.2.10 signal_next_ME

Function Syntax:
void signal_next_ME(

unsigned int sig_no,
unsigned int ctx);

Description:
Raise the specified signal number (sig_no) in the specified context (ctx) of the next
Microengine.

Note: A call to the __implicit_write() intrinsic is required immediately after a call to this
intrinsic. The Microengine C compiler can't automatically add a call to the
__implicit_write intrinsic because the sig_no may not always be constant and only you
know precisely which signal is implicated.

Arguments:
sig_no The signal number to raise.
ctx The context in which to raise the signal.
 Language Support Reference Manual 245

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.4.2.11 signal_next_ME_this_ctx

Function Syntax:
void signal_next_ME_this_ctx(

unsigned int sig_no);

Description:
Raise the specified signal number (sig_no) in the same context number of the next
Microengine.

Note: A call to the __implicit_write() intrinsic is required immediately after a call to this
intrinsic. The Microengine C compiler can't automatically add a call to the
__implicit_write intrinsic because the sig_no may not always be constant and only you
know precisely which signal is implicated.

Arguments:
sig_no The signal number to raise.
246 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.5 Control and Status Register (CSR) Access
Functions
This section discusses the data types and functions used to access the CSR registers.

4.5.1 CAP Data Types

4.5.1.1 cap_csr_t

This enumeration type defines the CAP Control and Status Registers (CSRs) used with the
cap_read(), cap_write(), and cap_fast_write() functions. CAP CSRs are chip wide and provide
special interprocessor communication features to allow flexible and efficient inter-Microengine
and Microengine to core communication. The enumeration values are shown below

Note: In the following enumeration, the # symbol represents a Microengine cluster number and is either 0
or 1; $ is a Microengine number between 0 and 7; and & is a context number between 0 and 7. For
csr_thd_msg_summary_#_n, the n represents a register number from 0 to 1. For
csr_scratch_ring_base_n, n refers to a ring number between 0 and 15.

enum {
csr_thd_msg
csr_thd_summary_#_$_&<n>, < n = 0,..,1>
csr_thd_msg_clr_#_$_&
csr_thd_msg_#_$_&
csr_self_destruct_0,
csr_self_destruct_1,
csr_interthread_sig,
csr_thread_interrupt_a
csr_thread_interrupt_b
csr_scratch_ring_base<n>, < n = 0,..,15>
csr_scratch_ring_head_<n>, < n = 0,..,15>
csr_scratch_ring_<n>_tail, < n = 0,..,15>
csr_hash_multiplier_48_0,
csr_hash_multiplier_48_1,
csr_hash_multiplier_64_0,
csr_hash_multiplier_64_1,
csr_hash_multiplier_128_0,
csr_hash_multiplier_128_1,
csr_hash_multiplier_128_2,
csr_hash_multiplier_128_3,
csr_product_id,
csr_misc_control,
csr_perf_counter_control,
csr_ixp_reset_0
csr_ixp_reset_1
csr_clock_control
csr_strap_options

} cap_csr_t;
 Language Support Reference Manual 247

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.5.1.2 local_csr_t

This enumeration specifies the CSRs used in local_csr_read and local_csr_write functions. The
enumeration values are:

enum {
local_csr_ustore_address,
local_csr_ustore_data_lower,
local_csr_ustore_data_upper,
local_csr_ustore_error_status,
local_csr_alu_out,
local_csr_ctx_arb_cntl,
local_csr_ctx_enables,
local_csr_cc_enable,
local_csr_csr_ctx_pointer
local_csr_indirect_ctx_sts,
local_csr_active_ctx_sts,
local_csr_indirect_ctx_sig_events,
local_csr_active_ctx_sig_events,
local_csr_indirect_ctx_wakeup_events,
local_csr_active_ctx_wakeup_events,
local_csr_indirect_ctx_future_count,
local_csr_active_ctx_future_count,
local_csr_indirect_lm_addr_0,
local_csr_indirect_lm_addr_0_byte_index,
local_csr_active_lm_addr_0,
local_csr_active_lm_addr_0_byte_index,
local_csr_indirect_lm_addr_1,
local_csr_indirect_lm_addr_1_byte_index,
local_csr_active_lm_addr_1,
local_csr_active_lm_addr_1_byte_index,
local_csr_byte_index,
local_csr_t_index,
local_csr_t_index_byte_index,
local_csr_indirect_future_count_signal,
local_csr_nn_get,
local_csr_nn_put,
local_csr_timestamp_high,
local_csr_timestamp_low,
local_csr_next_neighbor_signal,
local_csr_prev_neighbor_signal,
local_csr_same_me_signal,
local_csr_crc_remainder,
local_csr_profile_count,
local_csr_pseudo_random_number,
local_csr_status,
local_csr_crc_remainder,
local_csr_profile_count,
local_csr_pseudo_random_number,
local_csr_local_csr_status,
local_csr_datapath_signature,
local_csr_datapath_signature_enable

} local_csr_t;
248 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.5.1.3 cap_read_write_ind_t

This structure provides additional or overriding qualifiers on CAP read and write operations with
the indirect_ref attribute. For further details on this indirect qualifier, refer to the IXP2400/IXP2800
Network Processor Programmer’s Reference Manual. This structure has the following bitfields, all
of which are unsigned ints:

Field Name Size Description

ov_ueng_addr 1 1 to use the microengine specified in the
ueng_addr field; 0 to use the issuing
microengine (this should never be set)

ueng_addr 5 Specifies the microengine where the result is to
be written and signaled upon completion.

ov_ref_count 1 1 to use the count specified in the ref_count
field; 0 to use the count argument to the function.

ref_count 4 Reference count indicating the number of
longwords to read or write. The value encoded in
this field is one less than the reference count.
Hence, valid values are 0 - 15.

reserved 9 Unused.

xadd 7 The starting transfer register.

ov_xadd 1 1 to override the transfer register (this should
never be set).

ov_ctx 1 1 to use the context specified in the ctx field; 0 to
use the current context.

ctx 3 Specifies context where result will be written and
signaled upon completion.
 Language Support Reference Manual 249

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.5.2 CAP Functions
This section describes the CSR access functions that are used to move data between CAP CSRs
and a microengine. Table 19 provides a summary.

Table 19. CSR Access Functions Summary (Sheet 1 of 2)

Name (args) Description

void cap_csr_read[_D](
__declspec([sram, dram]_read_reg) void *data,
cap_csr_t csr,
sync_t sync,
SIGNAL *sig_ptr);

Reads the value of the specified CSR into the
transfer register specified by data. The _D
version of this intrinsic must be used if the data
argument is in DRAM transfers registers.

void cap_csr_read[_D]_ind(
__declspec([sram, dram]_read_reg) void *data,
cap_csr_t csr,
cap_csr_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Reads the value of the specified CSR into the
transfer register specified by data. The _D
version of this intrinsic must be used if the data
argument is in DRAM transfers registers. The ind
argument provides additional parameters and
overrides.

void cap_csr_write[_D](
__declspec([sram, dram]_write_reg) void *data,
cap_csr_t csr,
sync_t sync,
SIGNAL *sig_ptr);

Writes the content of data to the specified CSR.
The _D version of this intrinsic must be used if
the data argument is in DRAM transfers
registers. The _D version is only available on
IXP28XX hardware in 8-context mode.

void cap_csr_write[_D]_ind(
__declspec([sram, dram]_write_reg) void *data,
cap_csr_t csr,
cap_csr_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

 Writes the content of data to the specified CSR.
The _D version of this intrinsic must be used if
the data argument is in DRAM transfers
registers. The _D version is only available on
IXP28XX hardware in 8-context mode. The ind
argument provides additional parameters and
overrides.

void cap_read[_D](
__declspec([sram, dram]_read_reg) void *data,
unsigned int address,
unsigned int count,
reflect_sig_t reflect_sig,
sync_t sync,
SIGNAL *sig_ptr);

Reads from the specified CAP address into the
data buffer. The _D version of this intrinsic must
be used if the data argument is in DRAM
transfers registers.

void cap_read[_D]_ind(
__declspec([sram, dram]_read_reg) void *data,
unsigned int address,
unsigned int max_nn,
cap_read_write_ind_t ind,
reflect_sig_t reflect_sig,
sync_t sync,
SIGNAL *sig_ptr);

Reads from the specified CAP address into the
data buffer. The ind argument provides additional
parameters and overrides. The _D version of this
intrinsic must be used if the data argument is in
DRAM transfers registers.

void cap_write[_D](
__declspec([sram, dram]_write_reg) void *data,
unsigned int address,
unsigned int count,
reflect_sig_t reflect_sig
sync_t sync,
SIGNAL *sig_ptr);

Writes from the data buffer to the specified CAP
address. The _D version of this intrinsic must be
used if the data argument is in DRAM transfers
registers. The _D version is only available on
IXP28XX hardware in 8-context mode.

void cap_write[_D]_ind(
__declspec([sram, dram]_write_reg) void *data,
unsigned int address,
unsigned int max_nn,
cap_read_write_ind_t ind,
reflect_sig_t reflect_sig,
sync_t sync,
SIGNAL *sig_ptr);

Writes from the data buffer to the specified CAP
address. The _D version of this intrinsic must be
used if the data argument is in DRAM transfers
registers. The _D version is only available on
IXP28XX hardware in 8-context mode. The ind
argument provides additional parameters and
overrides.
250 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
void cap_fast_write(
unsigned int data,
cap_csr_t csr);

Writes the content of data to the specified CSR
and eliminates the need to pull data from a
transfer register during a write operation and
therefore reduces the time required to complete
the write operation.

unsigned int local_csr_read(local_csr_t csr); Reads and returns the value of the specified
local CSR.

void local_csr_write(local_csr_t csr, unsigned int data); Writes the content of data to the specified local
CSR.

Table 19. CSR Access Functions Summary (Continued) (Sheet 2 of 2)

Name (args) Description
 Language Support Reference Manual 251

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.5.2.1 cap_csr_read(), cap_csr_read_D()

Function Syntax:
void cap_csr_read[_D](

__declspec([sram, dram]_read_reg) void *data,
cap_csr_t csr,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions read from the specified CSR and write the data into the transfer register
specified by data. The cap_csr_read() function writes the data into an SRAM transfer
register while the cap_csr_read_D() function writes the data into a DRAM transfer register.
Arguments csr and sync should be constant literals as required by the microcode assembler.
The csr argument should refer to an appropriate CSR that can be specified on a CAP read
microcode instruction. The sig_ptr argument identifies your signal variable to use for
signaling event completion.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Data buffer to read into.
csr CSR to read. This argument must be a constant.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
252 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.5.2.2 cap_csr_read_ind(), cap_csr_read_D_ind()

Function Syntax:
void cap_csr_read[_D]_ind(

__declspec([sram, dram]_read_reg) void *data,
cap_csr_t csr,
cap_csr_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions read from the specified CSR and write the data into the transfer register
specified by data. The cap_csr_read_ind() function writes the data into an SRAM transfer
register while the cap_csr_read_D_ind() function writes the data into a DRAM transfer
register. Arguments csr and sync should be constant literals as required by the microcode
assembler. The csr argument should refer to an appropriate CSR that can be specified on a
CAP read microcode instruction. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the cap_csr_read_write_ind_t data type. The sig_ptr argument identifies
your signal variable to use for signaling event completion.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

Arguments:
data Data buffer to read into.
csr CSR to read. This argument must be a constant.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 253

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.5.2.3 cap_csr_write(), cap_csr_write_D()

Function Syntax:
void cap_csr_write[_D](

__declspec([sram, dram]_write_reg) void *data,
cap_csr_t csr,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function writes the contents of data to the specified CSR. Arguments csr and sync
should be constant literals as required by the microcode assembler. The csr argument
should refer to an appropriate CSR that can be specified on a CAP write microcode
instruction. The sig_ptr argument identifies your signal variable to use for signaling event
completion.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Data buffer to read from.
csr CSR to write to.
sync Type of synchronization to use. If 'sig_done' synchronization is

used, a call to either the __implicit_read() or
__free_write_buffer() intrinsics is required to prevent the
transfer registers from being reused by the compiler before the
operation has completed. Please refer to Section 7.2, “Things
to Remember When Writing Microengine C Code” for details
and an example.

sig_ptr Signal to raise upon completion.
254 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.5.2.4 cap_csr_write_ind(), cap_csr_write_D_ind()

Function Syntax:
void cap_csr_write[_D]_ind(

__declspec([sram, dram]_write_reg) void *data,
cap_csr_t csr,
cap_csr_read_write_ind_t ind,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function writes the contents of the buffer data to the specified CSR. Arguments csr and
sync should be constant literals as required by the microcode assembler. The csr argument
should refer to an appropriate CSR that can be specified on a CAP write microcode
instruction. The ind argument provides additional parameters and overrides. There are
restrictions on the value specified in the override as noted in the description of the
cap_csr_read_write_ind_t data type. The sig_ptr argument identifies your signal variable
to use for signaling event completion.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

Arguments:
data Data buffer to read from.
csr CSR to write to.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 255

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.5.2.5 cap_read(), cap_read_D()

Function Syntax:
void cap_read[_D](

__declspec([sram, dram]_read_reg) void *data,
unsigned int address,
unsigned int count,
reflect_sig_t reflect_sig,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions read data from the specified address on a CAP subunit into a transfer
register specified by the data argument. The cap_read() function reads the data into an
SRAM transfer register while the cap_read_D() function reads the data into a DRAM
transfer register. The address argument should refer to an appropriate CAP subunit that can
be specified in a CAP read microcode instruction. The count argument must be in the range
of 1 through 16. Argument count is preferred to be a constant; otherwise, the compiler
generates an indirect_ref resulting in a loss of performance. Arguments reflect_sig and sync
should be constant literals as required by the microcode assembler.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

If these functions are used to access CSRs (Control Status Registers) in the CAP subunit,
the “count” parameter must be 1. Only one CSR can be accessed at a time.

Arguments:
data Data buffer to read into.
address Address to read from.
count Number of longwords to read in the range of 1 - 16.
reflect_sig Reflect signal delivery type.
sync Type of synchronization to use. Note that if 'sig_done'

synchronization is used, a call to the __implicit_read() intrinsic
may be required if not all the data is used. Please refer to
Section 7.2, “Things to Remember When Writing Microengine
C Code” for details and an example.

sig_ptr Signal to raise upon completion.
256 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.5.2.6 cap_read_ind(), cap_read_D_ind()

Function Syntax:
void cap_read[_D]_ind(

__declspec([sram, dram]_read_reg) void *data,
unsigned int address,
unsigned int max_nn,
cap_read_write_ind_t ind,
reflect_sig_t reflect_sig,
sync_t sync,
SIGNAL *sig_ptr);

Description:
These functions read data from the specified address on a CAP subunit into a transfer
register specified by the data argument. The cap_read_ind() function reads the data into an
SRAM transfer register while the cap_read_D_ind() function reads the data into a DRAM
transfer register. Arguments reflect_sig and sync should be constant literals as required by
the microcode assembler. The max_nn argument must be a constant in the range of 1
through 16 and specifies the maximum number of longwords to be transferred while the ind
argument specifies the exact number of longwords to be transferred. If the ind argument
does not specify a count, then max_nn represents the number of longwords to be transferred
and must be given as 8 or less. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the cap_read_write_ind_t data type. The sig_ptr argument identifies your
signal variable to use for signaling event completion.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available in 8-context mode.

If these functions are used to access CSRs (Control Status Registers) in the CAP subunit,
the “max_nn” parameter must be 1, and the “count” field of the indirect access structure
must also be 1. Only one CSR can be accessed at a time.

Arguments:
data Data buffer to read into.
address Address to read from.
max_nn Maximum number of longwords to read in the range of 1 - 16.
ind Indirect word.
reflect_sig Reflect signal deliver type.
sync Type of synchronization to use. This argument must be a

constant. Note that if 'sig_done' synchronization is used, a call
to the __implicit_read() intrinsic may be required if not all the
data is used. Please refer to Section 7.2, “Things to Remember
When Writing Microengine C Code” for details and an
example.

sig_ptr Signal to raise upon completion.
 Language Support Reference Manual 257

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.5.2.7 cap_write(), cap_write_D()

Function Syntax:
void cap_write[_D](

__declspec([sram, dram]_write_reg) void *data,
unsigned int address,
unsigned int count
reflect_sig_t reflect_sig,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function writes the contents of data to the specified CAP address. Argument count is
preferred to be a constant; otherwise, the compiler generates an indirect_ref resulting in a
loss of performance. The count argument must be in the range of 1 through 16. Arguments
reflect_sig and sync should be constant literals as required by the microcode assembler. The
address argument should refer to an appropriate CAP subunit that can be specified on a
CAP write microcode instruction. The sig_ptr argument identifies your signal variable to
use for signaling event completion.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

If these functions are used to access CSRs (Control Status Registers) in the CAP subunit,
the “count” parameter must be 1. Only one CSR can be accessed at a time.

Arguments:
data Data buffer to write to.
address Address to read from.
count Number of longwords to write in the range of 1 - 16.
reflect_sig Reflect signal delivery type.
sync Type of synchronization to use. If 'sig_done' synchronization is

used, a call to either the __implicit_read() or
__free_write_buffer() intrinsics is required to prevent the
transfer registers from being reused by the compiler before the
operation has completed. Please refer to Section 7.2, “Things
to Remember When Writing Microengine C Code” for details
and an example.

sig_ptr Signal to raise upon completion.
258 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.5.2.8 cap_write_ind(), cap_write_D_ind()

Function Syntax:
void cap_write[_D]_ind(

__declspec([sram, dram]_write_reg) void *data,
unsigned int address,
unsigned int max_nn,
cap_read_write_ind_t ind,
reflect_sig_t reflect_sig,
sync_t sync,
SIGNAL *sig_ptr);

Description:
This function writes the contents of data to the specified CAP address. Arguments
reflect_sig and sync should be constant literals as required by the microcode assembler. The
address argument should refer to an appropriate CAP subunit that can be specified on a
CAP write microcode instruction. The max_nn argument must be a constant in the range of
1 through 16 and specifies the maximum number of longwords to be transferred while the
ind argument specifies the exact number of longwords to be transferred. If the ind argument
does not specify a count, then max_nn represents the number of longwords to be transferred
and must be given as 8 or less. The ind argument provides additional parameters and
overrides. There are restrictions on the value specified in the override as noted in the
description of the cap_read_write_ind_t data type. The sig_ptr argument identifies your
signal variable to use for signaling event completion.

Note: The _D version of the intrinsic must be used if the data argument is in DRAM transfer
registers. This version is only available on IXP28XX Rev. B hardware in 8-context mode.

If these functions are used to access CSRs (Control Status Registers) in the CAP subunit,
the “max_nn” parameter must be 1, and the “count” field of the indirect access structure
must also be 1. Only one CSR can be accessed at a time.

Arguments:
data Data buffer to write to.
address Address to read from.
max_nn Maximum number of longwords to write in the range of 1 - 16.
reflect_sig Reflect signal delivery type.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. If 'sig_done' synchronization is used, a call to either
the __implicit_read() or __free_write_buffer() intrinsics is
required to prevent the transfer registers from being reused by
the compiler before the operation has completed. Please refer
to Section 7.2, “Things to Remember When Writing
Microengine C Code” for details and an example.

sig_ptr Pointer to signal to use.
 Language Support Reference Manual 259

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.5.2.9 cap_fast_write()

Function Syntax:
void cap_fast_write(

unsigned int data,
cap_csr_t csr);

Description:
This function writes the contents of data to the specified CSR, but eliminates the need to
pull data from a transfer register during a write operation and therefore reduces the time
required to complete the write operation. Arguments csr should be a constant literal as
required by the microcode assembler. The csr argument should refer to an appropriate CSR
that can be specified on a CAP fast write microcode instruction.

Note: The scratch ring CSRs cannot be written to using this function. This is a hardware
restriction.

Arguments:
data Data buffer to read from.
csr CSR to write to.
260 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.5.2.10 local_csr_read()

Function Syntax:
unsigned int local_csr_read(

local_csr_t csr);

Description:
This function reads and returns the value of the specified local CSR. The csr argument
should be a constant literal that refers to an appropriate local CSR and that can be specified
on a LOCAL_CSR_RD microcode instruction.

Arguments:
csr CSR to read from.
 Language Support Reference Manual 261

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.5.2.11 local_csr_write()

Function Syntax:
void local_csr_write(

local_csr_t csr,
unsigned int data);

Description:
This function writes the contents of data to the specified local CSR. The csr argument
should be a constant literal that refers to an appropriate local CSR and that can be specified
on a LOCAL_CSR_WR microcode instruction.

Arguments:
csr CSR to write to.
data Data to write to the specified CSR.
262 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.6 Hash Access Functions
The Hash Access functions allow you to perform 48, 64, and 128 bit operations on the hash unit.

4.6.1 Data Types
The hash_ind_t structure provides additional or overriding qualifiers on Hash unit operations with
the indirect_ref_attribute. For further details on this indirect qualifier, refer to the IXP2400/
IXP2800 Network Processor Programmer’s Reference Manual.

Note: Since the compiler does all register allocation, including all transfer registers, it is an error to set
the ov_xadd field to override the transfer register allocated and specified in the instruction by the
compiler. For this same reason, it is also an error to set the ov_ueng_addr fields.

The hash_ind_t structure has the following bitfields:

Field Name Size Description

ctx 3 Specifies context where result will be written and
signaled upon completion.

ov_ctx 1 1 to use the context above, 0 to use the current
context.

ov_xadd 1 1 to override the transfer register (this should
never be set)

xadd 7 The starting transfer register.

reserved1 9 Unused.

hash_count 2 Hash count 1, 2, or 3.

reserved2 2 Unused.

ov_hash_count 1 1 to use the count above, 0 to use the count
argument to the function.

ueng_addr 5 Specifies ME where result will be written and
signaled upon completion.

ov_ueng_addr 1 1 to use ueng_addr above, 0 to use the current
ueng_addr (this should never be set).
 Language Support Reference Manual 263

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.6.2 Functions
This section describes the hash access functions. Table 20summarizes these functions.

Table 20. Hash Functions Summary

Name (args) Description

void hash_48[_D](
__declspec([sram, dram]_read_reg) void *data_out,
__declspec([sram, dram]_write_reg) void *data_in,
unsigned int count,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Computes a 48-bit hash on up to count
quadwords of data_in. Count must be a compile
time constant between 1 and 3. The _D version
of this intrinsic must be used if the data_out and
data_in arguments are in DRAM transfers
registers. The _D version is only available on
IXP28XX hardware in 8-context mode.

void hash_48[_D]_ind(
__declspec([sram, dram]_read_reg) void *data_out,
__declspec([sram, dram]_write_reg) void *data_in,
unsigned int max_nn,
hash_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Computes a 48-bit hash on up to max_nn
quadwords of data_in. The _D version of this
intrinsic must be used if the data_out and data_in
arguments are in DRAM transfers registers. The
_D version is only available on IXP28XX
hardware in 8-context mode. The ind argument
provides overrides and additional parameters.

void hash_64[_D](
__declspec([sram, dram]_read_reg) void *data_out,
__declspec([sram, dram]_write_reg) void *data_in,
unsigned int count,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Computes a 64-bit hash on up to count
quadwords of data_in. Count must be a compile
time constant between 1 and 3. The _D version
of this intrinsic must be used if the data_out and
data_in arguments are in DRAM transfers
registers. The _D version is only available on
IXP28XX hardware in 8-context mode.

void hash_64[_D]_ind(
__declspec([sram, dram]_read_reg) void *data_out,
__declspec([sram, dram]_write_reg) void *data_in,
unsigned int max_nn,
hash_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Computes a 64-bit hash on up to max_nn
quadwords of data_in. The _D version of this
intrinsic must be used if the data_out and data_in
arguments are in DRAM transfers registers. The
_D version is only available on IXP28XX
hardware in 8-context mode. The ind argument
provides overrides and additional parameters.

void hash_128[_D](
__declspec([sram, dram]_read_reg) void *data_out,
__declspec([sram, dram]_write_reg) void *data_in,
unsigned int count,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Computes a 128-bit hash on up to 2*count
quadwords of data_in. Count must be a compile
time constant between 1 and 3. The _D version
of this intrinsic must be used if the data_out and
data_in arguments are in DRAM transfers
registers. The _D version is only available on
IXP28XX hardware in 8-context mode.

void hash_128[_D]_ind(
__declspec([sram, dram]_read_reg) void *data_out,
__declspec([sram, dram]_write_reg) void *data_in,
unsigned int max_nn,
hash_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Computes a 128-bit hash on up to 2*max_nn
quadwords of data_in. The _D version of this
intrinsic must be used if the data_out and data_in
arguments are in DRAM transfers registers. The
_D version is only available on IXP28XX
hardware in 8-context mode. The ind argument
provides overrides and additional parameters.
264 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.6.2.1 hash_48(), hash_48_D()

Function Syntax:
void hash_48[_D](

__declspec([sram, dram]_read_reg) void *data_out,
__declspec([sram, dram]_write_reg) void *data_in,
unsigned int count,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function computes a 48-bit hash on count quadwords of data_in. Count must be a
compile time constant between 1 and 3. The sync argument must be a constant. The results
are placed in data_out. The signal used for synchronization is addressed by sig_ptr.

Note: The _D version of the intrinsic must be used when both the data_out and data_in
arguments are in DRAM transfer registers. This version is only available on IXP28XX
Rev. B hardware in 8-context mode.

Arguments:
data_out Hashed data.
data_in Data to hash.
count Number of quadwords of data.
sync Type of synchronization to use. The synchronization argument

must be 'sig_done'. A call to either the __implicit_read() or
__free_write_buffer() intrinsics is required on the write
transfer register argument to prevent the registers from being
reused before the operation has completed. A call to
__implicit_read() on the read transfer register argument will be
needed if not all the data is read. Please refer to Section 7.2,
“Things to Remember When Writing Microengine C Code” for
details and an example.

sig_ptr Address of user signal variable.
 Language Support Reference Manual 265

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.6.2.2 hash_48_ind(), hash_48_D_ind()

Function Syntax:
void hash_48[_D]_ind(

__declspec([sram, dram]_read_reg) void *data_out,
__declspec([sram, dram]_write_reg) void *data_in,
unsigned int max_nn,
hash_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function computes a 48-bit hash on up to max_nn quadwords of data_in. The results
are placed in data_out. The max_nn argument must be a constant in the range of 1 through
3and specifies the maximum number of quadwords to be transferred while the ind argument
specifies the exact number of quadwords to be transferred. If the ind argument does not
specify a count, then max_nn represents the number of quadwords to be transferred and
must be given as 3 or less. The ind argument provides additional parameters and overrides.
There are restrictions on the value specified in the override as noted in the description of
the hash_ind_t data type. The signal used for synchronization is addressed by sig_ptr.

Note: The _D version of the intrinsic must be used when both the data_out and data_in
arguments are in DRAM transfer registers. This version is only available on IXP28XX
Rev. B hardware in 8-context mode.

Arguments:
data_out Hashed data.
data_in Data to hash.
max_nn Number of quadwords of data in the range of 1 - 3.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Address of user signal variable.
266 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.6.2.3 hash_64(), hash_64_D()

Function Syntax:
void hash_64[_D](

__declspec([sram, dram]_read_reg) void *data_out,
__declspec([sram, dram]_write_reg) void *data_in,
unsigned int count,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function computes a 64-bit hash on up to count quadwords of data_in. Argument count
must be a compile time constant between 1 and 3. Argument sync must be constant. The
results are placed in data_out. The signal used for synchronization is addressed by sig_ptr.

Note: The _D version of the intrinsic must be used when both the data_out and data_in
arguments are in DRAM transfer registers. This version is only available on IXP28XX
Rev. B hardware in 8-context mode.

Arguments:
data_out Hashed data.
data_in Data to hash.
count Number of quadwords of data.
sync Type of synchronization to use. The synchronization argument

must be 'sig_done'. A call to either the __implicit_read() or
__free_write_buffer() intrinsics is required on the write
transfer register argument to prevent the registers from being
reused before the operation has completed. A call to
__implicit_read() on the read transfer register argument will be
needed if not all the data is read. Please refer to Section 7.2,
“Things to Remember When Writing Microengine C Code” for
details and an example.

sig_ptr Address of user signal variable.
 Language Support Reference Manual 267

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.6.2.4 hash_64_ind(), hash_64_D_ind()

Function Syntax:
void hash_64[_D]_ind(

__declspec([sram, dram]_read_reg) void *data_out,
__declspec([sram, dram]_write_reg) void *data_in,
unsigned int max_nn,
hash_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function computes a 64-bit hash on up to max_nn quadwords of data_in. The results
are placed in data_out. The max_nn argument must be a constant in the range of 1 through
3 and specifies the maximum number of quadwords to be transferred while the ind
argument specifies the exact number of quadwords to be transferred. If the ind argument
does not specify a count, then max_nn represents the number of quadwords to be
transferred and must be given as 3 or less. The ind argument provides additional parameters
and overrides. There are restrictions on the value specified in the override as noted in the
description of the hash_ind_t data type. The signal used for synchronization is addressed
by sig_ptr.

Note: The _D version of the intrinsic must be used when both the data_out and data_in
arguments are in DRAM transfer registers. This version is only available on IXP28XX
Rev. B hardware in 8-context mode.

Arguments:
data_out Hashed data.
data_in Data to hash.
max_nn Number of quadwords of data in the range of 1 - 3.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Address of user signal variable.
268 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.6.2.5 hash_128(), hash_128_D()

Function Syntax:
void hash_128[_D](

__declspec([sram, dram]_read_reg) void *data_out,
__declspec([sram, dram]_write_reg) void *data_in,
unsigned int count,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function computes a 128-bit hash on 2 times count quadwords of data_in. Count must
be a compile time constant between 1 and 3. The sync argument must be a constant. The
results are placed in data_out. The signal used for synchronization is addressed by sig_ptr.

Note: The _D version of the intrinsic must be used when both the data_out and data_in
arguments are in DRAM transfer registers. This version is only available on IXP28XX
Rev. B hardware in 8-context mode.

Arguments:
data_out Hashed data.
data_in Data to hash.
count Number of 2 times quadwords of data.
sync Type of synchronization to use. The synchronization argument

must be 'sig_done'. A call to either the __implicit_read() or
__free_write_buffer() intrinsics is required on the write
transfer register argument to prevent the registers from being
reused before the operation has completed. A call to
__implicit_read() on the read transfer register argument will be
needed if not all the data is read. Please refer to Section 7.2,
“Things to Remember When Writing Microengine C Code” for
details and an example.

sig_ptr Address of user signal variable.
 Language Support Reference Manual 269

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.6.2.6 hash_128_ind(), hash_128_D_ind()

Function Syntax:
void hash_128[_D]_ind(

__declspec([sram, dram]_read_reg) void *data_out,
__declspec([sram, dram]_write_reg) void *data_in,
unsigned int max_nn,
hash_ind_t ind,
sync_t sync,
SIGNAL_PAIR *sig_ptr);

Description:
This function computes a 128-bit hash on up to 2 times max_nn quadwords of data_in. The
results are placed in data_out. The max_nn argument must be a constant in the range of 1
through 3and specifies the maximum number of quadwords to be transferred while the ind
argument specifies the exact number of quadwords to be transferred. If the ind argument
does not specify a count, then max_nn represents the number of quadwords to be
transferred and must be given as 3 or less. The ind argument provides additional parameters
and overrides. There are restrictions on the value specified in the override as noted in the
description of the hash_ind_t data type. The signal used for synchronization is addressed
by sig_ptr.

Note: The _D version of the intrinsic must be used when both the data_out and data_in
arguments are in DRAM transfer registers. This version is only available on IXP28XX
Rev. B hardware in 8-context mode.

Arguments:
data_out Hashed data.
data_in Data to hash.
max_nn Number of 2 times quadwords of data in the range of 1 - 3.
ind Indirect word.
sync Type of synchronization to use. This argument must be a

constant. The synchronization argument must be 'sig_done'. A
call to either the __implicit_read() or __free_write_buffer()
intrinsics is required on the write transfer register argument to
prevent the registers from being reused before the operation
has completed. A call to __implicit_read() on the read transfer
register argument will be needed if not all the data is read.
Please refer to Section 7.2, “Things to Remember When
Writing Microengine C Code” for details and an example.

sig_ptr Address of user signal variable.
270 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.6.3 Limitations on Hash Functions
Since the hardware HASH instruction takes only one operand for both source and destination
operand, the compiler allocates the read transfer register pointed to by data_in and the write
transfer register pointed to by data_out to the same physical register number. As a result, certain
usage is not valid. For example:

__declspec(sram_read_reg) long long r1[2], r2, r3;

__declspec(sram_write_reg) long long w1, w2, w3;

SIGNAL s1;

...

hash_48(&r1[0], &w1, 1, sig_done, &s1); // r1[0] and w1 are mapped to the same

// physical register number

__wait_for_all(&s1);

hash_48(&r1[1], &w1, 1, sig_done, &s1); // Error: r1[1] and w1 can not be
 //mapped to the same physical
 //register number

__wait_for_all(&s1);

Another case:

hash_48(&r2, &w1, &w1, 1, sig_done, &s1);// r2 and w1 are mapped to the same

// physical register number

__wait_for_all(&s1);

hash_48(&r3, &w1, &w2, 1, sig_done, &s1);// r3 and w1 are mapped to the same

// physical register number

__wait_for_all(&s1);

__asm alu[X, --, B, r2] // Error: the second hash_48 corrupted

// r2 because r2 and r3 are mapped to the same

// physical register.
 Language Support Reference Manual 271

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.7 CAM (Content Addressable Memory) Access
Functions
The data types and functions described in this section are for accessing the CAM features of the
Network Processor. CAM is a hardware feature where a content match is performed to get an index
to associated information.

4.7.1 Data Types

4.7.1.1 cam_lookup_t

The cam_lookup_t structure is used to capture the results of a CAM lookup. It has the following
bit-fields:

Field Name Size Description

zeroes1 3 Reserved bits that are set to 0.

entry_num 4 Matched CAM entry number on hit. LRU entry
number on miss.

hit 1 1 indicates a hit; 0 indicates a miss

state 4 State bits associated with matched entry on hit;
0 on miss.

zeroes2 20 Reserved bits that are set to 0.
272 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.7.2 Functions
This section describes the CAM access functions. Table 21 summarizes this functions.

Table 21. CAM Access Functions Summary

Name (args) Description

void cam_clear(); Clears all entries in the CAM.

cam_lookup_t cam_lookup(unsigned int lookup_val); Performs a CAM lookup and returns the hit/miss
status, state, and entry number as bitfields in the
return value.

unsigned int cam_read_tag(unsigned int entry_num); Reads out the tag associated with the CAM entry
specified by entry_num.

cam_lookup_t cam_read_state(unsigned int entry_num); Reads out the state associated with the CAM
entry specified by entry_num and returns it in the
state bit field of the return value of cam_lookup_t.

void cam_write_state(
unsigned int entry_num,
unsigned int state);

Sets the state for entry_num in the CAM to the
value specified in the argument state.

void cam_write(
unsigned int index,
unsigned int tag,
unsigned int state);

Writes an entry in the CAM specified by the
argument index with the value specified by tag,
and sets the state to the value specified in the
state argument.
 Language Support Reference Manual 273

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.7.2.1 cam_clear()

Function Syntax:
void cam_clear();

Description:
This function clears all entries in the CAM.

Arguments:
None.
274 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.7.2.2 cam_lookup()

Function Syntax:
cam_lookup_t cam_lookup(

unsigned int lookup_val);

Description:
This function performs a CAM lookup and returns the hit/miss status, state, and entry
number as bitfields in the return value. In the event of a miss, the entry value is the LRU
(least recently used) entry (which is the suggested entry to replace) and state bits are 0. On
a CAM hit, this function has the side effect of marking the CAM entry as MRU (most
recently used).

Arguments:
lookup_val The value to lookup in the CAM.
 Language Support Reference Manual 275

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.7.2.3 cam_read_tag()

Function Syntax:
unsigned int cam_read_tag(

unsigned int entry_num);

Description:
This function reads out the tag associated with the CAM entry specified by the entry_num
argument.

Arguments:
entry_num The CAM entry whose tag is returned.
276 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.7.2.4 cam_read_state()

Function Syntax:
cam_lookup_t cam_read_state(

unsigned int entry_num);

Description:
This function reads out the state associated with the CAM entry specified by the entry_num
argument and returns it in the state bitfield of the return value. All other fields of the return
value structure are set to 0.

Arguments:
entry_num The CAM entry whose state is returned.
 Language Support Reference Manual 277

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.7.2.5 cam_write_state()

Function Syntax:
void cam_write_state(

unsigned int entry_num,
unsigned int state);

Description:
This function sets the state for the entry in the CAM specified by the entry_num argument
to the value specified in the argument state. Argument state must be a constant literal
specified directly in the intrinsic’s argument list. Otherwise, the compiler may have to
generate runtime checks for the possible 16 values, since the microcode only accepts a
constant literal for the state.

Arguments:
entry_num The CAM entry whose state is set.
state The state to set for the CAM entry.
278 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.7.2.6 cam_write()

Function Syntax:
void cam_write(

unsigned int index,
unsigned int tag,
unsigned int state);

Description:
This function writes an entry in the CAM specified by the argument index with the value
specified by tag, and sets the state to the value specified in the argument state. Argument
state must be a constant literal specified directly in the intrinsic’s argument list. Otherwise,
the compiler may have to generate runtime checks for the possible 16 values, since the
microcode only accepts a constant literal for the state.

Arguments:
index The CAM entry to write
tag Value to set for this CAM entry.
state State to set for this CAM entry.
 Language Support Reference Manual 279

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8 CRC Access Functions
This section describes the data types and functions that provide access to the Cyclic Redundancy
Check unit of the IXP2400/IXP2800 Network Processor.

4.8.1 Data Types

4.8.1.1 bytes_specifier_t

The bytes_specifier_t enumeration is used as an argument to the CRC functions and specifies one
or more contiguous bytes within a longword of big-endian or little endian data. For example, the
bytes_0_3 item in this enumeration refers to bytes 0 through 3. When using the big endian CRC
functions, byte 0 refers to the most significant byte and byte 3 refers to the least significant byte.
When using the little endian CRC functions, byte 0 refers to the least significant byte and byte 3
refers to the most significant byte.

4.8.2 Functions
This sections describes the CRC (Cyclic Redundancy Check) functions. Table 22 summarizes these
functions.

Field Name Description

Big Endian Little Endian

bytes_0_3 0, 1, 2, 3 3, 2, 1, 0

bytes_0_2 0, 1, 2 2, 1, 0

bytes_0_1 0, 1 1, 0

byte_0 0 0

bytes_1_3 1, 2, 3 3, 2, 1

bytes_2_3 2, 3 3, 2

byte_3 3 3
280 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
Table 22. CRC Access Functions Summary (Sheet 1 of 3)

Name (args) Description

unsigned int crc_5_be(
unsigned int data,
bytes_specifier_t bspec);

(IXP28xx Rev. B and above only) This function
performs a CRC-5 computation on the specified
bytes of the data argument that are assumed to
be in big endian layout.

unsigned int crc_5_be_bit_swap(
unsigned int data,
bytes_specifier_t bspec);

(IXP28xx Rev. B and above only) This function
performs a CRC-5 computation on the specified
bits of the data arguments that are assumed to
be in big endian layout. The bits in each specified
byte of the data argument are swapped before
the computation begins.

unsigned int crc_5_le(
unsigned int data,
bytes_specifier_t bspec);

(IXP28xx Rev. B and above only) This function
performs a CRC-5 computation on the specified
bytes of the data argument, are assumed to be
in little endian layout.

unsigned int crc_5_le_bit_swap(
unsigned int data,
bytes_specifier_t bspec);

(IXP28xx Rev. B and above only) This function
performs a CRC-5 computation on the specified
bits of the data arguments that are assumed to
be in little endian layout. The bits in each
specified byte of the data argument are swapped
before the computation begins.

unsigned int crc_10_be(
unsigned int data,
bytes_specifier_t bspec);

(IXP28xx Rev. B and above only) This function
performs a CRC-10 computation on the specified
bytes of the data argument that are assumed to
be in big endian layout, and returns the result of
the computation.

unsigned int crc_10_be_bit_swap(
unsigned int data,
bytes_specifier_t bspec);

(IXP28xx Rev. B and above only) This function
performs a CRC-10 computation on the specified
bits of the data argument that are assumed to be
in big endian layout. The bits in each specified
byte of the data argument are swapped before
the computation begins.

unsigned int crc_10_le(
unsigned int data,
bytes_specifier_t bspec);

(IXP28xx Rev. B and above only) This function
performs a CRC-10 computation on the specified
bytes of the data argument that are assumed to
be in little endian layout, and returns the result of
the computation.

unsigned int crc_10_le_bit_swap(
unsigned int data,
bytes_specifier_t bspec);

(IXP28xx Rev. B and above only) This function
performs a CRC-10 computation on the specified
bits of the data argument that are assumed to be
in little endian layout. The bits in each specified
byte of the data argument are swapped before
the computation begins.

unsigned int crc_16_be(
unsigned int data,
bytes_specifier_t bspec);

Performs a CRC-CCITT computation on
specified bytes in the data argument that is
assumed to be in big endian format, and returns
the results.

unsigned int crc_16_be_bit_swap(
unsigned int data,
bytes_specifier_t bspec);

Performs a CRC-CCITT computation on
specified bits in argument data that is assumed
to be in big endian format, and returns the
results. The bits in each byte are swapped before
the computation begins.

unsigned int crc_16_le(
unsigned int data,
bytes_specifier_t bspec);

Performs a CRC-CCITT computation on
specified bytes in the data argument that is
assumed to be in little endian format, and returns
the results.
 Language Support Reference Manual 281

Intel® Microengine C Compiler Language Support
Intrinsic Functions
unsigned int crc_16_le_bit_swap(
unsigned int data,
bytes_specifier_t bspec);

Performs a CRC-CCITT computation on
specified bits in argument data that is assumed
to be in little endian format, and returns the
results. The bits in each byte are swapped before
the computation begins.

unsigned int crc_ccitt_be(
unsigned int data,
bytes_specifier_t bspec);

Performs a CRC-CCITT computation on
specified bytes in the data argument that is
assumed to be in big endian format, and returns
the results.

unsigned int crc_ccitt_be_bit_swap(
unsigned int data,
bytes_specifier_t bspec);

Performs a CRC--CCITT computation on
specified bits in argument data that is assumed
to be in big endian format, and returns the
results. The bits in each byte are swapped before
the computation begins.

unsigned int crc_ccitt_le(
unsigned int data,
bytes_specifier_t bspec);

Performs a CRC-CCITT computation on
specified bytes in the data argument that is
assumed to be in little endian format, and returns
the results.

unsigned int crc_ccitt_le_bit_swap(
unsigned int data,
bytes_specifier_t bspec);

Performs a CRC-CCITT computation on
specified bits in argument data that is assumed
to be in little endian format, and returns the
results. The bits in each byte are swapped before
the computation begins.

unsigned int crc_32_be(
unsigned int data,
bytes_specifier_t bspec);

Performs a CRC 32 computation on specified
bits in the data argument that is assumed to be in
big endian format, and returns the results.

unsigned int crc_32_be_bit_swap(
unsigned int data,
bytes_specifier_t bspec);

Performs a CRC 32 computation on specified
bits in the data argument that is assumed to be in
big endian format, and returns the results. The
bits in each byte are swapped before the
computation begins.

unsigned int crc_32_le(
unsigned int data,
bytes_specifier_t bspec);

Performs a CRC 32 computation on specified
bytes in the data argument that is assumed to be
in little endian format.

unsigned int crc_32_le_bit_swap(
unsigned int data,
bytes_specifier_t bspec);

Performs a CRC 32 computation on specified
bits in the data argument that is assumed to be in
little endian format. The bits in each byte are
swapped before the computation begins.

unsigned int crc_iscsi_be(
unsigned int data,
bytes_specifier_t bspec);

(IXP28xx Rev. B and above only.) Performs a
CRC 32 computation on specified bits in the data
argument that is assumed to be in big endian
format, and returns the results.

unsigned int crc_iscsi_be_bit_swap(
unsigned int data,
bytes_specifier_t bspec);

(IXP28xx Rev. B and above only.) Performs a
CRC 32 computation on specified bits in the data
argument that is assumed to be in big endian
format, and returns the results. The bits in each
byte are swapped before the computation
begins.

unsigned int crc_iscsi_le(
unsigned int data,
bytes_specifier_t bspec);

(IXP28xx Rev. B and above only.) Performs a
CRC 32 computation on specified bytes in the
data argument that is assumed to be in little
endian format.

Table 22. CRC Access Functions Summary (Continued) (Sheet 2 of 3)

Name (args) Description
282 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
unsigned int crc_iscsi_le_bit_swap(
unsigned int data,
bytes_specifier_t bspec);

(IXP28xx Rev. B and above only.) Performs a
CRC 32 computation on specified bits in the data
argument that is assumed to be in little endian
format. The bits in each byte are swapped before
the computation begins.

unsigned int crc_read(); Returns the CRC remainder accumulated so far.

void crc_write(unsigned int residue); Initializes the CRC remainder with the value of
the residue argument.

Table 22. CRC Access Functions Summary (Continued) (Sheet 3 of 3)

Name (args) Description
 Language Support Reference Manual 283

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.1 crc_5_be()

Function Syntax:
unsigned int crc_5_be(

unsigned int data,
bytes_specifier_t bspec);

Description:
(IXP28xx Rev. B and above only) This function performs a CRC-5 computation on the
specified bytes of the data argument that is assumed to be in big endian layout. The CRC
is calculated using a remainder that resides in the CRC_Remainder Local CSR and in the
data argument. The CRC_Remainder Local CSR is typically initialized once prior to
executing CRC instructions using the crc_write() intrinsic (see Section 4.8.2.26,
“crc_write()”). To get the results of the CRC computation, use the crc_read() intrinsic (see
Section 4.8.2.25, “crc_read()”). For more detailed information, refer to the CRC_BE
instruction in Section 3 of the IXP2400/IXP2800 Network Processor Programmer’s
Reference Manual. This function returns the unmodified value of the data argument.
The bytes are specified by the argument bspec, which must be a constant enum literal
specified directly in the argument. The previous residue must be set up in the CRC
remainder prior to calling this function.

Arguments:
data The data on which to perform the CRC 5computation.
bspec The specified bytes in the data argument on which to perform

the computation.
284 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.2 crc_5_be_bit_swap()

Function Syntax:
unsigned int crc_5_be_bit_swap(

unsigned int data,
bytes_specifier_t bspec);

Description:
(IXP28xx Rev. B and above only) This function performs a CRC-5 computation on the
specified bits of the data argument that is assumed to be in big endian layout. The CRC is
calculated using a remainder that resides in the CRC_Remainder Local CSR and in the data
argument. The CRC_Remainder Local CSR is typically initialized once prior to executing
CRC instructions using the crc_write() intrinsic (see Section 4.8.2.26, “crc_write()”). To
get the results of the CRC computation, use the crc_read() intrinsic (see Section 4.8.2.25,
“crc_read()”). For more detailed information, refer to the CRC_BE instruction in Section 3
of the IXP2400/IXP2800 Network Processor Programmer’s Reference Manual. This
function returns the unmodified value of the data argument.
The bits in each specified byte of the data argument are swapped before the computation
begins. Bit 7 is swapped with bit 0, bit 6 with bit 1, bit 5 with bit 2, and bit 4 with bit 3. The
bits are specified by the argument bspec, which must be a constant enum literal specified
directly in the argument. The previous residue must be set up in the CRC remainder prior
to calling this function. The input argument data is returned.

Arguments:
data The data on which to perform the CRC 5 computation.
 Language Support Reference Manual 285

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.3 crc_5_le()

Function Syntax:
unsigned int crc_5_le(

unsigned int data,
bytes_specifier_t bspec);

Description:
(IXP28xx Rev. B and above only) This function performs a CRC-5 computation on the
specified bytes of the data argument that is assumed to be in little endian layout. The CRC
is calculated using a remainder that resides in the CRC_Remainder Local CSR and in the
data argument. The CRC_Remainder Local CSR is typically initialized once prior to
executing CRC instructions using the crc_write() intrinsic (see Section 4.8.2.26,
“crc_write()”). To get the results of the CRC computation, use the crc_read() intrinsic (see
Section 4.8.2.25, “crc_read()”). For more detailed information, refer to the CRC_LE
instruction in Section 3 of the IXP2400/IXP2800 Network Processor Programmer’s
Reference Manual. This function returns the unmodified value of the data argument., and
returns the result of the computation.
The bytes are specified by the argument bspec, which must be a constant enum literal
specified directly in the argument. The previous residue must be set up in the CRC
remainder prior to calling this function.

Arguments:
data The data on which to perform the CRC 5computation.
bspec The specified bytes in the data argument on which to perform

the computation.
286 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.4 crc_5_le_bit_swap()

Function Syntax:
unsigned int crc_5_le_bit_swap(

unsigned int data,
bytes_specifier_t bspec);

Description:
(IXP28xx Rev. B and above only) This function performs a CRC-5 computation on the
specified bits of the data argument that is assumed to be in little endian layout. The CRC is
calculated using a remainder that resides in the CRC_Remainder Local CSR and in the data
argument. The CRC_Remainder Local CSR is typically initialized once prior to executing
CRC instructions using the crc_write() intrinsic (see Section 4.8.2.26, “crc_write()”). To
get the results of the CRC computation, use the crc_read() intrinsic (see Section 4.8.2.25,
“crc_read()”). For more detailed information, refer to the CRC_BE instruction in Section 3
of the IXP2400/IXP2800 Network Processor Programmer’s Reference Manual. This
function returns the unmodified value of the data argument.
The bits in each specified byte of the data argument are swapped before the computation
begins. Bit 7 is swapped with bit 0, bit 6 with bit 1, bit 5 with bit 2, and bit 4 with bit 3. The
bits are specified by the argument bspec, which must be a constant enum literal specified
directly in the argument. The previous residue must be set up in the CRC remainder prior
to calling this function.

Arguments:
data The data on which to perform the CRC 5 computation.
bspec The specified bytes in the data argument on which to perform

the computation.
 Language Support Reference Manual 287

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.5 crc_10_be()

Function Syntax:
unsigned int crc_10_be(

unsigned int data,
bytes_specifier_t bspec);

Description:
(IXP28xx Rev. B and above only) This function performs a CRC-10 computation on the
specified bytes of the data argument that is assumed to be in big endian layout. The CRC
is calculated using a remainder that resides in the CRC_Remainder Local CSR and in the
data argument. The CRC_Remainder Local CSR is typically initialized once prior to
executing CRC instructions using the crc_write() intrinsic (see Section 4.8.2.26,
“crc_write()”). To get the results of the CRC computation, use the crc_read() intrinsic (see
Section 4.8.2.25, “crc_read()”). For more detailed information, refer to the CRC_BE
instruction in Section 3 of the IXP2400/IXP2800 Network Processor Programmer’s
Reference Manual. This function returns the unmodified value of the data argument.
The bytes are specified by the argument bspec, which must be a constant enum literal
specified directly in the argument. The previous residue must be set up in the CRC
remainder prior to calling this function.

Arguments:
data The data on which to perform the CRC 10 computation.
bspec The specified bytes in the data argument on which to perform

the computation.
288 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.6 crc_10_be_bit_swap()

Function Syntax:
unsigned int crc_10_be_bit_swap(

unsigned int data,
bytes_specifier_t bspec);

Description:
(IXP28xx Rev. B and above only) This function performs a CRC-10 computation on the
specified bits of the data argument that is assumed to be in big endian layout. The CRC is
calculated using a remainder that resides in the CRC_Remainder Local CSR and in the data
argument. The CRC_Remainder Local CSR is typically initialized once prior to executing
CRC instructions using the crc_write() intrinsic (see Section 4.8.2.26, “crc_write()”). To
get the results of the CRC computation, use the crc_read() intrinsic (see Section 4.8.2.25,
“crc_read()”). For more detailed information, refer to the CRC_BE instruction in Section 3
of the IXP2400/IXP2800 Network Processor Programmer’s Reference Manual. This
function returns the unmodified value of the data argument.
The bits in each specified byte of the data argument are swapped before the computation
begins. Bit 7 is swapped with bit 0, bit 6 with bit 1, bit 5 with bit 2, and bit 4 with bit 3. The
bits are specified by the argument bspec, which must be a constant enum literal specified
directly in the argument. The previous residue must be set up in the CRC remainder prior
to calling this function.

Arguments:
data The data on which to perform the CRC 10 computation.
bspec The specified bytes in the data argument on which to perform

the computation.
 Language Support Reference Manual 289

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.7 crc_10_le()

Function Syntax:
unsigned int crc_10_le(

unsigned int data,
bytes_specifier_t bspec);

Description:
(IXP28xx Rev. B and above only) This function performs a CRC-10 computation on the
specified bytes of the data argument that is assumed to be in little endian layout. The CRC
is calculated using a remainder that resides in the CRC_Remainder Local CSR and in the
data argument. The CRC_Remainder Local CSR is typically initialized once prior to
executing CRC instructions using the crc_write() intrinsic (see Section 4.8.2.26,
“crc_write()”). To get the results of the CRC computation, use the crc_read() intrinsic (see
Section 4.8.2.25, “crc_read()”). For more detailed information, refer to the CRC_LE
instruction in Section 3 of the IXP2400/IXP2800 Network Processor Programmer’s
Reference Manual. This function returns the unmodified value of the data argument.
The bytes are specified by the argument bspec, which must be a constant enum literal
specified directly in the argument. The previous residue must be set up in the CRC
remainder prior to calling this function.

Arguments:
data The data on which to perform the CRC 10 computation.
bspec The specified bytes in the data argument on which to perform

the computation.
290 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.8 crc_10_le_bit_swap()

Function Syntax:
unsigned int crc_10_le_bit_swap(

unsigned int data,
bytes_specifier_t bspec);

Description:
(IXP28xx Rev. B and above only) This function performs a CRC-10 computation on the
specified bits of the data argument that is assumed to be in little endian layout. The CRC is
calculated using a remainder that resides in the CRC_Remainder Local CSR and in the data
argument. The CRC_Remainder Local CSR is typically initialized once prior to executing
CRC instructions using the crc_write() intrinsic (see Section 4.8.2.26, “crc_write()”). To
get the results of the CRC computation, use the crc_read() intrinsic (see Section 4.8.2.25,
“crc_read()”). For more detailed information, refer to the CRC_LE instruction in Section 3
of the IXP2400/IXP2800 Network Processor Programmer’s Reference Manual. This
function returns the unmodified value of the data argument.
The bits in each specified byte of the data argument are swapped before the computation
begins. Bit 7 is swapped with bit 0, bit 6 with bit 1, bit 5 with bit 2, and bit 4 with bit 3. The
bits are specified by the argument bspec, which must be a constant enum literal specified
directly in the argument. The previous residue must be set up in the CRC remainder prior
to calling this function.

Arguments:
data The data on which to perform the CRC 10 computation.
bspec The specified bytes in the data argument on which to perform

the computation.
 Language Support Reference Manual 291

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.9 crc_16_be()

Function Syntax:
unsigned int crc_16_be(

unsigned int data,
bytes_specifier_t bspec);

Description:
This function performs a CRC-CCITT computation on specified bytes of the data argument
that is assumed to be in big endian layout. The CRC is calculated using a remainder that
resides in the CRC_Remainder Local CSR and in the data argument. The CRC_Remainder
Local CSR is typically initialized once prior to executing CRC instructions using the
crc_write() intrinsic (see Section 4.8.2.26, “crc_write()”). To get the results of the CRC
computation, use the crc_read() intrinsic (see Section 4.8.2.25, “crc_read()”). For more
detailed information, refer to the CRC_BE instruction in Section 3 of the IXP2400/
IXP2800 Network Processor Programmer’s Reference Manual. This function returns the
unmodified value of the data argument.
The bytes are specified by the argument bspec, which must be a constant enum literal
specified directly in the argument. The previous residue must be set up in the CRC
remainder prior to calling this function.

Arguments:
data The data on which to perform the CRC 16 computation.
bspec The specified bytes in the data argument on which to perform

the computation.
292 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.10 crc_16_be_bit_swap()

Function Syntax:
unsigned int crc_16_be_bit_swap(

unsigned int data,
bytes_specifier_t bspec);

Description:
This function performs a CRC-CCITT computation on specified bits of the data argument
that is assumed to be in big endian layout. The CRC is calculated using a remainder that
resides in the CRC_Remainder Local CSR and in the data argument. The CRC_Remainder
Local CSR is typically initialized once prior to executing CRC instructions using the
crc_write() intrinsic (see Section 4.8.2.26, “crc_write()”). To get the results of the CRC
computation, use the crc_read() intrinsic (see Section 4.8.2.25, “crc_read()”). For more
detailed information, refer to the CRC_BE instruction in Section 3 of the IXP2400/
IXP2800 Network Processor Programmer’s Reference Manual. This function returns the
unmodified value of the data argument.
The bits are swapped before the computation begins. Bit 7 is swapped with bit 0, bit 6 with
bit 1, bit 5 with bit 2, and bit 4 with bit 3. The bits are specified by the argument bspec,
which must be a constant enum literal specified directly in the argument. The previous
residue must be set up in the CRC remainder prior to calling this function.

Arguments:
data The data on which to perform the CRC 16 computation.
bspec The specified bits in the data argument on which to perform the

computation.
 Language Support Reference Manual 293

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.11 crc_16_le()

Function Syntax:
unsigned int crc_16_le(

unsigned int data,
bytes_specifier_t bspec);

Description:
This function performs a CRC-CCITT computation on specified bytes of the data argument
that is assumed to be in little endian layout. The CRC is calculated using a remainder that
resides in the CRC_Remainder Local CSR and in the data argument. The CRC_Remainder
Local CSR is typically initialized once prior to executing CRC instructions using the
crc_write() intrinsic (see Section 4.8.2.26, “crc_write()”). To get the results of the CRC
computation, use the crc_read() intrinsic (see Section 4.8.2.25, “crc_read()”). For more
detailed information, refer to the CRC_LE instruction in Section 3 of the IXP2400/IXP2800
Network Processor Programmer’s Reference Manual. This function returns the unmodified
value of the data argument.
The bytes are specified by the argument bspec, which must be a constant enum literal
specified directly in the argument. The previous residue must be set up in the CRC
remainder prior to calling this function.

Arguments:
data The data on which to perform the CRC 16 computation.
bspec The specified bytes in the data argument on which to perform

the computation.
294 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.12 crc_16_le_bit_swap()

Function Syntax:
unsigned int crc_16_le_bit_swap(

unsigned int data,
bytes_specifier_t bspec);

Description:
This function performs a CRC-CCITT computation on specified bits of the data argument
that is assumed to be in little endian layout. The CRC is calculated using a remainder that
resides in the CRC_Remainder Local CSR and in the data argument. The CRC_Remainder
Local CSR is typically initialized once prior to executing CRC instructions using the
crc_write() intrinsic (see Section 4.8.2.26, “crc_write()”). To get the results of the CRC
computation, use the crc_read() intrinsic (see Section 4.8.2.25, “crc_read()”). For more
detailed information, refer to the CRC_LE instruction in Section 3 of the IXP2400/IXP2800
Network Processor Programmer’s Reference Manual. This function returns the unmodified
value of the data argument.
The bits in each specified byte of the data argument are swapped before the computation
begins. Bit 7 is swapped with bit 0, bit 6 with bit 1, bit 5 with bit 2, and bit 4 with bit 3. The
bits are specified by the argument bspec, which must be a constant enum literal specified
directly in the argument. The previous residue must be set up in the CRC remainder prior
to calling this function.

Arguments:
data The data on which to perform the CRC 16 computation.
bspec The specified bits in the data argument on which to perform the

computation.
 Language Support Reference Manual 295

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.13 crc_ccitt_be

Function Syntax:
unsigned int crc_ccitt_be(

unsigned int data,
bytes_specifier_t bspec);

Description:
This function is equivalent to crc_16_be(). It performs a 16-bit CCITT CRC computation
on the specified bytes of the data argument that is assumed to be in big endian layout. The
CRC is calculated using a remainder that resides in the CRC_Remainder Local CSR and in
the data argument. The CRC_Remainder Local CSR is typically initialized once prior to
executing CRC instructions using the crc_write() intrinsic (see Section 4.8.2.26,
“crc_write()”). To get the results of the CRC computation, use the crc_read() intrinsic (see
Section 4.8.2.25, “crc_read()”). For more detailed information, refer to the CRC_BE
instruction in Section 3 of the IXP2400/IXP2800 Network Processor Programmer’s
Reference Manual. This function returns the unmodified value of the data argument.
The bytes are specified by the argument bspec, which must be a constant enum literal
specified directly in the argument. The previous residue must be set up in the CRC
remainder prior to calling this function.

Arguments:
data The data on which to perform the CRC computation.
bspec The specified bits in the data argument on which to perform the

computation.
296 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.14 crc_ccitt_be_bit_swap

Function Syntax:
unsigned int crc_ccitt_be_bit_swap(

unsigned int data,
bytes_specifier_t bspec);

Description:
This function is equivalent to crc_16_be_bit_swap(). It performs a CCITT CRC-16
computation on the specified bits of the data argument that is assumed to be in big endian
layout.The CRC is calculated using a remainder that resides in the CRC_Remainder Local
CSR and in the data argument. The CRC_Remainder Local CSR is typically initialized
once prior to executing CRC instructions using the crc_write() intrinsic (see
Section 4.8.2.26, “crc_write()”). To get the results of the CRC computation, use the
crc_read() intrinsic (see Section 4.8.2.25, “crc_read()”). For more detailed information,
refer to the CRC_BE instruction in Section 3 of the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual. This function returns the unmodified value of the data
argument.
The bits are swapped before the computation begins. Bit 7 is swapped with bit 0, bit 6 with
bit 1, bit 5 with bit 2, and bit 4 with bit 3. The bits are specified by the argument bspec,
which must be a constant enum literal specified directly in the argument. The previous
residue must be set up in the CRC remainder prior to calling this function.

Arguments:
data The data on which to perform the CRC computation.
bspec The specified bits in the data argument on which to perform the

computation.
 Language Support Reference Manual 297

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.15 crc_ccitt_le

Function Syntax:
unsigned int crc_ccitt_le(

unsigned int data,
bytes_specifier_t bspec);

Description:
This function is equivalent to crc_16_be(). It performs a 16-bit CCITT CRC computation
on the specified bytes of the data argument that is assumed to be in little endian layout. The
CRC is calculated using a remainder that resides in the CRC_Remainder Local CSR and in
the data argument. The CRC_Remainder Local CSR is typically initialized once prior to
executing CRC instructions using the crc_write() intrinsic (see Section 4.8.2.26,
“crc_write()”). To get the results of the CRC computation, use the crc_read() intrinsic (see
Section 4.8.2.25, “crc_read()”). For more detailed information, refer to the CRC_LE
instruction in Section 3 of the IXP2400/IXP2800 Network Processor Programmer’s
Reference Manual. This function returns the unmodified value of the data argument.
The bytes are specified by the argument bspec, which must be a constant enum literal
specified directly in the argument. The previous residue must be set up in the CRC
remainder prior to calling this function.

Arguments:
data The data on which to perform the CRC computation.
bspec The specified bits in the data argument on which to perform the

computation.
298 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.16 crc_ccitt_le_bit_swap

Function Syntax:
unsigned int crc_ccitt_le_bit_swap(

unsigned int data,
bytes_specifier_t bspec);

Description:
This function is equivalent to crc_16_le_bit_swap(). It performs a CCITT CRC-16
computation on the specified bits of the data argument that is assumed to be in little endian
layout. The CRC is calculated using a remainder that resides in the CRC_Remainder Local
CSR and in the data argument. The CRC_Remainder Local CSR is typically initialized
once prior to executing CRC instructions using the crc_write() intrinsic (see
Section 4.8.2.26, “crc_write()”). To get the results of the CRC computation, use the
crc_read() intrinsic (see Section 4.8.2.25, “crc_read()”). For more detailed information,
refer to the CRC_LE instruction in Section 3 of the IXP2400/IXP2800 Network Processor
Programmer’s Reference Manual. This function returns the unmodified value of the data
argument.
The bits in each specified byte of the data argument are swapped before the computation
begins. Bit 7 is swapped with bit 0, bit 6 with bit 1, bit 5 with bit 2, and bit 4 with bit 3. The
bits are specified by the argument bspec, which must be a constant enum literal specified
directly in the argument. The previous residue must be set up in the CRC remainder prior
to calling this function.

Arguments:
data The data on which to perform the CRC computation.
bspec The specified bits in the data argument on which to perform the

computation.
 Language Support Reference Manual 299

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.17 crc_32_be()

Function Syntax:
unsigned int crc_32_be(

unsigned int data,
bytes_specifier_t bspec);

Description:
This function performs a CRC 32 computation on specified bytes of the data argument that
is assumed to be in big endian layout. The CRC is calculated using a remainder that resides
in the CRC_Remainder Local CSR and in the data argument. The CRC_Remainder Local
CSR is typically initialized once prior to executing CRC instructions using the crc_write()
intrinsic (see Section 4.8.2.26, “crc_write()”). To get the results of the CRC computation,
use the crc_read() intrinsic (see Section 4.8.2.25, “crc_read()”). For more detailed
information, refer to the CRC_BE instruction in Section 3 of the IXP2400/IXP2800
Network Processor Programmer’s Reference Manual. This function returns the unmodified
value of the data argument.
The bytes are specified by the argument bspec, which must be a constant enum literal
specified directly in the argument. The previous residue must be set up in the CRC
remainder prior to calling this function.

Arguments:
data The data on which to perform the CRC 32 computation.
bspec The specified bytes in the data argument on which to perform

the computation.
300 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.18 crc_32_be_bit_swap()

Function Syntax:
unsigned int crc_32_be_bit_swap(

unsigned int data,
bytes_specifier_t bspec);

Description:
This function performs a CRC 32 computation on specified bits of the data argument that
is assumed to be in big endian layout. The CRC is calculated using a remainder that resides
in the CRC_Remainder Local CSR and in the data argument. The CRC_Remainder Local
CSR is typically initialized once prior to executing CRC instructions using the crc_write()
intrinsic (see Section 4.8.2.26, “crc_write()”). To get the results of the CRC computation,
use the crc_read() intrinsic (see Section 4.8.2.25, “crc_read()”). For more detailed
information, refer to the CRC_BE instruction in Section 3 of the IXP2400/IXP2800
Network Processor Programmer’s Reference Manual. This function returns the unmodified
value of the data argument.
The bits in each specified byte of the data argument are swapped before the computation
begins. Bit 7 is swapped with bit 0, bit 6 with bit 1, bit 5 with bit 2, and bit 4 with bit 3. The
bits are specified by the argument bspec, which must be a constant enum literal specified
directly in the argument. The previous residue must be set up in the CRC remainder prior
to calling this function.

Arguments:
data The data on which to perform the CRC 32 computation.
bspec The specified bits in the data argument on which to perform the

computation.
 Language Support Reference Manual 301

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.19 crc_32_le()

Function Syntax:
unsigned int crc_32_le(

unsigned int data,
bytes_specifier_t bspec);

Description:
This function performs a CRC 32 computation on specified bytes of the data argument that
is assumed to be in little endian layout. The CRC is calculated using a remainder that
resides in the CRC_Remainder Local CSR and in the data argument. The CRC_Remainder
Local CSR is typically initialized once prior to executing CRC instructions using the
crc_write() intrinsic (see Section 4.8.2.26, “crc_write()”). To get the results of the CRC
computation, use the crc_read() intrinsic (see Section 4.8.2.25, “crc_read()”). For more
detailed information, refer to the CRC_LE instruction in Section 3 of the IXP2400/IXP2800
Network Processor Programmer’s Reference Manual. This function returns the unmodified
value of the data argument.
The bytes are specified by the argument bspec, which must be a constant enum literal
specified directly in the argument. The previous residue must be set up in the CRC
remainder prior to calling this function.

Arguments:
data The data on which to perform the CRC 32 computation.
bspec The specified bytes in the data argument on which to perform

the computation.
302 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.20 crc_32_le_bit_swap()

Function Syntax:
unsigned int crc_32_le_bit_swap(

unsigned int data,
bytes_specifier_t bspec);

Description:
This function performs a CRC 32 computation on specified bits of the data argument that
is assumed to be in little endian layout. The CRC is calculated using a remainder that
resides in the CRC_Remainder Local CSR and in the data argument. The CRC_Remainder
Local CSR is typically initialized once prior to executing CRC instructions using the
crc_write() intrinsic (see Section 4.8.2.26, “crc_write()”). To get the results of the CRC
computation, use the crc_read() intrinsic (see Section 4.8.2.25, “crc_read()”). For more
detailed information, refer to the CRC_LE instruction in Section 3 of the IXP2400/IXP2800
Network Processor Programmer’s Reference Manual. This function returns the unmodified
value of the data argument.
The bits in each specified byte of the data argument are swapped before the computation
begins. Bit 7 is swapped with bit 0, bit 6 with bit 1, bit 5 with bit 2, and bit 4 with bit 3. The
bits are specified by the argument bspec, which must be a constant enum literal specified
directly in the argument. The previous residue must be set up in the CRC remainder prior
to calling this function.

Arguments:
data The data on which to perform the CRC 32 computation.
bspec The specified bits in the data argument on which to perform the

computation.
 Language Support Reference Manual 303

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.21 crc_iscsi_be()

Function Syntax:
unsigned int crc_iscsi_be(

unsigned int data,
bytes_specifier_t bspec);

Description:
(IXP28xx Rev. B and above only) This function performs a 32-bit iSCSI CRC computation
on the specified bytes of the data argument that is assumed to be in big endian layout. The
CRC is calculated using a remainder that resides in the CRC_Remainder Local CSR and in
the data argument. The CRC_Remainder Local CSR is typically initialized once prior to
executing CRC instructions using the crc_write() intrinsic (see Section 4.8.2.26,
“crc_write()”). To get the results of the CRC computation, use the crc_read() intrinsic (see
Section 4.8.2.25, “crc_read()”). For more detailed information, refer to the CRC_BE
instruction in Section 3 of the IXP2400/IXP2800 Network Processor Programmer’s
Reference Manual. This function returns the unmodified value of the data argument.
The bytes are specified by the argument bspec, which must be a constant enum literal
specified directly in the argument. The previous residue must be set up in the CRC
remainder prior to calling this function.

Arguments:
data The data on which to perform the CRC 32 computation.
bspec The specified bytes in the data argument on which to perform

the computation.
304 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.22 crc_iscsi_be_bit_swap()

Function Syntax:
unsigned int crc_iscsi_be_bit_swap(

unsigned int data,
bytes_specifier_t bspec);

Description:
(IXP28xx Rev. B and above only) This function performs a 32-bit iSCSI CRC computation
on the specified bits of the data argument that is assumed to be in big endian layout. The
CRC is calculated using a remainder that resides in the CRC_Remainder Local CSR and in
the data argument. The CRC_Remainder Local CSR is typically initialized once prior to
executing CRC instructions using the crc_write() intrinsic (see Section 4.8.2.26,
“crc_write()”). To get the results of the CRC computation, use the crc_read() intrinsic (see
Section 4.8.2.25, “crc_read()”). For more detailed information, refer to the CRC_BE
instruction in Section 3 of the IXP2400/IXP2800 Network Processor Programmer’s
Reference Manual. This function returns the unmodified value of the data argument.
The bits in each specified byte of the data argument are swapped before the computation
begins. Bit 7 is swapped with bit 0, bit 6 with bit 1, bit 5 with bit 2, and bit 4 with bit 3. The
bits are specified by the argument bspec, which must be a constant enum literal specified
directly in the argument. The previous residue must be set up in the CRC remainder prior
to calling this function. The input argument data is returned.

Arguments:
data The data on which to perform the CRC 32 computation.
bspec The specified bits in the data argument on which to perform the

computation.
 Language Support Reference Manual 305

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.23 crc_iscsi_le()

Function Syntax:
unsigned int crc_iscsi_le(

unsigned int data,
bytes_specifier_t bspec);

Description:
(IXP28xx Rev. B and above only) This function performs a 32-bit iSCSI CRC computation
on the specified bytes of the data argument that is assumed to be in little endian layout. The
CRC is calculated using a remainder that resides in the CRC_Remainder Local CSR and in
the data argument. The CRC_Remainder Local CSR is typically initialized once prior to
executing CRC instructions using the crc_write() intrinsic (see Section 4.8.2.26,
“crc_write()”). To get the results of the CRC computation, use the crc_read() intrinsic (see
Section 4.8.2.25, “crc_read()”). For more detailed information, refer to the CRC_LE
instruction in Section 3 of the IXP2400/IXP2800 Network Processor Programmer’s
Reference Manual. This function returns the unmodified value of the data argument.
The bytes are specified by the argument bspec, which must be a constant enum literal
specified directly in the argument. The previous residue must be set up in the CRC
remainder prior to calling this function.

Arguments:
data The data on which to perform the CRC 32 computation.
bspec The specified bytes in the data argument on which to perform

the computation.
306 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.24 crc_iscsi_le_bit_swap()

Function Syntax:
unsigned int crc_iscsi_le_bit_swap(

unsigned int data,
bytes_specifier_t bspec);

Description:
This function performs a CRC 32 computation on specified bits of the data argument that
is assumed to be in little endian layout. The CRC is calculated using a remainder that
resides in the CRC_Remainder Local CSR and in the data argument. The CRC_Remainder
Local CSR is typically initialized once prior to executing CRC instructions using the
crc_write() intrinsic (see Section 4.8.2.26, “crc_write()”). To get the results of the CRC
computation, use the crc_read() intrinsic (see Section 4.8.2.25, “crc_read()”). For more
detailed information, refer to the CRC_LE instruction in Section 3 of the IXP2400/IXP2800
Network Processor Programmer’s Reference Manual. This function returns the unmodified
value of the data argument.
The bits in each specified byte of the data argument are swapped before the computation
begins. Bit 7 is swapped with bit 0, bit 6 with bit 1, bit 5 with bit 2, and bit 4 with bit 3. The
bits are specified by the argument bspec, which must be a constant enum literal specified
directly in the argument. The previous residue must be set up in the CRC remainder prior
to calling this function.

Arguments:
data The data on which to perform the CRC 32 computation.
bspec The specified bits in the data argument on which to perform the

computation.
 Language Support Reference Manual 307

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.25 crc_read()

Function Syntax:
unsigned int crc_read();

Description:
This function returns the CRC remainder accumulated so far.

Arguments:
None.
308 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.8.2.26 crc_write()

Function Syntax:
void crc_write(

unsigned int residue);

Description:
This function initializes the CRC remainder with the argument residue.

Arguments:
residue Value to initialize the CRC remainder.
 Language Support Reference Manual 309

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9 Miscellaneous Functions

4.9.1 Functions
This section describes several miscellaneous intrinsic functions. These functions are summarized
in Table 23.

Table 23. Miscellaneous Functions Summary (Sheet 1 of 3)

Name (args) Description

__int64 __timestamp_start(void);
__int64 __timestamp_stop(__int64 handle);

These functions use local_csr timestamp_low
and timestamp_high to measure time elapsed in
16-cycle intervals between start and stop.

int __assign_relative_register(void *x, int reg_num); Takes the address of a signal variable or transfer
register variable and binds it to a physical
register number.

int __signal_number(SIGNAL *s, ...) Takes the address of a signal variable and
returns the number of the physical signal
register.

int __xfer_reg_number(void *x, ...); Takes the address of a transfer register variable
and returns the number of the transfer register
allocated to that variable.

int bit_test(unsigned int data, unsigned int bit_pos); Tests the bit_pos in data and return a 1 if set or 0
if clear.

int inp_state_test(inp_state_t state); Tests the value of the specified state name and
returns a 1 if the state is set or 0 if clear.

int LoadTimeConstant(char *name); Causes a string constant (name) to be
associated with an integer value at load time
(using ucld) and returns the integer.

unsigned int __ctx(void); Returns the value of the currently executing
context in the range of 0 through 7.

unsigned int __ME(void); Returns the value of the currently executing
microengine, the range is 0x00 to 0x17.

unsigned int __n_ctx(void); Returns the number of context compiled to run,
the range is 0 to 7.

unsigned int __nctx_mode(void); Returns the context mode 4 or 8.

unsigned int __profile_count_start(void);
unsigned int __profile_count_stop(unsigned int handle);

These functions use local_csr_ profile_count to
measure time elapse in cycle between start and
stop.

unsigned int __sleep(unsigned int cycles); This function suspend current thread for
specified cycles. The granularity is 16.

unsigned int dbl_shl(
unsigned int srcA,
unsigned int srcB,
unsigned int shift_cnt);

Returns the lower 32 bits of the result of
concatenating srcA (high order bits) and srcB
(low order bits) together and left shifting the 64
bit quantity by a specified shift count.

unsigned int dbl_shr(
unsigned int srcA,
unsigned int srcB,
unsigned int shift_cnt);

Returns the lower 32 bits of the result of
concatenating srcA (high order bits) and srcB
(low order bits) together and right shifting the 64
bit quantity by a specified shift count.

unsigned int ffs(unsigned int data); Finds the first (least significant) bit set in data
and returns its bit posit. If no bits are set, the
return value is undefined. Otherwise, the return
value is in the range of 0 through 31.
310 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
unsigned int multiply_16x16(
unsigned int x,
unsigned int y);

Returns the result of 16-bit x multiplied by 16-bit
y

unsigned int multiply_24x8(
unsigned int x,
unsigned int y);

Returns the result of 24-bit x multiplied by 8-bit y

unsigned int multiply_32x32_hi(
unsigned int x,
unsigned int y);

Returns the higher 32-bit result of 32-bit x
multiplied by 32-bit y

unsigned int multiply_32x32_lo(
unsigned int x,
unsigned int y);

Returns the lower 32-bit result of 32-bit x
multiplied by 32-bit y

unsigned int nn_ring_dequeue(); Returns the next neighbor ring indexed by
NN_GET without post-incrementing NN_GET.

unsigned int nn_ring_dequeue_incr(); Returns the next neighbor ring indexed by
NN_GET and post-increments NN_GET.

unsigned int pop_count(unsigned int data); (IXP28xx Rev. B and above only.) Returns the
number of “1” bits in the specified value “data”.

unsigned long long multiply_32x32(
unsigned int x,
unsigned int y);

Returns the higher 64-bit result of 32-bit x
multiplied by 32-bit y

void __critical_path(<int i>) Marks a section of coded as being on the critical
path of the application. Takes an optional integer
argument (0-100) that specifies the priority of
overlapping critical paths. Higher numbered
paths receive higher priority for code layout. The
default is 100 if no argument is specified.

void __free_write_buffer(void *data); Indicates that any pending write that writes out
the data buffer can be considered as having
completed. The transfer registers allocated for
the write can now be used for other write
operations. Same as __implicit_read().

void __implicit_read(void *x, ...); Takes the address of a signal or transfer register
variable and indicates that the signal or transfer
register is being read asynchronously or implicitly
by the hardware. Same as __free_write_buffer().

void __implicit_write(void *x, ...); Takes the address of a signal or transfer register
variable and indicates that the signal or transfer
register is being written asynchronously or
implicitly by the hardware.

void __impossible_path() (void); Asks the compiler to perform the default case
removal optimization described in Section 3.11.1.

void __no_spill_begin(); Marks the beginning of a “no-spill” program
region, where the compiler attempts to keep all
the used variables in registers unless they have
been explicitly allocated to memory or have had
their address taken.

void __no_spill_end(); Marks the end of a “no-spill” program region.

void __no_swap_begin(void); Starts a context swap-free critical section. See
Section 3.12.

void __no_swap_end(void); Ends a context swap-free critical section. See
Section 3.12.

void __set_profile_count(unsigned int profile_count); Sets local_csr_profile_count.

Table 23. Miscellaneous Functions Summary (Continued) (Sheet 2 of 3)

Name (args) Description
 Language Support Reference Manual 311

Intel® Microengine C Compiler Language Support
Intrinsic Functions
void __set_timestamp(__int64 timestamp); Sets both local_csr_timestamp_low and
local_csr_timestamp_high.

void __switch_pack(enum swpack_t pack_info); Asks the compiler to perform the switch packing
optimizing described in Section 3.11.2.

void assert(int exp); Triggers a breakpoint on the currently executing
thread.

void byte_align_block_be(
unsigned int n_byte_align_oper,
void *dest,
void *src,
unsigned shift_cnt);

Sets local_csr BYTE_INDEX to shift_cnt, then
performs n_byte_align_oper times of
consecutive byte_align_be operations on a pair
of 32-bit element in dest and src.

void byte_align_block_le(
unsigned int n_byte_align_oper,
void *dest,
void *src,
unsigned shift_cnt);

Sets local_csr BYTE_INDEX to shift_cnt, then
performs n_byte_align_oper times of
consecutive byte_align_le operations on a pair of
32-bit elements in dest and src.

void global_label(int *label); Creates a named global label at the point the
intrinsic is defined.

void nn_ring_enqueue_incr(unsigned int val); Sets the next neighbor ring indexed by NN_PUT
with val and post-increments NN_PUT.

Table 23. Miscellaneous Functions Summary (Continued) (Sheet 3 of 3)

Name (args) Description
312 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.1 dbl_shr()

Function Syntax:
unsigned int dbl_shr(

unsigned int srcA,
unsigned int srcB,
unsigned int shift_cnt);

Description:
This function returns the lower 32 bits of the result of concatenating srcA (high order bits)
and srcB (low order bits) together and right shifting the 64 bit quantity by a specified shift
count. The shift_cnt argument must be in the range 1 through 31.

Arguments:
srcA High order bits.
srcB Low order bits.
shift_cnt Number of bit positions to right shift.
 Language Support Reference Manual 313

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.2 dbl_shl()

Function Syntax:
unsigned int dbl_shl(

unsigned int srcA,
unsigned int srcB,
unsigned int shift_cnt);

Description:
This function returns the upper 32 bits of the result of concatenating srcA (high order bits)
and srcB (low order bits) together and left shifting the 64 bit quantity by a specified shift
count. The shift_cnt argument must be in the range 1 through 31.

Arguments:
srcA High order bits.
srcB Low order bits.
shift_cnt Number of bit positions to left shift.
314 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.3 __ctx()

Function Syntax:
unsigned int __ctx();

Description:
This function returns the value of the currently executing context. The range is between 0
and 7.

Arguments:
None.
 Language Support Reference Manual 315

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.4 __ME()

Function Syntax:
unsigned int __ME();

Description:
This function returns the value of the currently executing microengine, the range is 0x00 to
0x17.

Arguments:
None.
316 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.5 __n_ctx()

Function Syntax:
unsigned int __n_ctx();

Description:
This function returns the number of contexts compiled to run. The range is 0 to 7.

Arguments:
None.
 Language Support Reference Manual 317

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.6 __nctx_mode()

Function Syntax:
unsigned int __nctx_mode();

Description:
This function returns the context mode, either 4 or 8.

Arguments:
None.
318 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.7 sleep()

Function Syntax:
unsigned int sleep(unsigned int cycles);

Description:
This function suspends the current thread for the specified number of cycles. The
granularity is 16.

Arguments:
cycles Number of cycles to suspend the current thread.
 Language Support Reference Manual 319

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.8 ffs()

Function Syntax:
unsigned int ffs(unsigned int data);

Description:
This function finds the first (least significant) bit set in data and returns its bit position. If
there are no bits set (i.e., the data argument is 0) then the return value is undefined.
Otherwise, the return value is in the range 0 through 31.

Arguments:
data Data to examine.
320 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.9 __LoadTimeConstant()

Function Syntax:
int __LoadTimeConstant(char *name);

Description:
This function associates a constant name with an integer value at load time using ucld and
returns the integer. This provides equivalent functionality as the .import_var using
assembler. There is no register or memory allocated to this constant. The name argument
uniquely identifies the constant.

Arguments:
name The name of a constant to bound at load time.

Example:
In the following example, A1 and A2 have the same constant, which may or may not be the
same as the independent constant for B.
A1 = LoadTimeConstant(“CONST_A”);
A2 = LoadTimeConstant(“CONST_A”);
B= LoadTimeConstant(“CONST_B”);
 Language Support Reference Manual 321

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.10 __global_label()

Function Syntax:
void __global_label(int *label);

Description:
This function creates a named global label at the point the intrinsic is defined.

Arguments:
label Name of the label to create.

Examples:
1. This example creates a label named ixp_start_packet_count at the intrinsic invocation
point. The name of the label is exactly as specified (i.e., no “_” is prepended to the name).
The name of the label must be unique. The label does not interact with other C labels since
C labels are renamed.

global_label(“ixp_start_packet_count”);

2. This fragment creates two different labels -- one global LABEL# and some other option/
code specific label, such as 1_345#.

global_label(LABEL);
...
LABEL:
322 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.11 multiply_24x8()

Function Syntax:
unsigned int multiply_24x8(unsigned int x, unsigned int y);

Description:
This function returns the result of 24-bit x multiplied by 8-bit y.

Arguments:
x 24-bit int to multiply.
y 8-bit int to multiply.
 Language Support Reference Manual 323

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.12 multiply_16x16()

Function Syntax:
unsigned int multiply_16x16(unsigned int x, unsigned int y);

Description:
This function returns the result of 16-bit x multiplied by 16-bit y.

Arguments:
x 16-bit int to multiply.
y 16-bit int to multiply.
324 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.13 multiply_32x32_lo()

Function Syntax:
unsigned int multiply_32x32_lo(unsigned int x, unsigned int y);

Description:
This function returns the lower 32-bit result of 32-bit x multiplied by 32-bit y.

Arguments:
x 32-bit int to multiply.
y 32-bit int to multiply.
 Language Support Reference Manual 325

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.14 multiply_32x32_hi()

Function Syntax:
unsigned int multiply_32x32_hi(unsigned int x, unsigned int y);

Description:
This function returns the higher 32-bit result of 32-bit x multiplied by 32-bit y.

Arguments:
x 32-bit int to multiply.
y 32-bit int to multiply.
326 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.15 multiply_32x32()

Function Syntax:
unsigned long long multiply_32x32(unsigned int x, unsigned int y);

Description:
This function returns the higher 32-bit result of 32-bit x multiplied by 32-bit y.

Arguments:
x 32-bit int to multiply.
y 32-bit int to multiply.
 Language Support Reference Manual 327

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.16 __set_timestamp()

Function Syntax:
void __set_timestamp(__int64 timestamp);

Description:
This function sets both the local_csr_timestamp_low and local_csr_timestamp_high fields
of the local_csr_t enum.

Arguments:
timestamp Timestamp to set.
328 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.17 __timestamp_start(), __timestamp_stop

Function Syntax:
__int64 __timestamp_start(void);
__int64 __timestamp_stop(__int64 handle);

Description:
These functions use local_csr_ timestamp_low and timestamp_high to measure time elapse
in 16-cycle intervals between start and stop. The __timestamp_start() function returns a
handle that is used by the __timestamp_stop() function.

Arguments:
handle Timestamp handle returned by the __timestamp_start()

function and passed to the __timestamp_stop() function.
 Language Support Reference Manual 329

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.18 __set_profile_count()

Function Syntax:
void __set_profile_count(unsigned int profile_count);

Description:
This function sets the local_csr_profile_count field of the local_csr_t enum.

Arguments:
profile_count Profile count to set.
330 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.19 __profile_count_start(), __profile_count_stop

Function Syntax:
unsigned int __profile_count_start(void);
unsigned int __profile_count_stop(unsigned int handle);

Description:
These functions use local_csr_ profile_count to measure time elapse in cycle between start
and stop. The __profile_count_start() function returns a handle that is used by the
__profile_count_stop() function.

Arguments:
handle Handle returned by the __profile_count_start() function that is

passed to the __profile_count_stop() function.
 Language Support Reference Manual 331

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.20 __signal_number()

Function Syntax:
int __signal_number(SIGNAL* s, ...);

Description:
This function takes address of a signal variable and returns the number of the physical
signal register allocated to that variable. This is useful for operations such as setting up of
the RX_THREAD_FREELIST CSRs. For signals declared as remote, the
__signal_number() takes two arguments, the first being the address of the signal and the
second being the microengine number in which the remote signal resides.

Arguments:
s Pointer to a signal variable.
... If the signal is declared as remote, the second argument should

be an unsigned integer of the microengine on which it resides.
332 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.21 __xfer_reg_number()

Function Syntax:
int __xfer_reg_number(void* x, ...);

Description:
This function takes the address of a transfer register variable and returns the number of the
transfer register allocated to that variable. This is useful for operations such as setting up of
the RX_THREAD_FREELIST CSRs. For transfer registers declared as remote, the
__xfer_reg_number() intrinsic takes two arguments, the first being the address of the
transfer register and the second being the microengine number in which the transfer register
resides.

Arguments:
x Pointer to a transfer register.
... If the signal is declared as remote, the second argument should

be an unsigned integer of the microengine on which it resides.
 Language Support Reference Manual 333

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.22 __assign_relative_register()

Function Syntax:
int __assign_relative_register(void *x, int reg_num);

Description:
This function takes the address of a signal variable or transfer register variable, and binds
it to a physical register number. If the address of a structure or array is passed, the first
element of the structure or array will be assigned the physical register number, and every
successive element will be assigned a consecutive register number.

Arguments:
x Address of a signal variable or transfer register variable.
reg_num Physical register number to bind variable to.
334 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.23 __implicit_read()

Function Syntax:
void __implicit_read(void *x, ...);

Description:
This function takes as argument the address of a signal or transfer register variable and
indicates that the signal or transfer register is being read asynchronously or implicitly by
the hardware. It is necessary to use this intrinsic to mark all definitions and use points of
signal/transfer registers that are not directly visible to the compiler. They ensure that the
compiler does correct lifetime analysis and hence correct register allocation to such
variables. This intrinsic must be used, for example, when the RX_THREAD_FREELIST
CSR is written with the register number allocated to a variable, when a signal is requested
by writing into a CSR, or a signal is tested by doing a ctx_arb with a signal mask generated
with __signals().
Note: This intrinsic performs the same task as __free_write_buffer().

Arguments:
x Pointer to a signal or transfer register address.
<count> Optional integer argument that specifies the size in bytes of the

read. This can be used to target specific elements of a structure
or array.
 Language Support Reference Manual 335

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.24 __implicit_write()

Function Syntax:
void __implicit_write (void *x, ...);

Description:
This function takes as argument the address of a signal or transfer register variable and
indicates that the signal or transfer register is being written asynchronously or implicitly by
the hardware. It is necessary to use this intrinsic to mark all definitions and use points of
signal/transfer registers that are not directly visible to the compiler. They ensure that the
compiler does correct lifetime analysis and hence correct register allocation to such
variables. This intrinsic must be used, for example, when the RX_THREAD_FREELIST
CSR is written with the register number allocated to a variable, when a signal is requested
by writing into a CSR, or a signal is tested by doing a ctx_arb with a signal mask generated
with __signals(). See Section 3.8, “User Assisted Live Range Analysis” on page 55 and
Section 7.2, “Things to Remember When Writing Microengine C Code” on page 374 for a
more complete explanation with examples.

Arguments:
x Pointer to a signal or transfer register address.
<count> Optional integer argument that specifies the size in bytes of the

write. This can be used to target specific elements of a structure
or array.
336 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.25 __free_write_buffer()

Function Syntax:
void __free_write_buffer(void *data);

Description:
This intrinsic is called after an asynchronous memory write operation has been issued. It
indicates that all pending writes that require the given data buffer have completed. The
transfer registers allocated for the write can then be reused for other write operations.
Without a call to this intrinsic, the compiler will assume that transfer registers involved in
an asynchronous memory write can be reused immediately after the operation has issued,
which may cause invalid data to be written out to memory. See Section 3.8, “User Assisted
Live Range Analysis” on page 55 and Section 7.2, “Things to Remember When Writing
Microengine C Code” on page 374 for a more complete explanation with examples.
Note: This intrinsic performs the same task as __implicit_read().

Arguments:
data Data buffer to write.
 Language Support Reference Manual 337

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.26 inp_state_test()

Function Syntax:
int inp_state_test(inp_state_t state);

Description:
This function tests the value of the specified state name and returns a 1 if the state is set or
0 if clear. Argument state must be a constant literal as required by the microcode assembler;
otherwise, the compiler generates a runtime check, if possible, with loss of performance

Arguments:
state State to test.
338 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.27 bit_test()

Function Syntax:
int bit_test(unsigned int data, unsigned int bit_pos);

Description:
This function tests the bit_pos in data and return a 1 if set or 0 if clear.

Arguments:
data Integer to test.
bit_pos Bit position in data to test.
 Language Support Reference Manual 339

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.28 nn_ring_dequeue_incr()

Function Syntax:
unsigned int nn_ring_dequeue_incr();

Description:
This function returns the next neighbor ring indexed by NN_GET, then post-increments
NN_GET.

Arguments:
None.
340 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.29 nn_ring_dequeue()

Function Syntax:
unsigned int nn_ring_dequeue();

Description:
This function returns the next neighbor ring indexed by NN_GET without post-
incrementing NN_GET.

Arguments:
None.
 Language Support Reference Manual 341

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.30 nn_ring_enqueue_incr()

Function Syntax:
void nn_ring_enqueue_incr(unsigned int val);

Description:
This function sets the next neighbor ring indexed by NN_PUT with val and post-increments
NN_PUT.

Arguments:
val Value to set next neighbor ring indexed by NN_PUT.
342 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.31 byte_align_block_le()

Function Syntax:
void byte_align_block_le(

unsigned int n_byte_align_oper,
void *dest,
void *src,
unsigned shift_cnt);

Description:
This function sets local_csr BYTE_INDEX to shift_cnt, then performs n_byte_align_oper
times of consecutive byte_align_le operations on a pair of 32-bit elements in dest and src.
Arguments dest and src are addresses of Xfer/GPR 32-bit variables (or aggregates of 32-bit
elements) that must be enregisterized.

Arguments:
n_byte_align_oper The number of byte_align operations to perform on dest and

src.
dest Address that stores the results of the alignment shift.
src Address that contains the pair of 32-bit elements to shift.
shift_cnt The number of bytes to shift.
 Language Support Reference Manual 343

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.32 byte_align_block_be()

Function Syntax:
void byte_align_block_be(

unsigned int n_byte_align_oper,
void *dest,
void *src,
unsigned shift_cnt);

Description:
This function sets local_csr BYTE_INDEX to shift_cnt, then performs n_byte_align_oper
times of consecutive byte_align_be operations on a pair of 32-bit elements in dest and src.
Arguments dest and src are addresses of Xfer/GPR 32-bit variables (or aggregates of 32-bit
elements) that must be enregisterized.

Arguments:
n_byte_align_oper The number of byte_align operations to perform on dest and

src.
dest Address that stores the results of the alignment shift.
src Address that contains the pair of 32-bit elements to shift.
shift_cnt The number of bytes to shift.
344 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.33 __no_spill_begin()

Function Syntax:
void __no_spill_begin();

Description:
Marks the beginning of a "no-spill" program region, where the compiler attempts to keep
all the used variables in registers, unless they have been explicitly allocated to memory or
have had their address taken. This is done at the expense of other program regions, which
may incur extra spills. If the compiler cannot allocate all the variables to registers,
compilation will halt with an error message.

Arguments:
None.
 Language Support Reference Manual 345

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.34 __no_spill_end()

Function Syntax:
void __no_spill_end();

Description:
Marks the end of a "no-spill" program region.

Arguments:
None.
346 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.35 assert()

Function Syntax:
void assert(int exp);

Description:
If exp is zero, a message is printed to standard output (see the note below) and the
ctx_arb[bpt] instruction is executed, which triggers a breakpoint on the currently executing
thread.

Note: This function requires Transactor console I/O support, which is implemented in the Transactor
script file “MicroengineC\samplesutil\util.ind,” under the SDK install directory. Add this script to
your project with “ProjectInsert Script Files...” and set it to execute on startup with
“Simulation\Options...\Startup.” If you are using command line execution, the .ind script generated
by the compiler already contains Transactor console I/O support. Microengine C does not currently
support hardware console I/O - on IXP hardware; the ctx_arb[bpt] instruction will be executed if an
assertion fails, but no output will be printed.
Arguments:

exp Expression to test.
 Language Support Reference Manual 347

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.36 __critical_path()

Function Syntax:
void __critical_path(<int i>); // "i" is optional

Description:
Marks a section of code as being on the critical path of the application. Takes an optional
integer argument (0-100) that specifies the priority of overlapping critical paths. Higher
numbered paths receive higher priority for code layout. The default is 100 if no argument
is specified. Section 3.10, “Critical Path Annotation and Code Layout” on page 59 for
details.

Arguments:
i Optional argument; indicates priority from 0-100. Default is

100
348 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.37 pop_count()

Function Syntax:
unsigned int pop_count(unsigned int data);

Description:
(IXP28xx Rev. B and above only) This function returns the number of “1” bits in the given
value “data”.

Arguments:
data The value on which to perform the operation.
 Language Support Reference Manual 349

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.38 __switch_pack

Function Syntax:
void __switch_pack(enum swpack_t pack_info);

Description:
Asks the compiler to perform the switch block packing optimization described in
Section 3.11.2. This function should only be placed in the “default” handler of a switch()
argument.

Arguments:
pack_info. The type of the switch packing optimization desired, described

in Section 3.11.
350 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.39 __impossible_path

Function Syntax:
void __impossible_path() (void);

Description:
Asks the compiler to perform the default case removal optimization described in
Section 3.11.1. This function should only be placed in the “default” handler of a switch()
statement.

Arguments:
none
 Language Support Reference Manual 351

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.40 __no_swap_begin

Function Syntax:
void __no_swap_begin(void);

Description: Starts a context swap-free critical sect ion. See Section 3.12 for more details
Arguments:

none
352 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.9.1.41 __no_swap_end

Function Syntax:
void __no_swap_end(void);

Description: Ends a context swap-free critical sect ion. See Section 3.12 or more details
Arguments:

none
 Language Support Reference Manual 353

Intel® Microengine C Compiler Language Support
Intrinsic Functions
4.10 Restrictions On Intrinsics

4.10.1 Intrinsic Function Arguments that Map to Transfer
Registers in Microcode
The memory and csr intrinsic functions each take an argument that points to a buffer of memory.
This buffer is mapped to transfer registers and due to the read-only/write-only restrictions on
transfer registers, and due to their asynchronous update, the compiler restricts their usage. In the
following, xfer buffer address refers to the buffer pointer that is passed to these intrinsics as an
argument whereas xfer buffer refers to the memory locations referred to by the xfer buffer
address. For example, in the following code:
{

__declspec(sram) long long x;
__declspec(sram_read_reg) long long rd, buf[1];

SIGNAL sig;

sram_read(&rd, &x, 2, ctx_swap, &sig);
sram_read(buf, &x, 2, ctx_swap, &sig);

}

rd, and buf[] are the xfer buffers and &rd, and buf are the xfer buffer addresses.
__declspec(sram_read_reg) and other transfer register data types are used to make you
aware of the restrictions listed below.

The following are the restrictions imposed and are illustrated with examples below:

1. The xfer buffer argument of a read intrinsic cannot be redefined by any other instruction.
However, it is possible to re-use it in another read intrinsic to the compatible memory region if
the reads are not asynchronous, or if their lifetimes do not overlap.

2. The xfer buffer argument of a write intrinsic cannot be read by any other instruction. However,
it is possible to re-use it in another write intrinsic to the compatible memory region if the
writes are not asynchronous, or if their lifetimes do not overlap.

3. The xfer buffer argument to a read intrinsic cannot be used as the xfer buffer argument to a
write intrinsic and vice versa.

4. It is in general not permitted to assign or take the address of an xfer buffer except when
passing it to the intrinsic. See Section 7.2, “Things to Remember When Writing Microengine
C Code” for more guideline.

5. The xfer buffer address argument to an intrinsic must be supplied by a direct reference to a
buffer variable, and not through a pointer variable.

6. An xfer buffer cannot be part of a larger declared aggregate in memory.

7. For intrinsics that do an asynchronous write (i.e. not ctx_swap), you must mark the spot in the
code where the operation has been tested and is known to be complete. This is done by calling
the intrinsic function free_write_buffer(&x) where x is the xfer buffer used in the write.

8. Intrinsics that perform asynchronous reads may require the use of __implicit_read(). See
Section 7.2, “Things to Remember When Writing Microengine C Code” on page 374 for
details.

9. Parameter count to intrinsics are preferred to be constant. The compiler may generate an
indirect_ref with performance loss if it can't be resolved to a constant at compile-time, or it
will error if it's not possible. Parameters sync and csr must be resolved to be constant at
compile-time.
354 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Intrinsic Functions
Example:

The following example shows violations of these restrictions:
{

__declspec (sram) long long x;
__declspec (sram) int y;
int *rdp;

SIGNAL s;
__declspec(sram_read_reg) int rd;
__declspec(sram_write_reg) int wr;
__declspec(sram_read_reg) int b[2];
int buf[100];
int mask;
...
sram_read(b, &x, 2, sig_done, &s);
...
y=b[i]; // Violates restr 4. Address (b)implicitly

// taken since i is not a constant.
rdp = buf; // Violates restr 4.
sram_read(&rd, &y, 1, sig_done, &s);
sram_read(rdp, &x, 2, sig_done, &s); // Violates restr 5.
sram_write(&wr, &y, 1,sig_done, &s);
sram_write(buf, &x, 2,sig_done, &s); // Violates restr 6.
...
rd += 1; // Violates restr 1.
if (wr) // Violates restr 2.
{
rdp = &rd; // Violates restr 4.
}
sram_write(&rd, &y, 1, sig_done, &s); // Violates restr 3.

}

 Language Support Reference Manual 355

Intel® Microengine C Compiler Language Support
Intrinsic Functions
356 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Inline Assembly Language
Inline Assembly Language 5

The compiler supports inline assembly language through the C __asm statements and blocks,
providing full access to the compiler microengine instruction set. Inline assembler instructions
must refer symbolically to variables declared in C.

All references must be symbolic—the compiler then assigns the registers. It does not allow
references to specific machine registers.

The preprocessor and assembler directives supported for the microcode assembler are not
supported by the C compiler.

Note: The compiler checks for hazards in the inline assembly sequence and flags any hazards found as
errors. The philosophy in the compiler is to not interfere with inline assembly code in a way that
would make the code worse from a performance point of view. The assumption is that users who
write inline assembly are sophisticated in programming at the microcode level and generally do not
want the compiler to modify or rearrange inline assembly. The only exception to this is that the
compiler may perform some low level optimizations and will try to fill delay slots.
 Language Support Reference Manual 357

Intel® Microengine C Compiler Language Support
Inline Assembly Language
5.1 Single __asm Instruction
For a single instruction, the following form is accepted:

__asm <instruction>;
358 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Inline Assembly Language
5.2 Block of __asm Assembly Code
For a block of assembly code, the following is accepted:

__asm __attribute(CONSTANT)
{
label: <instruction>; comment

.

.

.
}

The allowed values for the “CONSTANT” block attribute are ASM_HAS_JUMP and
LITERAL_ASM. The LITERAL_ASM attribute disables all compiler optimizations in the
assembly block and allows the use of the defer[] keyword. The ASM_HAS_JUMP attribute is used
when the assembly block contains the jump[] instruction and is further described below. Assembly
block attributes can be combined with the OR (|) operator.

Note: The label, comment, and attribute value are optional. The attribute value, if specified, must be a
constant. The semi-colon begins a comment in the asm block that continues up to and including the
end-of-line character.
 Language Support Reference Manual 359

Intel® Microengine C Compiler Language Support
Inline Assembly Language
5.3 Instruction Format
An inline instruction has the following format:

opcode [operand, operand...], keyword,...

The allowed operands and optional keywords depend on the opcode.

Function calls are supported using a pseudo instruction CALL that takes a single argument of the
function name:

CALL[foo]

The compiler expands this into storing the return address and branching to the function.

Inline assembly blocks containing jump[] instructions need to be marked with the attribute constant
ASM_HAS_JUMP (defined in ixp.h). The jump[] instructions themselves also need to contain a
list of possible targets. The maximum number of jump targets is 120.

For example:

__asm __attribute(ASM_HAS_JUMP)
{ alu_shf[offset, K, +, I, <<1]; // example offset calculation

jump[offset, base], targets[L1, L2, L3] // jump to L1, L2, or L3
L1:
...
L2:
...
L3:
...

}

This added information allows the compiler to properly allocate registers and optimize code within
the assembly block.
360 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Inline Assembly Language
5.4 Operand Syntax
Each operand to the instruction specifies one of the following:

• a register

• an immediate value (constant)

• a label

• a keyword, such as memory or ALU operation

The specific type of each operand is determined by the opcode.

5.4.1 Register Operands
When a register operand is called for, you must supply a special hardware register, such as a CSR
name (where this is applicable) or a C variable that is in a register, that is either a local, an
argument, or a global variable without a memory attribute (sram, dram, scratch, or local memory).

The register variable must be an integral type (no char or short or __int64). After setting up the
local memory address CSRs, you can use *l$index0 or *l$index1 as register operands to address
local memory. If the variable specifies a struct or union type, you can use the “.” notation to select
a field. The field must be a full 32-bit item. Fields of type char or short, and bit fields cannot be
referenced in this manner. The variable name cannot be the same as a reserved token in the
microcode language. This includes, for example, all the tokens that arise from the ALU opcode
such as B, A, CARRY, AND, OR, XOR, IFSIGN or common names like csr and inp_state etc.
These tokens are case insensitive and hence neither variable “a” nor “A” is permitted as a register
operand. Note that B, and A are reserved tokens since “B-A” is an ALU opcode and white space is
permitted between “B”, “-”, and “A”. Other examples of reserved tokens are (but not limited to)
“csr”, “state”, and “inp_state”.

Objects in registers can be addressed with a byte offset by adding a "+n" to the object name. For
example:

__declspec(gp_reg) int thing[10];

__asm {
alu[thing+12, --, B, 4]; // thing[3] = 4

}

If the object is assigned to general-purpose registers, any byte offset can be used, regardless of
alignment. The compiler will generate the proper mask-and-shift operations to perform an
unaligned access, if necessary. Objects in transfer registers or remote next neighbor registers
cannot be accessed with unaligned offsets.

When setting up an argument for a function call, you can refer to the registers used to pass the
argument using the following notation:

funcname.arg_n

where n = 0 for the first (leftmost) argument in the function header.

To get the return value from a function after a call, use the following:
 Language Support Reference Manual 361

Intel® Microengine C Compiler Language Support
Inline Assembly Language
funcname.ret

If an argument or return value is a struct, you can cast it to the struct type and select a field as
follows:

funcname.arg_n:structname.field

The example in Section 5.4.3 depicts usage of C variables, structure field access, and function call
setup within inline assembly.

When calling functions inside inline assembly blocks, you must take care to pass the arguments in
the way that the function expects. The compiler will treat all such arguments as untyped register
values and will not perform type checking.

For operands that span more than one register, you can use an offset of 4 bytes for each additional
register, for example:

foo+8

refers to the third register occupied by foo.

5.4.2 Immediate Operands
Immediate operands are constant expressions using C syntax. All of the C operators are supported,
including the sizeof() macro. An “offsetof(struct, field)” macro is also supported, which returns the
byte offset of a given field in a struct.

Simple “constant folding” is supported. For example, “3+4” will be replaced with the constant “7”.

The address of a memory variable can also be specified as an immediate operand, using the &
operator. Since immediate operands can be no more than 16 bits, you can get the high order 16 bits
of an address by using the >> operator as follows:

&buffer >> 16

Note: See the IXP2800 Network Processor Programmer’s Reference Manual for allowable opcodes,
operands, and keywords.

Note: A non-zero constant beginning with zero (0) is interpreted as an octal number. Thus, for example,
the byte mask in __asm {ld_field[dest, 0011, src, >>16]} will be interpreted as 9. To express the
mask in binary use the “b” or “B” suffix, as in __asm {ld_field[dest, 0011b, src, >>16]}. To
express the mask in hex, use 0x or OX as a prefix, as in __asm{ld_filed[dest, 0x11, src, >>16]}.

5.4.3 Usage Examples

Example: This example illustrates how to call a C function from inline assembler code and access structure
fields.

typedef struct
{

int a;
int b;

} a_struct;

int a_func(int x, a_struct str)
362 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Inline Assembly Language
{
return x + str.a + str.b;

}

int call_a_func(int y)
{

int ret;

__asm
{
alu [a_func.arg_0, --, B, y]; pass y as x
alu [a_func.arg_1:a_struct.a, --,B,1]; pass 1 as str.a
alu [a_func.arg_1:a_struct.b, --,B,2]; pass 2 as str.b
call [a_func]
alu [ret, --, B, a_func.ret]; return value
}
return ret;

}

 Language Support Reference Manual 363

Intel® Microengine C Compiler Language Support
Inline Assembly Language
Example: This example illustrates different errors in usage.

__declspec(sram) int x;
int y;
__declspec(local_mem) B, C;
struct { char c; short s;} st;

foo(&y, &C);
__asm {

alu [x, C, +, C]; Error since x has been allocated to SRAM
alu [st.c, st.s, + st.s]; Error since s.c and s.s are of

type char, and short
respectively

alu [B, C, +, C]; Error since B is a reserve
keyword in microcode

}

364 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Inline Assembly Language
5.5 Restrictions on Use Of Assembly Language
The compiler can not handle all possible uses of assembly language. The following restrictions are
in place:

• The target of a jump instruction must reside in the same inline assembly block as the branch.

• A goto statement in Microengine C code cannot branch into inline assembly code.

• Instructions that override the register address for transfer registers resulting in the registers that
are not local to the current thread do not work properly.

• funcname.arg_n can not be used as a source operand, funcname.ret can not be defined.
Sequences of funcname.arg_n definitions must be followed by inline-asm call to funcname
without other intervening call(s) in between. All parameters to inline-asm call must be defined
before call.

• The DEFER keyword can only be used in inline assembly blocks that are tagged with the
LITERAL_ASM attribute.

• Code within an __asm block may not depend on the value of processor flags (e.g. +carry,
condition codes), generated by C code outside the __asm.

• Register operands must be of integral type (no char, short, or __int64)

• The br[] token on the ctx_arb[] instruction is not supported.

• Local memory variables cannot be accessed in inline assembly using their “C names”, because
the access may need to be expanded to several instructions. Local memory can be accessed
directly using the local memory pointer CSRs.

• Code that depends on a specific clock cycle timing to read or write different CSR values may
not function correctly. For example:

local_csr_write[active_lm_addr_0, a0]
local_csr_write[active_lm_addr_0,b0]
nop
nop
alu[$1, a2, +, *1$index0] //expecting to use the old value
alu[$2, a3, +, *1$index0] //expecting to use the new value

The compiler may insert additional NOP instructions to maintain the 3-cycle latency between the
CSR writes and the CSR accesses, which would disturb the timing of the above code.

Further restrictions may be specified in the future.
 Language Support Reference Manual 365

Intel® Microengine C Compiler Language Support
Inline Assembly Language
366 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Compiler Optimizations
Compiler Optimizations 6

The Microengine C Compiler optimizes for size, speed, or debugging. It optimizes at the function
level or on a whole program level.

6.1 Machine Independent Optimizations
The compiler does several machine independent optimizations including:

• Inlining and whole program constant propagation.

• Traditional scalar optimizations to clean up the code and remove redundant computations.

• Loop unrolling/peeling—reduces taken branches and provides optimization opportunities.

• Constant and copy propagation:
Example: y=5; x=y; foo(x); In foo(x) z=z<<(x+1) is optimized as z=z<<6.

• Removal of dead stores—stores to memory locations that are not referenced are eliminated.
These are not applied to variables declared volatile. The assignment to x is eliminated in the
following example:
main() {__declspec(sram) x; x=5; return}

6.2 Network Processor Specific Optimizations

6.2.1 Registrations
All local and global variables are kept in registers unless:

• The address of the variable is taken and can not be propagated to the dereferencing site or used
for something else than simple dereferencing.

— Example: int x, *p; p=&x; /* p is in a register, x is in SRAM */

• The variable is declspeced to a memory region.

— Example: __declspec(sram)int x, *p; /* p is in a register, x is in SRAM */

• Registers need to be spilled.

— Transfer registers are spilled to GPRs

— GPRs spilled to local memory or SRAM.

6.2.2 Read/Write Combining
Multiple reads or writes can be combined into one read or write respectively, if the reads/writes are
to contiguous memory locations. This is done with SRAM/DRAM/SCRATCH memory operations
specifying a reference count greater than one.
 Language Support Reference Manual 367

Intel® Microengine C Compiler Language Support
Compiler Optimizations
— Example:
struct{
int a, b;
}
__declspec(sram) s;

x=s.a+s.b; //Only one SRAM read is generated with a two-word count

Although the two accesses to the SRAM structure are distinct in the C code, they are combined by
the compiler into a single SRAM read instruction. One SRAM read of two words will complete
faster than two separate SRAM reads, especially when the reads are blocking (ctx_swap) reads.

6.2.3 Peephole Optimization
Some instructions on the IXP architecture can perform multiple operations simultaneously. The
compiler will try to use these instructions whenever possible.

Examples:

• Combining shift and logical operations.

— dest = x & (j << 2) becomes alu_shf[dest, x, AND, j, << 2]

• Combining add and mask operations:

— dest = x + (j & 0xff) becomes alu[dest, x, +8, j]

6.2.4 Defer Slot Filling
Some multi-cycle instructions on the IXP architecture contain “defer slots” which allow other
instructions to be executed while the slower instruction is being processed. The compiler will take
advantage of these defer slots when possible. For example:

z += 5;
if (x) goto label;

becomes:

alu[x, --, B, x]
beq[label#], defer[1]
alu[z, z, +, 5] ; always executed

6.2.5 Local Memory Grouping
The compiler attempts to allocate local memory variables used in the same control flow region into
one continuous group and controls access to those variables through a single local_csr_write
instruction. For information on how this is done, see Section 3.2.7.
368 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Compiler Optimizations
6.2.6 Local Memory Autoincrement/Autodecrement Conversion
The compiler will generate autoincrement and autodecrement addressing for local memory
accesses in loops whose addresses vary by a constant amount. For example:

__declspec(local_mem) int arr[10];

for (i = 0; i < 10; i++)
{

arr[i] = i; // address of LM access increments by
 // 1 word on every iteration

}

becomes:

local_csr_wr[active_lm_addr_1, arr]
nop
nop
nop

l_2#:
alu[*l$index1++, --, B, i]
alu[i, i, +, 1]
alu[--, i, -, 10]

blt[l_2#]

Previously, such accesses were performed by writing the local memory index register on each
access, which would cause up to a four-cycle delay on every loop iteration.

This optimization is disabled by a switch, "-Qlm_unsafe_addr". This should be used when local
memory pointers are written with invalid values and accessed conditionally. For example:

__declspec(local_mem) int p[100];
int i;

for (i = -100; i < 100; i++)
{

if (i > 0)
{
... = p[i];
}

}

For the first 100 iterations of the loop, “p[i]” is not a valid local memory address. The above
example is correct code because the loop checks if “i” has a valid value before performing the array
access, but the local memory address optimizer may generate:

local_csr_wr[active_lm_addr_1, "&(p[-100])"]
nop
nop
nop
top:

alu[--, --, B, i] // if (i > 0)
ble[skip#]

... [..., *l$index1] // ... = p[i]
skip:

alu[--, --, B, *l$index1++] // p++ and i++
alu[i, i, +, 1]
 Language Support Reference Manual 369

Intel® Microengine C Compiler Language Support
Compiler Optimizations
alu[--, i, -, 100]
blt[top#]

The local memory index register is initialized to “&(p[-100])”, which may be negative, and
incremented by 1 word every iteration. This is “functionally correct” but may not work correctly on
actual IXP hardware, since signed arithmetic is not guaranteed to work on local memory index
registers.

If you have code such as the above, where a local memory array or pointer expression is
intentionally set to point to a value outside of the allowable 0-640 address range, you should turn
off local memory postinc/postdec optimization with -Qlm_unsafe_addr.

6.2.7 Scheduling
The compiler may re-order instruction sequences to reduce nops; otherwise, it needs to maintain
correct latencies between performance. Listed below are some cases where nops are needed.

• Between writes to local_csr and the use or read of the same local_csr, included, but not limited
to the following:

— Writes to lm_addr CSRs and *l$index0 or *l$index1

— Writes to T_index CSRs and *$index or *$$index

— Writes to BYTE_INDEX CSRs and byte_align_be or byte_align_le

— Writes to NN_Put/NN_get and *n$index

• Between instruction setting condition code and bcc on it with defer[3]

• Between crc operations, and between the last crc and the use of crc remainder

• Between definition of nearest neighbor and use of the same nn in self-mode

• Between two local_csr writes to the following 3 local_csrs: next_neighbor_signal,
prev_neighbor_signal, and same_me_signal

The scheduler assumes that you write serialized code without knowledge of pipeline latencies,
which might change from generation to generation, which results in non-portable code. The Hazard
Detector inserts proper nops in -Od when the scheduler is turned off.

6.2.8 I/O Parallelization
Multiple I/O operations with the ctx_swap token can be converted to use sig_done followed by a
ctx_arb to wait a mask of their signals, if instructions between I/O and the inserted ctx_arb, if any,
don’t access other global states, and if doing so won’t create more spilling. The compiler may use
an existing ctx_arb rather than inserting a new one if one is found and the above rules are satisfied.
If I/O with the ctx_swap token is generated by the compiler from C statements (as opposed to
intrinsics or inline-assembly), meaning user has no expectation of ctx_swap, the restriction about
accessing global states may be relaxed. For example:

Original sequence of code:

sram[read, sr, &mem1, 0, 1], ctx_swap[sig1]
sram[write, sw, &mem2, 0, 4], ctx_swap[sig2]
dram[read, dr, &mem3, 0, 2], sig_done[sig3]
ctx_arb[sig3]
370 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Compiler Optimizations
Can be converted into:

sram[read, sr, &mem1, 0, 1], sig_done[sig1]
sram[write, sw, &mem2, 0, 4], sig_done[sig2]
dram[read, dr, &mem3, 0, 2], sig_done[sig3]
ctx_arb[sig1 sig2 sig3]
__free_write_buffer(&sw);

The SRAM read and write operations can be executed in parallel with the DRAM read. This is
possible because the code between the SRAM read and the ctx_arb instruction meets the conditions
described above. Namely, the transfer register “sr” is not read, there are no global states accessed,
and no spills will be caused by extending the live ranges of the transfer registers and signals.
 Language Support Reference Manual 371

Intel® Microengine C Compiler Language Support
Compiler Optimizations
372 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Tips for Optimization, Troubleshooting, and Debugging
Tips for Optimization, Troubleshooting,
and Debugging 7

The following are suggestions on how you can optimize, troubleshoot, and debug your code.

7.1 Optimizing Your Code
The C compiler performs automatic optimization at various levels but there are some coding
techniques that will make your program perform better.

• Minimize variable allocation to memory.

— Taking the address of a variable or declaring it with a memory region attribute causes
allocation to memory.

— Structures/arrays larger than 64 bytes (or 128 bytes in 4-context mode) are allocated to
memory.

• Minimize access to memory variables.

• When possible, it is preferable to declare a variable that does not require initialization as a
local variable in main() rather than as a global or a static variable. This is because a global/
static declaration implies a default initialization to zero. Such variables when allocated to
registers or local memory are initialized at runtime. By making it a local variable the
unnecessary initialization is avoided.

• When using the ctx() intrinsic, it is preferable to use it directly in a branch condition. This is
because the architecture supports the BR=CTX and BR!=CTX instructions.

Example:

 if (ctx() == 0) { ... }
else if (ctx() == 1) { ... }
...

or the alternative:

 switch (ctx())
case 0:

...
break;

case 1:
...

| break;

are both preferable to:

unsigned int c = ctx();
if (c == 0) { ... }
else if (c == 1) { ... }
 Language Support Reference Manual 373

Intel® Microengine C Compiler Language Support
Tips for Optimization, Troubleshooting, and Debugging
Use unsigned types where signed types are not needed.

• Arithmetic right shift is more expensive than logical right shift.

When writing into bit fields, do not mask unnecessarily.

Example:
sram_read_write_ind_t ind;
ind.xadd_reg & 0x1f; /* mask is not needed as xadd is 5 bits */

Force inlining of very short (1 or 2 microword) functions with __forceinline directive.

• The UC assembler preprocessor supports the use of loops to evaluate constant expressions at
assembly time. The use of such loops is not recommended in Microengine C code. The
compiler will "fold" simple expressions at compile time (example: "i = 4 + 5" will be folded to
"i = 9"), but loops will not be pre-evaluated in this manner.

• Whenever possible, use __declspec(aligned(n)) to inform the compiler about guaranteed run
time characteristics of the pointer variable. This information allows the compiler to generate
significantly better code. It is your responsibility to specify correct values for alignment
boundaries. Incorrect alignment information might force the compiler to generate incorrect
code.

• Use the “restrict” qualifier on pointers when there are no other means to access the memory it
points to. Please refer to Section 3.7.4.1, “The “restrict” Qualifier” on page 54 for details.

7.2 Things to Remember When Writing Microengine C
Code

• In certain cases, you might want to execute different code in different execution contexts. The
context id is obtained by a ctx() call. It is preferable to use this call directly in every construct
that controls execution flow. Note that when the program is compiled with 4 contexts enabled,
the enabled contexts are the even ones (0, 2, 4, 6).

• Unions are a handy way to get around optimization problems with bitfields.

• You can use structa = structb as a clean way to copy blocks of registers (xfer to gpr, etc).

• The compiler globally resolves GPRs so that functions can return integral or aggregate values
in registers to multiple callers.

• When possible, avoid multiple reads/writes of a struct in memory by first copying it to a
temporary struct in local memory or registers, operating upon this struct, and finally writing it
out to memory as needed.

• When debugging, always display instruction addresses. If there are no addresses displayed, the
compiler may have removed your code.

• Use the -Qperfinfo compiler option to analyze register pressure, register spills, and register
liveness information. You can also get symbol map and function size data. The data produced
by the -Qperfinfo option, especially register spill information, is very important. The register
allocator assigns variables to a limited number of hardware registers during program
execution. When too many registers are in use simultaneously the compiler detects a "register
conflict" and instead of assigning a variable to a register demotes it to local memory. In certain
374 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Tips for Optimization, Troubleshooting, and Debugging
cases the compiler might allocate such a variable in SRAM, which may result in significant
performance degradation.

• When performing an asynchronous memory write operation (i.e. a write which waits on
"sig_done"), you must call the __free_write_buffer() intrinsic to specify the point after which
the operation can be considered to have completed. Without this call, the compiler will by
default assume that the transfer registers involved in the write operation can be reused
immediately after the operation has been issued. This behavior may cause invalid data to be
written out to memory. For example:

__declspec(sram_write_reg) int x, y;
unsigned int addr = 0x200;
signal s1, s2;

x = 10;
__asm sram[write, x, addr, 0, 1], sig_done[s1];
y = 20;
// x is still alive at this point
__asm sram[write, y, addr, 4, 1], sig_done[s2];
// y is still alive at this point
wait_for_all(&s1, &s2);
// the following calls are need to prevent x, y
// being released before I/O finished.
free_write_buffer(&x);// or __implicit_read(&x)
free_write_buffer(&y);// or __implicit_read(&x)

• Asynchronous reads may require the use of __implicit_read() or __free_write_buffer(), if not
all the data is being used. Consider the following example:

SIGNAL sig1,sig2;
SIGNAL_PAIR sigpair;
__declspec(sram_read_reg) int sr1[4];
__declspec(sram_read_reg) int sr2[4];
sram_read(&sr1, 0, 4, sig_done,&sig1);
dram_read_S(&sr2, 0, 2, sig_done,&sigpair);
__wait_for_all(&sig1,&sigpair);
sum += sr1[0] + sr2[0]; // only use the first element of each

The compiler will see that your program is not using the entirety of the buffers sr1 and sr2. It
may attempt to conserve registers by assigning overlapping register ranges to sr1 and sr2. For
example, $0 through $3 may be assigned to sr1, and $1 through $4 may be assigned to sr2.
This is correct if the two memory reads complete in order, since the sum operation only uses
sr1[0] and sr2[0], which are $0 and $1, respectively. However, if the sram_read() and
dram_read_S() operations complete out of order, this assignment will cause problems. When
the dram_read_S() operation completes, the data you need will be read into $1. But when the
sram_read() operation completes, the contents of $1 will be overwritten by the four-word read
operation starting at $0.

You must avoid this situation by informing the compiler that the entirety of both transfer
buffers is being used, with the __free_write_buffer() or __implicit_read() intrinsics:

SIGNAL sig1,sig2;
SIGNAL_PAIR sigpair;
__declspec(sram_read_reg) int sr1[4];
__declspec(sram_read_reg) int sr2[4];
sram_read(&sr1, 0, 4, sig_done,&sig1);
dram_read_S(&sr2, 0, 2, sig_done,&sigpair);
__wait_for_all(&sig1,&sigpair);
__implicit_read(sr1); // create a use of the whole four-word buffer
 Language Support Reference Manual 375

Intel® Microengine C Compiler Language Support
Tips for Optimization, Troubleshooting, and Debugging
__implicit_read(sr2); // create a use of the whole four-word buffer
sum += sr1[0] + sr2[0]; // only use the first element of each

If the compiler sees that all the data in both sr1 and sr2 is being used, it will not attempt to
overlap the register assignments for those buffers, and will assign different registers (8 total in
this example) to each buffer.

• Intrinsics which perform atomic operations (test-and-set, test-and-clear, test-and-add, test-and-
sub, hash, put-ring, swap) accept two transfer registers, which are required by the IXP
architecture to have the same name (i.e. the read register $0 must be paired with the write
register $0). This restriction may create unexpected behavior if the same variable is reused in
more than one atomic operation. For example, if __sram_test_and_set() is called with
arguments val and mask, and another __sram_test_and_set() call is made with arguments val2
and mask, the variables val and val2 will need to be assigned the same register because of their
association with the variable mask. Different, but equally sized, variables should be used for
each atomic operation if this register assignment behavior is not desired. The compiler will
print an error message if this situation occurs.

• Passing an address of xfer/signal/gpr to a function is generally disallowed unless the callee is
an intrinsic function. For __forceinline function compiled under command line options other
than -Od and -Ob0, the compiler does its best to propagate xfer/gpr/signal with the address
taken at the call site to pointer deferencing inside callee, as if xfer/gpr/signal were directly
used. If your program saves aside the pointer to another variable, however, the compiler is not
always able to remove that statement, which causes an xfer/gpr/signal register violation from
having its address taken. The general guideline follows:

If a user-defined function f takes the address of a xfer/gpr/signal variable in parameter p, then

— f must be inlined, and

— p can only be safely used in the following two cases:

— 1) to de-reference in a form like "*((optional-cast)p + const-offset)";

— 2) to compare p against another parameter q, which takes address of xfer/gpr/signal.
Pointer arithmetic on p, if any, can only happen in the above two cases.
Saving aside p in another user-defined variable r may cause the compiler to crash because
statements like r=p (or r=&xfer after inlining) may not always be removed (especially
combining with pointer arithmetic like r=p+1, or complex control-flow-graph between
that and use of r, etc) and violates the rule that xfer/gpr/signal cannot have their addresses
taken.

• When you use the compiler option -uc for mixing C and microcode programming, the
compiler assumes C code does not contain the whole program, and makes very conservative
optimization decisions. Even if you do have the whole program in C, you might still observe
performance loss with -uc than without -uc. As a result, when you have the whole program in
C, always use the compiler to generate a list file directly, and do not use the -uc switch.

• Write transfer buffers should be fully initialized, with either an assignment or an
__implicit_write() call, before they are used in I/O operations. Otherwise, the compiler will
assume that the uninitialized transfer registers are actually initialized elsewhere, and will
extend the live range of those registers above the declaration point of the buffer. This leads to
inefficient register usage and possibly extra spills or a register allocation failure. Example:

__declspec(sram_write_reg) int buf[10];
__implicit_write(&buf); // "initialize" the buffer
count = foo();
sram_write(&buf, addr, count, ctx_swap, &sig);
376 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Tips for Optimization, Troubleshooting, and Debugging
// I/O size determined at runtime: assumed to be max size

Limited forms of indirect register access are possible if you consider the live range computations
that the compiler performs, and if you are careful to tell the compiler which registers will be
accessed, by using the __implicit_read() and __implicit_write() intrinsics. For example:

__declspec(sram_write_reg) int wbuf[10];
__implicit_write(&wbuf); // Tells compiler that wbuf is being written to
__asm {
... loop which writes "wbuf" using T_INDEX
}
sram_write(&wbuf, addr, 10, ctx_swap, &sig);

In the above code, if the __implicit_write() call were not present, the compiler would not know
that the inline assembly code writes to the buffer wbuf. The sram_write() call would then
appear to be using data defined elsewhere, which may cause incorrect program behavior.
Specifically, the compiler will assume that the values used in the sram_write() call are the
previous values of the transfer registers allocated to the "wbuf" array, and may propagate those
values into the sram_write() call. This will overwrite the values written by the T_INDEX loop,
causing the wrong values to be written to SRAM.__implicit_read() is necessary when reading
registers with indirect accesses:

__declspec(sram_read_reg) int rbuf[10];
sram_read(&rbuf, addr, 10, ctx_swap, &sig);
__asm {... loop which reads "rbuf" using T_INDEX
}
__implicit_read(&rbuf); // tells compiler that "rbuf" is read

In the above example, the compiler may remove the sram_read() call if it does not see any
code which uses the "rbuf" transfer buffer. The __implicit_read() call informs it that the buffer
is in fact "live" and its contents are needed.
Indirect accesses should not be used to read or write registers assigned to other threads.

• If the compiler cannot determine that the transfer size for a memory I/O or hash operation is a
known constant (for example, calling sram_read() with a variable "x" for the size argument,
where "x" does not have a constant value), the "indirect form" of the underlying I/O instruction
will be generated, which allows the size to be determined at runtime. However, the compiler
still needs to know how many transfer registers should be reserved for the I/O operation, to
prevent values from being accidentally overwritten by other I/O operations. The indirect form
of the I/O intrinsics contain a parameter, "max_nn", which allows you to specify this
information. When the compiler itself generates the indirect form from a direct I/O call with a
non-constant size parameter, the compiler will look at the transfer buffer argument passed in
and assume that the entire buffer will be accessed. This assumption may cause problems if
your program makes an I/O call with a non-constant size that only writes to part of a buffer,
and if your program expects the rest of the buffer to retain its previous value. For example:

__declspec(sram_read_reg) a[10];
__sram_read(&a, addr, 10...); // init "a" with 10 words
__sram_read(&a, addr, x....); // read "x" words into "a". Suppose "x" < 5,

//but the compiler does not know it.
... = a[7]

In the above example, the second I/O call has a size parameter that the compiler cannot
determine is a constant, for whatever reason. Suppose your program knows that this value is
never greater than 5. Then you might expect that a [7] will never be touched by the second I/O
 Language Support Reference Manual 377

Intel® Microengine C Compiler Language Support
Tips for Optimization, Troubleshooting, and Debugging
operation, and that the value of a [7] will be the one read from the first I/O operation. The
compiler, however, cannot perform this analysis, and will assume that all the elements of "a"
are written to by the second I/O operation. Therefore, the first __sram_read() call will appear
to be redundant and may be removed by the compiler, which will cause a[7] to have an
unknown value.
The compiler cannot detect when the above situation is occurring (otherwise it would not be a
problem). It is recommended that you compile your code with the -Qperfinfo=128 option,
which generates warnings for all the instances that direct I/O operations are auto-converted
into indirect form. You should examine each of the reported instances, determine if they are
making the hidden assumption about partial buffer access described above, and, if so,
manually change the I/O operation to the “true” indirect form (sram_read_ind() in the above
example), where the maximum transfer size can be specified as a parameter.

• If inline assembly is used with a comment “;” additional C commands after the “;” are not
seen.
Example: __asm { pci_dma[d0, d1, order_queue], ctx_swap; }
This is interpreted by the compiler as:
 __asm { pci_dma[d0, d1, order_queue], ctx_swap
The trailing “}” is lost because of the comment start symbol “;”

7.3 Troubleshooting

7.3.1 Program Does Not Fit
• Compile for size (-O1).

• Use __noinline on any functions that are inlined and called from multiple places to prevent the
compiler from inlining them.

• Reduce inlining (-Ob1, or -Ob0).

7.3.2 Program Does Not Run Correctly
• Compile at warning level 4 (W4) and check warning messages.

• Generate source level debugging information (-Zi).

Note: Refer to Table 2, “Supported CLI Option Switches” on page 20 for more information on compiler
command line interface (CLI) option switches.

7.4 Debugging Inline Functions
When a function is inlined, the line number associated with the inlined code is the same as the call
site. You can no longer step into a inlined function.
378 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Mutual Exclusion Library
Mutual Exclusion Library 8

8.1 Introduction
The mutual exclusion locks (mutexes) provided in this library are designed to prevent multiple
contexts of an ME from simultaneously executing critical sections of code that access shared data.
In other words, mutexes are used to serialize the execution of a microengine's contexts.

All mutexes must be global. A successful call for a mutex lock via MUTEXLV_lock() will cause
another thread that is also trying to lock the same mutex to block until the owner thread unlocks it
via or mutex_unlock(). Threads within the same micro engine can share mutexes.

The MUTEXLV uses the microengine C construct:

__declspec(shared gp_reg)

which is a shared general purpose register (across threads in a ME). If the compiler cannot allocate
the gp_reg object in a register, it reports an error and aborts.

The MUTEXLV are implemented via macros, as they must manipulate the register object directly.
A single MUTEXLV object is capable of 32 mutex(s), each referred to with a user specified unique
id (MUTEXID) from [0 .. 31], not necessarily a constant. There is no range checking on the
required id.

To coordinate threads on multiple microengines, there are microengine global mutexes.

The MUTEXG uses the microengine C construct:

__declspec(import | export)

which by default are shared volatile variables across microengines.

MUTEXG_IMPORT and MUTEXG_EXPORT are implemented as macros. They are functionally
similar to the MUTEXLV macros, except they are not vector valued (that is, there is only one
available per declaration).

Note: There is no corresponding functions for the semaphore library.

8.2 MUTEXLV Usage
MUTEXLV lock= 0;

f(MUTEXID handle)
{

...
MUTEXLV_lock(lock, handle)

// lock data/code access to only one ME local thread
 Language Support Reference Manual 379

Intel® Microengine C Compiler Language Support
Mutual Exclusion Library
 MUTEXLV_unlock(lock, handle)
...

}

If the handle value is reused, you must use the correct barrier synchronization (semaphore).

8.3 MUTEXG Usage
MUTEXG lock= 0;

f(MUTEXID handle) {
...
MUTEXG_lock(lock, handle)

// lock data/code access to one ME thread
 MUTEXG_unlock(lock, handle)
 ...
}

8.4 Functions

8.4.1 MUTEXLV_init (MUTEXLV)
PARAMETERS

MUTEXLV: mutex object to be initialized
DESCRIPTION

Initialize all ids to zero.
This is very hard to use, as you must insure the mutex is initialized only once (either
globally, or with some semaphore)

ERRCODE

No error code is returned

8.4.2 MUTEXLV_destroy(MUTEXLV,MUTEXID)
PARAMETERS

MUTEXLV: mutex object
MUTEXID: handle to specific mutex id

DESCRIPTION

This clears the specific [mutex, id] in mutex.
ERRCODE

No error code is returned
380 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Mutual Exclusion Library
8.4.3 MUTEXLV_lock(MUTEXLV, MUTEXID)
PARAMETERS

MUTEXLV: mutex object
MUTEXID: handle to specific mutex id

DESCRIPTION

This tests and blocks a specific [mutex, id] for a lock. If busy, the current context is
swapped out. If free, the [mutex,id] is set and ERRCODE_EOK is returned in supplied
argument. There is no sense of ctx() ownership or recursion. If the same thread tries to
reacquire the lock (that it already owns), it too will block.

ERRCODE

No error code is returned

8.4.4 MUTEXLV_unlock(MUTEXLV, MUTEXID)
PARAMETERS

MUTEXLV: mutex object
MUTEXID: handle to specific mutex id

DESCRIPTION

Unlock the [mutex, id]. There is no sense of ctx() ownership (i.e. a different thread may
unlock the object)

ERRCODE

No error code is returned

8.4.5 MUTEXLV_trylock(MUTEXLV, MUTEXID, ERRCODE)
PARAMETERS

MUTEXLV: mutex object
MUTEXID: handle to specific mutex id
ERRCODE: specific error code returned

DESCRIPTION

This tries to acquire the [mutex, id] (if free) but does not block.
ERRCODE

ERRCODE_EBUSY: lock is busy
ERRCODE_EOK: lock has been acquired

8.4.6 MUTEXLV_testlock(MUTEXLV, MUTEXID, ERRCODE)
PARAMETERS

MUTEXLV: mutex object
MUTEXID: handle to specific mutex id
ERRCODE: specific error code returned
 Language Support Reference Manual 381

Intel® Microengine C Compiler Language Support
Mutual Exclusion Library
DESCRIPTION

This tests but does not acquire the [mutex, id]
ERRCODE

ERRCODE_EBUSY: lock is currently spinning
ERRCODE_EOK: lock is free (i.e. may be acquired)

8.4.7 MUTEXG_init (MUTEXG)
PARAMETERS

MUTEXG: mutex object to be initialized.
DESCRIPTION

Initialize to zero. You must insure the mutex is initialized only once, either globally or
through a semaphore.

ERRCODE

No error code is returned.

8.4.8 MUTEXG_destroy (MUTEXG)
PARAMETERS

MUTEXG: mutex object.
DESCRIPTION

Clears the specified mutex object.
ERRCODE

No error code is returned.

8.4.9 MUTEXG_lock (MUTEXG)
PARAMETERS

MUTEXG: mutex object.
DESCRIPTION

This tests and blocks a specific mutex for a lock. If busy, the current context is swapped
out. If free, the mutex is set and ERRCODE_EOK is returned in the supplied argument.
There is no concept of ctx() ownership or recursion. If the same thread tries to re-acquire
the lock that it already owns, it too will block.

ERRCODE

No error code is returned.
382 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Mutual Exclusion Library
8.4.10 MUTEXG_unlock (MUTEXG)
PARAMETERS

MUTEXG: mutex object.
DESCRIPTION

Unlock the mutex. There is no concept of ctx() ownership (that is, a different thread may
unlock the object).

ERRCODE

No error code is returned.

8.4.11 MUTEXG_trylock (MUTEXG, ERRCODE)
PARAMETERS

MUTEXG: mutex object.
ERRCODE: specific error code returned.

DESCRIPTION

This attempts to acquire the [mutex, id] if it is free, but does not block.
ERRCODE

ERRCODE_EBUSY: Lock is busy.

ERRCODE_EOK The lock has been acquired.

8.4.12 MUTEXG_testlock (MUTEXG, ERRCODE)
PARAMETERS

MUTEXG: mutex object.
ERRCODE: specific error code returned.

DESCRIPTION

This tests but does not acquire the [mutex, id].
ERRCODE

ERRCODE_EBUSY: Lock is currently spinning.

ERRCODE_EOK The lock is free (that is, it may be acquired).
 Language Support Reference Manual 383

Intel® Microengine C Compiler Language Support
Mutual Exclusion Library
384 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Semaphore Library
Semaphore Library 9

9.1 Semaphore Data Types
typedef unsigned int SEMVALUE;

typedef volatile __declspec(shared gp_reg) struct SEML
{

unsigned barrier:1;
unsigned init:1;
unsigned reserved:14;
unsigned initval:8;
unsigned val :8;

} SEML;

9.2 Semaphore Functions

9.2.1 SEML_init(SEML, SEMVALUE)
PARAMETERS

SEML: semaphore object
SEMVALUE: initial value of the semaphore counter (max 0xff)

DESCRIPTION

This function initializes an unnamed semaphore. The initial value of the semaphore is set
to 'value'. The semaphore may also be initialized globally by
SEML sem= SEML_init_list(value);

ERRCODE

No error code is returned.

9.2.2 SEML_destroy(SEML)
PARAMETERS

SEML: semaphore object
DESCRIPTION

This function destroys an unnamed semaphore.
ERRCODE

No error code is returned.
 Language Support Reference Manual 385

Intel® Microengine C Compiler Language Support
Semaphore Library
9.2.3 SEML_post(SEML)
SEML_dec(SEML)

PARAMETERS

SEML: semaphore object
DESCRIPTION

This function will post (or dec) a wakeup to a semaphore. If there are waiting threads, one
is unblocked; otherwise, the semaphore value is incremented (decremented) by one.

ERRCODE

No error code is returned.

9.2.4 SEML_wait(SEML)
PARAMETERS

SEML: semaphore object
DESCRIPTION

This function waits on a semaphore. If the semaphore value is greater than zero, it decreases
its value by one. If the semaphore value is less than or equal zero, then the calling thread is
blocked until it can successfully decrease the value.

ERRCODE

No error code returned.

9.2.5 SEML_trywait(SEML, ERRCODE)
PARAMETERS

SEML: semaphore object
ERRCODE:

DESCRIPTION

Similar to SEML_wait except that if the semaphore value is zero, then this function returns
immediately with the error EAGAIN.

ERRCODE

ERRCODE_EAGAIN:the semaphore was already locked,
ERRCODE_OK:
386 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
Semaphore Library
9.2.6 SEML_barrier(SEML,n)
PARAMETERS

SEML: semaphore object
DESCRIPTION

This function performs the dual of SEML_wait. It is used to provide a synchronization
point for threads to join by waiting on a semaphore. If the semaphore value is greater than
zero, then the calling thread is blocked until it can successfully increase the value. If the
semaphore value is zero, it increases its value by one.

ERRCODE

No error code returned.

9.2.7 SEML_trybarrier(SEML, ERRCODE)
PARAMETERS

SEML: semaphore object
ERRCODE:

DESCRIPTION

Similar to SEML_barrier except that if the semaphore value is less than or equal zero, then
this function increments the value.

ERRCODE

ERRCODE_EAGAIN:the semaphore was already locked,
ERRCODE_OK:

9.2.8 SEML_getvalue(SEML)
PARAMETERS

SEML: semaphore object
DESCRIPTION

Return the value associated with the semaphore
ERRCODE

No error code returned.

9.2.9 SEML_set_barrier_at(SEML,n)
SEML_clr_barrier_at(SEML,n)

Auxiliary macros used by semaphore macros.
 Language Support Reference Manual 387

Intel® Microengine C Compiler Language Support
Semaphore Library
388 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
-Qperfinfo Output Information A

This appendix provides additional information for the -Qperinfo command line option switch.

A.1 -Qperfinfo=1
Function: Variable spill

Description:

Provides information for all GPR variables spilled into local memory or SRAM during register
allocation.

Note: This does not include variables spilled into NN (next neighbor) registers.

Format:

Example:

foo.c(217): warning: V1 (class cls_gpr) spilled to localmem because of register pressure.

foo.c(218): warning: V2 (class cls_gpr) spilled to localmem because of register pressure.

foo.c(219): warning: V3 (class cls_gpr) spilled to localmem because of register pressure.

foo.c(220): warning: V4 (class cls_gpr) spilled to sram because of register pressure.

foo.c(221): warning: V5 (class cls_gpr) spilled to sram because of register pressure.

foo.c(222): warning: V6 (class cls_gpr) spilled to sram because of register pressure.

foo.c(217): warning: V1 (class cls_gpr) spilled to localmem because of register pressure

 Spilled memory region

 Register class
 Variable name

 Source line number
 Source file name
 Language Support Reference Manual 397

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
A.2 -Qperfinfo=2
Function: Live range and allocation

Description:

Provides instruction-level symbol liveliness and register allocation.

Format:

Notes:

• Live range is in the format of beginning_instruction_#:end_instruction_#.

• Some variables are not allocated to registers because compiler removed this variable, or it is
merged into another variable.

• Some variables do not have a recognizable name. They are compiler generated.

• Physical registers format:
An: A bank register

Format:

FILE: "c:/MEv2-2/uEngineC/src/testutil.c"
{
 function put line#99..#120 PC=2318..2325, rtn=A1
 {
 c -> +0 (not enregistered)
 lockp -> +0 A2 2319:2324
 locked -> +0 srw$0 2320:2322 2324:2324
 ch -> +0 (not enregistered)
 s1 -> +0 (not enregistered)
 s2 -> +0 sig2 2321:2321
 +4 sig3 2321:2321
 L74 -> spilled to lmem$tls+88, lmem$tls-size=128
 }

 … … …
}

Source file name

Function name

Function begin and
end source line
number

Machine instruction
range of this
function in .list file

Register holding
return address

Variable name

Variable offset

Register live range in
terms of instruction
counts.

Physical register
allocated to, or why it is
not allocated.
398 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
Bn: B bank register
sign: signal register
sr$n: sram read register
dr$n: dram read register
sw$n: sram write register
dw$n: dram write register
srw#n: sram read/write register

Example:

//---
{
 FILE: "largeRegSpill_0_1.c"

{
function main line#28..#1006 PC=0..2315, rtn=A0
{
L0 -> spilled to lmem$tls+0, lmem$tls-size=256
NOTE: lmem$tls start = 0
 L1 -> spilled to lmem$tls+4, lmem$tls-size=256

L2 -> spilled to lmem$tls+8, lmem$tls-size=256
L3 -> spilled to lmem$tls+12, lmem$tls-size=256
L4 -> spilled to lmem$tls+16, lmem$tls-size=256
L84 -> +0 A24 157:1543
L85 -> +0 B23 160:1552
L86 -> +0 A23 163:1561
L128 -> +0 A1 244:1939
L129 -> +0 A0 245:1948
L130 -> spilled to lmem$tls+92, lmem$tls-size=256
L131 -> spilled to lmem$tls+96, lmem$tls-size=256
L133 -> spilled to lmem$tls+104, lmem$tls-size=256
}

}

FILE: "c:\MEv2-2\uEngineC\src\rtl.c"
{
function exit line#50..#65 PC=2316..2317, rtn=A0
{
status -> +0 (not enregistered)
}
}

FILE: "c:\MEv2-2\uEngineC\src\testutil.c"
{
function put line#99..#120 PC=2318..2325, rtn=A1
{

 c -> +0 (not enregistered)
lockp -> +0 A2 2319:2324
locked -> +0 srw$0 2320:2322 2324:2324
ch -> +0 (not enregistered)
s1 -> +0 (not enregistered)
s2 -> +0 sig2 2321:2321
+4 sig3 2321:2321
}

function putui line#179..#199 PC=2326..2335, rtn=A1
{

 val -> +0 (not enregistered)
lockp -> +0 A2 2327:2334
locked -> +0 srw$0 2329:2331 2334:2334
h -> +0 sw$1 2328:2332
s1 -> +0 (not enregistered)
s2 -> +0 sig2 2330:2330
+4 sig3 2330:2330
}
}
}

 Language Support Reference Manual 399

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
A.3 -Qperfinfo=4
Function: (None)

Description:

This option has been deprecated and replaced with the -Qliveinfo option. Please see Section 3.9,
“Viewing Live Ranges” on page 57 for more information.:
400 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
A.4 -Qperfinfo=8
Function: Function size

Description:

Provides the number of instructions in each function.

Example:

function: size
_exit: 2
_put: 8
_putui: 10
_mput$5: 16
_putns: 38
_putsi: 13
_main: 2316
Total size: 2403
 Language Support Reference Manual 401

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
A.5 -Qperfinfo=16
Function: Local memory allocation

Description:

Provides information about how the compiler allocates local memory. Each local memory variable
(either user-defined or a compiler-generated spill variable) belongs to a local memory group. Each
local memory group contains one or several local memory variables allocated within a 64-byte
range. Access to two local variables in the same group can share the same local memory base
pointer if its value is still valid.

Eventually, all the groups are divided into two categories: thread-local group and shared group. All
threads share the shared groups, and each thread has its own copy of the thread-local groups.

Layout (TLS for thread-local-storage):

Notes:

• You can reserve an area of local memory from compiler allocation through a command line
option.

• The offset field in the printout is the offset from the beginning of the thread-local page for
thread-local data, or from the beginning of the shared page for shared data. They are not
offsets within the group.

Example:

=> User reserved: 0 bytes, Shared segment: 64 bytes, Local page (including gap): 320 bytes

 => Gap between context pages is 40 bytes The data on the page is 280 bytes

Direct access local mem group 0x14ea3f8
Maximum offset used: 60 Alignment: 64
Num members: 1 Total size: 128
[This group contains thread local symbols]

User
reserved
space

Shared
group
1

Shared
group
2

…

.

Shared
group
n

...

...

...

TLS
group
1

TLS
group
2

... TLS
group
1

TLS
group
2

...

...

...
 TLS page for thread 1 TLS page for thread 2
 User resv.
 space

 Shared page TLS pages
402 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
copylmemsram.c(126): tmp allocated at offset 0

Direct access local mem group 0x1516c04
Maximum offset used : 12 Alignment: 4
Num members: 4 Total size: 16
[This group contains thread local symbols]

copylmemsram.c(240): _m1 allocated at offset 128
copylmemsram.c(241): _m2 allocated at offset 132
copylmemsram.c(242): _m3 allocated at offset 136
copylmemsram.c(243): _m4 allocated at offset 140

Direct access local mem group 0x1516dfc
Maximum offset used: 12 Alignment: 4
Num members: 4 Total size: 16
[This group contains shared symbols]

copylmemsram.c(244): _p1 allocated at offset 0
copylmemsram.c(244): _p2 allocated at offset 4
copylmemsram.c(244): _p3 allocated at offset 8
copylmemsram.c(244): _p4 allocated at offset 12
 Language Support Reference Manual 403

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
A.6 -Qperfinfo=32
Function: Interference information for variables spilled into SRAM.

Description:

When a GPR variable is spilled into SRAM, this information prints out all the other variables that
interfere with this one. Two variables interfere with each other when they can not be allocated to
the same register.

Example:

foo.c(221):L24 conflicts with:
foo.c(197):L0 foo.c(198):L1 foo.c(199):L2 foo.c(200):L3
foo.c(201):L4 foo.c(202):L5

Note: Variables are in the format: <source file>(<source line>):<name>
404 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
A.7 -Qperfinfo=64
Function: Scheduler statistics

Description:

The instruction scheduler moves instructions to fill delay slots. The -Qperfinfo printout for the
scheduler looks like the following example.

Example:

/*
* Scheduler Summary
*/

Nop(s) removed: 53 (8.5% of total 624)

In this example, there were a total 624 nops in the whole program, and the compiler was able to
remove 53 of them.
 Language Support Reference Manual 405

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
A.8 -Qperfinfo=128
Function: Warn if the compiler cannot detect the I/O buffer size

Description:

The I/O intrinsic functions such as sram_write() allow you to pass a non-constant count argument.
In this case, the compiler will generate the “indirect” form of the I/O instruction (see the
Programmer's Reference Manual for details). However, the compiler will need to know how many
transfer registers to reserve for the I/O transfer. Since the compiler does not know the exact
reference count, it will assume that the whole variable is used in the intrinsic.

Example:

int __declspec(sram_write_reg) rr[8];

..

sram_write(&rr, addr, size, ctx_swap, &s1);

// size is unknown at compile time

The compiler will reserve 8 transfer registers for the SRAM transfer in this example, although at
runtime only a smaller number may be needed. -Qperfinfo=128 will print warnings when the
compiler detects a situation similar to the above.

Example:

C:\CVS\include\align.h(124): warning: sram_write(): Size of data access cannot be
determined at compile-time. __implicit_read/write may be needed to protect xfer buffer.
Use of sram_write_ind() is recommended instead.
406 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
A.9 -Qperfinfo=256
Function: Display information on restrict pointer optimization

Description:

The compiler can optimize dereferences of pointer parameters declared with the “restrict” keyword
(see Section 3.7.4.1, “The “restrict” Qualifier” on page 54 for details). This allows objects passed
to such functions to be allocated to registers. Not all "restrict" pointer parameters can be optimized.
The -Qperfinfo=256 option shows which parameters are optimized, and provides information
about the parameters which are not optimized.

The argument name may be printed in its internal modified form. It has the format:
<user_name>_<compiler_mangling_string>.

Example:

Pointer argument xyz_379_V$200$1$1 in function _foo was optimized and dereferences
were eliminated.
 Language Support Reference Manual 407

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
A.10 -Qperfinfo=512
Function: Compiler printout for jump target offsets.

Description:

The compiler supports the jump[] instruction in inline assembly code. You have to make sure that
the offsets passed to the jump[] instruction match valid target labels in the inline assembly. -
Qperfinfo=512 provides the offset of each symbolic label listed in a jump target list.

Example:

For code like:

__asm __attribute(ASM_HAS_JUMP)

{

 br[jmp]

base0:

immed[result, 1]

br[last]

base1:

immed[result, 2]

br[last]

jmp:

jump[offset, base0], targets [base0, base1, base2, base3]

base2:

immed[result, 3]

call[foo2]

br[last]

base3:

immed[result, 4]

call[foo2]

br[last]

last:

}

Compiler -Qperfinfo=512 printout has the following appearance:

test_jump.c(55): inline-asm jump may have potential offset(s) = 0, 2, 5, 9
408 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
A.11 -Qperfinfo=1024
Function: Boolean propagation optimization

Description:

The compiler performs an optimization that determines the value of a constant conditional based
on the result of other conditionals.

Example:
if (1) {

x = 5;

}

else {

x = 6;

}

if (x == 5) {

...

}

When this optimization occurs, this _Qperfinfo option displays results as the following example
shows:

[1] Bool_prop transformation performed

[2] Bool_prop transformation performed
 Language Support Reference Manual 409

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
A.12 -Qperfinfo=2048
Function: Register requirements report

Description:

This -Qperfinfo option displays a report on areas of your program that require a large number of
“live” registers, indicating possible spill areas. For a more detailed description of the concepts of
liveness and spilling, please refer to Section 3.8.

Example:
-------------------- GPR Requirements Report -----------------------

0 relative A bank GPRs were used for shared variables
0 relative B bank GPRs were used for shared variables
3 thread local variables can be colored using abs registers
1 relative A bank GPRs used as absolute regs
1 relative B bank GPRs used as absolute regs
15 relative A registers available for coloring
15 relative B registers available for coloring
409 variables colored with relative GPRs
59 A bank and 57 B bank GPRs were needed for coloring
118 total GPRs needed to color without any spilling

Start of high GPR usage region in function _mput$5
Starting at c:\\clin1\\ixp1200/uEngineC/src/../samples/util/util.c line 414

 End of high GPR usage region at
c:\\clin1\\ixp1200\uEngineC\src\..\samples\util\util.c 415
Max usage is (115) at c:\\clin1\\ixp1200\uEngineC\src\..\samples\util\util.c
415

(Note that formatting can vary, depending upon text content and line breaks.)

“Coloring” is the process of assigning registers to variables. In the above example, all program
variables must be assigned to one of 30 registers (15 in each bank). The region of the program
between lines 414 and 415 in the file util.c would require 115 free registers to avoid spilling. Since
the number of registers is fixed by the architecture, if you wish to avoid spilling, the program code
or data must be restructured so that 115-30 = 85 fewer words of data are live in the indicated
region.
410 Language Support Reference Manual

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
A.13 -Qperfinfo=4096
Function: Switch optimization report

Description:

The compiler can perform an optimization, described in Chapter 3, “User-Guided switch()
Statement Optimization”, which creates faster code for switch() statements This -Qperfinfo option
generates a report on which switch() statements in your program were optimized, and how the
jump[] calculation was performed.

Example:
/*

 * Switch Pack Report
*/

Function: _main,
.switch[$0, SW, l_11#, swpack_auto, nlive=1, a1, b0, a0]

Switch has 3 target(s); Min/Max-distance = 2/2
Estimated PC(s): 31 33 35
0 nop(s) needed
Sequence to compute new jump index y(b0) = x($0) * 2: (t = a1)

y = x<<1

 >>> Pack it
 Language Support Reference Manual 411

Intel® Microengine C Compiler Language Support
-Qperfinfo Output Information
A.14 -Qperfinfo=8192
Function: Print parallelization summary information

Description:

When I/O parallelization is enabled with the -Qnew_opt switch, this -Qperfinfo option prints
summary information on that optimization.

Example:

---------- I/O parallelization report -------------------

Total number of 2 I/O instructions are parallelized

 File foo.c, at line 27

 File foo.c, at line 31

412 Language Support Reference Manual

Intel® IXP2400/IXP2800 Network Processors
Contents
A
alignment of data types 35
allocation attributes 40
allocation region 40
arrays of transfer registers 42
assembly language

inline 357
restrictions 365

B
bitfields 33
block of __asm assembly code 359
C
CAP data types 247

cap_csr_t 247
cap_read_write_ind_t 249
local_csr_t 248

CLI option switches
-? 20
-c 20
-Dname[=value] 20
-DSDK_3_0_COMPATIBLE 21
-E 21
-EP 21
-Fa<filename> 21
-Fe<file> 21
-FI<file> 21
-Fi<file> 21
-Fo<Dir\> 21
-Fo<file> 21
-Gx2400 21
-help 20
-I path[;path2...] 21
-link[linker options] 21
-Obn 21
-On 21
-P 21
-Qbigendian 21
-Qdefault_sr_channel=<0...3> 21
-Qerrata 21
-Qip_no_inlining 22
-Qlittleendian 22
-Qliveinfo 22
-Qliveinfo=gr,sr,... 22
 Microengine C Language Support Reference Manual 413

Intel® IXP2400/IXP2800 Network Processors
Contents
-Qlm_start=<n> 22
-Qlm_unsafe_addr 22
-Qlmpt_reserve 22
-Qmapvr 22
-Qnctx=<1, 2, 3, 4, 5, 6, 7, 8> 22
-Qnctx_mode=<4, 8> 22
-Qnn_mode=<0, 1> 22
-Qnolur=<func_name> 22
-Qold_revision_scheme 22
-Qperfinfo=n 23
-Qrevision_max=m 23
-Qrevision_min=n 23
-Qspill=<n> 23
-s 23
-uc 24
-Wn n=0, 1, 2, 3, 4 24
-Zi 24

coloring 410
command line 19
-command line options

-Qperfinfo=8192 412
command line options

-Qperfinfo=1 397
-Qperfinfo=1028 409
-Qperfinfo=128 406
-Qperfinfo=16 402
-Qperfinfo=2 398
-Qperfinfo=2048 410
-Qperfinfo=256 407
-Qperfinfo=32 404
-Qperfinfo=4096 411
-Qperfinfo=512 408
-Qperfinfo=64 405
-Qperfinfo=8 401

compilation model 18
compiler optimizations 367
context relative variables 51
context swap 44
control and status register (CSR) access functions 247
conventions 12
CRC functions

crc_read() 308
crc_write() 309
414 Microengine C Language Support Reference Manual

Intel® IXP2400/IXP2800 Network Processors
Contents
critical path annotation and code layout 59
D
data allocation 40
data terminology 13

byte 13
longword 13
quadword 13
word 13

data type alignment 35
data type size 34
data types

basic
char 33
enum 33
int 33
long 33
long long 33
pointers 33
short 33

debugging 30
debugging inline functions 378
default case removal 63
DRAM

partial writes 39
DRAM operations 204

dram_rbuf_read_ind() 209
dram_read() 205
dram_read_ind() 206
dram_read_S() 205
dram_read_S_ind() 206
dram_tbuf_write_ind() 210
dram_write_ind() 208
dram_write_S() 207
dram_write_S_ind() 208

E
endian support 38
environment variables 24
exported variables 51
expressions 52
extended function attributes 53
external memory 16
F
FIFO 16
 Microengine C Language Support Reference Manual 415

Intel® IXP2400/IXP2800 Network Processors
Contents
file types
input and output 25

floating point 34
function parameter passing 69
functions 52
G
general purpose registers 41
global data 45
H
hash instructions 39
I
indirect register access 17
inline immediate operands 361, 362
inline instruction format 360
inline operand syntax 361
inline register operands 361
inline usage examples 362
input and output file types 25
intrinsic function arguments 354
intrinsic functions 73
L
limitations and restrictions on viewing live ranges 58
limitations on some I/O functions 232
live range analysis 55
liveness computation 56
load time constants 45
local memory 16
local memory allocation 47
local memory usage 48
loop unrolling control 64
M
machine independent optimizations 367
memory

external 16
local 16

memory I/O data types 83
bytes_specifier_t 86
reflect_signal_t 87
sync_t 85

memory I/O functions 82, 99
scratch operations 99
scratch_add(112
scratch_add_D() 112
416 Microengine C Language Support Reference Manual

Intel® IXP2400/IXP2800 Network Processors
Contents
scratch_add_D_ind() 113
scratch_add_ind() 113
scratch_clear_bits() 118
scratch_clear_bits_D() 118
scratch_clear_bits_D_ind() 119
scratch_clear_bits_ind() 119
scratch_decr() 110
scratch_decr_ind() 111
scratch_get_ring() 134
scratch_get_ring_D() 134
scratch_get_ring_D_ind() 135
scratch_get_ring_ind() 135
scratch_incr() 108
scratch_incr_ind() 109
scratch_put_ring() 136
scratch_put_ring_D() 136
scratch_put_ring_D_ind() 137
scratch_put_ring_ind() 137
scratch_read 104
scratch_read_D 104
scratch_read_D_ind() 105
scratch_read_ind() 105
scratch_set_bits() 116
scratch_set_bits_D() 116
scratch_set_bits_D_ind() 117
scratch_set_bits_ind() 117
scratch_sub() 114
scratch_sub_D() 114
scratch_sub_D_ind() 115
scratch_sub_ind() 115
scratch_swap() 132
scratch_swap_D() 132
scratch_swap_D_ind() 133
scratch_swap_ind() 133
scratch_test_and_add() 124
scratch_test_and_add_D() 124
scratch_test_and_add_D_ind() 125
scratch_test_and_add_ind() 125
scratch_test_and_clear_bits() 122
scratch_test_and_clear_bits_D() 122
scratch_test_and_clear_bits_D_ind() 123
scratch_test_and_clear_bits_ind() 123
scratch_test_and_decr() 130
 Microengine C Language Support Reference Manual 417

Intel® IXP2400/IXP2800 Network Processors
Contents
scratch_test_and_decr_D() 130
scratch_test_and_decr_D_ind() 131
scratch_test_and_decr_ind() 131
scratch_test_and_incr() 128
scratch_test_and_incr_D 128
scratch_test_and_incr_D_ind() 129
scratch_test_and_incr_ind() 129
scratch_test_and_set_bits() 120
scratch_test_and_set_bits_D() 120
scratch_test_and_set_bits_D_ind() 121
scratch_test_and_set_bits_ind() 121
scratch_test_and_sub() 126
scratch_test_and_sub_D() 126
scratch_test_and_sub_D_ind() 127
scratch_test_and_sub_ind() 127
scratch_write() 106
scratch_write_D() 106
scratch_write_D_ind() 107
scratch_write_ind() 107

memory IO data types
cap_csr_read_write_ind_t 93
cap_read_write_ind_t 89
dram_rbuf_tbuf_ind_t 94
dram_read_write_ind_t 91
generic_ind_t 98
hash_ind_t 97
msf_read_write_ind_t 89
pci_read_write_ind_t 88
reflect_read_write_ind_t 89
scratch_atomic_ind_t 93
scratch_ring_ind_t 89
sram_atomic_ind_t 92
sram_csr_read_write_ind_t 93
sram_dequeue_ind_t 96
sram_enqueue_ind_t 95
sram_journal_ind_t 89
sram_read_qdesc_ind_t 89
sram_read_write_ind_t 88
sram_ring_ind_t 89

memory IO functions 99
memory regions 43
memory type modifier 44
Microengine C compiler
418 Microengine C Language Support Reference Manual

Intel® IXP2400/IXP2800 Network Processors
Contents
features 11
nonfeatures 11

miscellaneous functions 310
__assign_relative_register() 334
__critical_path() 348
__ctx() 315
__free_write_buffer() 337
__global_label() 322
__implicit_read() 335
__implicit_write() 336
__impossible_path 351
__LoadTimeConstant() 321
__ME() 316
__n_ctx() 317
__nctx_mode() 318
__no_spill_begin() 345
__no_spill_end() 346
__no_swap_begin 352
__no_swap_end 353
__profile_count_start() 331
__profile_count_stop 331
__set_profile_count() 330
__set_timestamp() 328
__signal_number() 332
__switch_pack 350
__timestamp_start() 329
__timestamp_stop 329
__xfer_reg_number() 333
assert() 347
bit_test() 339
byte_align_block_be() 344
byte_align_block_le() 343
dbl_shl() 314
dbl_shr() 313
ffs() 320
inp_state_test() 338
multiply_16x16() 324
multiply_24x8() 323
multiply_32x32() 327
multiply_32x32_hi() 326
multiply_32x32_lo() 325
n_ring_enqueue_incr() 342
nn_ring_dequeue() 341
 Microengine C Language Support Reference Manual 419

Intel® IXP2400/IXP2800 Network Processors
Contents
nn_ring_dequeue_incr() 340
pop_count() 349
sleep() 319

Mixed 69
mixed C and microcode examples 69
mixing C/microcode in one microengine 66
MSF operations 211

msf_fast_write() 221
msf_read_D_ind() 214
msf_read_ind(214
msf_read64() 215
msf_read64_D() 215
msf_read64_ind() 216
msf_write() 217
msf_write_D() 217
msf_write_D_ind(218
msf_write_ind() 218
msf_write64() 219
msf_write64_D() 219
msf_write64_D_ind() 220
msf_write64_ind() 220
sf_read64_D_ind() 216

multiple critical paths 61
MUTEX functions

MUTEXG_destroy (MUTEXG) 382
MUTEXG_init (MUTEXG) 382
MUTEXG_lock (MUTEXG) 382
MUTEXG_testlock (MUTEXG, ERRCODE) 383
MUTEXG_trylock (MUTEXG, ERRCODE) 383
MUTEXG_unlock (MUTEXG) 383
MUTEXLV_destroy(MUTEXLV,MUTEXID) 380
MUTEXLV_init (MUTEXLV) 380
MUTEXLV_lock(MUTEXLV 381
MUTEXLV_testlock(MUTEXLV, MUTEXID, ERRCODE) 381
MUTEXLV_trylock(MUTEXLV, MUTEXID, ERRCODE) 381
MUTEXLV_unlock(MUTEXLV, MUTEXID) 381

MUTEXG usage 380
MUTEXLV usage 379
mutual exclusion library 379
N
neighbor mode 42
network processor specific optimizations 367
Next Neighbor registers 14, 42
420 Microengine C Language Support Reference Manual

Intel® IXP2400/IXP2800 Network Processors
Contents
NPU optimizations
defer slot filling 368
I/O parallelization 370
local memory autoincrement/autodecrement conversion 369
local memory grouping 368
peephole optimization 368
read/write combining 367
registrations 367
scheduling 370

O
optimizations

default case removal 63
machine independent 367
switch block packing 63

optimizing code 62, 373
optimizing pointer arguments 53
P
packed aggregates 36
PCI operations 222

pci_read() 223
pci_read_D() 223
pci_read_D_ind() 224
pci_read_ind() 224
pci_write() 225
pci_write_D() 225
pci_write_D_ind() 226
pci_write_ind() 226

placement of variables 47
pointer representation 33
program does not fit 378
Q
qualifiers

restrict 54
R
read transfer register 41
Reflector 17

inputs/outputs 51
reflector operation 51
Reflector operations

(summary table) 227
reflect_read() 228
reflect_read_D() 228
reflect_read_D_ind() 229
 Microengine C Language Support Reference Manual 421

Intel® IXP2400/IXP2800 Network Processors
Contents
reflect_read_ind() 229
reflect_write() 230
reflect_write_D() 230
reflect_write_D_ind() 231
reflect_write_ind() 231

register model 13
register regions 41
register usage 70
register variable naming conventions 67
registers

Next Neighbor 14
transfer 41
volatile 43

remote read transfer register 51
restrict qualifier 54
restrictions on intrinsics 354
restrictions on mixed C/microcode 70
running 30
S
self mode 42
semaphore data types 385
semaphore functions

SEML_barrier(SEML,n) 387
SEML_destroy(SEML) 385
SEML_getvalue(SEML) 387
SEML_init(SEML 385
SEML_init(SEML, SEMVALUE) 385
SEML_post(SEML) SEML_dec(SEML) 386
SEML_set_barrier_at(SEML,n) SEML_clr_barrier_at(SEML,n) 387
SEML_trybarrier(SEML, ERRCODE) 387
SEML_trywait(SEML, ERRCODE) 386
SEML_wait(SEML) 386

shared data 44
shared storage 48
signal variable restrictions 46
signal variables 45, 46
signals 17, 45
single __asm instruction 358
SRAM operations 138

sram_add() 153
sram_add_D() 153
sram_add_D_ind() 154
sram_add_ind(154
422 Microengine C Language Support Reference Manual

Intel® IXP2400/IXP2800 Network Processors
Contents
sram_add_int() 197
sram_clear_bit_pos() 198
sram_clear_bits(151
sram_clear_bits_D() 151
sram_clear_bits_D_ind() 152
sram_clear_bits_ind() 152
sram_csr_read() 171
sram_csr_read_D() 171
sram_csr_read_D_ind() 172
sram_csr_read_ind(172
sram_csr_write() 173
sram_csr_write_D() 173
sram_csr_write_D_ind() 174
sram_csr_write_ind(174
sram_decr() 157
sram_decr_ind() 158
sram_dequeue(), sram_dequeue_D() 187
sram_dequeue_D_ind() 188
sram_dequeue_ind() 188
sram_enqueue() 183
sram_enqueue_ind() 184
sram_enqueue_tail() 185
sram_enqueue_tail_ind() 186
sram_fast_journal() 195
sram_fast_journal_ind() 196
sram_get_ring() 189
sram_get_ring_D() 189
sram_get_ring_D_ind() 190
sram_get_ring_ind() 190
sram_incr() 155
sram_incr_ind(156
sram_journal_D() 193
sram_journal_D_ind() 194
sram_journal_ind(194
sram_journav() 193
sram_put_ring() 191
sram_put_ring_D() 191
sram_put_ring_D_ind() 192
sram_put_ring_ind() 192
sram_read() 145
sram_read_D() 145
sram_read_D_ind() 146
sram_read_ind() 146
 Microengine C Language Support Reference Manual 423

Intel® IXP2400/IXP2800 Network Processors
Contents
sram_read_qdesc_head(175
sram_read_qdesc_head_D() 175
sram_read_qdesc_head_D_ind() 176
sram_read_qdesc_head_ind() 176
sram_read_qdesc_other() 179
sram_read_qdesc_other_ind(180
sram_read_qdesc_tail() 177
sram_read_qdesc_tail_D() 177
sram_read_qdesc_tail_D_ind() 178
sram_read_qdesc_tail_ind() 178
sram_set_bit_pos() 199
sram_set_bits() 149
sram_set_bits_D() 149
sram_set_bits_D_ind() 150
sram_set_bits_ind() 150
sram_swap() 159
sram_swap_D() 159
sram_swap_D_ind() 160
sram_swap_ind() 160
sram_swap_int() 200
sram_swap_int_D(200
sram_test_and_add() 165
sram_test_and_add_D() 165
sram_test_and_add_D_ind(166
sram_test_and_add_ind() 166
sram_test_and_add_int() 201
sram_test_and_add_int_D() 201
sram_test_and_clear_bit_pos() 202
sram_test_and_clear_bit_pos_D() 202
sram_test_and_clear_bits(163
sram_test_and_clear_bits_D() 163
sram_test_and_clear_bits_D_ind() 164
sram_test_and_clear_bits_ind() 164
sram_test_and_decr() 169
sram_test_and_decr_D() 169
sram_test_and_decr_D_ind() 170
sram_test_and_decr_ind(170
sram_test_and_incr() 167
sram_test_and_incr_D() 167
sram_test_and_incr_D_ind() 168
sram_test_and_incr_ind() 168
sram_test_and_set_bit_pos_D() 203
sram_test_and_set_bits() 161
424 Microengine C Language Support Reference Manual

Intel® IXP2400/IXP2800 Network Processors
Contents
sram_test_and_set_bits_D() 161
sram_test_and_set_bits_D_ind() 162
sram_test_and_set_bits_ind() 162
sram_write() 147
sram_write_D() 147
sram_write_D_ind() 148
sram_write_ind(148
sram_write_qdesc() 181
sram_write_qdesc_count() 182

statements 52
string literals 34
supported compilations 20
switch block packing 63
synchronization data types 234

inp_state_t 234
SIGNAL_MASK 234
signal_t 234

synchronization functions 234, 235
__signals() 236
__wait_for_all() 240
__wait_for_any() 240
ctx_swap() 238
ctx_wait() 239
signal_next_ME 245
signal_next_ME_this_ctx 246
signal_prev_ME 243
signal_prev_ME_this_ctx 244
signal_same_ME 241
signal_same_ME_next_ctx 242
signal_test() 237

T
thread local 48
threading model 17
tips

optimizing your code 373
things to remember when writing Microengine C code 374

transfer register
read 41
write 41

transfer register modifiers 82
transfer registers 41

arrays of 42
troubleshooting 378
 Microengine C Language Support Reference Manual 425

Intel® IXP2400/IXP2800 Network Processors
Contents
program does not fit 378
program does not run correctly 378

U
unaligned data access 75
unaligned get functions 75
unaligned memory copy functions 80
unaligned set functions 78
unsupported ANSI C99 features 71
user assisted live range analysis 55
user-guided switch() statement optimization 62
V
viewing live ranges 57
viewing local memory usage 48
virtual register 57
volatile attribute 43
volatile registers 43
W
Workbench

running and debugging 30
write transfer register 41
426 Microengine C Language Support Reference Manual

	Intel® IXP2400/IXP2800 Network Processors
	Introduction 1
	1.1 Purpose
	1.2 Features
	1.3 Nonfeatures
	1.4 Conventions Used in this Manual
	1.4.1 Version-Specific References

	Overview 2
	2.1 Network Processor Architecture Overview
	2.1.1 Data Terminology
	2.1.2 Register Model
	2.1.3 Next Neighbor Registers
	2.1.4 Local Memory
	2.1.5 External Memory
	2.1.6 FIFO Queues
	2.1.7 Signals
	2.1.8 Reflector
	2.1.9 Indirect Register Access
	2.1.10 Threading Model
	2.1.11 Features Not Supported

	2.2 Compilation Model
	2.2.1 Number of Contexts
	2.2.2 Inlining

	2.3 Running the C Compiler
	2.3.1 The Command Line
	2.3.2 Supported Compilations
	2.3.3 Supported Compiler Option Switches
	2.3.3.1 Environment Variables

	2.3.4 Input and Output File Types
	2.3.5 Linking a Microengine .UOF file
	2.3.6 Util.c
	2.3.6.1 Utility Functions (util.c)
	2.3.6.2 Multi-threading restrictions

	2.3.7 Example-Using the C Compiler
	2.3.7.1 The C File
	2.3.7.2 Compiling the File
	2.3.7.3 Linking the File
	2.3.7.4 Running the File
	2.3.7.5 Initialization File

	2.3.8 C Compiler Graphical User Interface from Developer Workbench
	2.3.8.1 Build Features
	2.3.8.2 Debug Feature

	2.4 Running and Debugging Under the Developer Workbench

	C Language Support 3
	3.1 Standard Data Types
	3.1.1 Basic Data Types
	3.1.2 Pointer Representation
	3.1.3 Bitfields
	3.1.4 Floating Point Types
	3.1.5 String Literals
	3.1.6 Size of Data Types
	3.1.7 Alignment of Data Types
	3.1.8 Packed Aggregates
	3.1.9 Pointer Alignment Assumptions and Unaligned Pointers
	3.1.10 Endian Support
	3.1.10.1 Compiler Limitations of Endian Support.
	3.1.10.1.1 Hash Instructions and Related Intrinsics
	3.1.10.1.2 DRAM Partial Writes

	3.2 Data Allocation
	3.2.1 Register Regions
	3.2.1.1 General Purpose Registers
	3.2.1.2 Transfer Registers
	3.2.1.3 Next Neighbor Registers
	3.2.1.4 Volatile Registers

	3.2.2 Memory Regions
	3.2.3 Shared Data
	3.2.4 Global data
	3.2.5 Load Time Constants
	3.2.6 Signals
	3.2.6.1 Signal Variable Restrictions

	3.2.7 Local Memory Allocation
	3.2.7.1 Overview
	3.2.7.2 Placement of Variables
	3.2.7.3 Thread Local vs. Shared Storage
	3.2.7.4 Viewing Local Memory Usage
	3.2.7.5 Alignment Information for Local Memory Pointers
	3.2.7.6 Suggestions for Improving Local Memory Use

	3.3 Reflector Inputs/Outputs
	3.4 Summary of Allowed Data Attribute Combinations
	3.5 Expressions
	3.6 Statements
	3.7 Functions
	3.7.1 Supported
	3.7.2 Not Supported
	3.7.3 Extended Function Attributes
	3.7.4 Optimizing Pointer Arguments
	3.7.4.1 The “restrict” Qualifier

	3.8 User Assisted Live Range Analysis
	3.9 Viewing Live Ranges
	3.9.1 Limitations and Restrictions on Viewing Live Ranges

	3.10 Critical Path Annotation and Code Layout
	3.10.1 Multiple Critical Paths

	3.11 User-Guided switch() Statement Optimization
	3.11.1 Default Case Removal
	3.11.2 Switch Block Packing

	3.12 Creating Context Swap-Free Regions of Code
	3.13 Loop unrolling control
	3.14 Mixing C and Microcode in One Microengine
	3.14.1 Command Line Options and Usage model
	3.14.2 Naming and Calling Conventions
	3.14.2.1 Register Variable Naming Conventions
	3.14.2.2 Sharing Variables Between C and Assembly
	3.14.2.3 Calling Conventions

	3.14.3 Mixed C and Microcode Examples
	3.14.3.1 Function Parameter Passing
	3.14.3.2 Register Usage

	3.14.4 Restrictions on Mixing C and Microcode

	3.15 Unsupported ANSI C99 Features

	Intrinsic Functions 4
	4.1 Intrinsic Syntax Conventions
	4.2 Unaligned Data Access
	4.2.1 Unaligned Get Functions
	4.2.2 Unaligned Set Functions
	4.2.3 Unaligned Memory Copy Functions

	4.3 Memory I/O Functions
	4.3.1 Transfer Register Modifiers
	4.3.2 Memory I/O Data types
	4.3.2.1 sync_t
	4.3.2.2 bytes_specifier_t
	4.3.2.3 reflect_signal_t
	4.3.2.4 pci_read_write_ind_t, sram_read_write_ind_t
	4.3.2.5 scratch_read_write_ind_t, scratch_ring_ind_t, sram_read_qdesc_ind_t, sram_ring_ind_t, sram_journal_ind_t, cap_read_write_ind_t, msf_read_write_ind_t, reflect_read_write_ind_t
	4.3.2.6 dram_read_write_ind_t
	4.3.2.7 sram_atomic_ind_t
	4.3.2.8 scratch_atomic_ind_t, sram_csr_read_write_ind_t, cap_csr_read_write_ind_t
	4.3.2.9 dram_rbuf_tbuf_ind_t
	4.3.2.10 sram_enqueue_ind_t
	4.3.2.11 sram_dequeue_ind_t
	4.3.2.12 hash_ind_t
	4.3.2.13 generic_ind_t

	4.3.3 Memory I/O Functions
	4.3.3.1 Scratch Operations
	4.3.3.1.1 scratch_read(), scratch_read_D()
	4.3.3.1.2 scratch_read_ind(), scratch_read_D_ind()
	4.3.3.1.3 scratch_write(), scratch_write_D()
	4.3.3.1.4 scratch_write_ind(), scratch_write_D_ind()
	4.3.3.1.5 scratch_incr()
	4.3.3.1.6 scratch_incr_ind()
	4.3.3.1.7 scratch_decr()
	4.3.3.1.8 scratch_decr_ind()
	4.3.3.1.9 scratch_add(), scratch_add_D()
	4.3.3.1.10 scratch_add_ind(), scratch_add_D_ind()
	4.3.3.1.11 scratch_sub(), scratch_sub_D()
	4.3.3.1.12 scratch_sub_ind(), scratch_sub_D_ind()
	4.3.3.1.13 scratch_set_bits(), scratch_set_bits_D()
	4.3.3.1.14 scratch_set_bits_ind(), scratch_set_bits_D_ind()
	4.3.3.1.15 scratch_clear_bits(), scratch_clear_bits_D()
	4.3.3.1.16 scratch_clear_bits_ind(), scratch_clear_bits_D_ind()
	4.3.3.1.17 scratch_test_and_set_bits(), scratch_test_and_set_bits_D()
	4.3.3.1.18 scratch_test_and_set_bits_ind(), scratch_test_and_set_bits_D_ind()
	4.3.3.1.19 scratch_test_and_clear_bits(), scratch_test_and_clear_bits_D()
	4.3.3.1.20 scratch_test_and_clear_bits_ind(), scratch_test_and_clear_bits_D_ind()
	4.3.3.1.21 scratch_test_and_add(), scratch_test_and_add_D()
	4.3.3.1.22 scratch_test_and_add_ind(), scratch_test_and_add_D_ind()
	4.3.3.1.23 scratch_test_and_sub(), scratch_test_and_sub_D()
	4.3.3.1.24 scratch_test_and_sub_ind(), scratch_test_and_sub_D_ind()
	4.3.3.1.25 scratch_test_and_incr(), scratch_test_and_incr_D
	4.3.3.1.26 scratch_test_and_incr_ind(), scratch_test_and_incr_D_ind()
	4.3.3.1.27 scratch_test_and_decr(), scratch_test_and_decr_D()
	4.3.3.1.28 scratch_test_and_decr_ind(), scratch_test_and_decr_D_ind()
	4.3.3.1.29 scratch_swap(), scratch_swap_D()
	4.3.3.1.30 scratch_swap_ind(), scratch_swap_D_ind()
	4.3.3.1.31 scratch_get_ring(), scratch_get_ring_D()
	4.3.3.1.32 scratch_get_ring_ind(), scratch_get_ring_D_ind()
	4.3.3.1.33 scratch_put_ring(), scratch_put_ring_D()
	4.3.3.1.34 scratch_put_ring_ind(), scratch_put_ring_D_ind()

	4.3.3.2 SRAM Operations
	4.3.3.2.1 sram_read(), sram_read_D()
	4.3.3.2.2 sram_read_ind(), sram_read_D_ind()
	4.3.3.2.3 sram_write(), sram_write_D()
	4.3.3.2.4 sram_write_ind(), sram_write_D_ind()
	4.3.3.2.5 sram_set_bits(), sram_set_bits_D()
	4.3.3.2.6 sram_set_bits_ind(), sram_set_bits_D_ind()
	4.3.3.2.7 sram_clear_bits(), sram_clear_bits_D()
	4.3.3.2.8 sram_clear_bits_ind(), sram_clear_bits_D_ind()
	4.3.3.2.9 sram_add(), sram_add_D()
	4.3.3.2.10 sram_add_ind(), sram_add_D_ind()
	4.3.3.2.11 sram_incr()
	4.3.3.2.12 sram_incr_ind()
	4.3.3.2.13 sram_decr()
	4.3.3.2.14 sram_decr_ind()
	4.3.3.2.15 sram_swap(), sram_swap_D()
	4.3.3.2.16 sram_swap_ind(), sram_swap_D_ind()
	4.3.3.2.17 sram_test_and_set_bits(), sram_test_and_set_bits_D()
	4.3.3.2.18 sram_test_and_set_bits_ind(), sram_test_and_set_bits_D_ind()
	4.3.3.2.19 sram_test_and_clear_bits(), sram_test_and_clear_bits_D()
	4.3.3.2.20 sram_test_and_clear_bits_ind(), sram_test_and_clear_bits_D_ind()
	4.3.3.2.21 sram_test_and_add(), sram_test_and_add_D()
	4.3.3.2.22 sram_test_and_add_ind(), sram_test_and_add_D_ind()
	4.3.3.2.23 sram_test_and_incr(), sram_test_and_incr_D()
	4.3.3.2.24 sram_test_and_incr_ind(), sram_test_and_incr_D_ind()
	4.3.3.2.25 sram_test_and_decr(), sram_test_and_decr_D()
	4.3.3.2.26 sram_test_and_decr_ind(), sram_test_and_decr_D_ind()
	4.3.3.2.27 sram_csr_read(), sram_csr_read_D()
	4.3.3.2.28 sram_csr_read_ind(), sram_csr_read_D_ind()
	4.3.3.2.29 sram_csr_write(), sram_csr_write_D()
	4.3.3.2.30 sram_csr_write_ind(), sram_csr_write_D_ind()
	4.3.3.2.31 sram_read_qdesc_head(), sram_read_qdesc_head_D()
	4.3.3.2.32 sram_read_qdesc_head_ind(), sram_read_qdesc_head_D_ind()
	4.3.3.2.33 sram_read_qdesc_tail(), sram_read_qdesc_tail_D()
	4.3.3.2.34 sram_read_qdesc_tail_ind(), sram_read_qdesc_tail_D_ind()
	4.3.3.2.35 sram_read_qdesc_other()
	4.3.3.2.36 sram_read_qdesc_other_ind()
	4.3.3.2.37 sram_write_qdesc()
	4.3.3.2.38 sram_write_qdesc_count()
	4.3.3.2.39 sram_enqueue()
	4.3.3.2.40 sram_enqueue_ind()
	4.3.3.2.41 sram_enqueue_tail()
	4.3.3.2.42 sram_enqueue_tail_ind()
	4.3.3.2.43 sram_dequeue(), sram_dequeue_D()
	4.3.3.2.44 sram_dequeue_ind(), sram_dequeue_D_ind()
	4.3.3.2.45 sram_get_ring(), sram_get_ring_D()
	4.3.3.2.46 sram_get_ring_ind(), sram_get_ring_D_ind()
	4.3.3.2.47 sram_put_ring(), sram_put_ring_D()
	4.3.3.2.48 sram_put_ring_ind(), sram_put_ring_D_ind()
	4.3.3.2.49 sram_journav(), sram_journal_D()
	4.3.3.2.50 sram_journal_ind(), sram_journal_D_ind()
	4.3.3.2.51 sram_fast_journal()
	4.3.3.2.52 sram_fast_journal_ind()
	4.3.3.2.53 sram_add_int()
	4.3.3.2.54 sram_clear_bit_pos()
	4.3.3.2.55 sram_set_bit_pos()
	4.3.3.2.56 sram_swap_int(), sram_swap_int_D()
	4.3.3.2.57 sram_test_and_add_int(), sram_test_and_add_int_D()
	4.3.3.2.58 sram_test_and_clear_bit_pos(), sram_test_and_clear_bit_pos_D()
	4.3.3.2.59 sram_test_and_set_bit_pos(), sram_test_and_set_bit_pos_D()

	4.3.3.3 DRAM Operations
	4.3.3.3.1 dram_read(), dram_read_S()
	4.3.3.3.2 dram_read_ind(), dram_read_S_ind()
	4.3.3.3.3 dram_write(), dram_write_S()
	4.3.3.3.4 dram_write_ind(), dram_write_S_ind()
	4.3.3.3.5 dram_rbuf_read_ind()
	4.3.3.3.6 dram_tbuf_write_ind()

	4.3.3.4 MSF Operations
	4.3.3.4.1 msf_read(), msf_read_D()
	4.3.3.4.2 msf_read_ind(), msf_read_D_ind()
	4.3.3.4.3 msf_read64(), msf_read64_D()
	4.3.3.4.4 msf_read64_ind(), msf_read64_D_ind()
	4.3.3.4.5 msf_write(), msf_write_D()
	4.3.3.4.6 msf_write_ind(), msf_write_D_ind()
	4.3.3.4.7 msf_write64(), msf_write64_D()
	4.3.3.4.8 msf_write64_ind(), msf_write64_D_ind()
	4.3.3.4.9 msf_fast_write()

	4.3.3.5 PCI Operations
	4.3.3.5.1 pci_read(), pci_read_D()
	4.3.3.5.2 pci_read_ind(), pci_read_D_ind()
	4.3.3.5.3 pci_write(), pci_write_D()
	4.3.3.5.4 pci_write_ind(), pci_write_D_ind()

	4.3.3.6 Reflector Operations
	4.3.3.6.1 reflect_read(), reflect_read_D()
	4.3.3.6.2 reflect_read_ind(), reflect_read_D_ind()
	4.3.3.6.3 reflect_write(), reflect_write_D()
	4.3.3.6.4 reflect_write_ind(), reflect_write_D_ind()

	4.3.4 Limitations on Some I/O Functions

	4.4 Synchronization Functions
	4.4.1 Synchronization Data Types
	4.4.1.1 signal_t
	4.4.1.2 SIGNAL_MASK
	4.4.1.3 inp_state_t

	4.4.2 Synchronization Functions
	4.4.2.1 __signals()
	4.4.2.2 signal_test()
	4.4.2.3 ctx_swap()
	4.4.2.4 ctx_wait()
	4.4.2.5 __wait_for_any(), __wait_for_all()
	4.4.2.6 signal_same_ME
	4.4.2.7 signal_same_ME_next_ctx
	4.4.2.8 signal_prev_ME
	4.4.2.9 signal_prev_ME_this_ctx
	4.4.2.10 signal_next_ME
	4.4.2.11 signal_next_ME_this_ctx

	4.5 Control and Status Register (CSR) Access Functions
	4.5.1 CAP Data Types
	4.5.1.1 cap_csr_t
	4.5.1.2 local_csr_t
	4.5.1.3 cap_read_write_ind_t

	4.5.2 CAP Functions
	4.5.2.1 cap_csr_read(), cap_csr_read_D()
	4.5.2.2 cap_csr_read_ind(), cap_csr_read_D_ind()
	4.5.2.3 cap_csr_write(), cap_csr_write_D()
	4.5.2.4 cap_csr_write_ind(), cap_csr_write_D_ind()
	4.5.2.5 cap_read(), cap_read_D()
	4.5.2.6 cap_read_ind(), cap_read_D_ind()
	4.5.2.7 cap_write(), cap_write_D()
	4.5.2.8 cap_write_ind(), cap_write_D_ind()
	4.5.2.9 cap_fast_write()
	4.5.2.10 local_csr_read()
	4.5.2.11 local_csr_write()

	4.6 Hash Access Functions
	4.6.1 Data Types
	4.6.2 Functions
	4.6.2.1 hash_48(), hash_48_D()
	4.6.2.2 hash_48_ind(), hash_48_D_ind()
	4.6.2.3 hash_64(), hash_64_D()
	4.6.2.4 hash_64_ind(), hash_64_D_ind()
	4.6.2.5 hash_128(), hash_128_D()
	4.6.2.6 hash_128_ind(), hash_128_D_ind()

	4.6.3 Limitations on Hash Functions

	4.7 CAM (Content Addressable Memory) Access Functions
	4.7.1 Data Types
	4.7.1.1 cam_lookup_t

	4.7.2 Functions
	4.7.2.1 cam_clear()
	4.7.2.2 cam_lookup()
	4.7.2.3 cam_read_tag()
	4.7.2.4 cam_read_state()
	4.7.2.5 cam_write_state()
	4.7.2.6 cam_write()

	4.8 CRC Access Functions
	4.8.1 Data Types
	4.8.1.1 bytes_specifier_t

	4.8.2 Functions
	4.8.2.1 crc_5_be()
	4.8.2.2 crc_5_be_bit_swap()
	4.8.2.3 crc_5_le()
	4.8.2.4 crc_5_le_bit_swap()
	4.8.2.5 crc_10_be()
	4.8.2.6 crc_10_be_bit_swap()
	4.8.2.7 crc_10_le()
	4.8.2.8 crc_10_le_bit_swap()
	4.8.2.9 crc_16_be()
	4.8.2.10 crc_16_be_bit_swap()
	4.8.2.11 crc_16_le()
	4.8.2.12 crc_16_le_bit_swap()
	4.8.2.13 crc_ccitt_be
	4.8.2.14 crc_ccitt_be_bit_swap
	4.8.2.15 crc_ccitt_le
	4.8.2.16 crc_ccitt_le_bit_swap
	4.8.2.17 crc_32_be()
	4.8.2.18 crc_32_be_bit_swap()
	4.8.2.19 crc_32_le()
	4.8.2.20 crc_32_le_bit_swap()
	4.8.2.21 crc_iscsi_be()
	4.8.2.22 crc_iscsi_be_bit_swap()
	4.8.2.23 crc_iscsi_le()
	4.8.2.24 crc_iscsi_le_bit_swap()
	4.8.2.25 crc_read()
	4.8.2.26 crc_write()

	4.9 Miscellaneous Functions
	4.9.1 Functions
	4.9.1.1 dbl_shr()
	4.9.1.2 dbl_shl()
	4.9.1.3 __ctx()
	4.9.1.4 __ME()
	4.9.1.5 __n_ctx()
	4.9.1.6 __nctx_mode()
	4.9.1.7 sleep()
	4.9.1.8 ffs()
	4.9.1.9 __LoadTimeConstant()
	4.9.1.10 __global_label()
	4.9.1.11 multiply_24x8()
	4.9.1.12 multiply_16x16()
	4.9.1.13 multiply_32x32_lo()
	4.9.1.14 multiply_32x32_hi()
	4.9.1.15 multiply_32x32()
	4.9.1.16 __set_timestamp()
	4.9.1.17 __timestamp_start(), __timestamp_stop
	4.9.1.18 __set_profile_count()
	4.9.1.19 __profile_count_start(), __profile_count_stop
	4.9.1.20 __signal_number()
	4.9.1.21 __xfer_reg_number()
	4.9.1.22 __assign_relative_register()
	4.9.1.23 __implicit_read()
	4.9.1.24 __implicit_write()
	4.9.1.25 __free_write_buffer()
	4.9.1.26 inp_state_test()
	4.9.1.27 bit_test()
	4.9.1.28 nn_ring_dequeue_incr()
	4.9.1.29 nn_ring_dequeue()
	4.9.1.30 nn_ring_enqueue_incr()
	4.9.1.31 byte_align_block_le()
	4.9.1.32 byte_align_block_be()
	4.9.1.33 __no_spill_begin()
	4.9.1.34 __no_spill_end()
	4.9.1.35 assert()
	4.9.1.36 __critical_path()
	4.9.1.37 pop_count()
	4.9.1.38 __switch_pack
	4.9.1.39 __impossible_path
	4.9.1.40 __no_swap_begin
	4.9.1.41 __no_swap_end

	4.10 Restrictions On Intrinsics
	4.10.1 Intrinsic Function Arguments that Map to Transfer Registers in Microcode

	Inline Assembly Language 5
	5.1 Single __asm Instruction
	5.2 Block of __asm Assembly Code
	5.3 Instruction Format
	5.4 Operand Syntax
	5.4.1 Register Operands
	5.4.2 Immediate Operands
	5.4.3 Usage Examples

	5.5 Restrictions on Use Of Assembly Language

	Compiler Optimizations 6
	6.1 Machine Independent Optimizations
	6.2 Network Processor Specific Optimizations
	6.2.1 Registrations
	6.2.2 Read/Write Combining
	6.2.3 Peephole Optimization
	6.2.4 Defer Slot Filling
	6.2.5 Local Memory Grouping
	6.2.6 Local Memory Autoincrement/Autodecrement Conversion
	6.2.7 Scheduling
	6.2.8 I/O Parallelization

	Tips for Optimization, Troubleshooting, and Debugging 7
	7.1 Optimizing Your Code
	7.2 Things to Remember When Writing Microengine C Code
	7.3 Troubleshooting
	7.3.1 Program Does Not Fit
	7.3.2 Program Does Not Run Correctly

	7.4 Debugging Inline Functions

	Mutual Exclusion Library 8
	8.1 Introduction
	8.2 MUTEXLV Usage
	8.3 MUTEXG Usage
	8.4 Functions
	8.4.1 MUTEXLV_init (MUTEXLV)
	8.4.2 MUTEXLV_destroy(MUTEXLV,MUTEXID)
	8.4.3 MUTEXLV_lock(MUTEXLV, MUTEXID)
	8.4.4 MUTEXLV_unlock(MUTEXLV, MUTEXID)
	8.4.5 MUTEXLV_trylock(MUTEXLV, MUTEXID, ERRCODE)
	8.4.6 MUTEXLV_testlock(MUTEXLV, MUTEXID, ERRCODE)
	8.4.7 MUTEXG_init (MUTEXG)
	8.4.8 MUTEXG_destroy (MUTEXG)
	8.4.9 MUTEXG_lock (MUTEXG)
	8.4.10 MUTEXG_unlock (MUTEXG)
	8.4.11 MUTEXG_trylock (MUTEXG, ERRCODE)
	8.4.12 MUTEXG_testlock (MUTEXG, ERRCODE)

	Semaphore Library 9
	9.1 Semaphore Data Types
	9.2 Semaphore Functions
	9.2.1 SEML_init(SEML, SEMVALUE)
	9.2.2 SEML_destroy(SEML)
	9.2.3 SEML_post(SEML) SEML_dec(SEML)
	9.2.4 SEML_wait(SEML)
	9.2.5 SEML_trywait(SEML, ERRCODE)
	9.2.6 SEML_barrier(SEML,n)
	9.2.7 SEML_trybarrier(SEML, ERRCODE)
	9.2.8 SEML_getvalue(SEML)
	9.2.9 SEML_set_barrier_at(SEML,n) SEML_clr_barrier_at(SEML,n)

	-Qperfinfo Output Information A
	A.1 -Qperfinfo=1
	A.2 -Qperfinfo=2
	A.3 -Qperfinfo=4
	A.4 -Qperfinfo=8
	A.5 -Qperfinfo=16
	A.6 -Qperfinfo=32
	A.7 -Qperfinfo=64
	A.8 -Qperfinfo=128
	A.9 -Qperfinfo=256
	A.10 -Qperfinfo=512
	A.11 -Qperfinfo=1024
	A.12 -Qperfinfo=2048
	A.13 -Qperfinfo=4096
	A.14 -Qperfinfo=8192

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

