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Today’s Web bears little resemblance to the Web 
of a decade ago. A Web page today encapsulates 
tens to hundreds of resources pulled from multiple 
domains. JavaScript is the technological staple of Web 
applications, not a tool for frivolous animation.  
Users access the Web from diverse device form factors, 
while browsers have improved dramatically. A constant 
throughout this evolution is the underlying application-
layer protocol—HTTP—providing fertile ground  
for Web growth and evolution but was designed at a 
time of far less page complexity. Moreover, HTTP is  
not optimal, with pages taking longer to load. Studies 
over the past five years suggest even 100 milliseconds

additional delay can have a quantifi-
ably negative effect on Web use,9 spur-
ring interest in improving Web per-
formance. One such effort is SPDY, a 
potential successor to HTTP champi-
oned by Google that requires both cli-
ent and server changes, a formidable 
hurdle to widespread adoption. How-
ever, early client support from major 
browsers Chrome and Firefox suggests 
SPDY is a protocol being taken seri-
ously. Though server support for SPDY 
is growing through projects like mod_
spdy12 truly widespread server adop-
tion is likely to take time. In the inter-
im, SPDY gateways are emerging as a 
compelling transition strategy, prom-
ising to accelerate SPDY adoption by 
functioning as a translator between 
SPDY-enabled clients and non-SPDY-
enabled servers (see Figure 1). A variety 
of incentives motivate organizations to 
deploy and users to adopt SPDY gate-
ways, as described here. 

SPDY (pronounced SPeeDY) is an 
experimental low-latency application-
layer protocol27 designed by Google 
and introduced in 2009 as a drop-in 
replacement for HTTP on clients and 
servers. SPDY retains the semantics 
of HTTP, allowing content to remain 
unchanged on servers while adding re-
quest multiplexing and prioritization, 
header compression, and server push 
of resources. Since 2009, SPDY has un-
dergone metamorphosis from press re-
lease written and distributed by Google 
to production protocol implemented 
by some of the highest-profile players 
on the Web. 

Figure 2 is a timeline of SPDY mile-
stones, first appearing publicly in a 
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worldwide to deploy SPDY gateways 
on the high-speed Internet. Content-
delivery networks have begun offer-
ing SPDY gateway services to Web 
site owners as a means of accelerat-
ing the performance (as experienced 
by users) of their HTTP Web sites.1,26 
Vendors of mobile devices might de-
ploy SPDY gateways to accelerate the 
notoriously slow high-latency mobile 
browsing experience, a marketable 
feature. Even more intriguing are 
the incentives for large Web compa-
nies to deploy open (publicly avail-
able) SPDY gateways to collect and 
mine rich information about users’ 
Web-browsing behavior, a lucrative 
commodity in the business of online 
advertising. Interestingly, the SPDY 
gateway’s ability to aggregate certain 
critical resources may provide ben-
efits above and beyond regular SPDY, 
as described later. 

SPDY Protocol 
SPDY is designed primarily to address 
performance inhibitors inherent in 
HTTP, including HTTP’s poor support 
for pipelining and prioritization, the 
inability to send compressed headers, 
and lack of resource push capabilities. 
SPDY’s hallmark features—request 
multiplexing/prioritization, header 
compression, and server push—are de-
scribed in the following sections: 

Request multiplexing and prioritiza-
tion. SPDY multiplexes requests and re-
sponses over a single TCP connection 
in independent streams, with request 
multiplexing inspired by HTTP pipe-
lining while removing several limita-
tions. HTTP pipelining allows multiple 
HTTP requests to be sent over a TCP 
connection without waiting for cor-
responding responses (see Figure 4). 
Though pipelining has been specified 
since the 1999 HTTP 1.1 RFC,11 Opera 
is the only browser that both imple-
ments the feature and enables it by de-
fault. Other major browsers either do 
not implement pipelining or disable 
pipelining by default, as compatibility 
with older Web proxies and servers is 
problematic. Besides a lack of wide-
spread adoption, HTTP pipelining also 
suffers from head-of-line blocking, as 
the specification mandates resources 
be returned in the order they are re-
quested, meaning a large resource, or 
one associated with a time-consuming 

November 2009 post6 on the Google 
Chromium blog (http://blog.chro-
mium.org) describing the protocol as 
“an early-stage research project,” part 
of Google’s effort to “make the Web 
faster.” By September 2010, SPDY 
had been implemented in the stable 
version of the Google Chrome brows-
er,14 and by February 2011, Google 
quietly flipped the server-side switch 
on SPDY, using the protocol to serve 
major services (such as Gmail, Maps, 
and search) to Chrome and other 
SPDY-enabled clients.4 In February 
2011, the Android Honeycomb mo-
bile Web browser received client-side 
SPDY support, also with little public-
ity.13 In September 2011, Amazon an-
nounced its Kindle Fire tablet, along 
with the Silk Web browser that speaks 
SPDY to Amazon cloud servers.3 In 
January 2012, Mike Belshe, SPDY co-
author, commissioned development 

of an open-source Apple iOS SPDY cli-
ent library.20 In March 2012, Firefox 
11 implemented the SPDY protocol,19 
which, by June 2012, was enabled by 
default in Firefox 13,22 bringing com-
bined client-side support (Chrome + 
Firefox) to approximately 50% of the 
desktop browser market25 (see Figure 
3). SPDY is currently an Internet En-
gineering Task Force (IETF) Internet 
draft in its third revision.7 

SPDY’s rapid client adoption is im-
pressive, though server adoption lags 
considerably. SPDY gateways offer a 
promising transition strategy, bring-
ing many of SPDY’s benefits to clients 
without requiring server support. 
The incentive for clients to use SPDY 
gateways is simple: a faster and more 
secure browsing experience; SPDY is 
generally deployed over SSL for rea-
sons discussed later. There are also 
commercial incentives for companies 

Figure 2. Timeline of SPDY-related development milestones. 
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back-end process, delays all other re-
sources (see Figure 5). 

SPDY implements pipelining with-
out HTTP’s head-of-line blocking limi-
tation. Resources transferred through 
a SPDY connection are carried in an-
notated “streams,” or independent se-
quences of bidirectional data divided 
into frames; annotated streams allow 
SPDY to not only return resources in 
any order but interleave resources over 
a single TCP connection7 (see Figure 6). 

SPDY also includes request priori-
tization, allowing the client to specify 
that certain resources be returned with 
a higher priority than others. Unlike 
many quality-of-service mechanisms 
that work on prioritizing packets in 
queues at lower layers in the network 
stack, SPDY prioritization works at the 
application layer, designed to allow 
the client to specify what is important. 
One use of prioritization is to request 
that resources that block progressive 
page rendering (such as cascading 
style sheets and JavaScript) be returned 
with higher priority. Another use of pri-
oritization is to increase the priority of 
resources being downloaded for the 
currently visible browser tab while de-
creasing priority of resources belong-
ing to a currently loading but hidden 
tab. A further implication of imple-
menting priority at the application 
layer is that a server can, at least theo-
retically, prioritize not only the order in 
which resources are transmitted over 
the wire but also the order in which re-
sources are generated on the back-end 
if the task is time intensive. 

Header compression. HTTP requests 
and responses all include a set of HTTP 
headers that provide additional infor-
mation about the request or response 
(see Figure 7). There is significant re-
dundancy in these headers across re-
quests and responses; for example, 
the “User-Agent” header describing 
the user’s browser (such as Mozilla/5.0 
compatible, MSIE 9.0, Windows NT 
6.1, WOW64, and Trident/5.0 for In-
ternet Explorer 9) is sent to the server 
many times over. Likewise, cookie 
headers, which describe state infor-
mation about the client, are repeated 
many times over across requests. Such 
redundancy means HTTP headers tend 
to compress relatively effectively. To 
further improve compression, SPDY 
seeds an out-of-band compression dic-

tionary based on a priori knowledge of 
common HTTP headers.29 

Server push. This advanced feature 
of SPDY allows the server to initiate 
resource transfer, rather than having 
to wait until a corresponding client 
request is received; Figure 8 outlines 
a server using it to push a resource to 
the client that would be requested im-
minently regardless. Server push saves 
superfluous round trips by relying on 
the server’s knowledge of resource de-
pendencies to determine what should 
be sent to the client. 

Performance engineers have em-
ployed a range of techniques to try to 
achieve push-like behavior over HTTP, 

though each involves certain short-
comings; for example, data URIs allow 
inlining resources (such as images) 
into the main HTML but are not cache-
able and increase resource size by ap-
proximately 33%. Another technique, 
Comet, opens a long-held connection 
to the server8 through which arbi-
trary resources may be pushed but re-
quires an additional initial round trip. 
Bleeding-edge technologies (such as 
Web Sockets28 and resource prefetch-
ing15,21) also enable push-like behavior 
but, like Comet, require an additional 
round trip to establish such behavior. 
A universal limitation of current tech-
niques is they break resource modu-

Figure 3. Global browser usage share, as recorded by StatCounter (http://gs.statcounter.
com/#browser-ww-monthly-201103-201202); in February 2012, Chrome had 29.84% and 
Firefox 24.88%. 
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larity by inserting JavaScript, links, or 
inlined content into the main HTML 
document. SPDY push does not re-
quire modification of content to sup-
port push functionality. 

SPDY Security 
The SPDY protocol can be run over 
either a secure (SSL encrypted) or in-
secure (non-encrypted) transport. In 
practice, both philosophical views 

on the role of Web encryption and 
pragmatism in handling real-world 
deployment constraints have led to 
primarily SSL-encrypted implemen-
tations. Mike Belshe, SPDY co-au-
thor,7 and Patrick McManus, princi-
pal SPDY implementer for Firefox, 
have expressed their interest in see-
ing the Web transition to a “secure 
by default” model.5,18 Proponents of 
encrypted SPDY say SSL is no longer 
computationally expensive16 and its 
security benefits outweigh its com-
munication overhead. 

The pragmatic reason for deploy-
ing SPDY over SSL (port 443) rather 
than HTTP (port 80) is that transpar-
ent HTTP proxies between the client 
and the server handle HTTP upgrades 
unreliably.13 Transparent HTTP prox-
ies do not modify encrypted traffic on 
SSL port 443 (as they do on port 80) 
and so should not interfere with newer 
protocols like SPDY. The rationale for 
choosing port 443 over an arbitrary 
port number is that port 443 appears to 
traverse firewalls more effectively13 (see 
Figure 9). 

SPDY relies on the next-protocol ne-
gotiation (NPN)17 SSL extension to up-
grade the SSL connection to the SPDY 
protocol. NPN is currently an Internet 
Engineering Task Force Internet Draft 
and implemented in OpenSSL23; NPN 
also allows negotiation of other com-
peting future protocols. SSL imple-
mentations that do not currently sup-
port NPN simply ignore the request to 
upgrade the protocol, retaining back-
ward compatibility. 

SPDY Performance 
Only a handful of (publicly available) 
studies quantitatively benchmark 
SPDY against HTTP, all from the same 
source—Google. Corroborating the 
following results across different sites 
represents important future work: 

Google Chrome live A/B study. In 
2011, Google benchmarked SPDY 
against HTTP in real-life A/B tests 
conducted through the Chrome 
browser. From March 22 to April 5, 
2011, Google configured “in the wild” 
deployments of the Chrome 12 brows-
er to randomly assign 95% of browser 
instantiations to use SPDY for SPDY-
capable sites; the other 5% of instanti-
ations used HTTPS. Google research-
ers observed a 15.4% improvement in 

Figure 5. Head-of-line blocking in HTTP pipelining; a large resource blocks subsequent 
smaller resources (left), and a slow-to-generate resource blocks subsequent resources 
(right). 
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page-load time across browser instan-
tiations using SPDY,13 though a caveat 
was that domain names in the study 
were neither recorded nor weighted. 
Google itself is thought by Google de-
velopers to be the current dominant 
consumer of server-side SPDY tech-
nology so is likely overrepresented 
in these results. Google sites were, in 
2011, already heavily optimized, sug-
gesting the stated improvement was 
likely conservative, though further 
data is needed for confirmation. 

Google’s second result from the 
study was that (encrypted) SPDY is 
faster than (unencrypted) HTTP for 
Google’s AJAX search; Google research-
ers provided no further detail. 

Google lab tests set one. Google per-
formed a series of laboratory bench-
marks of SPDY vs. HTTP under various 
conditions, though unencrypted SPDY, 
which would be expected to be faster 
than encrypted SPDY, was compared 
against HTTP, despite SPDY deploy-
ments being predominantly encrypted. 

For simulated downloads of the top 
45 pages on the Web (as recorded by 
Alexa), Google in 2011 reported a 51% 
reduction in uploaded bytes, 4% re-
duction in downloaded bytes, and 19% 
reduction in total packets vs. HTTP.13 
Uploaded bytes were significantly re-
duced due to SPDY’s header compres-
sion and the fact that HTTP headers 
are amenable to strong compression. 
Google reported that download bytes 
were only marginally reduced, as most 
downloaded content in its tests was 
not headers and in many cases already 
compressed. The reduction in total 
packets is due to both a reduction in 
overall bytes and the fact that SPDY 
uses only a single connection, result-
ing in more “full” packets. 

Google lab tests set two. A 2009 
Google SPDY white paper14 described 
simulated page-load time of SPDY 
vs. HTTP for the Alexa top 25 Web 
sites. The first test simulated SPDY 
vs. HTTP with 1% packet loss over 
simulated home-network connec-
tions. Unencrypted SPDY exhibited 
27%–60% improvement in page-load 
time, and encrypted (SSL) SPDY ex-
hibited 39%–55% improvement in 
page-load time. A second test deter-
mined how packet-loss affected SPDY 
(unencrypted) vs. HTTP; at 0% packet 
loss, SPDY was 11% faster, and at 2% 

packet loss SPDY was up to 47% faster. 
A third test simulated SPDY vs. HTTP 
as a function of round-trip time; for 
example, for a 20ms round trip, SPDY 
was 12% faster than HTTP, and for 
a 200ms round trip, SPDY was 26% 
faster; for a full exposition of these re-
sults, see Google.14 

Questions on SPDY performance. 
There is a conspicuous lack of results 
describing how SPDY performs on 
mobile devices. SPDY’s dominant per-
formance improvements are due in 
theory to reduced round trips between 
client and server. Many mobile-carrier 
technologies today exhibit latency sev-
eral times that of their fixed-line and 
Wi-Fi counterparts. By some projec-
tions, the majority of the developing 
world will have its first Internet experi-

ence through a mobile carrier, prolif-
erating high-latency connections. In 
theory, SPDY is ideally suited to these 
high-latency mobile environments, 
though real-world results are needed 
for confirmation. 

SPDY push-and-request prioritiza-
tion is also underexplored. For push, 
work is needed toward determining 
how aggressive a server should pre-
emptively push resources to the client. 
For prioritization, no studies exist on 
SPDY’s efficacy in tabbed browser en-
vironments where the currently visible 
tab’s downloading resources could be 
assigned higher priority. 

SPDY Effect on TCP Connections 
Though SPDY is an application-layer 
protocol, it involves broader implica-

Figure 7. HTTP request and response with example headers; header keys (such as  
“User-Agent”) and header values (such as a particular user agent string) are repeated  
many times over on a typical connection so make good candidates for compression. 

GET /pub/WWW/picture.jpg HTTP/1.1
Host: www.w3.org
…
Accept-Endcoding: gzip, deflate, sdch
User-agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2012 04:16:13 GMT
…
Server: Apache/2.2.3 (Red Hat)
Content-Type: image/jpeg

Figure 8. HTTP is unable to push resources to the client, even when it knows the client will 
require them soon (left); SPDY server push allows the server to initiate the transfer of a 
resource it believes the client will need soon (right). 
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tions and interesting interactions with 
the TCP transport layer: 

TCP connection proliferation in HTTP. 
Prior to standardization of HTTP/1.1 in 
1999, HTTP/1.0 permitted download-

ing only a single resource over a TCP 
connection and only four concurrent 
TCP connections to any given server. 
HTTP/1.1 introduced persistent con-
nections, allowing connection reuse 

for multiple resources. HTTP/1.1 con-
comitantly reduced maximum concur-
rent TCP connections from four to two, 
helping reduce server load and allevi-
ate Internet congestion11 induced by 
proliferation of short-lived TCP con-
nections at the time. Unfortunately, 
halving concurrent connections had 
the adverse effect of reducing down-
load parallelism. HTTP/1.1 envisaged 
that the newly introduced HTTP pipe-
lining would remedy the problem, but, 
as described earlier, pipelining proved 
difficult to implement and suffers from 
head-of-line blocking, as in Figure 5. 

Having only two concurrent connec-
tions creates a serious performance 
bottleneck for modern high-speed 
Internet connections and complex 
Web sites. First, TCP slow-start, slowly 
ramping up usable-connection band-
width based on number of success-
fully received packets, is often overly 
conservative in its initial bandwidth 
allocation. Several round trips are 
needed before the connection is satu-
rated, by which time much of the con-
tent may have been downloaded al-
ready (at a slower-than-necessary rate). 
Second, a typical modern Web page 
encapsulates 10s or 100s of resources, 
only two of which may be requested at 
any given time. Without HTTP pipelin-
ing, requests cannot be queued on the 
server, so each new request incurs an 
additional round trip. Because most 
Web resources are small, the round-
trip time to the server often dominates 
over the time to receive the resource 
from first to last byte. 

Modern browsers break from the 
HTTP/1.1 standard by allowing six or 
more concurrent TCP connections 
to a server. This allocation largely cir-
cumvents both previously outlined 
problems—effective initial bandwidth 
becoming TCP slow-start constant * 6 
(rather than * 2) and fewer round trips 
incurred due to higher request concur-
rency. A common practice among large 
Web properties (such as Facebook, 
Google, and Twitter) is to “shard”24 a 
Web page’s resources across multiple 
domains (such as img1.facebook, 
img2.facebook, img3.facebook, and 
img4.facebook) to subvert browser pol-
icy and obtain greater concurrency. In 
a modern browser, a Web page sharded 
across four domains can receive 4 * 6 = 
24 concurrent TCP connections. 

Figure 9. Real-world success rates of upgrading to newer protocols over various port  
numbers, as measured by Google Chrome’s WebSocket team. Firewalls drop traffic on arbi-
trary new ports, and transparent proxies inhibit protocol upgrades over port 80. 
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Figure 10. A SPDY gateway offers security between client and gateway regardless of the 
security of the destination server. 
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TCP connection proliferation. In-
creasing concurrent connections 
through browser policy and sharding 
can improve page-load time but create 
other problems. Though highly concur-
rent connections circumvent an overly 
conservative slow start on a single TCP 
connection, they may (in aggregate) ex-
ceed total available bandwidth, induc-
ing packet loss. Moreover, the likeli-
hood of losing a critical control packet 
increases with the number of concur-
rent connections; for example, the TCP 
SYN packet, which initiates a TCP con-
nection, has a retransmission timeout 
measured on the order of seconds if no 
acknowledgment is received. 

Highly concurrent TCP connec-
tions also decrease the likelihood of 
fast retransmit being invoked under 
packet loss. Fast retransmit is a TCP 
enhancement that immediately re-
sends a packet without waiting for 
a fixed timeout delay if acknowledg-
ments for several packets subsequent 
to the lost packet are received. High-
ly concurrent connections obtain 
less bandwidth individually than a 
single long-lived connection and are 
therefore less likely to receive and ac-
knowledge enough packets in a short 
enough duration to trigger fast re-

transmit. There is also less “body” in 
each short-lived connection, increas-
ing the likelihood that any packet loss 
would occur near the end of a connec-
tion where too few acknowledgments 
exist to trigger fast retransmit.

Finally, highly concurrent TCP con-
nections create more connection states 
to be maintained at various points in 
the network, including at network-
address-translation boxes, as well as 
state binding processes to TCP port 
numbers. In some instances, this state 
can even cause poorly implemented 
hardware and software to fail or mis-
identify the highly concurrent connec-
tion openings as a SYN flood (a type of 
denial-of-service attack).10 

SPDY elephant vs. HTTP mice. The 
highly concurrent short-lived TCP flows 
of modern HTTP fall into the category 
of connections colloquially known as 
“mice” flows. In contrast, SPDY is able 
to use a single long-lived “elephant” 
flow, as it can multiplex and prioritize 
all requests over a single connection. 
SPDY therefore retains the benefits of 
highly concurrent HTTP connections, 
without detrimental side effects. 

A short-term disadvantage of SP-
DY’s single-connection approach is 
inequitable TCP “backoff” compared 

to competing applications still using 
multiple TCP connections; for exam-
ple, a backoff algorithm that responds 
to packet loss by reducing the available 
bandwidth of a connection by 50% will 
likewise halve the total bandwidth 
available to an application using a sin-
gle SPDY TCP connection. The same 
backoff algorithm applied to an appli-
cation using 12 concurrent TCP con-
nections would reduce the total avail-
able bandwidth to the application by 
only 4% (1/24) of the connections. Con-
nection proliferation should not be en-
couraged over the long term, though a 
short-term mitigation strategy would 
involve using a small number of con-
current SPDY connections. Long-term 
research may look to address this issue 
through smarter backoff algorithms 
providing equitable treatment to ap-
plications, independent of the num-
ber of TCP connections. 

Transitioning to SPDY 
SPDY has been implemented in several 
popular client browsers, most notably 
Chrome and Firefox. Though server 
support for SPDY continues to grow, 
it has yet to reach the maturity and 
adoption of client implementations. 
SPDY gateways are one way to acceler-

Figure 11. A client can delegate DNS lookup to a SPDY gateway, helping minimize round trips. 
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ate SPDY adoption, providing many 
SPDY performance and security advan-
tages without requiring SPDY support 
on the server. A SPDY gateway is an 
explicit proxy that translates between 
SPDY-enabled clients and HTTP-only 
servers. By situating such a gateway on 
the high-speed Internet, SPDY is used 
over the slow “last mile” link between 
the client and the Internet core. The 
HTTP portion of the connection is in 
turn isolated to the very-low-latency, 
very-high-bandwidth link between the 
gateway and the server, largely miti-
gating HTTP’s dominant performance 
inhibitors. In addition to providing a 
practical, viable SPDY transition solu-
tion, SPDY gateways also offer several 
performance-enhancing features: 

Secure connection to gateway, regard-
less of server-side SSL support. Because 
SPDY operates over SSL, the client-to-
gateway connection is secure, regard-
less of whether SSL is supported on 
the destination server (see Figure 10). 
Though the gateway-to-server connec-
tion could remain insecure, clients are 
protected from common attacks (such 
as eavesdropping on insecure Wi-Fi ac-
cess points). 

Single client-side connection across 
all domains. As described earlier, 
SPDY request multiplexing results in 
dramatically fewer TCP connections 
than HTTP browsers in use today. 
However, clients still require at least 
one new TCP connection for each new 
server they contact. A SPDY gateway 
can achieve even greater efficiency 
than regular SPDY by multiplexing all 
of a client’s requests to the gateway 
over a single TCP connection covering 
all servers. 

A SPDY gateway might still create 
multiple connections to a given HTTP 
server to emulate pipelining and avoid 
head-of-line blocking but isolate these 
connections to the high-speed/low-
latency Internet core. A SPDY gateway 
may also retain a small pool of TCP 
connections to popular servers, allow-
ing new client requests to be forwarded 
immediately without incurring a new 
TCP connection handshake or slow-
start “warm-up.” Likewise, the client 
needs to perform a single TCP connec-
tion handshake only with the gateway 
and go through the slow-start warm-up 
only once (as opposed to every time a 
new server is contacted). 

Delegated DNS lookup. This perfor-
mance enhancement specific to SPDY 
gateways entails the gateway perform-
ing DNS translations from domain 
names to server IP addresses on behalf 
of the client, allowing the client to im-
mediately send a request for a resource 
to the gateway without knowing the 
IP address of the server on which it 
is hosted (see Figure 11). Being situ-
ated on the high-speed Internet, the 
gateway is better positioned to quickly 
translate the domain name to an IP ad-
dress; moreover, a gateway that serves 
a large number of users can cache the 
IP addresses of popular domains. 

Intelligent push. A SPDY gateway 
can exploit its large user base to infer 
resource dependencies, even across 
domains. A regular SPDY-capable 
server has a limited view of a user’s 
browsing behavior, isolated to the 
server itself. A gateway sees a user’s 
requests for all servers so it can infer 
complex patterns of cross-domain 
navigation; for example, the gateway 
could determine that 95% of users is-
suing a Google search query for “Twit-
ter” proceed to twitter.com, and, given 
this knowledge, the gateway then pre-
emptively pushes resources from the 
twitter.com homepage to the user. 
In 2011, Amazon reported the Silk 
browser on the Kindle Fire tablet al-
ready performed intelligent push of 
this nature, called by Amazon “predic-
tive rendering.”2 

Caching. Like a transparent proxy, 
a SPDY gateway can cache resources 
such that subsequent requests for the 
same resource are served without con-
tacting the origin server. 

SPDY gateways, a permanent fixture? 
This description of SPDY gateways 
highlights that in some respects gate-
ways offer more attractive features than 
SPDY directly between clients and serv-
ers, including four notable functions: 
further reduction in TCP connections 
over the last mile; pre-warming of TCP 
connections; delegation of DNS trans-
lations to the fast Internet core; and 
intelligent push and resource caching. 
We suggest that gateways may have 
a persistent role on the Web, beyond 
mere transition strategy. 

Future SPDY Gateways 
Several companies have deployed 
large SPDY gateways. Perhaps most 

Aside from offering 
faster browsing 
as a selling point, 
Amazon and other 
potential vendors 
are likely interested 
in the data mining 
and advertising 
opportunities 
that come with 
controlling  
the gateway. 
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notable is the gateway used by the de-
fault Silk browser on the Amazon Kindle 
Fire tablet2; Silk proxies much of a 
user’s Web traffic through an Amazon 
SPDY gateway deployed on the Ama-
zon Web Services cloud infrastructure. 
Other examples are content-delivery-
network/Web-acceleration providers 
Contendo1 and Strangeloop,26 both 
offering SPDY gateways as a service to 
HTTP content providers. 

Device-specific SPDY gateways. Ama-
zon’s decision to couple the Kindle 
Fire Silk browser to its own propri-
etary SPDY-based gateway begs the 
question: Could, and will, other major 
providers do the same? Could there 
be, say, an Apple SPDY gateway for 
iPhones and iPads or a Google SPDY 
gateway for Android devices in the fu-
ture? Could such gateways be in the 
works already? The potential perfor-
mance advantage of SPDY gateways 
is particularly intriguing on such re-
source-constrained mobile devices. 
The controlled “appliancized” nature 
of the devices and their operating 
systems would also simplify vendor 
implementation. Aside from offer-
ing faster browsing as a selling point, 
Amazon and other potential vendors 
are likely interested in the data min-
ing and advertising opportunities that 
come with controlling the gateway.

Open SPDY gateways. Beyond de-
vice-specific gateways lies uncharted 
though potentially lucrative territo-
ry—open SPDY gateways—that, like 
an open proxy, are usable by anyone, 
independent of device or platform. 
Major Web companies have demon-
strated that free and universal services 
can be made profitable through relat-
ed targeted advertising opportunities. 
So, could SPDY gateways be turned 
into another free, universal service 
rendered profitable through better-
targeted advertising? 

A limitation Web advertisers face 
today is a restricted view of user activi-
ty on domains beyond their direct con-
trol. A SPDY gateway provides a van-
tage point from which to observe all 
of a user’s Web activity, not just on do-
mains under the advertiser’s control. 
Major Web companies like Facebook 
and Google track users across the Web 
on third-party sites through partner 
advertising scripts and other embed-
dable features (such as the “Like” but-

ton), but the picture is incomplete. 
An open SPDY gateway would provide 
advertisers missing pieces from the 
browsing-behavior puzzle that could 
be fed back into targeted-advertising 
algorithms. While much the same 
could be done using device-specific 
SPDY gateways, an open SPDY gate-
way would provide insight into a much 
larger user population. Interesting to 
consider therefore is whether SPDY 
gateways (much like search) could 
become a universal service accessible 
through a broad range of devices. 

Conclusion 
SPDY is a high-performance appli-
cation-layer protocol and potential 
successor to HTTP. Clients have been 
quick to adopt it, though server imple-
mentations lag. SPDY gateways are 
helping accelerate SPDY adoption by 
removing the need for SPDY support 
on the server. A range of compelling 
incentives exists for deploying SPDY 
gateways that are only beginning to 
be explored. Beyond just a transition 
strategy, SPDY gateways have per-
formance characteristics that make 
them attractive for longer-term use. 
Whether such long-term advantages 
compared to SPDY support on the 
server are substantial enough to war-
rant retaining SPDY gateways is an 
open question. 
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