Intel® IXP2400/1XP2800 Network
Processor

Programmer’s Reference Manual

November 2003

Order Number: 278746-014

Intel® IXP2400/IXP2800 Network Processor u

Revision History

Revision Date | Revision | Description
07/12/01 001 Internal release.
09/07/01 002 Internal release. Updated instructions
10/10/01 003 Release for Customer Information Book VO0.3.
10/31/01 004 Pre-Release V 1.
11/04/01 005 Update for Customer Information Book V0.3
01/25/02 006 IXA SDK 3.0 Pre-Release I
04/22/02 007 Release for the IXA SDK 3.0
08/02/02 008 First combined IXP2400/1XP2800 version for the IXA SDK 3.0 Pre-Release 4
11/01/02 009 Release for the IXA SDK 3.0 Pre-Release 5
01/22/03 010 Release for the IXA SDK 3.0 Pre-Release 6
05/31/03 011 Release for the IXA SDK 3.1 Pre-Release 2
07/3/03 012 Release for the IXA SDK 3.1 Pre-Release 3
09/8/03 013 Release for the IXA SDK 3.5
11/16/03 014 Release for the IXA SDK 3.5 Pre-Release 2

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The IXP2400/IXP2800 Network Processor may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2003
Intel and Intel XScale are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries

*Other names and brands may be claimed as the property of others.

ii Programmer’s Reference Manual

intel.

Intel® IXP2400/IXP2800 Network Processor

Contents

1 g oo 18 Lol 1 o] o PP PP O PPPPPRPPPPPPPPP 21
1.1 ADOUL thiS DOCUMENTtiiiiie ittt e senaee e 21
1.2 Related DOCUMENTALIONuieiiiiiiiieiiiiiee et s 21

2 F TS o 0] o] 1= PR PRR 23
2.1 ACTONYIMS ittt e e e e s et et e e e e e e s s b e e et reaeeessannaas 23
2.2 DETINITIONS. ..ttt 23
23 SoUrce File EIEBMENTSoiiiiiiiieiei e 24

2.3.1 INSHUCTIONS ..ottt e e e e e nnn e e e s e 24

2.3.2 DIHMBCHIVES. ..cei ittt ettt e e e 24

2.3.3 COMMENES ..oiiiiiiiiiire et e e 24

2.4 BIOCK STTUCTUIE ...t 25
2.5 ASSEMDIY PrOCESS STEPS....cii ittt e e e e 25
2.6 ASSEMDIET PreprOCESSOrcoi ittt 26
2.6.1 Preprocessor Reserved Labels..........cccccciiiiiiiiiiiii e 27

2.6.2 PreproCessor OPErationooiiiuiiiiiiiiaeae et e e 27

2.6.3 Constant EXpressions (CONSE-EXPI)uuuueriiaiieaiiiiiiiiiiieeaeeee e e e siriveeeeeens 28

2.6.3.1 Preprocessor Binary & Unary Operators........ccooeecvvviieeeeenennenn. 29

2.6.3.2 Preprocessor: FUNCLIONS ..ottt 29

2.6.3.3 STRING OPErator.....cccceeiiiiieieee it 30

2.6.3.4 LOG2() FUNCHON....cciiiiiiiiie et 31

2.6.3.5 Preprocessor Function EXamplescccccccevviiiieniniiniennenne, 32

2.6.4 Macros and Expansion Token ReStriCtion...........ccovvieiiiiiiieeeniiiiieeee e 33

2.6.5 Syntax for Argument and Token liStScccociiiiiiie i 33

2.6.6 Leading and Trailing Spaces inN MacCrOScceeveiiiiieeeiiiiieiee i 34

2.6.7 Environment Variables ... 34

2.6.8 Predefined Processor Type and Revision Symbolsccccceeeviiineeenne 34

2.6.9 Predefined Import VariableS.........c...cooiiiiiii e 38

2.7 Preprocessor Usage TEChNIQUEScuuviiiiiiiiiiie et 38
2.7.1 Branching into & MACIOccooiiiiiiiiiiiiiie e 38

2.7.2 Constructing Names from NUMDEIScoooiiiiiiiiiiiiiee e 40

2.8 ReQISters and SIGNEAIScooueeiiiiiiiiii e 41
2.8.1 Register Naming CONVENTIONS.........eeieiiiiiiieeiiiiiee et rieeee e 42

2.8.1.1 Indexed REQISIEISccuviiiiiiiiiiie it 42

2.8.1.2 Mixing Indexed and Named Register Usage.........c.ccecvvveeennnnn 46

2.8.1.3 Transfer Registers (Xfer) ... 46

2.8.2 RegiSter DeCIarationscooaueiiiiiiiiiiiiiiiee e 46

2.8.2.1 Preferred Register Declaration Syntax........cccccooevecvuvieieeeenennenn. 47

2.8.2.2 Details of Volatile and Visibleccccoviiiiieiniiiieee e, 51

2.8.2.3 Compatible Register Declaration SyntaX............cocccuvvieeeeeneennn. 51

2.8.2.4 Dealing with self-write neighbor regscccccvveeiiniee e, 52

2.8.3 Aggregate and Array SUPPOIt........ueeeeiiiiieeeeiiieieeesiiee e sieeee e senreee e 52

2.8.3.1 REQISEI AITAYS.....eiiiiiiiiiiie ettt 52

2.8.3.2 Compatibility with Earlier Releasesccccccvvviieeiiiiieeennnnn, 53

2.8.3.3 Doubled Signal References........ccoccveveiiiiiiiie e 54

2.8.3.4 USAQE NOLES.... .o 55

2.8.3.5 Compatibility ISSUESueeriiiiiiieiiiiiiiiiiieee e 56

Programmer’s Reference Manual iii

Intel® IXP2400/IXP2800 Network Processor u t6I
®

29
2.10

2.11

2.12
2.13

2.8.4 Transfer Order(.Xfer_order) ..o 56
2.8.5 Register Lifetime DetailSccueiiiiiiiiieiiiiiie e 57

2.8.5.1 MEV2 Queue INformationccccvevieeeeeiiiiiiiiieeinee e 58
2.8.6 Signal DECIArationsccueeeeiiiiiiie i 58
2.8.7 Use of REMOTE KEYWOIU.......c.uuuiiiiiiiiie ettt 59
2.8.8 AdUreSS OPEIAOr.....ceiiiiiiiiieeiiieiee e sttt e ettt e e st e e s e e s e sneees 60

2.8.8.1 Accumulating Results for ctx_arb[--]ccccovivieririiiiieiniieeen, 62

2.8.8.2 Examples of Address Operator and Visible/Volatile Signals..... 63
2.8.9 Signal Lifetime DetailS..........couiiiiiiiiiiiie e 64
2.8.10 Register Allocatior DIr€CHVESccciiiuiiiieiiiiiie et 64
2.8.11 GPR A/B Bank CoNfliCtS........coiiuurieiiiiiiiee et 69

2.8.11.1Automatic A/B Bank Conflict Resolutionc.cocccveevniiinnnn. 70
2.8.12 GPR SPIllING .evitieiiiiiiie e 70
2.8.13 Lifetime Out-Of-RegiSter ErTOrS.........ocoviiiiiiiiiieeeiee e 71

2.8.13.1Transfer Register Lifetimeseovviiiiiie e 74
ASSEMDBIET OPLIMIZETeiiiiiiiiiie e 75
ASSEMDBIET DIFECHIVESeiiiiiiiiiie et 77
2.10.1 Summary Of DIFECHVESceeiiiiiiiieiiiiiiee et 77
Directives DefiNitiONS.........cooiiiiiiiie ittt 79
2.11.1 Token Replacement (#define, #undef)........cccccevviiiiiiiiii e, 79
2.11.2 Optimization DIr€CHVES.......ccciiiiiiieiiiiiiee e 80
2.10.3 LOOPS oieiiiite ittt et e e e a e e e e 81

2.11.3.1For Loops (#for, #endlOop)........cvveveiiiiiieiiiiiiiie e 81

2.11.3.2Repeat Loops (#repeat, #endloop)cccceeevviiieeiiiiiieneeiiieeeee 81

2.11.3.3While Loops (#while, #eNdIO0P)uveeiiiiriiiiiiiiiiiiiieeceeee s 82
2.11.4 Macros (#FmMacro, HENAM)uueiiiiiieiieee e 82
2.11.5 Conditional Assembly (#Ifdef, #If, #else, #elif, #endif)cccccceee. 84
2.11.6 Error RepOrting (FEITOI).....ooi ettt a e 85
2.11.7 File Inclusion (FNCIUAE)coceeiiiiiiiiiiee e 86
2.11.8 Import Variable (.imPOr_Var)..........eeeeiiieiiiiiieeieee e 86
2.11.9 Code block directive (.begin, .end)........ccoooiiiiiiiiiii e, 87
2.11.10 Manual Register Allocation (.addr) ..o 88
2.11.11 Memory AllOCatioN Dir€CHIVESuiiiiieeiie it 89
2.11.12 Memory Block and Register Initializationccccccoeeiiiiiniiiiiiinnnenennnn, 90
2.11.13 Local Memory Mode Dir€CHIVEScccuiieiiiiiiiiieeiie e 91
2.11.124 Number of ContextS DIr€CHIVEcooccveieeiiiiiiie e 91
2.11.15 Initial Next Neighbor Mode DireCtive..........oocuiiieeiiiiiieiniiiiieeee e 91
2.11.16 Operand Synonym (.operand_SYNONYM)uueeeieeerarinniiiiiieneeaaaaeananns 91
2.11.17 Structured ASSEMDIYoooiiii e 92

2.11.17.1Conditional (.if, .elif, .else, .endif, if _unsigned, .elif_unsigned) 92

2.11.17.2Repeat Loops (.repeat, .UNtil).........ccevereeiiiiiiiiiiiiieeieeee s 93

2.11.17.3While Loops (.wWhile, .eNdW)eeeiiiiiiiiiiiiiiiieeeeeeeees 93

2.11.17.4Break and CONLINUEooeviiiiiiiieeriiiiee e 93

2.11.17.5Conditional EXPreSSiONS........cocuvviieiiiiiiie e e e 93

211 17.6EITOIS oottt e e e 95
2.11.18 Structured Assembly Usage Considerations...........cccceevvveveeiniiieeenennne. 96
2.11.29 WArning DIr€CHIVESccoiuriie ettt 97
Subroutine Definition (.subroutine, .endsub).........cccoviiiii e, 98
LINKEE DIFECLIVES.....eeii ittt ettt e et e e st e e e e snbeeeee e 98

Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor

3 MEV2 INSIIUCHION S ...eiiiiiiiiiiii ittt et e s s b e e s nnnnneee s 101
3.1 INSEFUCHION SYNTAXttt e e e et re e e e e e e e e e s 103
3.1.1 Restricted and Unrestricted Src and Dest Operandscc.ueeee... 103
3.1.1.1 Two Source Operand Selection RUIESccccceiiiiiiiiiiiiennnn. 104
3.1.2 /O INSrUCHION FOMMAL......ciitriiiieiiiieie et 104
3.1.2.1 Source Operands (SrC_OpPL, SIC_OP2) .euuvrrrrrereaeeeaianiiiirieeeenn 104
3.1.2.2 Reference Count (ref _CNt) ... 105
3.1.2.3 Optional Tokens (OPt_toK)cceeeeeiiriiiiiiiiiiiiiiee e 105
3.1.2.4 EVENt SIGNAIScveiiieiiiie e 108
3.1.3 CoNAItioN COUES.......uviiieiiiiiiee ettt ettt aee e 111
3.1.4 Branch Defer (defern])......ccooceiiiiiiieiiiee e 112
3.1.5 Coding RESIIICHONSeeiiiiiiiiiie ittt sbeeee e 113
3.1.5.1 Branch or I/O Command in Defer SIot............ccccvveeviiiirerinnnen. 113
3.1.5.2 Condition Codes after SWap.........ccccveeeririieeeeiniiiee e 114
3.1.5.3 CAM after Conditional P3 Branchcccccccoviiieeinninenenn 114
3.1.5.4 Dram With SWapPcocuiiiiiiiii e 115
3.1.5.5 BCC after Conditional P3 branchc.ccccoiiiiiiiinn, 115
3.1.5.6 LOCAL_CSR_RD cannot be in last defer slot......................... 117
3.1.5.7 LOCAL_CSR_WR to ACTIVE_LM_ADDR, or

CAM_LOOKUP ...ttt 117
3.1.5.8 LOCAL_CSR_RD must be followed by an IMMED op............. 118
3.1.5.9 I/O Command Op after LOCAL_CSR_WR..........ccceevurvreennnnn 119
3.1.5.10LOCAL_CSR_WR to CTX_WAKEUP_EVENTS.........cccccvueen. 120
3.1.6 MEV2 Permitted Coding SEQUENCEScccceeiiiiimiiiiiiiiiaae e 121
3.1.6.1 Swap after P3 Branchcccccceeiiiiiiiiiiiiiieeeeee e 121
3.1.6.2 Memory Command after P3 Branch...........cccccccceiinniniiiiinnen. 121
3.1.6.3 Swap after Voluntary SWap.ccooeiiiiiiiiiiiiiieeeee e 122
3.1.6.4 ALOCAL _CSR_WR indeferslot.......cccccvrriireereeiiiiiiiiiiennnn, 122

3.1.6.5 LOCAL_CSR_WR can be followed by a LOCAL_CSR_RD
OF LOCAL_CSR_WR. ..ottt 123
3.2 INSTIUCTION SEL ...eiiiiiiiiiie et 124
00 S USSR 124
B.2.2 ALU_SHE oo s 126
Bi2.3 AR et 128
3.2.4 BCC (BRANCH CONDITION CODE)......ccceiiiiiiiieiiiiiiies i 129
312 BR s 130
3.2.6 BR_BCLR, BR_BSET ...ooiiiiiiiiiiiiiiiiiee e 131
3.2.7 BR=BYTE, BRIZBYTEooiiiiiii ettt eee e 132
3.2.8 BR=CTX, BRIZFCTX ..ttt 133
3.2.9 BR_INP_STATE, BR_INP_STATE ..ottt 134
3.2.10 BR_SIGNAL, BR_ISIGNAL ..ottt 135
3.2.11 BYTE_ALIGN_BE, BYTE_ALIGN_LE.....cccciiiiiiiiiiiie e, 136
3.2.12 CAM_CLEAR ...t 139
3.2.13 CAM_LOOKUP ..ottt 140
3.2.14 CAM_READ_TAG ..ttt et 142
3.2.15 CAM_READ_STATE ..ottt 143
3.2.16 CAM_WRITE .. .ottt 144
3.2.17 CAM_WRITE_STATE ..ottt 145
3.2.18 CAP (Enumerated CSR AdAressing)ccccceevvuveeeeeiiiieeee i 146
3.2.19 CAP (Calculated AdAreSSing).......c.uueeeiiiueeieeiniieieee i sieeeeesseeeeee s 148
3.2.20 CAP (REFIECL) et 153

Programmer’s Reference Manual \

Intel® IXP2400/IXP2800 Network Processor u t6I
®

vi

Address Maps

4.1

3.2.21 CRC_LE, CRC_BE ...ciiiiiiiiii ittt 155
3.2.22 CTX_ARB ... 158
3.2.23 DBL_SHF ... 160
3.2.24 DRAM (Read and WHLE)cocueiieiiiiiiie et 161
3.2.25 DRAM (RBUF and TBUF)ccuiiiiiiiiiiee et 163
B.2.26 FFS Lo 165
B.2.27 HALT et 166
B.2.28 HASH e 167
3.2.29 IMMED ..ciiiiiee e 170
3.2.30 IMMED_BO, IMMED_B1, IMMED_B2, IMMED_B3..........c..cecctveeernnn 172
3.2.31 IMMED_WO, IMMED_W1.....oiiiiiiiiiiiiee et 173
B.2.32 JUMP e 174
3.2.33 LD_FIELD, LD_FIELD_W_CLR ...ccocttiiiiiiiiiiee et 175
3.2.34 LOAD _ADDR ...ttt 176
3.2.35 LOCAL_CSR_RD ...ttt 177
3.2.36 LOCAL_CSR_WR ...iiiiiiitiiee ettt ettt 178
3.2.37 MSF (Media Switch Fabric)........cccooviiiiiiii e 179
3.2.38 MUL_STEP oo 182
B.2.39 NP e 184
B.2040 PCl it 185
3.2.40 POP_COUNT ..ttt 187
B.2.42 RTIN ittt e 188
3.2.43 SCRATCH (Read & WILE) ...ccvvieieiiiiiiee et 189
3.2.44 SCRATCH (AtomiC OPEratioNS)c.uveeeeriiiiereeeiiiiieeeeeiieeeeeeiiieee e 191
3.2.45 SCRATCH (RiNG OPEratioNS).......ccocurieeeiiiiiiieeeiiiiiee e s aiieee e sieieee e 193
3.2.46 SRAM (Read & WHLE)veeieeiiiiiie ettt 195
3.2.47 SRAM (AtOMIC OPEratioNS).......ceeeeiriviieeeiiiiieeeeriiiee e e esiee e e e enireee e 197
3.2.48 SRAM (CSR) ..eiiiiiiiiiiei ittt 201
3.2.49 SRAM (Read QUEUE DESCIIPLON) ...ccciiiiieeeiiiiiie et 203
3.2.50 SRAM (Write QuUeue DESCIIPIOr)coiiviiee et 207
3.2.51 SRAM (ENQUEUER) ...eeeiiiiiiiiiee ettt 209
3.2.52 SRAM (DEQUEBUE)ceeiiiiiiiiee ettt ettt e e e e 213
3.2.53 SRAM (RiNG OPEratiONsS).......cccuuiiieiiiiiieee ettt 216
3.2.54 SRAM (Journal Operations)cceuiieeeeiiiiiieeeeriiiee et 218
.. 221

INntel XScale" AdAreSS MaP.......eeeie i 221
4.1.1 DRAM Memory and Intel XScale* Core Flash ROM (2GB).................. 222
4.1.2 SRAM MEMOIY (LGB) ..cooiiiiiiiiiiiiiee e 222
4.1.3 CAP-CSRS (B2MB)....tiiiiiiiiieie ettt 223
4.1.3.1 ME Transfer and Local CSRS..........ccccoeuiiiiiiiiiiieeiiiee e, 224

4.1.3.2 PeripheralScooiiiiiiiiiiiee e 225

4.1.3.3 CAP CSRS.iiiiiiiii ettt 225

4.1.4 SlowPort - Flash ROM (B4M)uuuiiiiiiiiiiiiiiiiiiieeeee e 226
415 MSF (B2M) .ttt 226
4.1.6 SCratCh (B2M) ...t 227
4.1.7 SRAM CSRs and Queue Array (64MB)ooociiiiieieiiieieeeiieee 228
4.1.8 DRAM CSRS (32M) . .uiiiiiiieiiiiie ittt ettt be e 229
4.1.9 Intel XScale" Core Local CSRS (32M)..ccccoeiiiiiiiiiiiiiiiiiieee e 230
4.1.9.1 Hash Operationsueeeiiiiiiiiiiiiiiiieie et 230

Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor

4.1.10 PCLHIO (B2M) oottt ettt 231
4.1.11 PCICFG (B2M) ettt ettt et 231
4.1.12 PCI Special Cycles / IACK (32M)uuuiiiiiiiiiie e 232
4.1.13 PCI Configuration Registers (32M)coocuiiiiiiiiiie e 232
4.1.14 PCIl CONroller CSRSeiiiiiiiiiiiie et 232
4.1.15 PCIMemMOry (L/2GB).....ueiieiiiiiiie e 232
4.2 PClAAArESS MAP ...ttt et 233
421 DRAM MEMOIY SPACE......uutuiiiiiiiieeaeiiiiiiireeie et te e e e s e eereaeaeeae e 234
4.2.2 SRAM MEMOIY SPACEuuuiiiiiiiieeeeiiiiiiiiiete et e e e e e e e e 235
4.2.3 CSR MEMOIY SPACE......uuueiieiieeieeiiiaiiriiie it te e e e e e e e e 236
4.3 Microenging AddreSS Map........coocueiiieiiiiiie e 238
Control and Status RegISLErS (CSRS)....ciiuuiiiiiiiiiiee ettt 241
5.1 T o o [N Tl o] o PO PR PPT 241
5.1.1 IXP2800 and IXP2400 CSR SUMMAIYcccceriurreeeiiirieieeinieeeeesninneeess 241
5.1.2 Register Notation CONVENLIONS..........ceeiiiiiiiieiiiiiiee e 242
5.1.3 ReServed FIeldsScuuiiiiiiiiii e 242
5.2 Microenging LOCAlI CSRS......ccciiiiiiiiieiiiiiie e 243
5,21 USTORE_ADDRESSccoiitiiiieiiiiiiee ettt 247
5.2.2 USTORE_DATA_LOWER, USTORE_DATA_UPPER..........ccccevuurnnen. 248
5.2.3 USTORE_ERROR_STATUS ...ttt 249
B5.2.4 ALU_OUT oottt et 249
525 TIMESTAMP_HIGH, TIMESTAMP_LOWccccviiiiiiiiii e 250
5.2.6 ACTIVE_CTX_FUTURE_COUNTcoiitiiiiiiiiiiiie et 250
5.2.7 INDIRECT_CTX_FUTURE_COUNTcttiiiiiiiieiiiiieee s 251
5.2.8 ACTIVE_FUTURE_COUNT_SIGNALcoteiiiiiiiieiiiiiie s 251
5.2.9 INDIRECT_FUTURE_COUNT_SIGNALcoctiiiiiiiiiiien e 251
5.2.10 PROFILE_COUNT ...ttt 252
5.2.11 PSEUDO_RANDOM_NUMBER........ccccotittiiiiiiiiiennieeee et 253
5.2.12 NEXT_NEIGHBOR_SIGNALcocttiiiiiiiiiiie et 253
5.2.13 PREV_NEIGHBOR_SIGNALcoittiiiiiiiiiiiie it 254
5.2.14 SAME_ME_SIGNAL......otiiiiiiiiiiiiiiee e 255
5.2.15 ACTIVE_CTX_STS . itiiiieiiitiiie ettt ettt sttt 255
5.2.16 INDIRECT_CTX_STS .oiiiiiiiiiiiieiiiiiiee ettt 256
5.2.17 CTX_ARB_CNTL ittt 257
5.2.18 CTX_ENABLES....... ittt 257
5.2.19 CC_ENABLEooiiii s 260
5.2.20 CSR_CTX_POINTER....cciittiiie ittt 260
5.2.21 ACTIVE_CTX_SIG_EVENTS. ...ttt 261
5.2.22 INDIRECT_CTX_SIG_EVENTS.....coiiiiiiieieiieeee e 261
5.2.23 ACTIVE_CTX_WAKEUP_EVENTS ...ttt 261
5.2.24 INDIRECT_CTX_WAKEUP_EVENTScoiiiiiiiiiiiiiiiee e 261
5.2.25 ACTIVE_LM_ADDR_D ..cciiitiiiiiiiiiiiee ittt 262
5.2.26 ACTIVE_LM_ADDR_1 ...coiiiiiiiiiiiiiiee et 262
5.2.27 INDIRECT_LM_ADDR _0 ...uutiiiiiiiiiiiie it 262
5.2.28 INDIRECT_LM_ADDR 1 ..cciiiiiiiiiiiiie it 262
5.2.29 BYTE_INDEXiiiiiiiiiiiiie ettt 263
B5.2.30 T_INDEX oottt ettt 264
5.2.31 T_INDEX_BYTE_INDEX......cttiiiiiiiiieiiiiiiee ettt 264
5.2.32 INDIRECT_LM_ADDR_0 BYTE_INDEX.....ccccctvtiiiiiiiieeiieeee e 265

Programmer’s Reference Manual vii

Intel® IXP2400/IXP2800 Network Processor u t6I
®

viii

53

54

5.5

5.2.33 INDIRECT_LM_ADDR_1 BYTE_INDEX......cccciiiiiiieiiiiiiiees e 265
5.2.34 ACTIVE_LM_ADDR_O_BYTE_INDEX.......ccccceeimiiiieiiniiiie e 265
5.2.35 ACTIVE_LM_ADDR_1 BYTE_INDEX.......ccccceemmiiiiainiiiiie e 265
B5.2.36 NN _PUT e 265
B5.2.37 NN _GET . e 266
5.2.38 CRC_REMAINDER ...ttt 267
5.2.39 LOCAL_CSR_STATUS .. .ottt et 267
RDR DRAM Controller - IXP2800ccooiiuiiiiiiiiiieee s 268
5.3.1 RDRAM_CONTROL (# = 0,1,2) cccceiiiriieeiiiiiie et 269
5.3.2 RDRAM_ERROR_STATUS_ 1 (#=0,1,2) .ccccceevirriieeiiiiieee e 271
5.3.3 RDRAM_ERROR_STATUS_ 2 (#=10,1,2) .ccceeeviiiiieeniieee e 272
534 RDRAM_ECC_TEST (#=0,1,2) it 273
5.3.5 RDRAM_SERIAL_COMMAND (# = 0,1,2) .c.cceeeiiiiiieeeiiieee e 274
5.3.6 RDRAM_SERIAL_DATA (#=0,1,2) ccceeeeiiiiieeeeiiieee et 275
5.3.7 RDRAM_CONFIG_1 (#=0,1,2).cccciiiiiiiiiiiiiieeeiiiiee e 275
5.3.8 RDRAM_CONFIG_2 (# = 0,1,2).cccciiiiiiiiiiiiiiieeeiieee e 277
5.3.9 RDRAM_CONFIG_3 (# = 0,1,2)..cccciiiiiiiiiiiiiieeiiiiee et 278
5.3.10 RDRAM_RAC_INIT (#=0,1,2) ceoeeiiiiiieieieiieee et 279
5.3.11 RDRAM_MISC_RAC_CONTROL......cctieiiiiiiieiiiiite e 281
5.3.12 RDRAM_RAC_CONFIG....cciiiiiiiiiieiiiiiiee ettt 281
5.3.13 RDRAM_1066_CONFIG_GROUP (#=10,1,2) ...cccveveeriiiieeeeriieee e 282
5.3.14 RDRAM_SERIAL_CONFIG (#=10,1,2)..ccccciieiiiiiieeniiiee e 282
5.3.15 RDRAM_KO through RDRAM_K11 (# = 0,1,2) ..ccvvveeiiiiiieeeiiiieeeeen 283
DDR SDRAM Controller - IXP2400couiiiiiiiiiiieei e 285
5.4.1 DDR SDRAM REQISter Mapccceiiiiuiiiiaiiiiiiie et 285
5.4.2 DRAM Controller Control Register (DU_CONTROL)..........cccvvveernnnn. 285
5.4.3 DRAM Error Status Register 1 (DU_ERROR_STATUS_1) 288
5.4.4 DRAM Error Status Register 2 (DU_ERROR_STATUS_2) 289
5.4.5 DRAM ECC Test Register (DU_ECC_TEST) ...cccveveeiiiiieeeeeiieee e 290
5.4.6 DRAM Initialization Register (DU_INIT)cccceeiniiiiiinieeeieee e 292
5.4.7 DRAM Controller Control Register 2 (DU_CONTROL2)...........cccc....... 293
5.4.8 DRAM RCOMP & I/O REQISIEIScouiiiieeiiiiiiiee et 294

5.4.8.1 DDR_RX_DLL.cciiiiiiiiiiiiiiiiiiie ettt 298

5.4.8.2 DDR_RX_DESKEWcoiiiiiiiiiiiiiiiiiie st 299

5.4.8.3 DDR_RDDLYSEL_RECVEN........cccoiiiiiiiiiiiiiiee e 299
SRAM QDR CONMIOIET ...vvvieiiiiee et r e e e e e e neeeeeeee s 300
551 SRAM_CONTROL ..coiiiitiiiiiiiiiiit ettt 302
5.5.2 SRAM_PARITY_STATUS L. 304
5.5.3 SRAM_PARITY_STATUS 2.t 304
554 SPARE ..o 305
555 QDR_INTERNAL_PIPELINEccooiiiiiiiiiiiieeee e 306
556 QDR_RX DLL. ittt ettt 306
557 QDR_RX_DESKEW.ciititie ittt 307
558 QDR_RD_PTR_OFFSET...cciiiiiiiiiiiiiee e 307
559 QDR RCOMP REQISIEIS....cciiiiiiiiiiieiiiiiiee ettt ee e 308

5.5.9.1 Q_RCMP_SETUP_CONTROLcceviiiiiieiiiiiiiie e 308

5.5.9.2 Q_RCMP_PMOS_MEASUREDcccvviiiiiiiiiiiiieeee e 311

5.5.9.3 Q_RCMP_NMOS_MEASURED.........cccccvviiiiiiiiiiiieeee 311

5.5.9.4 Q_RCMP_PMOS_OVERRIDE...........cccceiiiiiiiiiiiieeeienn 312

5.5.9.5 Q_RCMP_NMOS_OVERRIDEccoccvitiiiiiiiiieeiieeeee s 312

Programmer’s Reference Manual

5.6

Intel® IXP2400/IXP2800 Network Processor

5.5.9.6 Q_RCMP_PMOS_NMOS_SCOMP_OVERRIDE (IXP2400

and IXP2800 REV A)....coiiiiiiieiiiiee ettt 313

5.5.9.7 Q_RCMP_PMOS_NMOS_SCOMP_OVERRIDE(IXP2800
REV B) et 314
5.5.9.8 Q_RCMP_STRENGTH_SLEW_INDEX_SELcccccecvcuveenunnn. 315
5.5.9.9 Q_RCMP_ADDR_PMOS_PU_OFFSETccocccvviiiiiiieeei, 317
5.5.9.10Q_RCMP_ADDR_NMOS_PD_OFFSET......cccccvieiiiieeee e 317
5.5.9.11Q_RCMP_DATA _PMOS _PU_OFFSET.......ccccoiveiiiiireeeee 317
5.5.9.12Q_RCMP_DATA_NMOS_PD_OFFSETccccccveeiieeinieeeniennn 318
5.5.9.13Q_RCMP_K_CLK_PMOS_PU_OFFSETcccceevvuirerrieennenn. 318
5.5.9.14Q_RCMP_KCLK_NMOS_PD_OFFSET........cccoceerieeeriieennnnn. 318
5.5.9.15Q_RCMP_DQ_PMOS _PU_OFFSET.....ccccccoiiiiieiiiiieee e 319
5.5.9.16Q_RCMP_DQ_NMOS_PD_OFFSET......ccccccevniiiieiniiieeeee 319
5.5.9.17Q_RCMP_PMOS_NMOS_VERT_OVERRIDE 319
5.5.9.18Slew Rate Tablescoeeiiiiiiiiiiie e 320
5.5.10 QDR Uit iNtialiZationcceeveeeeisiiiiiieeieeee e 322
5.5.10.1IXP2800 A Steppings QDR initial setup procedure.................. 322
5.5.10.2IXP2800 B Steppings - QDR initial setup procedure............... 324
5.5.10.3IXP2400 QDR initial setup procedureccccceeeeiiniiiiienenennn. 326
CSR ACCESS ProXY (CAP) ..ttt 327
5.6.1 Scratchpad Memory CSRS (CAP CSR)ccooiiiiiiiiiiiieieee e 327
5.6.1.1 SCRATCH_RING_BASE_# (#=0-15)....ccccccenrrrriirrrnreeannn. 328
5.6.1.2 SCRATCH_RING_HEAD_# (#=0-15) ..cccccecvreriieerirerenieenne 329
5.6.1.3 SCRATCH_RING_TAIL # (#=0-15).ccccceeiiiieieiiiieeee e 330
5.6.2 Hash Configuration (CAP CSR)coiiiiiiiiiiiiiiiee e 330
5.6.2.1 HASH_MULTIPLIER_48 # (#=0,1)..cccccccviiiiiiiiieeiiiiieeeeeie 331
5.6.2.2 HASH_MULTIPLIER_64_# (# =0,1)..ccccccceiiiiiiiiieeiiiiee e 331
5.6.2.3 HASH_MULTIPLIER_128 # (# =0,1,2,3).cccccvcirieeiiiinenennnn. 332
5.6.3 Fast Write CSRS (CAP CSR)coouiiiiiiiiiiiiie et 333
5.6.3.1 THD_MSG (GENETIC) ..vvvveeeeiiiieeeeiiiiee e riiee et e et 334
5.6.3.2 THD_MSG_CLR_# $_& (#={0,1}, $={0,7 or 3}, & ={0,7})...335
5.6.3.3 THD_MSG_# $ & (#={0,1},$={0,70r 3}, & ={0,7}) 335
5.6.3.4 THD_MSG_SUMMARY_# $ (#={0,1}, $={0,1}) .cccceeevvrrer-. 336
5.6.3.5 SELF_DESTRUCT _# (# =0 -1) sccceeieiiiiieeeeieeee e 336
5.6.3.6 INTERTHREAD_SIG......coiiiiiiiiiiiiiie et 337
5.6.3.7 XSCALE_INT_# #=A,B) oo 337
5.6.4 Global Control (CAP CSR)ccuiiiiiiiieiiiiiiie et 338
5.6.4.1 PRODUCT _ID ..ooiiiiiiiiiiiee ittt 338
5.6.4.2 MISC_CONTROLcoiiiiiiiiiieiiiie ittt 339
5.6.4.3 MSF Clock Control CSR (MCCR) - IXP2400 only 340
5.6.4.4 IXP_RESET_D..ciiiiiiiiiiieiiie ittt 344
5.6.4.5 IXP_RESET L.ttt 347
5.6.4.6 CLOCK_CONTROLuitiiiiiiiieieiiiiee e 348
5.6.4.7 STRAP_OPTIONS ..ottt 350
5.6.4.8 WATCHDOG_HISTORYoiiiiiiiiiiiiiiiie et 351
5.6.5 TiMer (CAP CSR) ...coiiiiiiiiiiiiiie ettt e 352
5.6.5.1 TH _CTL (# = 1,2,3,4) ccueee ettt 352
5.6.5.2 T#_CLD, (# = 1,2,3,4) cceeeiiiieeiee ettt 353
5.6.5.3 T#_CSR, (#=1,2,3,4) sceeeiiiieiiiie ettt 354
5.6.5.4 TH CLR(# = 1,2,3,4) ceueiieiiiiie et 354
B5.6.5.5 TWDE ... ittt e 354
5.6.6 GPIO (CAP CSR) ..ottt ittt 355
5.6.6.1 GPIO_PLR ..ccoiiiiiiiiiiiiee et 356

Programmer’s Reference Manual iX

Intel® IXP2400/IXP2800 Network Processor u t6I
®

5.7

5.6.6.2 GPIO_PDPR ...ooiiiiiiiiiie ittt 357
5.6.6.3 GPIO_PDSR ...coiiiiiiiiiiei ittt 357
5.6.6.4 GPIO_PDCRccciiiiiiiiiiiiiitie ettt 358
5.6.6.5 GPIO_POPRoiiiiiiiiiiiiitietie ettt 358
5.6.6.6 GPIO_POSR, GPIO_POCR........ccceeiiiiiiiieiiiiiiie e 358
5.6.6.7 GPIO_REDR, GPIO_FEDRc.ccetiiiiiiiiiiiiiiiiee e 359
5.6.6.8 GPIO_EDSR ...ooiiiiiiiiiieiiiiieiee et 360
5.6.6.9 GPIO_LSHR, GPIO_LSLR.....coctiiiiiiiiiiiiie et 361
5.6.6.10GPIO_LDSR.....ciiiiiiiiiiiiiiiieiie ittt 362
5.6.6.11GPIO_INER......ootiiiiiiiiie ittt 362
5.6.6.12GPIO_INSRoeiiiiiiiiiiie ittt 362
5.6.6.13GPIO_INCR ...ooiiiiiiiiiiiei ittt 363
5.6.6.1AGPIO_INST ...ttt 363
5.6.7 UART (CAP CSR) .ottt ettt ettt 364
5.6.7.1 UART_RBR ..ottt 365
5.6.7.2 UART_THR .oitieiii e 365
5.6.7.3 UART_DLRL, UART_DLRH....ccttiiiiiiiiiiiee e 365
5.6.7.4 UART_IER.....cooiiiiii e 366
5.6.7.5 UART_IIR ..ottt 367
5.6.7.6 UART_FCR .. .ottt 369
5.6.7.7 UART_LCR ..ottt 371
5.6.7.8 UART_LSR . .ottt 373
5.6.7.9 UART_SPR ...ooiiiiiii s 375
5.6.8 PMU (Performance Monitor UNit) (CAP CSR)......cccccovviiiiiniiiieei 376
5.6.8.1 PMUCONTCFG—PMU Control Bus Configuration Register .. 378
5.6.8.2 PMUSTAT—PMU Counter Interrupt Status Registers............ 380
5.6.8.3 PMUMASK—PMU Counters Interrupt Mask Registers........... 382
5.6.8.4 PMUINTEN—PMU Interrupt Enable Register......................... 386
5.6.8.5 CHAPCMDN—CHAP Command N Register (N = 0...5) 387
5.6.8.6 CHAPEVN—CHAP Events N Register (N = 0...5)c.ceovveeeen. 391
5.6.8.7 CHAPSTATH (# = 0...5) s seeiiiiiiiee e 393
5.6.8.8 CHAPDATAN—CHAP Data N Register (N = 0...5)........c........ 394
5.6.9 SIOWPOIt (CAP CSR).....cutiiiiiiiiiiiee ettt 395
5.6.9.1 SP_CCR ..ottt 396
5.6.9.2 SP_WTCL ...ttt 398
5.6.9.3 SP_WTC2 ...ttt 399
5.6.9.4 SP_RTCL ...ttt 401
5.6.9.5 SP_RTC2 ...t 401
5.6.9.6 SP_FSR ..ot 403
5.6.9.7 SP_PCR ..ot 404
5.6.9.8 SP_ADC ...ttt 404
5.6.9.9 SP_FAC .. 405
5.6.9.10SP_FRM..cciiiiiiiiiiiiiii et 405
B5.6.9.1LSP_FIN..oiiiiiiiiiiiie it 406
B5.6.9.12SP_TXE .oiiiiiiiiiiie ittt 406
5.6.9.13SP_RXE ..ottt 407
Media and Switch Fabric Interface (MSF) - IXP2800...........ccceveeieeeiiiiiiiiiiieieen, 408
571 MSF_RX_CONTROLoottiiiiiiiiiieiiiit ettt 413
572 MSF_TX_CONTROL......ctttiiiiiiiiiieiitce ettt 418
5.7.3 MSF_INTERRUPT_STATUSoiiiiiiiiiiie e 421
574 MSF_INTERRUPT_ENABLEccoiiiiiiiiiiii e 424
5.7.5 CSIX_TYPE_MAPoiiiiiiiee ettt 425
576 FC_EGRESS_STATUS ..ottt 425

Programmer’s Reference Manual

5.8

Intel® IXP2400/IXP2800 Network Processor

5.7.7 FC_INGRESS_STATUS ...ttt 427
5.7.8 FC_STATUS _OVERRIDE........coooiiiiiiiiiiiee e 429
5,79 MSF_CLOCK_CONTROL ...tutiiiiiiiiiieiiiiiiee et 430
B.7.00 FCIFIFO oottt 432
B.7.01 FCEFRIFO oottt ettt s 433
5.7.12 RX_DESKEW_# (# = PIN NAME).....cetiiiiiiiiiieiiiiiie et 433
5.7.13 SPI4A_DYNFILT_THRESH......ccoiiiiiiiiiiiiie e 434
5.7.14 MSF_DLL_DATA_DELAY_CTL cctttiiiiiiiiie et 435
5.7.15 FC_DYNFILT_THRESH......oooiiiiiiii e 436
5.7.16 FC_DLL _DATA_DELAY_CTL ittt 437
5.7.107 HWM_CONTROLutiiiiiiiiiiiie ettt 438
5.7.18 RX_THREAD_FREELIST_# (# = 0,1,2) c..coetiiiiiiieiiiiieee i 439
5.7.19 RX_PORT_MAP ...ttt 441
5.7.20 RBUF_ELEMENT_DONEcociiiiiiiiiiiiiiie et 441
5.7.21 RX_CALENDAR_LENGTH ...ccciiiiiiiiiiiiiiie e 441
5.7.22 FCEFIFO_VALIDATE.....coittitt ettt 442
5.7.23 TX_SEQUENCE_# (# = 0,1,2) .eeeiiiiieiiiiiiee e 442
5.7.24 RX_THREAD_FREELIST_TIMEOUT_# (# =0,1,2) ccccceeeiiiiiieeiinnnnnn. 443
5.7.25 RX_PORT_CALENDAR_STATUS # (0 TO 255)uvvvviiiiiiiieniiiieennn 443
5.7.26 TX_CALENDAR_LENGTH.....cttiiiiiiiiiaiiiiiie e 444
5.7.27 TX_CALENDAR_# (#=10-255)....cutiiiiiiiiiieiiiiiie et 445
5.7.28 TX_PORT_STATUS # (#=0-255) it 445
5.7.29 TX_MULTIPLE_PORT_STATUS ## =0-15) .ccccooeeiiiiiieeeiiiiieeene 445
5.7.30 TBUF_ELEMENT_CONTROL_$ # ($=A, B, # = Element NO) 446
B5.7.31 TRAIN_DATA ettt 449
5.7.32 TRAIN_CALENDAR ..ottt 452
5.7.33 TRAIN_FLOW_CONTROL....cciiiiiiiiiieiiiiiiiee i 453
5.7.34 RX_PHASEMON_# (# = PiN NAME)...cccoiiuiiiiiiiiiiiie i 455
5.7.35 MSF_IO_BUF _CTL cutiiiiiiiiiiiie ettt 457
5.7.36 FC_IO_BUF _CTL.iiiiiiiiiiiiiiiie ettt 458
5.7.37 MSF Initial Setup Procedure for the IX2800 ReV Acccuvveeeviinnenn. 459
5.7.38 MSF Initial Setup Procedure for the IX2800 ReV Bcccvvevevinnnenn. 460
Media and Switch Fabric Interface(MSF) - IXP2400.........cccccovviiieieinniiieeeen 462
5.8.1 IXP2400 MSF AdAreSS Mapccuueeieiiiiiiiieiiiiiee e 462
5.8.2 MSF_RX_CONIOL..cciiiiiiiiiiiiiii et 464
5.8.3 MSF_TX_CONIOl ..cciiiiiiieiiiiiiie ettt 466
5.8.4 MSF_INErrUPt_SEAtUSovveiiieeiiiiiiiee e 470
5.8.5 MSF_Interrupt_ENabIeooiiiiiiiiiiii e 472
5.8.6 CSIX_TYPE_ MAP c.uuiiiriiiiiiie ettt e 473
5.8.7 FC_EQresS_STAtUScueiiiiiiiiiiiiiiiiiiiieeie e 473
5.8.8 FC_INQreSS_SEAtUS.......uueiiiiiieiiiiiiiiiiee et 474
5.8.9 HWNM_CONTROL.....cuiiiiiiiiiiiie ettt 475
5.8.10 SRB_OVEITIAE ...eeeiiiiiiiiiee ittt sttt ettt e e e seaneee s 478
5.8.11 Rx_Thread_Freelist_{0.3}cooiiiiiiiiiiiiiiee e 479
5.8.12 RBUF_EIEMENt_DONE....ccoiiiiiiiiiiiiiiiee e 480
5.8.13 RX_MPHY _POILLIMit....cooiiiiiiiiiiiiiiie e 480
5.8.14 FCEFIFO_Validatecccoiiiiiiiiiiiiiiei e 481
5.8.15 Rx_Thread_Freelist_Timeout_{0..3}cccoiriiiiiiiiiiie e 482
5.8.16 TX_ SeqUENCEe_{0..3}....ccuiiiiiieiieiiiiiee et 482
5.8.17 TX_MPHY _POI_LIMItooiiiiiiiiiiiiiiiiie e 483

Programmer’s Reference Manual Xi

Intel® IXP2400/IXP2800 Network Processor u t6I
®

59

5.10

Xii

5.8.18 TX _MPHY _STAtUS......ceeiiiiiiiiiiiiieiie et 484
5.8.19 TX_MPHY_Status EXtENSIONcccoiiiiiieiiiiiiieeiiiiee e 487
5.8.20 RX_UP_CoNtrol_{0..3}.....ueeiieiiiiiiieiee et 489
5.8.21 TX_UP_CoNtrol_{0..3}uiiieiiiiiiie e 492
5.8.22 RX_FIFO_Control_{0,1,2,3}......ccoiiiiiiiiiee e 493
5.8.23 MSF_RX_RCOMP_SEAtUS......cutiiiiiiieeeeiiiiiiiiiieeer et 495
5.8.24 MSF_TX_RCOMP_SEAtUSoutiiiiiiieiieiiiiiiiiiiieee et 495
5.8.25 MSF_RX_RCOMP_OVEITAeccviiiiiiiiieeiiiiiiiee e 496
5.8.26 MSF_TX_RCOMP_OVEITIAE......coiiiiiiiiiiaiiiiieee et 497
B5.8.27 FCIFIFO ...ttt 497
5.8.28 FCEFIFO ...ttt 498
5.8.29 TBUF_ELEMENT_CONTROL_$_# ($=A, B, # = Element NO) 498
O PP 502
5.9.1 PCI Configuration SPaCE.........cuveeeiiiiiiieniiiiiee et 502
5.9.1.1 PCI_VEN_DEV_IDciiiiiiiiiiiiiiiiiee et 503
5.9.1.2 PCI_CMD_STAT ettt ettt 503
5.9.1.3 PCI_REV_CLASS ..ottt 504
5.9.1.4 PCI_CACHE_LAT_HDR_BIST ..ottt 505
5.9.1.5 PCI_CSR_BAR ..ottt 505
5.9.1.6 PCI_SRAM_BAR.......otiiiiiiiii it 506
5.9.1.7 PCI_DRAM_BARotiiiiiiitiie ittt 507
5.9.1.8 PCI_SUBSYS...oiiiiiiiiiiiiiite ettt 507
5.9.1.9 PCLINT _LAT oottt 508
5.9.1.10PCI_RCOMP_OVERRIDEc.cetiiiiiiiiiiii e 508
5.9.1.11PCI_RCOMP_STATUS (IXP2400 Rev A and IXP2800)......... 509
5.9.1.12PCI_RCOMP_STATUS (IXP2400 ReV B).......cccccccuvvveerrirnnnnn 511
5.9.1.13PCI_IXP_PARAMoetiiiiitiiiie ittt 511
5.9.2 PClCONrOllEr CSRSviiiiieiiiiieie ettt e 513
5.9.2.1 PCI_OUT_INT_STATUScitiiiiieieiiiiite et 515
5.9.2.2 PCI_OUT_INT_MASK ...ttt 515
5.9.2.3 MAILBOX_# . .eeeiiiiiiiiiie ettt 516
5.9.2.4 XSCALE_DOORBELLcooottiiiiiiiieiiiiiiiece e 516
5.9.2.5 XSCALE_DOORBELL_SETUP.......ccovciiiiiiiiiiiieiiee e 517
5.9.2.6 PCI_DOORBELL.......ccciiiiiiiiiiiiiiie e 517
5.9.2.7 PCI_DOORBELL_SETUP.....cccctttiiiiiiiiiie e 518
5.9.2.8 CHAN_# BYTE_COUNT ...coiiiiiiiiiieiiiiiie e 518
5.9.2.9 CHAN_# PCI_ADDRccttitiiiiiiiiie et 519
5.9.2.10CHAN_#_DRAM_BAR ...ttt 519
5.9.2.11CHAN_#_DESC_PTR ...ttt 520
5.9.2.12CHAN_#_CONTROL.......ctviiiiiiiiiiiie st 520
5.9.2.13CHAN_# ME_PARAMoottiiiiiiiiei it 523
5.9.2.14ADMA_INF_MODE......ccciiiiiiiiiiiiiiee et 523
5.9.2.15PCI_SRAM_BAR_MASKccoiiiiiiiieiiiiiiee e 524
5.9.2.16PCI_DRAM_BAR_MASK ..ottt 525
5.9.2.17PCI_CONTROLttiiiiiiiiiiiee ittt 526
5.9.2.18PCI_ADDR_EXTittiiieiiiiieiee ittt 531
5.9.2.19XSCALE_ERR_STATUSooiiiiiiiiie it 531
5.9.2.20XSCALE_ERR_ENABLEcoiiiiiiiiiiiie e 534
5.9.2.21XSCALE_INT_STATUS ...ttt 536
5.9.2.22XSCALE_INT_ENABLEottiiiiiieite e 538
5.9.2.23ME_PUSH_STATUS ...t 539
5.9.2.24ME_PUSH_ENABLE........coiitiiiiiiiei et 539
Intel XScale” Core LOCAl CSRScoiiiiiiiiiie et 541

Programmer’s Reference Manual

intel.

Intel® IXP2400/IXP2800 Network Processor

5.10.1 Interrupt Controller (Intel XScale” COore).......couvveeeiinieeieeiieiieeniiieeenn 541
5.10.1.1{IRQ,FIQIRAW_STATUS ..ottt 545
5.10.1.2{IRQ,FIQISTATUS ..ottt 547
5.10.1.3{IRQ,FIQIENABLEcciiiiiiiiiiiiiie e 547
5.10.1.4{IRQ,FIQ}ENABLE_SETotiiiiiiiiiieiiieeniiie et 547
5.10.1.5{IRQ,FIQ}ENABLE_CLRccoiiiiiiiiiiiii e 548
5.10.1.6{IRQ,FIQISOFT _INT ..eetteiiiiiieeeiiiiiee ettt 548
5.10.1.7SCRATCH_RING_STATUS ..ottt 548
5.10.1.8{IRQ,FIQ}IERR_RAW_STATUS ..ottt 549
5.10.1.9{IRQ,FIQ}ERR_STATUSceitiiiiiiie ittt 550
5.10.1.10{IRQ,FIQ}ERR_ENABLE.........ccoctiiiiiiiiie it 551
5.10.1.11{IRQ,FIQ}ERR_ENABLE_SETccciitiiiiiiienieeenieeeniee e 551
5.10.1.12{IRQ,FIQ}IERR_ENABLE_CLR......c.cceiiiiieiiiiiiiieiiieee e 551
5.10.1.13{IRQ,FIQIRAW_ATTN_STATUS.....ciiitee et 552
5.10.1.14{IRQ,FIQIATTN_STATUS ..ottt 552
5.10.1.15{IRQ,FIQIATTN_ENABLEoiiiiiiiiiiieeeiee e 553
5.10.1.16{IRQ,FIQ}ATTN_ENABLE_SETccoiiiiiiiiiiiniiieneee e 553
5.10.1.17{IRQ,FIQ}ATTN_ENABLE_CLRcocotiiiiiiiiiieneec e, 554
5.10.1.18{IRQ,FIQ}THD_RAW_STATUS_$ # ($=A,Band#=0- 3) 554
5.10.1.19{IRQ,FIQ}THD_STATUS_$ # ($=A,Band#=0-3) 555
5.10.1.20{IRQ,FIQ}THD_ENABLE_$_# (3= A,Band #=0-3) 555

5.10.1.21{IRQ,FIQ}THD_ENABLE_SET_$ # ($=A, Band #=0 - 3) .556
5.10.1.22{IRQ,FIQ}THD_ENABLE_CLR_$ _# ($= A, Band # =0 - 3) .556

5.10.2 Hash Operation (Intel XScale” COre)......cccceeeiiiiiiiiiiiiieeeeeieiiiiieeee 556
5.10.2.1HASH_OP_48_# (# = 0,1) eeeiiriiiiiiee e 557
5.10.2.2HASH_OP_B4_# (# = 0,1) ceeeiiiiiiiiiee e 558
5.10.2.3HASH_OP_128 # (# =0,1,2,3)..cccueeiiiiieiiiiciiiieeieee e 558
5.10.2.4HASH_DONEootiiiiiiiiie et 559

5.10.3 Breakpoint (Intel XScale” COre)........uueuiiuiiiiiiniiiiee e 560
5.10.3.1BRK_RAW_STATUSiiiiiiiiieie it 562
5.10.3.2BRK_STATUS ...ooiiiiiitee e 563
5.10.3.3BRK_ENABLEccoiiitiitiiiiitiee et 563
5.10.3.4BRK_ENABLE_SETciiiiiiiiiieiiiiee et 563
5.10.3.5BRK_ENABLE_CLR......cciiiiiiiiiiiiiiieiie e 564

5.11 Intel XScale” CO-PrOCESSOISc.uviieiiiiiiiee ettt et 564
5.12 MSF differences between IXP2400 and IXP2800............cccceeeiniiiieeinninieee e 564
A UCA WAININGS. ..ottt ettt et e e e e e e st bt b be e et aeeeeea e e s nbanbbeaeeeeaaeaeeeaanaannnens 567
Al INEFOAUCTION. ...t et 567
A2 UCA Warning (IVel 4) 410L........oouuuiiiiiiiieeee et ee e 569
A3 UCA Warning (Ievel 1) 4700........ccuueiiiiiiiieiee ittt e ee e 569
A4 UCA Warning (IeVel 3) 470L......ccouiieeiiiiiie et 569
A5 UCA Warning (IVel 2) 4702........ccuuuieieiiiiieie ettt 570
A.6 UCA Warning (Ievel 1) 5000.........c.uueeiiiiiiieiee ittt e e seveeeee e 571
A7 UCA Warning (Ievel 3) 5002........cuuueiieiiiiieiee ittt eee e 571
A.8 UCA Warning (Ievel 1) 5003........ccuuuiiiiiiiiieee ittt et eee e 571
A.9 UCA Warning (Ievel 3) 5004cuuueeiiiiiiieie ettt ee e 572
A10 UCA Warning (I6Vel 1) 5007coiuureieeiiiiieeeeiieiiee ettt sieee e sbeeeee e 572
A1l UCA Warning (Ievel 4) 5008........cc.uuiiieiiiiiieeeiiiiiee ettt e ee e 573
A12 UCA Warning (Ievel 1) 5009.......cccuuuiiiiiiiiiiee ittt e ee e 574
A13 UCAWarNing (IeVel 1) BOLL......ccoiuiiiiieiiiiiiee ettt ee e 574
A14 UCAWarning (IeVel 3) BOL2......ccoiuiiiiieiiiiiiee ittt e ee e 575
A.15 UCA Warning (Ievel 2) 5100.......cccuuuiiieiiiiieeeeiiiieee et e et sieee e e eee e 575

Programmer’s Reference Manual Xiii

Intel® IXP2400/IXP2800 Network Processor u t6I
®

Figures

Xiv

A.16
A.17
A.18
A.19
A.20
A.21
A.22
A.23
A.24
A.25
A.26
A.27
A.28
A.29
A.30
A.31
A.32
A.33
A.34
A.35
A.36
A.37
A.38
A.39
A.40
A4l
A.42
A.43
A.44
A.45
A.46
A.47
A.48
A.49
A.50
A.51
A.52
A.53
A.54

2-1
2-2
2-3

2-5
2-6

UCA Warning (IeVel 2) 5L0Luvuiieiiiieiie ettt 576
UCA Warning (IeVel 2) 5102uuuiiiiiiiiiie et 576
UCA Warning (Ievel 2) 5103ouiiiiiiiiiiieiiiieee st 576
UCA Warning (IeVel 2) 5104oeiiiiiiiiiie ittt 577
UCA Warning (IeVel 1) 5114 ..ot 577
UCA Warning (IeVel 1) 5115 ...ttt 577
UCA Warning (IeVel 1) 5116c..uveieiiiiiiie ittt 578
UCA Warning (IeVel 2) 5117 ...ttt 578
UCA Warning (IeVel 2) 5118ueiieiiiiiiie it 578
UCA Warning (Ievel 3) 5121 ...t 579
UCA Warning (IeVel 4) 5122uiiiiiiiiiie et 579
UCA Warning (IeVel 4) 5124oviiiieiie et 580
UCA Warning (IeVel 4) 5125 ...t 580
UCA Warning (IeVel 4) 5126uveiiiiiiiieiiiiie sttt 580
UCA Warning (IeVel 4) 5127 ...ttt 581
UCA Warning (IeVel 4) 5128ouiiiiiiiiiie ittt 581
UCA Warning (Ievel 2) 5129uuiiiiiiiiiie e 582
UCA Warning (IeVel 2) 5130c.uueiieiiiiiiee ittt 582
UCA Warning (IeVel 1) 5131 ...ttt 582
UCA Warning (IeVel 2) 5132 ...ttt 583
UCA Warning (IeVel 3) 5133 ...ttt 583
UCA Warning (IeVel 4) 5134uuiiiiiieiie e 583
UCA Warning (Ievel 1) 5135 ...t 584
UCA Warning (IeVel 1) 5136uueiiiiiiiiiieiiiie et 584
UCA Warning (IeVel 1) 5137 ..ottt 584
UCA Warning (IeVel 1) 5138uuiiiiiiiiiiie ittt 585
UCA Warning (Ievel 1) 5139o.uuiiiiiiiiiiie e 585
UCA Warning (IeVel 1) 5140uuiiiiiiiiiie ettt 585
UCA Warning (IeVel 1) 5141 ...t 586
UCA Warning (IeVel 1) 5142uuiiiiiiiiiie it 586
UCA Warning (Ievel 1) 5143 ...t 587
UCA Warinng (IeVel 3) 5144 ...t 587
UCA Warning (Ievel 1) 5145 ...t 588
UCA Warning (IeVel 1) 5146ueeviiiiiiiiie ittt 588
UCA Warning (IeVel 1) BLAT ...ttt 589
UCA Warning (IeVel 2) 5148uiiiiiiieiie it 589
UCA Warning (IeVel 2) 5149uiiiiiiiiie it 590
UCA Warning (Ievel 1) 5150uuiiiiiiiiiiieiiiee e 590
UCA Warning (IeVel 4) 5151uuiiiiiiiiiiee et 591
ASSEMDBIY PrOCESS. ...iiiiie ettt e 26
Processor Type Constant ValUES.........ccoo i 36
Bank AllOCAtioN DIAGIamuueeiieiiiiiee ettt e e e e srbeeeeeaes 69
Example of @ IVF File ... 72
Example of a .Ivr File Without a Real uwordcccoiiiiiiiiiiee e, 72
Lifetime Register SpreadsSheet.............uii i 73

Programmer’s Reference Manual

Tables

2-1

2-3
2-4
2-5
2-6

2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
3-1
3-2

3-4
3-5
3-6
3-7

3-9

3-10
3-11
3-12
3-13
3-14
3-15

Intel® IXP2400/IXP2800 Network Processor

Load IMMEAIALE.eiiieiiiiie e 170
Read Queue Descriptor COmMMANASccooviiiirieiiiiiie e 205
Write Queue Descriptor COMMANScooiiiiiiieiiiiiiee e 208
Enqueue One Buffer at a Time using the Enqueue Command......................... 211
Enqueue a String of Buffers to a QUEUEcoeeiiiiiiiiiiiii e 212
DeqUEUE BUFFEI ..ccoiiiiee e 214
Example of the Three Dequeue MOAES.........cceiveiriiiieeniiiiieeeee e 215
Four GB (32 hit) Intel XScale“ Address Space Divided among Various

LIS L 1] £ PPN 221
Four GB (32 bit) PCl AddIeSS SPACEcceeeiiiiiieiiiiiiee it 234
Conceptual Diagram of COUNLEr AITAYeeeieiiiiiiiieiiiiiee et 377
Count TYPES EXAMPIEeeiiiiiiiiiei e 392
Breakpoint Implementation. ... 561
ACToNYM DEefiNItIONScoiiiiiiiii e 23
Summary of Preprocessor DIFECHVES........cooiiiiiiiiiiiiee e 27
Binary & UNAry OPEIAOrSccciieiiiiiiiiiitieieie e ettt e e e e e e e e e e e e e 29
FUNCHIONS ...ttt e s s e e e 29
Examples of 10g2() FUNCLION.........oii it 32
Processor TYPE SYMDOIScooiiiiiii et 35
REVISION SYMDOIS 35
Predefined Import Variables............oooiiiii e 38
Registers Used By Contexts in Context-Relative Addressing Mode.................... 45
MEV2 LOGICAl QUEUESuueiiiiiiiieeei ettt ettt e e e e et eeee e e e e as 58
ASSEMDIET DIFECHIVES. ...ttt e e 77
Optimization List for #pragma optimize DireCtiveooccuuviieiiiiiiiiiiiiiee, 80
CoNItioN IFECHIVES ... e e 84
Error Reporting Severity LEVEIS ... 86
Register Mapping - Context Relative to ADSOIULE.............eeeviiiiiiiiiiiiiiieeeeeeeeee, 88
POS AN CONSE VAIUES ...t ee e e e 95
LINKET DIFECLIVES ...ttt et 98
Summary of Microengine INStrUCIONSuviiiiiiiiiiii e 101
Source/Destination Choices for Addressing Modes..........cccuveeeeiiiiiiiiinniiiiinee 103
Legal Combinations of Source Operandsooccuuiiiiiiiiiieeeniiiiieeee e 104
Reference COUNE SIZESoeviiiiiiiiie e 105
I/O Command ToKen DEeSCIPLIONScuiiiiiiiiiiiiiiiiiieeee e e 105
Instructions and Optional Tokens that use Signalsccccceeiiiiiiiiiiiiieeeeennn, 108
Signal Restrictions for each I/O Instruction [command]ccccceeeiiiiiiiiiiinenen. 109
Branch Defer SUMMATYoooi e 112
Branch on Condition Code INSIIUCHIONSccuvviveiiiriieee e 129
Initial RegIStEr CONENTSccciiiiiiiiiee e a e 136
Initial ReQIStEr CONENTScceiiiiiiiii et a e s 137
CAM_LOOKUP RESUILvtiiiiiieiiiie ettt ettt 141
CAM_READ_STATE RESUILooiiiiiiiiii ittt 143
Enumerated CAP CSR REQISIEIS.......uuuiiiiiiiiieaiie it 146
CAP Indirect Format (Read and Write Commands)cccuvveeerieeeenninniiiieneen. 147

Programmer’s Reference Manual XV

Intel® IXP2400/IXP2800 Network Processor u t6I
®

XVi

3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3-44
3-45
3-46
3-47
3-48

3-49

3-50
3-51
3-52
3-53
3-54
3-55
3-56
3-57
3-58
3-59
3-60
3-61
3-62
3-63

CAP Field DefiNItioNScoiiueiiiiiiiiee e 147
CAP Bit Map Address Field Encoding (Src_opl + SIC_OP2).....ccccvveeernireeeennnne. 150
CAP Calculated Address Field Encoding (Src_opl + SrC_0p2).....cccceecvvvveernnne 151
CAP Indirect Format (Read and Write Commands).........cccceevvrveeeeeniiieeeennnne. 151
CAP Field DefiNItiONSccciieiiiieiiiiee et 151
CAP (Reflect) INdireCt FOrMALcooviiiiiiiiiiiieee e 154
CAP (Reflect) Field DefinitioNnS...........ooiiiiiiiiiee e 154
DRAM INAIr€Ct FOMMALeeiiiiiiiiiiie ettt 161
DRAM Field DEfiNItIONScoiiiiiiiieiiiiiiie e 161
DRAM RBUF_RD & TBUF_WR Indirect FOrmat..........ccccveviniiieieiiiiiieee e, 163
DRAM RBUF_RD & TBUF_WR Field Definitionscccccvvviieiieeieenes e, 163
Number of S-Transfer Registers Used by Hash Instructionccccccoovnneeen. 167
Hash INAIreCt FOIMAL.........cooiiiiiiiiiiiice e 168
Hash Field Definitionsoooiiiiiiiiiii e 168
Data Format in Transfer REgISIErScooi i 168
MSF INIr€Ct FOIMALeeeiiiiiiiiiiee e 180
MSF Field DefiNItiONSciiiiiiiiiiie i 180
RBUF / TBUF Offset Address 128 64-Byte Elements...........ccccceevniiiiieininnenn, 181
RBUF / TBUF Offset Address 64 128-Byte Elementscccccevvvieeniiiiiieeennne 181
RBUF / TBUF Offset Address 32 256-Byte Elementscccccevviiveeiiiiiienennne 181
PCl AUArESS SPACE ... ttieiiei ittt e e seeeaeees 185
PClINAIFECE FOIMAL ... eiiiiiii et 186
PCl Field DefinitionNS.........vuiiiiiiiiiie et 186
Scratch (Read and Write) Indirect FOrmatccoooovieeiniiiieinnne e 189
Scratch (Read and Write) Indirect Field Definitionscccccceeevvviciiiiiinnneenenn, 189
Scratch (Atomic Operations) Indirect Format..........ccccccvvvveeeee v, 192
Scratch (Atomic Operations) Indirect Field Definitions...........ccccocececvvvvieenneennn. 192
SCRATCH Ring Number Encoding (Src_0opl + Sr_OP2)ueveevvriveeeeeriiieeeennene 193
SCRATCH Ring INdireCt FOrMALcocuviiiiiiiiiiee e 194
SCRATCH Ring Indirect Field Definitions ..ot 194
SRAM (Read and Write) Indirect FOrmatcoeevviiiieiniiiie e 195
SRAM (Read and Write) Indirect Field Definitionscccoceviviiieniiiiee e 195
SRAM Indirect Format (IXP28xx Rev A: all Atomics; IXP28xx Rev B: Pull

FN 0] 111 o1 PP UPP PP 199
SRAM Indirect Field Definitions (IXP28xx Rev A: all Atomics; IXP28xx Rev B:
PUITALOIMICS) ettt e e e e snneeeee s 199
SRAM Indirect Format (IXP28xx Rev B: no_pull AtOmMICS).........ccocveevivenennnnnn 200
SRAM Indirect Field Definitions (IXP28xx Rev B: no_pull Atomics) 200
SRAM CSR INAIreCt FOIMAL........uviiieiiiiiie et 201
SRAM CSR Field DefinitionS........c.coieiiiiiiieeiiiieee e 202
SRAM (Read Queue Descriptor) Indirect Formatcoocovveeiiiiiieiniiiineee 206
SRAM (Read Queue Descriptor) Field Definitionsccoccevvviieiiinniiineene, 206
SRAM (Enqueue) INdireCt FOrMAL...........eviiiiiiiiiei i 210
SRAM (Enqueue) Field DefinitioNSccoouiiiiieniiiiieiee e 210
SRAM (dequeue) INdireCt FOrMALeviiiiiiiiiie e 214
SRAM (dequeue) Field DefinitioNS..........coooiiiiiiiiie e 214
SRAM RiNg DeSCriptor FOMMAL...........oouiiiiiiiiiee e 216
SRAM RiNG Siz€ ENCOAING ..eeviiiiiiiiieiiiiiieeeie et 216
SRAM RIiNG INAir€Ct FOIMALuviieeiiiiiiieeiiie e 217
SRAM Ring Indirect Field Definitions ..o 217

Programmer’s Reference Manual

3-64
3-65
4-1
4-2

4-4
4-5

4-7
4-8

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
5-1

5-2

5-4
5-5

5-7

5-8

5-9

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22

Intel® IXP2400/IXP2800 Network Processor

SRAM Journal INdireCt FOIMALoocuveiiiiiiiiiie e 220
SRAM Journal Indirect Field Definitions..........cccooceeviiiiiiiiieie e 220
Flash ROM - DRAM MapPPiNg.....ccueteeiiiiiieeiaiiiee ettt e e e 222
SRAM Address Map for the Intel XScale” COorecccocvveeeiiiiiiiiiiiiee e, 223
ME Transfer register and Local CSR Address Map for the Intel XScale" Core.224
ME Transfer Register AAreSSEScouuiiiiiiiiiieieeiiiee e 225
Peripherals Address Map for the Intel XScale” Core.......ccccccveeeeeiiiiicciininnnnnn. 225
CAP CSR Address Map for the Intel XScale” Core..........occcvvvvviiieeeeeevesicinnne 225
Slow Port Address Map for the Intel XScale” Corecocccvvveevveeeeeeiiiiciiiieen 226
MSF Address Map for the Intel XScale” COorecccovveviiiiiiieiiiiiie e 226
RBUF/ TBUF Offset Address 128 64-Byte Elements.........ccccoceeeeiiiiieeenennnen, 227
RBUF/ TBUF Offset Address 64 128-Byte Elementsccccoococvvveiviiieeenennnnn. 227
RBUF/ TBUF Offset Address 32 256-Byte Elementscccoocccvveeiiiieeenennnen. 227
SCratCh AdAreSS MaPceiiiiiiiiiie it e e seaeeeee s 228
SRAM Queue Array Address for the Intel XScale” Core.......cccccevvveeeeviiiivvnnnnnn. 229
D] A I O] = PR 229
INtel XSCale” COre CSRS.....uiiiiiiiiiiie ettt 230
Intel XScale" Core Hash Operand and Results Registers.........ccccccovvvieeerennnee. 230
PCI /O SPACE ..eeeeiiiiieiiee et 231
PCI Configuration SPACE.......cccoiiuuiiiiiiiiiiie ettt 231
PCI Configuration SPACE.......cccoiiuuiiiiiiiiiiee ettt 232
IXP2400/IXP2800 PCI Configuration SPACEcccuveeeeiiiiieieeiiiiiee e 232
IXP2400/IXP2800 PCI Controller CSR SPACEccuvvveeiiiiiieeeeiieiee e 232
IXP2400/IXP2800 PCI Configuration SPACEcccuveeeeriiiierieiiiiieee e 233
PCIl Address Offset vS SRAM CONtroller..........coeeiiiiiieeiiiiie e 235
CSR Memory SPace fOr PClcoiuiiiiiiiiiie et 236
CAP CSR Memory Space Breakdown for PCl.........ccoocuiiiiiiiiiie e, 237
IME 1/O ACCESS...ciiiiitieiee ettt ettt e et e e e et e e e e ennae s 238
CSR SUMIMAIY .ttt ettt ettt e e s et e e e e e e s e e e e e s 241
Register Notation CONVENLIONS.........ccoiiiiiiiiiiiiiiiee e 242
Microengine Local CSR SUMMANYueviiiiiiiiieeiiiiee et 243
Microengine Local CSR LateNCIESueveeiiiiiiieeiiiiiee e 245
NN_PUT RiNG BENAVIOKuviiiiiiiiiiie ettt 266
NN_PUT RING LAENCY ...etiiiiee ittt 266
RDR DRAM REQISEr SUMMAIYoceiiiiiiiieeiiiieie ettt e e e et ee e e sniee e e e 268
Address Bank Remapping (Optimize RDRAMS)ccouiiiiieiiiiiiiieeniieees e 270
Address Bank Remapping (Optimize BankKs)cccuueveiiiiiieeiiiieiie i 271
RDRAM Constants (Hexadecimal) for 3-Channel Mode Part 1c........... 283
RDRAM Constants (Hexadecimal) for 3-Channel Mode Part 2 284
RDRAM Constants (Hexadecimal) for 3-Channel Mode, Part 3 284
DDR SDRAM REQISEr MAP ...ciiiieieiiiiiiie ettt 285
RR_SYND values and error bit position Mappingccccoecveeeeeviieeee i, 290
DRAM RCOMP & I/O Configuration Register Mapcccceeevriiiieeinnieeenenene 294
SRAM REQJISIEr SUMIMAIY ...ciuiiiiiieiiiiee ettt e e s nnnnaeee s 300
QUEUEING MOUESceiiiiiiiie ettt e e s eee e 304
Strength Control SEINGSoo.vvveiiie e 315
SRAM Register Summary (where # =0,1,2,3)c.ccccoiniiiiieiiiiiie e 320
Slew Table Format: IXP2400cccuueiiiiiiiiiieiiiie e 321
Slew Table Format: IXP2800ccuuiiiiiiiiiieeaiiiie e 321
Slew Rate Table Recommended Initial Values (IXP2800)...........cccuvveeeriinennnn. 321

Programmer’s Reference Manual Xvii

Intel® IXP2400/IXP2800 Network Processor u t6I
®

xviii

5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39
5-40
5-41

5-42

5-43

5-44
5-45
5-46

5-47
5-48
5-49
5-50
5-51
5-52
5-53
5-54
5-55
5-56
5-57
5-58
5-59
5-60
5-61
5-62
5-63
5-64
5-65
5-66
5-67
5-68

Slew Rate Table Recommended Initial Values (IXP2400)..........ccccceevniverennnnne 322
Scratchpad Memory Register SUMMANYcccceeviiiiiieeiniiiee e 327
Head/Tail Use and Full Threshold by RiNg Sizecccccciiiiiiiiiiieieen 329
Hash Multiplier RegiSter SUMMAIY.........cooiuiiiiiiiiiiiieniiieee e 330
Inter-Process Communication Register SUMMArYcccccoevvvveeeeiiiieeeenniieeen 333
Global ChassisS REJISIEIScoiiiiiiiee e 338
TIMeEr REJISIEr MAP......eeiiiiiiiiiie et e et e e ee e e 352
GPIO REGISIEr IMAP ..tieieeiitieie ettt e 355
UART REGISIEN IMAP ..eeeiiiiiiit ettt 364
INEEITUPL CONAILIONS ...eiiiiiiiie et eee s 367
Interrupt Identification Register DECOe...........coovuiiiiiiiiiiiiiiie e 368
PMU REQIStEr SUMMAIY ..ceeiiiiiiiiie ittt ettt e et e e sereee e e 376
PMU Control BUS dat@ Mapccooiuiiiiiiiiiiiee e 378
CHAP Command N Register Bit Definitionc.coccceeeiiiiiiiniiee e 388
CHAP Events N Register Bit Definitionccccooiviiiiiin e 391
CHAP Status N Register Bit Definitionccccceriiiiieiiniiieee e 393
CHAP Data N Register Bit Definitionccocoeeiiiiiiiiiie e 395
SIOWPOIt REQIStEr MAPveeeiiiiiiiie e 395
Corresponding Clock Division Values with Respect to the Register Values

(FOF IXP2XXX TV A ..ttt ettt ettt ettt a e e et e e e enn e e e e 396
Corresponding Clock Division Values with Respect to the Register Values

(fOr IXP2400 rEV B) ..eeeieiiiiit ettt 397
Corresponding Clock Division Values with Respect to the Register Values

(fOr IXP2B00 IV B) ...eeiieiieeii ettt e e e e e e e e aees 397
MSF ReEQIStEr SUMIMAIY ..ottt ettt a e e e e e e sneeeeees 408
Number of Elements per RBUF or TBUF Partition.............cccccveeiiiiiiiiiiiiienen, 417
New Port Status to be saved based on currently saved value and new value
FECEIVEA ON TSTAT .ottt 421
List of RX_DESKEW_# ReQISIEISceiiiiiiiiieiiee et 433
RBUF High Water Marks............oeeiiiaiiiiiiiieie e 439
RX_Thread _Fre€liSt USE ... 440
CSIX TBUF_ELEMENT_CONTROL_A # ...ooiiiiiiiieeeee e 447
CSIX TBUF_ELEMENT_CONTROL_B_# ...ooeiiiiiiiiiiieiee e 448
SPI-4 TBUF_ELEMENT_CONTROL_A_#...ooiiiiiiiiiei et 448
SPI-4 TBUF_ELEMENT_CONTROL_B_#....cciiiiiiiiiiiiiiie et 449
List of RX_PHASEMON_# ReQISIEISceeiiiiiiiieiieee et 455
IXP2400 MSF AdAreSS MaP ... ueeeeeeiiieaeaiaiaiiiitieie ettt e e e e e eeeeeeeees 462
IXP2400 MSF Allowable Major Bus MOAESccceiiiiiiiiiiiiiiiiieee e 469
IXP2400 RX Mode Programmingoooooieurieiieeieeanaeeiiiiieeeeeeee e e e sisieeeeeas 491
UTOPIA Transmit Control Word FOrmatcooccuvvveeiiiiieieiniieee e 499
POS-PHY Transmit Control Word FOrmatcccceevivvieiieiiiiiiee e 500
CSIX Transmit Control Word FOrmMALtccoovveieeiiiiiiieeiiee e 501
PCI Configuration RegiSter Mapccooeiiiiiiiiiiiiiiieie e 502
PCI MEM Space CSR RegiSter Map........ccccuuuiiiiiiiieaaieeiieieeeee e 513
(DTS ol g o] (o] g o 1= | U UPUPPT PR 520
Operation of Unlinked DeSCHPLONuviiiiiiiaiieie it 521
How Window Sizes are Determined (PCI_SRAM_BAR)cccocceeeiiiiiiiniiinnnen. 525
How Window Sizes are Determined (PCI_DRAM_BAR)cccccceeiiiiiiiiiiieenenn. 526
Intel XScale" Core Gasket Configuration Register Map..........ccccceeeeiiiiiiiiennnen. 541
Hash Operation/Result RegiSter Mapccccuuviiiiiiiieiiiiiiieeeeeee e 556

Programmer’s Reference Manual

In

u t6I Intel® IXP2400/IXP2800 Network Processor
®

5-69 Break Point Register Map for the Intel XScale" Core........cccccovvvvvviiniieeenennnnn, 561
A-1 UCA WAININGS. ...eeeieiiiiiiiee ettt e ettt e ettt e e e s sttt e e e s sbbe et e e s sabbeeeeeasnbeeeeesnnes 567

Programmer’s Reference Manual XiX

intel.

Intel® IXP2400/IXP2800 Network Processor
Introduction

Introduction 1

1.1

1.2

Note:

About this Document

Thismanual serves as areference for microcode programming the | ntel® 1XP2400 and Intel®
I XP2800 Network Processors. The intended audience for this book is Devel opers and Systems
Programmers.

The book is organized as follows:
Section 2, “Assembler” describes the assembler.

Section 3, “MEV2 Instruction Set”, describes the microinstruction set and provides example
microcode.

Section 4, “Address Maps’, provides the address maps for the MEs, PCI and the Intel X Scale®
core.

Section 5, “Control and Status Registers (CSRs)”, describes the internal registers and provides
examples of their use.

Appendix A, “UCA Warnings’, lists the UCA Warnings and error messages.

For adetailed technical description of the IXP2800 Network Processor, refer to the 1 XP2800
Network Processor Hardware Reference Manual. Similarly, refer to the 1 XP2400 Network
Processor Hardware Reference Manual for a detailed technical description of the 1 XP2400
Network Processor.

Related Documentation

Further information is available in the following documents:

I XP2800 Network Processor Datasheet - Contai ns summary information on the 1XP2800 including
afunctional description, signal descriptions, electrical specifications, and mechanical
specifications.

I XP2400 Network Processor Datasheet - Contains summary information on the 1XP2400 including
afunctional description, signal descriptions, electrical specifications, and mechanical
specifications.

I XP2400/1 XP2800 Networ k Processor Development Tools User's Guide - Describes the
Workbench and the devel opment tools you can access through the use of the Workbench.

IXP2800 Network Processor Hardware Reference Manual - Contains detailed hardware technical
information of the IXP2800 Network Processor for designers.

I1XP2400 Network Processor Hardware Reference Manual - Contains detailed hardware technical
information of the 1XP2400 Network Processor for designers.

Programmer’s Reference Manual 21

intel.

Intel® IXP2400/IXP2800 Network Processor
Assembler

Assembler 2

2.1

Table 2-1.

2.2

This chapter describes the microcode assembler.

Acronyms

Table 2-1 lists common acronyms used in this chapter.

Acronym Definitions

Acronym Description

CAP CSR Access Proxy: IXP2800/IXP2400 functional unit containing majority of CSRs
GPR General Purpose Register

MSF Media Switch Fabric

UCA Microcode Assembler

UCLD Microcode linker that links together the .list files from multiple microengines
microword Microcode instruction word

MEv1 Microengine Version 1 (e.g. IXP1200)

MEv2 Microengine Version 2 (e.g. IXP2800 and IXP2400)
Definitions

For the purposes of this document, the word scope of a virtual register refersto that portion of the
flattened input source in which it is possible to refer to that virtual register. The live-range (or
lifetime) of avirtual register refersto that portion of the code where that register contains a value
that will be used later. Generally, the live-range extends from when the register is set to where that
valueislast used.

Note that the scope and live-range may not coincide. In particular, the live-range may extend
outside of the scope due to, for example, a subroutine call. Even if the subroutine is outside of the
scope of the register, the register may be live within the subroutine. Similarly, the live-range may
be smaller than the scope.

Transfer registers comein two variants. Oneisaread or in transfer register. These are registersthat
may be used as the source of an ALU operation. The name comes from the fact that they typically
are used for “read” /O operations. The other isawrite or out transfer register. These may be used
as adestination of an ALU operation. They are typically used for “write” |/O operations. A virtual
register may be defined as aread transfer register, as awrite transfer register, or asaR/W (or both)
register. In thefirst two cases, the virtual register is allocated from either the read or write banks of
transfer registers. In thisthird case, the virtual register is alocated in both the read and write banks
at the same address. These are needed for 1/O operations that do both reads and writes at the same
time. Historically, al transfer registers fell into this category.

Programmer’s Reference Manual 23

Assembler

In

Intel® IXP2400/1XP2800 Network Processor u tel
®

2.3

2.3.1

2.3.2

2.3.3

24

Source File Elements

A source file (.uc) must be created before the assembly process can begin. The .uc file contains
three types of elements:

¢ Ingructions: Consists of an opcode and arguments and generate a microword in the .list file.

* Directives: Passinformation either to the preprocessor, assembler, or to downstream
components (e.g., the linker) and generally do not generate microwords.

* Comments. Ignored in the assembly process.
The elementsin the source are case insensitive.

A microword is the result of assembling one instruction.

Instructions

Instruction lines in the source code generate microwords in the output. They can be preceded by
zero or more labels and can be followed by an optional set of parameters followed by optional
modifiers. Instruction lines can span multiple physical lines of input.

A label isasymbol representing an instruction address that is resolved by the assembler (e.g.,
start#:). A label is composed of astring of alphanumeric characters (including “_") which endsin

the pound sign (#) followed by a colon (:). A reference to alabel (e.g., in a branch instruction)
would omit the colon character because it is referencing a label defined el sewhere.

By convention, labels start in column 1, though thisis not arequirement for the assembler. You can
use none or as many labels as you want for each instruction. The only restriction is that each label
must have a unique name.

All labels for agiven instruction must be defined before the actual instruction specification.

Directives

Directives pass information to the assembler or linker, but they generally do not generate
microwords in the output. Directives start with the directive name optionally followed by
parameters. Directives cannot span multiple lines.

Comments

There are two forms of comment. One comment form starts with asemicolon (;) character and runs
to the end of the line. Thus, each new comment line must start with a semicolon. The semicolon
may start anywhere on any line. Comments on aline that also contains all or part of an instruction
are associated with that instruction. Lines containing comments alone are associated with the next
instruction following it. Comments beginning with a semicolon appear in the output file.

C-style comments (e.g., //comment or /* comment*/) are also supported, but these comments are

removed and do not appear in any output file. Comments attached to token expansion definitions
(e.g., #define) and comments associated with macro parameters do not appear in the output.

Programmer’s Reference Manual

2.5

Intel® IXP2400/IXP2800 Network Processor
Assembler

Block Structure

The source code islogically broken into a hierarchy of blocks. That is, blocks may contain sub-
blocks, but ablock cannot be partially contained in a higher-level block.

Blocks are explicitly delimited by “ . begin” and “ . end” directives,

.begin
.end

Or in the older supported directives,

Jocal
.endlocal

Or by directives that define a subroutine.

.subroutine
.endsub

Assembly Process Steps

Asshown in Figure 2-1, invoking the assembler results in a two-step process composed of
preprocessing and assembly steps. The preprocessor step takes a .uc file and creates a .ucp file for
the assembler. The assembler takes a .ucp file and creates an intermediate file with the file name
extension of .uci. The .uci fileis used by the assembler to create the .list file and provides error
information that may be used in resolving semantic problems (such as register conflicts) in the
input file.
The assembler performs the following functions in converting the .uc fileto a .list file:

* Checksinstruction restrictions.

* Resolves symbolic register names to physical locations.

¢ Optimizes the code, by inserting defer[] optional tokens.

* Resolves|abel addresses.

* Translates symbolic opcodes into bit patterns.

The preprocessor is invoked from within the assembler. Command line options are available when
invoking UCA .exe (or UCA.dIl viathe workbench).

uca [options] microcode file microcode file...

For detailed information on Assembler Command Line Options, refer to the I XP2400/1XP2800
Network Processor Devel opment Tools User’s Guide.

Programmer’s Reference Manual 25

Assembler

Intel® IXP2400/1XP2800 Network Processor u tel
®

2.6

26

Figure 2-1. Assembly Process

/ .uc file /
The assembler

(ucs.exe/dll) Y

1
Assembler —'—7/ .uci file /

optimizer
allocator

VAT

B0415-01

Assembler Preprocessor

The preprocessor is invoked automatically by the assembler to transform a program before actual
assembly. The preprocessor provides six separate facilities that you can use as you seefit:

Inclusion of files. These are files of declarations that can be substituted into your program.

Macro expansion. You can define macros, which are abbreviations for arbitrary fragments of
assembly code, and then the preprocessor will replace instances of the macros with their
definitions throughout the program.

Conditional compilation. Using special preprocessing directives, you can include or exclude
parts of the program according to various conditions.

Line control. If you use a program to combine or rearrange source files into an intermediate
file which is then assembled, you can use line control to inform the assembler of where each
source line originally came from.

Structured Assembly. You can organize the control flow of the ME instructions into structured
blocks as opposed to a sea of goto statements.

Programmer’s Reference Manual

In Assembler

u t6I Intel® IXP2400/IXP2800 Network Processor
®

* Token Replacement. You can use causes instances of an identifier to be replaced with a token
string.

2.6.1 Preprocessor Reserved Labels

The preprocessor generates |abel s during macro expansion and during conditional assembly. Avoid
using labels with these prefixes to avoid confusion with those generated by the preprocessor and to
avoid the possibility of multiple label definitions. In the following table, nnn represents a three-
digit decimal number.

Mnnn_ Prefix used for macro references not preceded by alabel.

Innn__ Prefix used for labels for structured assembly constructs.

2.6.2 Preprocessor Operation

The preprocessor is a simple macro processor that processes the source file before the it is
assembled. It isimportant to have a basic understanding of how the preprocessor operates to
understand how directives interact with one another. This section provides a brief overview.

During the initial reading of an input file, there are three occasions when thefile is read but not
processed:

* Within a#if...#endif clause, if thetext is being skipped.
* Within amacro definition.

¢ Within the body of an assembly loop (e.g., #repeat).

In each of these cases, no processing of directives takes place, with the exception of the directive
that ends that context. Constructs of a similar type may nest, however, so that if within amacro
definition there is another macro definition, the first macro definition will not end until the second
(i.e., the matching) .endm is reached. Within a particular context, other directives are ignored. For
example, if amacro definition had a#if without a matching #endif, an error would not be reported
until the macro was referenced (expanded). So these constructs can be nested within each other, but
they cannot be only partially contained within each other. It would be an error, for example, to put
an unmatched #f within one macro and the “matching” #endif in another.

Linesthat are being processed have expandable tokens expanded. Then macro references are
expanded. This means that an expandable token used as an argument in a macro referenceis
expanded at the time of the reference, not when it is used within the body of the macro.

Table 2-2. Summary of Preprocessor Directives (Sheet 1 of 2)

Directive é;g:nmde:ég Description
#include No Start reading lines from another file.
#define No Define an expandable token.
#undef No Undefine an expandable token.
#ifdef, #ifndef No Conditionally skip following lines.

Programmer’s Reference Manual 27

Intel® IXP2400/1XP2800 Network Processor

Assembler

Table 2-2. Summary of Preprocessor Directives (Sheet 2 of 2)

2.6.3

28

Directive é;g:nmdeenég Description
#f, #elif Yes, including Conditionally skip following lines based on a
defined(name)” | constant expression.
#else, #endif N/A Conditionally skip following lines.
#macro No Start defining a macro.
#endm N/A Finish defining a macro.
#repeat, #while Yes eRf&eezggglri(.)wing lines based on a constant
#or No eRf&eezggglri(.)wing lines based on a constant
#endloop N/A End repeated lines.
if, .elif Yes Generate branch instructions.
:gﬁ?_ r:JSr:glr;ide d Yes Generate branch instructions
.else, .endif N/A Generate branch instructions.
.while Yes Generate branch instructions.
.while_unsigned Yes Generate branch instructions.
.endw N/A Generate branch instructions.
.repeat N/A Generate branch instructions.
.until Yes Generate branch instructions.
.until_unsigned Yes Generate branch instructions.
.break, .continue N/A Generate branch instructions.

Constant Expressions (const-expr)

Constant expressions are expressions that evaluate to a constant. Generally, after the assembler
performs token substitution, the expression consists only of humeric constants and operators. The
exception to thisis anumber of preprocessor functions that take identifiers as arguments and that
Within an instruction, wherever a constant is valid, you can use a constant expression that is
surrounded by parenthesis. The parentheses are needed to differentiate expressions from tokens
such as"B-A" which should not be evaluated. For some directives, the parenthesis may be omitted,
but it is generally agood idea to use them.return identifiers or numeric constants as values.
Wherever theterm const_expr appearsin this manual, it can be replaced with (const_expr), where
const_expr is one of the following:

¢ (const)
* (const-expr bin-op const-expr)
¢ (unary-op const-expr)

* (const_expr ? const_expr : const_expr)

function (token, token, ...)

Programmer’s Reference Manual

u Intel® IXP2400/IXP2800 Network Processor
In o Assembler

2.6.3.1 Preprocessor Binary & Unary Operators

The following binary and unary operators are supported within constant expressions. Operator
precedence is the same as defined for the C programming language.

Table 2-3. Binary & Unary Operators

Type Operator Associativity Comment
unary-ops I ~+ - (unary) Right to left
*| % Left to right
+ - Left to right
<< >> Left to right
cem=>> Left to right These relational operators assume

signed 32-bit values

=== Left to right

bin-ops & Left to right
A Left to right
[Left to right
&& Left to right
Il Left to right
?: Right to left
, Left to right
2.6.3.2 Preprocessor: Functions

The following functions are supported within constant expressions. These functions, with the
exception of "defined", operate on the results of expanding tokens and eval uating expressions.

Note that in expanding .if and .€lif, the defined(name) construct is replaced by a0 or 1 as
appropriate.

Table 2-4. Functions (Sheet 1 of 2)

Function Description

Returns non-zero if the targeted processor type is only of the
type given by the parameter type and no other. The calculation
performed is "!(__IXPTYPE & ~(type))". Note: the parameter
type can be an expression such as "(typel | type2)". This
function should be used in conjunction with the predefined
symbols described in Section 2.6.8.

IS_IXPTYPE(type)

Returns 1 if the token expands to a numeric constant,

isnum (token) otherwise it returns 0.

Returns 1 if the token begins with"i$”, which indicates that it is
an import variable. Otherwise it returns 0. Note: the
isimport(token) .import_var directive will generate a warning if an import
variable does not begin with “i$” and it was used in an
isimport() call.

Programmer’s Reference Manual 29

Intel® IXP2400/1XP2800 Network Processor u

Assembler In o

Table 2-4. Functions (Sheet 2 of 2)

Function Description

Returns 1 if both tokens are identifiers which match, or if both
streq (token1, token2) are numeric constants which match;

otherwise it returns 0.

Returns the index of the first occurrence of token2 in tokenl

(starting with 1). If token2 is not found
strstr (tokenl, token2)) . . .
in token1, then it returns a value of 0. If either token is not an

identifier, it returns a value of -1.

Returns the number of characters in token. If the token is not

strien (token) an identifier, it returns -1.

Returns an identifier consisting of the leftmost token2
strleft (tokenl, token2) characters of tokenl. If tokenl is not an identifier or token2 is
not numeric, the identifier "error" is returned.

Returns an identifier consisting of the rightmost token2
characters of tokenl. If tokenl is not an identifier or token2 is
strright (token1, token2) | not numeric, the identifier "error" is returned.

Note that strright(token, -len) is essentially equivalent to
strright(token,strlen(token)-len).

Evaluates to 1 if the token is a symbol defined within the

defined(token) preprocessor or 0 otherwise.

Returns the log-based-2 of arg as an integer. The round
log2(arg, round) argument is optional and if omitted, it defauts to 0. Refer to
log2(arg) Section 2.6.3.4, “LOG2() Function” for a detailed description of

this function.

Evaluates to 1 if sig is a single sigmal and 3 if sig is a double
mask(sig) signal. For a detailed explanation of this function, refer to
Section 2.8.8.1, “Accumulating Results for ctx_arb[--]".

The constant expression function “strright(token,len)” originally meant to take the len characters
from the right-most position of token. Now, if len is <=0, it will mean to drop the left-most —en
characters. For example:

strright (abcdef, 2) = ef ; original behavior
strright (abcdef, -2) = cdef ; new behavior

2.6.3.3 STRING Operator

One of the limitations of the “string functions’ within the preprocessor constant-expression parsing
isthat they operate on identifiers, not true strings. This has practical implications. For example, a
macro may want an ALU operation passed in, and it may want to do something different based on
whether that operation allows a shift or not. The problem is that the operation cannot be compared
with streq, because the name of some of the operationsis not avalid identifier. To address this,
thereis a new operator defined by single quotes.

This operator will return avalid “identifier”, composed of the text enclosed by the quotes after
token expansion, that is, after macro arguments are expanded. However, the identifier is created
before any of the “arguments’ are evaluated based on normal expression rules.

More precisely, the function will return an “identifier” formed by taking all of the (expanded) text
between the single quotes, minus any leading and trailing white space.

30 Programmer’s Reference Manual

2634

Intel® IXP2400/IXP2800 Network Processor
Assembler

For example, one could write:

#macro test(arg)
#if (streq(’arg’, 'b-a’))

Note that the string operator was used both on the arg and in the comparison string. This points out
that the argument to the string operator may be a constant rather than an expandable token. One
detail to note: the leading and trailing white space is deleted, but interior white spaceis not.

In the context of constant-expressions, an identifier can also be created using double-quotes. This
behaves the same as the single-quoted version defined above, except that |eading and trailing white
space is not removed. Thiswould probably be used typically to construct an identifier consisting
only of white space, eg. strstr (‘token’ ,” ”).

Note that text within double quotesis not token-expanded.

Here are some examples:

#define A 1
#define B 2

" A+ B ' ; evaluates to 1 + 2
©1 2 3 ' ; evaluates to “1 2 3”
"A + B " ; evaluates to “A + B~
"1 2 3" ; evaluates to “ 1 2 3”7

In this case, the string function would evaluateto “1 + 2", not “3”. Thisillustrates the rule that
arguments are expanded but expressions are not eval uated.

LOG2() Function

The function log2() can be used within constant expressions. It takes two arguments, the second of
which is optional:

log2 (arg, round) or log2 (arg)

arg: Numeric value (taken as an unsigned value) whose log-2 value is desired
round: Optional numeric value determining how arg is to be rounded

The function returns the log-based-2 of arg as an integer. If the round argument is not supplied,
then the default rounding isO. If arg is apower of two, then the same value is returned regardless of
round. If arg is not a power of two, the behavior depends on round, which is described in the
following tables:

Condition Results when arg is not a power of two
round <0 Round result down to next smaller integer.
round =0 Generate an error.
round >0 Round result up to next larger integer.

Programmer’s Reference Manual 31

Intel® IXP2400/1XP2800 Network Processor
Assembler

Condition Results when arg is zero
round <0 -1
round =0 Generate an error.
round >0 0

Here are some examples.

Table 2-5. Examples of log2() Function

arg log2(arg) == log2(arg,0) log2(arg, -1) log2(arg,1)
0 error -1 0
8 3 3 3
10 error 3 4
OXFFFFFFFF == -1 error 31 32
2.6.3.5 Preprocessor Function Examples

The following examples show the usage of the functions.

The defined(token) constant expression evaluates to 1 if the token is a symbol defined within the

preprocessor, or 0 otherwise. Typical usage would be:

Examples: Defined(token)

#if (defined(FOO) || defined(BAR))

Examples: ISNUM

#macro assign[reg, vall

#if (isnum(val))

// value is a numeric constant

immed [reg, vall]

#else

// assume arg is the name of a register
alulreg, --, b, vall

#endif

32 Programmer’s Reference Manual

intel.

2.6.4

2.6.5

Intel® IXP2400/IXP2800 Network Processor
Assembler

Examples: STREQ

#macro something[type]
#1f (streg(type, sync))

/* This allows the application to specify type as the string

* "sync", assuming that the user has not #defined sync to be

* gsomething else. So the application could call this macro as:
* something[sync]

* or

* gomething[async]

*/

Examples: STRSTR

#macro somethingelse [reg]
#if (strstr(reg,@) > 0)
/* reg is absolute */
#else

/* reg is relative */

#endif

Macros and Expansion Token Restriction

Macros and expansion tokens share the same name space; therefore, it isinvalid to have a macro
with the same name as a #define token.

Syntax for Argument and Token lists

In the preprocessor, several places exist where commas are used in separating itemsin alist. For
example:

#for identifier [argl, arg2, ...]

and macro references:

macro[argl, arg2, ...]

In both cases, commas can be included in the items list aslong as they are enclosed in a matching
set of parentheses or brackets. For example, the directive:

#for id[iteml, foo(bar,bif), immedl[reg,32]]

would be expanded with id taking three values:

Programmer’s Reference Manual 33

Assembler

Intel® IXP2400/1XP2800 Network Processor u tel
®

2.6.6

2.6.7

2.6.8

34

iteml
foo(bar,bif)
immed[reg, 32]

The assembler does not interpret the “,” and take “bif)” or “immed[reg” as values.

Leading and Trailing Spaces in Macros

Leading and tailing spaces in macro arguments are automatically removed by the assembler. For
example:

marco[argl, arg2]

would be translated by the assembler as

macro [argl,arg2]

Environment Variables

The following environment variables are recognized by the assembler:

UCA_INCLUDE: A list of directoriesto be added to the include path. The list is separated by
semicolons:

dirl;dir2;dir3...

and is appended after the directories supplied on the command line.

Predefined Processor Type and Revision Symbols

The preprocessor defines the symbol __IXPTY PE, which identifies the target processor type(s) for
the code being assembled. It is defined to be some combination of the various processor type
symbols also defined by the preprocessor. Table 2-6 lists the processor type symbols and their
meanings.

The preprocessor aso definestwo symbols _ REVISION_MIN and __ REVISION_MAX, which
specify the target processor revision for the code being assembled. The values of these symbolsare
defined according to the command line values or by the Workbench assembler settings. The
revision values consist of an 8-bit value. The upper 4-bits correspond to the major revision number
(which isaletter, suchas“A”, “B”, etc) while the lower 4-bits correspond to the minor revision
number (such as 1, 2, 3, etc.).

Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor

I n o Assembler
Table 2-6. Processor Type Symbols
Symbol Meaning Type

IXPTYPE Value is determined py c_ommand line arguments. It variable
— takes on some combination of the following values.
__IXP2400 Processor Type IXP2400 1-bit set
__IXP2800 Processor Type 1XP2800 1-bit set
__IXP28XX IXP2800 n-bits set
__IXP2XXX All MEV2 network processors. n-bits set

All these symboals, other than the first one, are pure constants that have only one bit set (for the
processor-specific ones). The _ IXPTY PE symbol indicates the processor types for which codeis
being generated. Its value can consist of a single processor type or a combination of types.

The preprocessor aso defines symbols for the various revision values. The revision symbols are

listed in Table 2-7

Table 2-7. Revision Symbols

Symbol

Meaning

Value

__REVISION_MIN

Minimum processor revision for code being
assembled.

Variable. Default is 0x00

__REVISION_MAX

Maximum processor revision for code being
assembled.

Variable. Default is 0xff

_ REVISION_AO AO revision. 0x00
_ REVISION_A1 Al revision. 0x01
_ REVISION_BO BO revision. 0x10
_ REVISION_B1 B1 revision. 0x11
etc...

Constant values can be thought of as atree, as shown in Figure 2-2

Programmer’s Reference Manual

35

Intel® IXP2400/1XP2800 Network Processor
Assembler

36

Figure 2-2. Processor Type Constant Values

Root

__IXP12XX

_IXP2XXX

/

___IXP1200

__IXP2400

__IXP28XX

__IXP2800

__IXP2850

The leaf nodes represent values with asingle bit set while non-leaf nodes represent the union
(bitwise-OR) of the nodes below them.

A default value can also be set using the environment variable UCA_IXPTY PE. For example:

set UCA IXPTYPE=1xp2400

These predefined symbols should be used with the IS _IXPTY PE(type_expression) constant
expression function described in Section 2.6.3.2.

Examples: Different Code Sequence for IXP2400 or IXP2800

#else
#error
#endif

#if (IS IXPTYPE(_ IXP28XX)
// code for IXP2800

#elif (IS_ IXPTYPE(__IXP2400)
// code for IXP2400

Programmer’s Reference Manual

u Intel® IXP2400/IXP2800 Network Processor
o Assembler

Examples: Code Only Works on MEv2

#if (!IS_ IXPTYPE(__IXP2XXX)
#ferror
#endif

Any code targeted at a specific revision of the | XP2400/I XP2800 Network Processor should make
use of the predefined REVISION_MIN and __ REVISION_MAX symbols. For example, if the
code is designed to exploit certain features found only in processor revisions A1 or higher, then the
REVISION_MIN symbol can be used along with the #error directive to abort the assembly

process.

For example,
Revision
Number Hex Value
A0 0x00
Al 0x01
A2 0x02
BO 0x10
Bl 0x11
B2 0x12
etc

The default valuesfor _ REVISION_MIN and __ REVISION_MAX are 0x00 and Oxff,
respectively.

Inadditiontothe_ REVISION_MIN and __REVISION_MAX symbols, the assembler also
predefines symbols of the form:

#define _ REVISION A0 (0x00)
#define _ REVISION Al (0x01)

#define _ REVISION BO (0x10)
#define REVISION Bl (0x11)

etc.

Examples: Revsion Symbol Use

#if (__ REVISION MIN < _ REVISION Al)
#error "This feature is not supported on revision(s) prior to Al"
#else

; version specific code here
#endif

Programmer’s Reference Manual 37

Intel® IXP2400/1XP2800 Network Processor u
Assembler In
®

For more information on setting the processor type or revision, please refer to the | XP2400/
I XP2800 Network Processor Development Tools User’s Guide.

2.6.9 Predefined Import Variables

The Predefined Import variables are detailed in Table 2-8. For more information on import
variables, refer to Section 2.11.8, “Import Variable (.import_var)”.

Table 2-8. Predefined Import Variables

Name Definition
__CHIP_ID and This corresponds to the IXPTYPE valued defined in Section 2-6, “Processor
i$__CHIP_ID Type Symbols” and is derived from the PRODUCT_ID register.

This gives the chip revision as defined in Section 2.6.8, “Predefined Processor

__CHIP_REVISION and e P . p "
i§_CHIP_REVISION Type and Revision Symbols”, which is derived from the “PRODUCT_ID

register.
__UENGINE_ID and This varies from 0x00 - 0x07 and 0x10 - 0x17 for the IXP28xx and from 0x00 -
i$_ _UENGINE_ID 0x03, 0x10 - 0x13 for the IXP2400.
2.7 Preprocessor Usage Techniques

This section contains techniques that you may find useful in writing ME software.

2.7.1 Branching into a Macro

There are occasions where the code might branch into a macro. This generally should be avoided as
the macro then becomes more difficult to modify, but it might be necessary.

38 Programmer’s Reference Manual

In

tel.

Intel® IXP2400/IXP2800 Network Processor
Assembler

Examples: An Incorrect Method

An incorrect method would be to pass the label in, as follows:

#macro badl[lab, ...]
lab alul...]

#endm

and thento use it as:

badl [mylab#:, ...]

br [mylab#:]

Which doesn’t work. What happensisthat the macro expands its arguments, so that it gets (in the
example above):

mylab#: alul...]

The preprocessor then realizes that alabel is being defined within a macro expansion and
augments the name to make it unique. What you then get would be:

M001_mylab#: alul...]

Programmer’s Reference Manual 39

Assembler

In

Intel® IXP2400/1XP2800 Network Processor u tel
®

2.7.2

40

Examples: A Correct Method

The correct way to handle this circumstance isto define the label as normal within the
macro,e.g.,:

#macro goodl[...]

lab#: alul...]

#endm

When the macro is referenced, prefix the macro reference with alabel. This provides away to
identify which macro is being referenced. In this example, the macro reference would appear as.

usel#: goodll[...]

To branch into the macro, one takes advantage of the fact that if the macro reference is preceded
by alabel, that 1abel (followed by an underscore) is used as the label prefix of the augmented
label. Thus, one would branch into the macro as:

brlusel_lab#]

where usel is the label of the reference (minus the #) and lab is the label within the macro
definition. This technique may be extended to jumping into nested macros by preceding the

macro reference within the macro definition with alabel.

Constructing Names from Numbers

There may be times where a repetitive task is to be done on a series of registers, where the register
name is formed by a base name and a number. For example, in the case where one wanted to
generate the lines:

Examples: Example Case

alulregl, 0, +, reg, <<0]
alulreg2, 1, +, reg, <<2]
alulreg3, 2, +, reg, <<4]
alulreg4, 3, +, reg, <<6]
alulreg5, 4, +, reg, <<8]
alulreg6, 5, +, reg, <<10]

One way to do thiswould be:

Programmer’s Reference Manual

In

2.8

Intel® IXP2400/IXP2800 Network Processor
Assembler

Examples: Example case - Alternate Method 1

#macro oneway[reg, const, shift]
alulreg, const, +, reg, shift]
#endm

oneway [regl, 0, <<O0]

oneway [reg2, 1, <<2]

Another way would be to take advantage of the relationship between the numeric portion of the
name, the constant, and the shift value. You could write:

Examples: Example case - Alternate Method 2

#macro anotherway [num]

#define_eval const num-1

#define_eval shift const*2
alulreg/**/num, const, +, reg, <<shift]
#endm

anotherway [1]

anotherway [2]

anotherway [3]

<0Ir>

#for cnt [1, 2, 3, 4, 5]

anotherway [cnt]
#endloop

The problem with the expression reg/**/num is that you want to attach the value of num to
alphabetic characters. It is easy to do thiskind of attachment to non al phabetic characters, (e.g.,
<<shift), but if we were to write regname_num, it would be taken as a single token that would not
be expanded. If we were to write reg num, for example “anotherway[3]”, it would expand to reg 3,
which would also be incorrect.

To get the correct value, we take advantage of the fact that the preprocessor removes C-style

comments. In this example, the comment isaminimal C-style comment. It servesto delimit thereg
and the num, but sinceit is removed, there is nothing left between the expanded texts.

Registers and Signals

The assembler resolves symbolic register names into physical register addresses. The following
sections describe the details of registers and signals.

Programmer’s Reference Manual 41

Assembler

Intel® IXP2400/1XP2800 Network Processor intel
®

2.8.1

28.1.1

Register Naming Conventions

Registers are specified symbolically using a string of a phanumeric characters (including“_"). The
first character of aregister name cannot be numeric. The bank to be accessed (such as GPR, SRAM
XFER, or DRAM XFER) and the addressing mode (context-relative or absolute) is determined by
prefixing the register name with the reserved characters “@" and “$”. Absolute addressing is only
supported for GPR registers; it is not supported for SRAM and DRAM transfer registers.

Register types are defined by prefixes applied to the register names. Registers have atype based on
the name. The table below shows the prefix (in bold) that is applied to register names to specify the
type. Theword “reg” isthe user specified name of the register. Local memory is shared by all
contexts using an index register and does not support relative or absolute names. Transfer and
neighbor registers can also be accessed globally using index registers.

Register Type Relative Name Absolute Name
GPR reg @reg
SRAM Transfer $reg not available
DRAM Transfer $$reg not available
Next Neighbor n$reg? not available

a. Named next neighbor registers are not supported in restricted addressing mode (refer
toSection 2.8.1.1, “Indexed Registers” and Section 3.1.1, “Restricted and Unrestricted Src and
Dest Operands”).

One reason for this paradigm is to allow macros to determine the type of register being passedin as
an argument.

Note that whether an SRAM or DRAM transfer register is allocated strictly out of the read/in or
write/out registersis not considered “type” information and is not indicated by the name.

Indexed Registers

The MEv2 allows access to some of the register types by using an index register. Anindex register
isalocal CSR that pointsto an addressin the related register file. The actual register that is
addressed can be accessed in amanner similar to that of “normal” registers.

Generally, theindex is set using the local_csr_wr instruction®. The exception is the index register
used for writes to the neighbor register. In this case, the CSR islocated in the neighbor ME and is
not visible to the writer (although the neighbor can accessit). Typically, it isinitialized by the
neighbor and then the neighbor registers function as a FIFO, with the read/write index registers
never being directly set again (they are always advanced indirectly via post-increment).

Local memory can only be accessed through indexed registers; it does not support the use of
“named” registers. In the case of local memory, there are two independent index registers (zero and
one). The contextsin an ME can either share the same two registers, or each context can reference
its own set. For all other indices, each context within an ME shares the same index.

1. SeeSection 5, “Control and Status Registers (CSRs)” for details on which local CSRs are used for which indices.

42

Programmer’s Reference Manual

1.
2.

intel.

Caution:

Intel® IXP2400/IXP2800 Network Processor

Assembler

Neighbor registers can be accessed by name or by an index, but the programmer will not typically
access the registers using both names and index in the same program®. Transfer registers can also
be accessed by name or by an index; however, it is more likely that you will access the registers
using both names and index in the same program.

Each of the indices supports a number of additional features, including:

* Post-increment

* Post-decrement

* Offsetting

The feature set of the different indices are shown in the following table:

Register Register Post- Post- Offsettin Local CSR Name for
Type Name increment decrement 9 Index Register?
Local *$index0 *|$index0++ *|$index0-- *|$index0[n] ACTIVE_LM_ADDR_O
Memory *|$index1 *I$index1++° *I$index1--2 *$index1[n]® ACTIVE_LM_ADDR_1

Next
Neighbor *n$index *n$index++d N/A N/A NN_PUT
) NN_GET
Fifo -
?r'zﬁger *$index *$index++ *$index-- N/A
T_INDEXI
'I?rzﬁzler *$$index *$index++ *$$index-- N/A

a. Refer to Section 5 of this manual for a complete list of Local CSR Names.

b. Post increment and Post decrement are supported for unrestricted addressing only. See Section 3.1.1, “Restricted and Un-
restricted Src and Dest Operands”

c. For offsetting, n = 0 to 15 for unrestricted addressing. See Section 3.1.1, “Restricted and Unrestricted Src and Dest Oper-
ands”

d. Optional when used as a source and required when used as a destination.

The SRAM and DRAM indexing operations use the same local CSR as the index to these
memories.

The use of an indexed register reference isindicated by the leading asterisk (“*”) in the register
name. After that comes the normal type prefix and then the keyword “index”. In the case of local
memory, the keyword “index” isfollowed by a“0” or “1” to identify which Local Memory CSR
index register to use. Post-increment or post-decrement isindicated by appending “++” or “ - -" to
the register name. For example, “ *n$index++".

Offsetting refers to addressing aword (4-bytes) at afixed offset from the word addressed by the
Index local CSR. The offset is a constant in the range from O to 15 words. When an offset is used,
the offset is bit-wise ORed into the address. This means that the address register must be aligned on
an appropriate boundary for offsetting to work?. Offsetting isindicated by appending a numeric
constant surrounded by square brackets to the register name. An example would be
“*18index0[3]".

Offsetting cannot be used with post-increment or post-decrement.

The index implements a FIFO that will eventually overwrite any named register.
Alignment needs to be maintained by the programmer. The assembler cannot check for proper alignment.

Programmer’s Reference Manual 43

Intel® IXP2400/1XP2800 Network Processor u
Assembler In
®

Anindex register isthe only way that the local memory can be accessed. Local memory does not
support the use of "named" registers as do the other register files. In the case of local memory, there
are two independent index registers for each context and one set for the active context (the context
that is currently executing).

In the case of local memory, the two index registers are referenced within the instructions using the
keywords *1$index0 and *1$index1. These keywords always refer to the active set. The ME can be
put into a mode where all contexts share the same two registers (the active set), or each context
usesits own set. Thisis specified using the assembler directiveslocal_mem0_mode, and
local_mem1_mode (refer to Section 2 for more information on these directives). When an ME is
set up to have each context use their own two index registers and a context begins executing, its set
of registers are loaded into the active set and when the context goesto sleep, the active set are
saved back to context’s set. In the mode where all contexts share the same two registers, the active
setisonly set that is used.

Thelocal memory index registers are loaded using the local_csr_wr instruction. The following
register names can be used to access the two independent index registers for the active context.

ACTIVE_LM_ADDR 0 ACTIVE LM_ADDR 1
ACTIVE_LM_ADDR_0 BYTE_INDEX ACTIVE_LM_ADDR_1 BYTE_INDEX

For the contexts that are not active, users can access their local registers by first setting
CSR_CTX_POINTER to the correct context number. Then, the following register names can be
used to access the two independent index registers of the specified context.

INDIRECT_LM_ADDR 0 INDIRECT_LM_ADDR_1
INDIRECT_LM_ADDR_1 BYTE_INDEX INDIRECT LM_ADDR_1 BYTE_INDEX

Refer to Section 5 for more information on all these registers.

The Next Neighbor registers can use the index register in support of Next Neighbor Rings. When
the destination register is specified as* n$index++ the NN_PUT index register is used to perform a
put operation. When the source register is specified as * n$index++ the NN_GET index register is
used to perform a get operation.

The entire transfer register set can be accessed by a context using the Transfer Register Index
Registers (T_INDEX). A register number (as shown in Table 2-9) iswritten to the T_INDEX
register using the local_csr_wr instruction. Then in transfer register is read or written using the
notation shown in the Table 3-4 to specify either a source (for awrite) or a destination (for aread).

44 Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor

I n Assembler
®
Table 2-9. Registers Used By Contexts in Context-Relative Addressing Mode
Number of Acti GPR S Transf
umber o ctive Absolute Register Numbers ranster or D Transfer
Active Context Neighbor Index Number
Contexts Number A Port B Port Index Number
0 0-15 0-15 0-15 0-15
1 16-31 16-31 16-31 16-31
) 2 32-47 32-47 32-47 32-47
(Instruction 3 48-63 48-63 48-63 48-63
always specifies
Registers in 4 64-79 64-79 64-79 64-79
range 0-15) 5 80-95 80-95 80-95 80-95
6 96-111 96-111 96-111 96-111
7 112-127 112-127 112-127 112-127
4 0 0-31 0-31 0-31 0-31
(Instruction 2 32-63 32-63 32-63 32-63
always specifies
Registers in 4 64-95 64-95 64-95 64-95
range 0-31) 6 96-127 96-127 96-127 96-127

Two registers of the same type other than GPR cannot appear as source operandsin asingle
instruction, but two registers of the same type can appear with one being a source and one being a
destination. This raises the question of what happens if in this case one wishes to apply an
increment/decrement operator to that register. The rule that the assembler uses is that when the
same index register is used as both a source and destination, any increment/decrement operator
must be applied to the destination usage. Usage on the source or on both will result in an error.

Thus:

alul[*1$index0++,

1, +, *1$index0]

would be valid, but
alul[*1$index0 , 1, +, *13$index0++]
alu[*1$index0++, 1, +, *13$index0++]

would not. Thisisto prevent confusion in people who are looking at the code and who might think
that the first bad case is writing to the next register after the one being read, and who might think
that the second bad case isincrementing the index register twice.

Note that neighbor registers have different read and write pointers, so both of the following are
valid:
alul[*n$index++, 1, +, *nS$index]

alu[*n$index++, 1, +, *nSindex++]

Itisallowed that the same local memory index can be offset differently as source and destinationin
the sameinstruction. Thus, the following is valid:
alul[*1$index0([3], 1, +, *1$index0[4]]

1. Conceptualy, the hardware samplesthe value of the index register and usesthat for both the source and destination references. Meanwhile,
the index register ismodified. So it makes no sense to think about incrementing the register after the read operation but before the write

operation or incrementing it twice.

Programmer’s Reference Manual

45

Assembler

Intel® IXP2400/1XP2800 Network Processor intel
®

2.8.1.2

Caution:

2.8.1.3

2.8.2

46

It isnot valid, however, to use a post-modify on the destination and an offset on the same index as
source.

Mixing Indexed and Named Register Usage

Use of index registers does not result in any register alocation. Conceptualy, thisis similar to the
C language behavior that “int *p;” does not allocate an integer.

Local memory can be allocated and managed manually. You can allocate and choose specific
addresses for local memory use through #define's; however, the preferred method is to use the
memory allocation directives described in Section 2.11.11, “Memory Allocation Directives’ to
allocate blocks of local memory.

In the case of neighbor registers, the two methods (indexed and named) are conceptually exclusive.
When the indexed method is being used, one would not be using the named method, and since the
index defines a FIFO covering the entire register array, allocation is not relevant.

For transfer registers, however, indexed and named usage may be mixed. Thisis partially aresult
that 1/0 references work on named transfer registers and not indexed transfer registers. To cause
the register allocation to occur, al of the registers need to have names and to be part of the
xfer_order instruction, regardless of whether the programmer will actually reference them by
name. Additionally, the programmer needs to use .set or .use directives to indicate when these
registers are being used.

Transfer Registers (xfer)

The xfer parameter specifies a Transfer register. Transfer registers are always specified with one or
two $ characters as a prefix. S-Transfer register use one $ (example: $xfer) while D-Transfer
registersuseto $ (example: $$xfer). Read and write transfer registers are specified by how they are
used. For example, reading $xfer reads a S-Transfer Read register while writing the register writes
an S-Transfer Write register

When an 1/O instruction specify areference count (ref_cnt) greater than 1,the data from multiple
transfers are read or written from a contiguous set of Transfer registers. In this case the xfer
parameter specifies the first register in the contiguous set. Since the instruction only specifies the
first register in the contiguous set of registers, the assembl er requires that the programmer indicate
the names of registers that the programmer would like to use for the other contiguous registers.
Thisis specified using the .xfer_order assembler directive.

Register Declarations

The main purpose of register declarations isto assist the programmer in catching bugs; primarily
those resulting from typing the name of aregister incorrectly. The use of register declarations may
be made optional or required depending on the command-line switches. If declarations are not
required, then aregister that is used without being declared isimplicitly declared with a global
scope and an automatic lifetime.

Programmer’s Reference Manual

In

28.2.1

®

Intel® IXP2400/IXP2800 Network Processor
Assembler

Preferred Register Declaration Syntax
Registers are declared! using the .reg directive.

Registers can have four different attributes. These are specified as described later in this section by
keywords. The default attribute values (i.e., the attributes specified with no keywords) are
underlined. For a more thorough description, see the rest of this section.

Scope: This determines what part of the source code can reference this register. Conceptually, this
can have one of three values (if the declaration occurs within a block, then block is the default
scope; otherwise, module is the default):

* Block: Thevirtual register can only be referenced from its declaration to the end of the
enclosing block. Thisis similar to a variable declared within the body of a C-function.

* Module: The assembler currently has no notion of “modul€”. This attribute is reserved for
possible future use. At this release, the module attribute is effectively the same as having it at
global scope except that the nameis prefixed in thelist file. Thisis similar to atop-level non-
static variablein C.

* Global: Thevirtual register can be referenced from its declaration to the end of the module, or
from within other modules (via extern declarations). Thisis similar to atop-level non-static
variablein C.

Lifetime: This determines how the register allocator allocates this register. Conceptualy, this can
have one of two values:

¢ Automatic: The allocator will determine those parts of the code where the register contains a
meaningful value. Thisis called the live-range of the virtual register. Two registerswhose live-
ranges do not overlap may be safely allocated to the same physical register. Thisisthe normal
situation.

* Volatile: Thevirtual register is allocated to a dedicated physical register; i.e. no other virtual
register will be allocated to the same physical register. This guarantees that areference to a
different virtua register will never modify valuesin thisvirtual register. Thiswould be needed
if either the allocator’s algorithms compute the wrong live-range, or if the register were to be
accessed asynchronously (e.g. atransfer register that was to the be target of areflector
operation).

Direction: In the case of transfer registers, thisindicates which of the read/write transfer registers
are being allocated. This can take three values:

* Read: Only aread transfer register is declared.
* Write: Only awrite transfer register is declared.

* Both: Both aread and awrite transfer register (at the same address) is declared. Thisis needed
for operations that do both aread and awrite at the same time, e.g. test-and-set.

A transfer register that is not explicitly declared "read" or "write" (that is, it isimplicitly declared
asread/write or "both") is considered as two separate but linked physical registers. That is, thelive
range is computed for each of the pair separately.

This means that declaring a transfer register with the "read" or "write" keywords has no effect on
register allocation. Thisisbecauseif it isdeclared as "both", but only used as a"read”, then the
write "half" of the register will have an empty live range, and so it won't conflict with anything
else. The same holds trueif it is declared as "both" but only used asa "write" transfer register.

1. Notethat index registers do not need to be declared. Since local memory can only be accessed by use of index registers, it is never declared.

Programmer’s Reference Manual a7

Assembler

Intel® IXP2400/1XP2800 Network Processor intel
®

48

The only advantage to declaring aregister as "read" or "write" isthat attempts to use that register
incorrectly (for example, making aread transfer register the destination of an ALU instruction)
resultsin an error. If the register were declared as "both", then such an attempt would not generate
an error, although it might generate a warning.

When register declarations are not used, there is no way to mark aregister as "read" or "write". In
previous versions of the assembler, this was allowed viathe .xfer_order_rd and .xfer_order_wr
directives. Thisusage is obsolete and now generatesawarning and is equivalent to ".xfer_order". If
you want the error checking previoudly provided by .xfer_order_rd and .xfer_order_wr, you must
now declare the appropriate registers with either the READ or WRITE keywords.

Visibility: In the case of transfer registers, this indicates whether the register isvisible to other
microengines viathe reflector. Neighbor registers are always visible. Conceptualy, this can take
one of two values:

* Visible: Other microengines can read/write this register.

¢ Invisible: Other microengines cannot read/write this register.

Note that it would be rare to have an absolute register declared with an automatic (non-volatile)
lifetime. Since absolute registers are generally accessed by multiple contexts, it should generally
have avolatile lifetime. Note that if an absolute register is declared with an automatic lifetime, the
assembler may chooseto treat it asif itslifetime were volatile.

For more details on visible/remote, see Section 2.8.7.

A visible transfer register would automatically be considered volatile. The syntax of the register
declaration is:

.reg [keywords]* namel name2 ...

keywords: Zero or more keywords as described below.

namen: : One or more register names. You cannot declare a register whose name
matches one of the keywords.

The keywords define the attributes of the registers being declared, as defined by the following
table:

Keyword Meaning

If the volatile keyword is present, then the lifetime of the declared registers is set to
volatile. Otherwise, the lifetime is automatic. Note that in some cases (e.g. named
neighbor registers), the lifetime is always volatile, regardless of the absence or presence
of this keyword.

volatile

If the global keyword is present, then the scope of the declared registers is set to global.
global Otherwise, if the declaration is within a block, the scope is set to block. If it is not within a
block, then the scope is set to module.

If the visible keyword is present, then the visibility of the declared transfer registers is

visible set to visible. Neighbor registers are always visible.
read If either the read or write keywords are present, then the direction for transfer and
write neighbor registers is set accordingly. These attributes have no effect on GPRs. If neither

keyword is given, or if both keywords are given, then the direction is set to both.

Programmer’s Reference Manual

u Intel® IXP2400/IXP2800 Network Processor

In o Assembler

If the extern keyword is present, then the named registers are declared elsewhere
extern (either in this module or another that will be linked in). This is similar to the C-language
construct “extern type name”.

If the remote keyword is present, then the named transfer or neighbor registers must be
declared in a different microengine and will presumably be the target of a neighbor write
or a reflector reference. These are resolved by UCLD. The remote register must be
declared as visible in the remote microengine in order to be seen by this microengine.

remote

Usage of these keywords is summarized in the following tables:

GPR Xfer Neighbor

volatile valid valid implied?®

global valid valid implied

visible error valid implied

read/write error valid error

extern valid valid valid

remote error valid valid

a. Implied means that it may be specified or not. In either case

the program behaves as if it were specified

Keyword compatibility

volatile

global

visible read/write extern remote
volatile
global X OK error error
visible
read/write OK X OK error
extern error OK X error
remote error error error X

Rules:

1. Remote cannot be used with any other keywords.
2. Extern can only be used with read or write.
3. Other keywords may be freely mixed.
Itisvalid to declare the same register as“.reg extern” and “.reg global”. It isalso valid to declare a

remote register multiple times. Thiswould occur when a macro which contains a remote register
declaration, is used multiple times.

Programmer’s Reference Manual 49

Intel® IXP2400/1XP2800 Network Processor u
Assembler In
®

It isvalid to declare the same register name as remote and non-remote. In this case, context will
determine which register is referenced. This usage is confusing and should be avoided, but there
may be strange cases where thisis required (such as two microengines running identical code and
which want to access each other’s transfer registers).

To declare registers with a“modul €” scope, they should be declared outside of any .begin/.end
blocks and without the GLOBAL keyword. (See Section 2.8.1.2, “Mixing Indexed and Named
Register Usage™.)

The attribute implications are summarized as follows:

neighbor = (¢lobal, volatile, visible

visible = (global, volatile
remote = ¢lobal
extern = ¢lobal

The response to declaring aregister with the same name as a previously declared register is
summarized in the following table. Note that for the “first register/Block” column, the assumption
isthat the second register is declared within the same block.

First Register
Global Module Block Extern Remote

Global Error Error Warn ok?! OK

Module Error Error N/A2 Error OK
second Block Warn3 Warn3 Error Warn3 OK
Register

Extern ok?! Error Warn ok?! OK

Remote OK OK OK OK OK

LFirst and second registers refer to same register.
2You can't declare a module-scoped register within a block.
3Generates a hi gh-level (level-4) warning.

In such cases, more than one register will exist with the same name. Which is referenced isa
function of the code. The following example shows that alocal register declaration will mask a
global variable declaration of the same name within the scope of the local block:

.begin

.reg foo // defines a local variable named foo

.reg global foo // defines a global variable named foo

foo... // reference to foo is to the local variable
.end

foo ... // reference to foo is to global variable

The directive .xfer_order does not declare registers. The argumentsto .xfer_order need to be
declared before they are used in the .xfer_order. If programmers want to avoid writing out the
variable list twice, they can use a macro similar to:

#macro reg_order[type, regsl

50 Programmer’s Reference Manual

2.8.2.2

2.8.2.3

Intel® IXP2400/IXP2800 Network Processor
Assembler

.reg type regs

.xfer order regs

#endm

reg order [global volatile, $1 $2 $3]

reg order([,$4 $5 $6]; Note, the null type field

For compatibility with earlier releases, .xfer_order_rd and .xfer_order_wr are still accepted;
however, they behave the same as .xfer_order. In order to get the checking that was previously
implied by these directives, the registers need to be declared with either the read or write keywords.

Details of Volatile and Visible

A register that is declared volatile and global has the same meaning as volatile in previous versions
of the assembler. That is, such virtual registers are allocated to dedicated physical registers.
However, registers can now be declared as volatile without being declared global. This means that
thevirtual register isallocated to adedicated physical register within the defining block. If the code
flow leaves that block, then the register could be reallocated. Thetypical use for this feature would
be microcode where different code blocks corresponded to different independent threads. In this
case, the defining block for the volatile registers would consist of all of the code for a given thread.
For example, the fact that context-0 had a particular volatile register should not affect the allocation
of the registerslocal to context-1.

Since volatile no longer implies global, it is also possible to have non-global visible registers. In
this case, there is the added restriction that any particular ME could only declare one visible

register with agiven name. If two were declared, then there would be no way to distinguish them.
For example, the following code would beinvalid:

.begin
.reg visible foo

.end

.begin
.reg visible foo // Not allowed because there are two visible foo'’s

Note that this would have been legal if either or both declarations had omitted the visible keyword.

Compatible Register Declaration Syntax
For compatibility with existing code, there is an alternate syntax for declarations.

The directive:

.local regl reg2 reg3 ...

is defined to be functionally equivalent to

.begin
.reg regl reg2 reg3 ...

Similarly, the directive:

Programmer’s Reference Manual 51

Assembler

Intel® IXP2400/1XP2800 Network Processor u tel
®

28.2.4

2.8.3

2.8.3.1

52

.endlocal

is defined to be functionally equivalent to

.end

Saying “functionally equivalent” meansthat it “behaves the same as’. However they are not fully
equivalent because the compatible and new syntax cannot be freely mixed. That is, a“.local” needs
to be closed with a“.endlocal”. The following two cases, for example, would be illegal:

.local

.end // Error: should be .endlocal

or

.begin

// Error: should be .end

Dealing with self-write neighbor regs

There is an ambiguity when writing to named neighbor registers. Normally, doing so writesto a
register in the neighboring ME. However, a CSR bit can be set that causes writes to go to the same
ME. This might be used, for example, to store certain constants or pseudo-constants for later use.

In general, the assembler cannot determine the setting of this CSR bit, so it needs the programmer
to indicate whether awrite to a named neighbor register is going to the neighbor ME or to the self
ME.

Thenormal caseis pretty straightforward. If the destination register is declared viaa.reg
directive, then it is assumed to be local to thisME. If itisdeclared viaa.reg remote directive,
then it is assumed to be in the neighbor. The one ambiguous situation is if the register is declared
withbotha.reganda.reg remote directive. In this case, it will be assumed that the actual
destination of the write is the register in the remote ME. While this usage may be needed in rare
occasions, it is confusing and should be avoided.

Notethat it is up to the programmer to ensure that the destination of the neighbor write matches the
current setting of the CSR bit. If these do not match, then arandom register in the wrong ME will
be modified.

Aggregate and Array Support

Register Arrays

The assembler supports the notion of an array of registers. Thisiscalled an "aggregate”. These are
declared by giving a bracketed size following the namein ".reg". For example:

.reg $x[3]

Programmer’s Reference Manual

2.8.3.2

Intel® IXP2400/IXP2800 Network Processor
Assembler

declares an aggregate called "$x" consisting of three registers. The maximum size for an aggregate
is 128 registers. In the case of remote registers, the size can be left off, e.g. ".reg remote $r[]". You
cannot have an aggregate with the same name as a non-aggregate. So the following would be
invalid:

.reg S$al3]

.reg Sa ; 1llegal because of $al[3] above

Aggregates cannot be implicitly declared, they must be declared explicitly.

The xfer_order directive takes entire aggregates, not aggregate elements. For example:

.xfer order $a $x S$b
.xfer order $a $x[0] $b ;; ERROR, can’t use indices

Thiswould result in the registers being ordered as "$a $x[0] $x[1] $x[2] $b".

In instructions and most directives (exclusive of .reg and .xfer_order), elements of an array are
referenced with a bracketed index. Continuing the example above:

immed [$x[0], 1]

alulsx[1], sxI[2], +, 1]

alul--,--,b,$x] ;; ERROR: missing index
]

immed [$x[3], 0] ;; ERROR: index out of range

Compatibility with Earlier Releases

In previous releases, brackets were not allowed in directives and were ignored in instructions. This
resulted in the odd code style:

.reg $Sy0 Syl $y2
.xfer order $y0 $yl $y2
immed [$y [0], O]

Code that does this should be rewritten to use the new style (as described in the previous section).
For the current release, to maintain some compatibility with earlier code and to give programmers
a chance to update their code, the will exhibit the following behavior:

¢ |f areference looks like an aggregate element reference, but there is no register with the
specified name, then the assembler will remove the brackets and try to find that register. It will
also generate awarning that the code should be updated. For example, if there was a reference
"$name[3]" and there was no register named "$name", UCA would look for "$name3".

* |f areference looks like an old-style aggregate (e.g. $name0), but there is no register with the
specified name, then the assembler will look up the register as a true aggregate (e.g.
$name[0]). It will also generate awarning that the code should be updated. For example,
"$name0" will match aregister that was declared as ".reg. $name[4]".

This behavior is atemporary one to give programmers more of a chance to update their code.
Future releases will drop this behavior.

Programmer’s Reference Manual 53

Assembler

In

Intel® IXP2400/1XP2800 Network Processor u tel
®

2.8.3.3

54

Doubled Signal References

A doubled signal is another type of "aggregate”. For DRAM references, both signals are needed to
indicate that the I/O has completed. For other 1/O instructions that generate a doubled signal, one
"half" indicates that the write-transfer-register has been consumed, and the other "half" that the
read-transfer-register has been filled.

From a syntactic point of view, references to adoubled signal name by itself (e.g. "sig") will refer
to essentially the entire pair. To reference the low half, one would append either "[0]" or "[write]"
tothesigna (e.g. "sig[0]" or "sig[write]"). To reference the high half, one would append either
"[1]" or "[read]" to the signal (e.g. "sig[1]" or "sig[read]"). Referencesto "[0]" versus "[write]" (or
"[1]" versus "[read]") are equivaent; i.e. either can be used interchangeably. The suggested useis
that when the signal refersto a DRAM transaction "[0]" and "[1]" would be used, and when the
signal refers to another transaction, "[write]" and "[read]" would be used.

Note that doubled signals ook very similar to an array of signals (of length 2), except that in this
context, "write" isa synonym for "0", and "read’ is a synonym for "1" (as an aid in readability).

Doubled signals can be referenced three ways: via the address operator, viaabr_*signal, and viaa
ctx_arb.

The address operator can be applied to the unqualified name (e.g. "sig"), or to the qualified ones
("sig[Q]" or "sig[read]"). The address of "X" would be the address of "X[0]". Examples would
include:

immed [x, &s] ; references low/write half
immed [y, (l+&remote(s))] ; references high/read half

Thebr_*signal (br_signal, br_Isignal) instructions always reference qualified names. So the
following would be valid:

11#: br_ !signal [dram_sig[0], 11#] ; references low half
12#: br !signal[dram sigl[1l], 12#] ; references high half
13#: br !signall[sram sig[write], 13#] ; references low half
14#: br !signallsram sigl[read], 14#] ; references high half

Thebr_*signal functions should not reference the unqualified names (see Section 4.1.6.3.2).

The ctx_arb instruction can reference qualified or unqualified names. If the unqualified nameis
used, then it will be automatically doubled by the assembler, for example:

dram[..] , sig donel[s]
ctx_arb[s] ; equivalent to ctx_arbl[s[0], s[1]]

For advanced users, the individual halves of the signal can be referenced by using the qualified
names, for example:

sram[swap, $x, addr,0], sig done([s]
ctx_arbl[s[read]] ; not automatically doubled due to "[read]l™"
; 1t is now safe to access $x as a read xfer reg
ctx_arb[s[write]] ; not automatically doubled due to "[write]"
..; 1t is now safe to access $x as a write xfer reg

; Oor to reuse "s"

Programmer’s Reference Manual

2834

Intel® IXP2400/IXP2800 Network Processor
Assembler

Note that thisis advanced usage. In most cases, the programmer would use the unqualified name. It
isonly in extremely rare circumstances that advanced programmers would use qualified namesin a
ctx_arb.

These points are summarized in the following table:

Uses
Reference Address of br_*signal ctx_arb

- . OK
s (unqualified) OK Invalid (automatically doubled)
s[0] (qualified, DRAM) OK OK OK
s[write] (qualified, non-DRAM) (not doubled)
s[1] (qualified, DRAM) OK OK OK
s[read] (qualified, non-DRAM) (not doubled)

Note that if adoubled signd is half-consumed before a ctx_arb (either through abr_*signal or
ctx_arb with aqualified name), then the signal must be referenced with a qualified name. For
example:

sram[swap, $x, ..], sig done[d]
ctx_arb[d[read]]
ctx_arb[d] ;;; ERROR: must be d[write] or d4[0]

Usage Notes

In typical usage, programmers won't need to use br_*signal for 1/O references, so they can just use
unqualified namesin the ctx_arb instruction, and virtually all aspects of doubled signals are
handled automatically by the assembler. 1.e. when using ctx_arb and unqualified signal names,
programmers can treat doubled and non-doubled signals in the same manner.

In some cases, which may be rare, programmers may want to poll a doubled signal using
br_!signal. In this case, they need to be aware of whether the signal is doubled or not, and if itis,
they need to use the appropriate qualified name.

In very rare cases, for advanced programmers, they may want to ctx_arb on aqualified doubled-
signal name, so that (typically) they can access the read transfer registers before the write
completes. Thisis an advanced technique to be used in special circumstances. It is not expected to
be used by the majority of programmers.

Programmer’s Reference Manual 55

Assembler

Intel® IXP2400/1XP2800 Network Processor u tel
®

2.8.3.5

2.8.4

56

Compatibility Issues

In previous releases, in the br_*signal usage, a different syntax was used:

Previous Syntax Current Syntax
S s[0] or s[write]
s+1 s[1] or s[read]

For compatibility with earlier releases, br_*signal will continue to accept "s' rather than "g[0]" or
"s[write]", although such use should be discouraged. Thisisto avoid confusion with the automatic
doubled of ctx_arb. Similarly, the syntax "s+1" will be accepted for "g[1]", although this is not
recommended. At some future release, such forms may cease to be accepted.

Similarly, where one used to write:

.if (signal(s+1))

one should now write:

.if (signal(s[1]))

Transfer Order(.xfer_order)

The .xfer_order directive describes an ordering of transfer registers. In the case of transfer
requiring multiple 32-bit data transfers, it is necessary to describe to the assembler those 32-bit
register names that must be contiguously ordered in the transfer register address space. Thisis so
that the intended data can be accessed predictably by symbolic specification to individual registers.
The xfer_order reserved name is followed by the ordered list of register names (order increases
from left to right).

Instruction Format

.xfer_order regl reg2 ...

For compatibility with earlier releases, .xfer_order_rd and .xfer_order_wr are still accepted;
however, they behave the same as .xfer_order. In order to get the checking that was previously
implied by these directives, the registers need to be declared with either the read or write keywords.

All registersthat are related via .xfer_order must have the same scope. So, for example, the
following would beinvalid:

Programmer’s Reference Manual

2.8.5

Intel® IXP2400/IXP2800 Network Processor
Assembler

Examples: Incorrect Usage of Xfer_order (1)

.begin
.reg $x1 $x2
.begin
.reg $x3 $x4
.xfer order $x1 $x2 $x3 $x4 // invalid

Similarly, the following would aso be invalid:

Examples: Incorrect Usage of Xfer_order (2)

.reg $x1
.reg visible s$x2

.xfer order s$x1 $x2 // invalid

Thisis because $x1 is declared with amodule scope, and $x2 is declared with aglobal scope (since
visibleimplies global).

Register Lifetime Details

For non-volatile registers, the lifetime is computed automatically. Basically, the register is
considered “live” everywhere it is used as a source of an operation. This“liveness’ isthen
propagated backwards, up the flow graph until it is terminated by an operation that “ sets’ or
assigns avalue to that register.

If the register is not volatile and has a block scope, then the live-range is truncated when it leaves
the register’s defining block. The exception to thisis when it makes a subroutine call/return.

More particularly, when going up the flow graph, the live range is truncated when the current
microword isinside the register’s defining block, the next microword in the graph is not, and the
branch was not caused by aRTN. Thisisillustrated in the figure below. If the current microword is
the one labeled “re-entry point”, then the next-microword is not in the code block, but since the
next-microword isaRTN, the liverange is not truncated and continues up through the subroutine
and back into the code block.

Theregister live ,|code block

range is computedT| code... subroutine
from point of use | |call » entry point
upwardsto point || re-entry point

of setting. code... «—— rtn

Programmer’s Reference Manual 57

Assembler

Intel® IXP2400/1XP2800 Network Processor intel
®

2851

2.8.6

58

A similar situation exists when extending the live range of atransfer register. (It is extended going
down the flow graph from the 1/O operation to the completion of the I/O operation, typicaly a
ctx_arb.) In this case (going down the flow graph), the live rangeis truncated when the current
microword isin the register’s defining block, the next microword is not, and the next microword is
either not in a subroutine or isin the same subroutine as the current microword. That is, a
“subroutine call” is defined as a branch into a subroutine block from someplace not in that
subroutine block, and the live range going down the flow graph is truncated when it leaves the
defining block, unlessit isa*“subroutine call” as defined above.

Consider the case of a block-scoped register that wants to maintain its value outside of its block.
Thiswould be similar to avariablein C defined within afunction with the static qualifier. This
could be done in one of two ways:

Theregister could be declared as volatile. This will guarantee that no one else will clobber that
register, although it will “use up” a dedicated physical register.

Theregister could be declared as having amodul e or global scope. Thismakesit potentially visible
elsewhere in the code, but would result in its lifetime not being truncated.

MEv2 Queue Information

The MEV2 1/O operations (with the exception noted below) are inherently unordered with respect
to each other. That is, the implementation may enforce some particular order, but the architecture
does not. Asaresult, all MEv2 operations go to the "unknown" queue, and a signal must be
specified on each operation. You may take advantage of the ordering of a particular implementation
as determined from other sources (and indicated to the assembler through the mechanisms
described in the section entited “ Determining when 1/O operations complete” on page 66), but such
code will be inherently non-portable.

The exception to the above is operations to the M SF with the ordered optional token (see

Table 2-10). The ordering of MSF transactionsis limited in certain circumstances (e.g. between
writes to the TBUF and TX_VALIDATE). Thus code that is designed to be portable with future
versions of the architecture should limit use of the ordered token to this case. The current
implementations, however, maintain order of all transactions. If you want to take advantage of this,
you may use the ordered token in more situations. The danger in doing so, however, is that such
code may break for future generations of the chip.

Table 2-10. MEV2 Logical Queues

Instruction Condition Queue
MSF read, ordered MSF-Read
write, ordered MSF-Write
other unknown
other unknown

Signal Declarations
Signals are declared in amanner similar to registers:

.sig [keywords]* namel nameZ2 ...

Programmer’s Reference Manual

u Intel® IXP2400/IXP2800 Network Processor

In o Assembler

keywords: Zero or more keywords as described below.
namen: One or more signal names. You cannot declare a signal whose name

matches one of the keywords.

The keywords define the attributes of the signals being declared, as defined by the following table:

Keyword Meaning

If the volatile keyword is present, then the lifetime of the declared signals is set to

volatile volatile. Otherwise, the lifetime is automatic.

If the global keyword is present, then the scope of the declared signals is set to global.
global Otherwise, if the declaration is within a block, the scope is set to block. If it is not within a
block, then the scope is set to module.

visible If the visible keyword is present, then the visibility of the declared signals is set to

visible.
extern If the extern keyword is present, then the named signal needs to be defined elsewhere
(either in this module or another that will be linked in).
If the remote keyword is present, then the named signals must be defined in a different
remote microengine and will presumably be the target of a remote reference (e.g. sending an

inter-thread signal). These are resolved by UCLD. The remote signal must be declared
as visible in the remote microengine in order to be seen by this microengine.

The namespace for signalsisthe same asfor GPRS, i.e. an al phabetic character followed by zero or
more alphanumeric characters. Most particularly, there is no type prefix. Thisis because thereisno
reasonable scenario where a macro argument could represent a register or asignal, and the macro
has to determinewhich it is.

The volatile keyword would in general be needed if the signal were being generated other than in
response to some action within this thread. This might be needed, for example, for an inter-thread
signal .Preferred Register Declaration Syntax

The keyword restrictions are the same as for registers as described in Section 2.8.2.1, “Preferred
Register Declaration Syntax”.

When asignal is consumed viaa ctx_arb, all of the signals will be checked for number. For any of
these signals, if the source along any path generates a doubled signal®, then all sources must
generate adoubled signal. Each doubled signal will implicitly include the next higher signal in the
ctx_arb. For more information on doubled signals, refer to Section 2.8.3.3, “Doubled Signal
References’.

2.8.7 Use of REMOTE Keyword

Registers are defined by the code for the micro-engine in which they are located. Other micro-
engines (e.g. those doing a neighbor-write or reflector operation) reference these via the “remote”

keyword.

1. Somel/O operations generate two signals; i.e. the signal specified for the I/O operation must be even, and that signal and the next higher
odd signal isalso returned. Such asignal is called a“doubled signal” in this document. For more information on double signals, refer to
Section 3.1.2.4, “Event Signas’

Programmer’s Reference Manual 59

Assembler

Intel® IXP2400/1XP2800 Network Processor intel
®

2.8.8

60

Similarly, signals are defined by the user or recipient of the signal (e.g. the micro-engine doing the
ctx_arb). Other micro-engines that wish to send asignal (e.g. viaa CSR write) would declare these
signals with the “remote” keyword. Note that the only valid operation on aremote signal is taking
the address of it. It is never valid to ctx_arb on aremote signal, since that signal does not exist in
the current micro-engine.

Note also that in order to successfully resolve the remote register or signal, it must be declared as
“vigible” in the remote micro-engine.

Thisisillustrated in the following examples:

Examples: MEO does a named neighbor write to ME1

MEO code MEL1 code
.reg remote n$name .reg visible n$name
alu[n$name, ...] alu[xxx, --, b, n$name]

Note in this example that neighbor registers are located in the MEL1 that reads them and not in the
MEQ that writes them.

Examples: ME1 does a reflector read from ME3

MEL1 code ME3 code
.reg remote $name .reg visible $name
.reg $my_xfer immed[$name, ...]

cap[read, $my_xfer, 3, $name, 0, 1], ctx_swapl[sig]

Note in this example that $nameislocated in ME3, and it is accessed using normal source/
destination references. In MEL, it isdeclared as “remote” and referenced viathe “cap” command.

Examples: ME4 sends a signal to ME2 (thread 1)

ME4 code ME2 code
.sig remote rsig .sig visible rsig
cap[fast_wr, ((2<<7) | (1<<4) | (&remote(rsig,2))), interthread_sig] ctx_arb[rsig]

Notein thisexamplethat the signal isdeclared and used normally in ME2 (except that it is declared
“visible”), and that it is referenced via the address operator in ME4.

Address Operator

Thereis aneed to be able to take the address of transfer registers and signals (the “address’ of a
signal isthe signal-number associated with it). This is needed for registers and signals defined
locally (i.e. non-remotely) and for ones declared remote.

Programmer’s Reference Manual

Intel® IXP2400/IXP2800 Network Processor
Assembler

Note that the address of aregister isa"long-word address" (or equivalently a'register number"). In
other words, all low-order bits of the address are significant, and the addresses of the first few
registersare 0, 1, 2, etc. (not 0, 4, 8). The"address" of asignal isits signal number, in the range of
1...15.

When registers and signals are defined locally, thisis done by prepending an “&” to the register/
signal name; e.g.: &$xfer, &sig name

When registers and signals are declared remotely, the reference is defined with the following
pseudo-function:

&remote (name, ME num, ...)

name: Name of remote register/signal

ME num: Number of remote microengine

In the case where aregister/signal is declared in a different block (typically corresponding to a
different context), it isalso considered “remote’. It is referenced with the “ & remote(name)”
construct as described above, but with no ME_num specified.

If more than one ME_num is specified, then a check will be made to make sure that the specified
register/signa hasthe same addressin all of thelisted microengines. This can be used, for example,
when computing the address of atransfer register for a cap command where the microengine to be
reflected to is being selected at run-time. For example:

; Assume ME is in range of 1...3

immed [regl, ((1<<15) | (CTX<<6) | (&remote(S$r,1,2,3)<<2))]
alulregl,regl,or,ME, <<10)

cap[read, $x, regA, TMP, 1],

Inal of these cases, the reference is usable where a constant would be used. Depending upon the
usage, registers or signalsthat have their address taken may or may not need to be declared volatile
by the programmer.

These operators (as well as imported variables) can also be used in constant expressions.

In the context of constant expressions, the address of a remote (or local) neighbor register can be
taken. Note that when taking the address of a remote neighbor register, the ME number of the
neighbor does not need to be specified, and so the & remote() function is not needed. That is, to take
the address of aremote neighbor register, it is sufficient to say "&n$reg"”.

Note also that the address of alocal neighbor register can be taken within a constant expression but
not outside of a constant expression. Constant expressions have enclosing “()”, so the following is
valid:

.reg n$local gpr
immed [gpr, (&nsSlocal)]l

but the following is not:

.reg n$local gpr
immed [gpr, &n$local] ; Error: must be within constant expr

Programmer’s Reference Manual 61

Assembler

In

Intel® IXP2400/1XP2800 Network Processor u tel
®

2.8.8.1

62

Accumulating Results for ctx_arb[--]

In order to use the ctx_arb[--] feature, you need to be able to accumulate a subset of certain signals
into aregister. In order to do this, you need away to get the size of the signal and way to shift it to
the correct position. To support this, thereis a built-in function for constant expressions

mask (sig)

which will expand to "1" for normal signals and "3" for doubled signals. Thiswould typicaly be
used to generate a bit-mask to be written to active_ctx_wakeup_eventsasillustrated in the example
below.

The mask() function behaves differently based on whether the specified signdl is active at thetime
of use (e.g. if the use of mask() is between the I/O and the ctx_arb). If the signal is active, the value
of the mask function will be based on whether the active signal is doubled or not. Thisis because
another, unrelated use of the signal may useit in the other sense. However, if the signal is not active
at the time that mask() is used, but the signal isonly used in adoubled or single sense, the mask()
function succeeds. If the signal is not active where mask() is used, and the signal isused in both a
single and doubled manner, then an error resuilts.

Additionally, the alu (alu_shf) instruction will support syntax for shifting based on the address of a
signal. In particular, the shift token can take any of the following forms:

<<&sig or reg
<<&remote (sig or reg)
<<&remote (sig or reg, me)

<< (constant_expression)

Thiswould be used as indicated in the following example (for an explanation of ".io_completed",
see the section entitled “ Determining when |/O operations complete” on page 66"):

alulsig mask, --, b, (mask(sigl)), <<&sigl]

Jif (L)

alulsig _mask, sig mask, or, (mask(sig2)), <<&sig2]
.endif

i (L)

alulsig mask, sig mask, or, (mask(sig3)), <<&sig3]
.endif

local_csr_wrlactive_ctx wakeup_events, sig mask]
ctx_arb[--]

.io_completed sigl sig2 sig3

Note that if the mask() function isinvoked where asignal is live and single, but then that valueis
later used when the signal is doubled, (or vice versa), the code will fail with no warnings or errors.
For example:

Example of incorrect usage of mask()
sram[read, $x, a,0, 1], sig_donelsigl] ; sigl is single
alulsigl mask, --, b, (mask(sigl)), <<&sigl] ; mask() is 1

ctx_arb[sigl]

Af (L)

sram[swap, $x, a,0], sig_donel[sigl] ; sigl is now doubled
alultot_mask, tot_mask, or, sigl mask] ; sigl mask is 1

Programmer’s Reference Manual

In Assembler

u t6I Intel® IXP2400/IXP2800 Network Processor
®

; ERROR: tot_mask is now incorrect. It is 1, but should be 3
.endif

local_csr_wrlactive_ctx wakeup_events, tot_mask]

ctx_arb[--]

.io_completed sigl ..

2.8.8.2 Examples of Address Operator and Visible/Volatile Signals

Thefirst example is one context (context-0) signaling another (context-1) in the same ME:
Lif (etx () == 0)
.sig remote s
local _csr wrl..., (...&remote(s)...)]

.elif (ctx() == 1)
.begin // begin block for context-1
.sig visible s
.while (1)

.endw
.end
.elif ...

In this case, context-0 is using aremote declaration and the "' & remote(name)” construct to
reference a signal declared within the same ME, but which islocal to a different block.

Note that if context-1 was in adifferent ME, then the picture would look almost identical, except
that the reference would be " & remote(name,M E_num)".

In either case, thereis aproblem if the programmer wants to use the same visible signal in
different, independent contexts. There are several ways in which this could be addressed:

1. Usethree different names, e.g. "s1", "s2", etc.

2. Usea.begin/.end block that included multiple contexts (but preferably not the unnecessary
contexts, as this would defeat the purpose of making the visible signal non-volatile).

3. Makethesignal "s' volatile and global, and just live with wasting a signal in the other
contexts.

Another example where this mechanism would be useful isin the case where one ME (the master)
isinitializing some data structure and wants to hold off the other MEs (the slaves) until the
structureisinitialized. A typical way to do thisisto have the master ME send an inter-thread signal
to the slave MEs. This signal would have to be visible, but it would only be used during
initialization. This could be handled in slaves as:

Lif (ctx() == 0)
.begin
.sig visible wakeup
lab#: br_!signal [wakeup, lab#]
.end
.endif

In this case, after the begin/end bl