
64 communications of the acm | december 2012 | vol. 55 | no. 12

contributed articles

Today’s Web bears little resemblance to the Web
of a decade ago. A Web page today encapsulates
tens to hundreds of resources pulled from multiple
domains. JavaScript is the technological staple of Web
applications, not a tool for frivolous animation.
Users access the Web from diverse device form factors,
while browsers have improved dramatically. A constant
throughout this evolution is the underlying application-
layer protocol—HTTP—providing fertile ground
for Web growth and evolution but was designed at a
time of far less page complexity. Moreover, HTTP is
not optimal, with pages taking longer to load. Studies
over the past five years suggest even 100 milliseconds

additional delay can have a quantifi-
ably negative effect on Web use,9 spur-
ring interest in improving Web per-
formance. One such effort is SPDY, a
potential successor to HTTP champi-
oned by Google that requires both cli-
ent and server changes, a formidable
hurdle to widespread adoption. How-
ever, early client support from major
browsers Chrome and Firefox suggests
SPDY is a protocol being taken seri-
ously. Though server support for SPDY
is growing through projects like mod_
spdy12 truly widespread server adop-
tion is likely to take time. In the inter-
im, SPDY gateways are emerging as a
compelling transition strategy, prom-
ising to accelerate SPDY adoption by
functioning as a translator between
SPDY-enabled clients and non-SPDY-
enabled servers (see Figure 1). A variety
of incentives motivate organizations to
deploy and users to adopt SPDY gate-
ways, as described here.

SPDY (pronounced SPeeDY) is an
experimental low-latency application-
layer protocol27 designed by Google
and introduced in 2009 as a drop-in
replacement for HTTP on clients and
servers. SPDY retains the semantics
of HTTP, allowing content to remain
unchanged on servers while adding re-
quest multiplexing and prioritization,
header compression, and server push
of resources. Since 2009, SPDY has un-
dergone metamorphosis from press re-
lease written and distributed by Google
to production protocol implemented
by some of the highest-profile players
on the Web.

Figure 2 is a timeline of SPDY mile-
stones, first appearing publicly in a

SPDYing
Up the
Web

doi:10.1145/2380656.2380673

Improved performance and a proven
deployment strategy make SPDY a potential
successor to HTTP.

By Bryce Thomas, Raja Jurdak, and Ian Atkinson

 key insights

 � �SPDY seeks to improve Web page
load times by making fewer round trips
to the server.

 � �Client-side browser support for SPDY
has grown rapidly since 2009, and SPDY
gateways offer a transition strategy that
does not rely on server-side support.

 � �Open SPDY gateways are an opportunity
for organizations to capitalize on the
behavioral browsing data they produce. I

m
a

g
e

 by

 V
la

d

itto

YKCHANG
螢光標示

YKCHANG
螢光標示

YKCHANG
底線

YKCHANG
底線

YKCHANG
底線

66 communications of the acm | december 2012 | vol. 55 | no. 12

contributed articles

worldwide to deploy SPDY gateways
on the high-speed Internet. Content-
delivery networks have begun offer-
ing SPDY gateway services to Web
site owners as a means of accelerat-
ing the performance (as experienced
by users) of their HTTP Web sites.1,26
Vendors of mobile devices might de-
ploy SPDY gateways to accelerate the
notoriously slow high-latency mobile
browsing experience, a marketable
feature. Even more intriguing are
the incentives for large Web compa-
nies to deploy open (publicly avail-
able) SPDY gateways to collect and
mine rich information about users’
Web-browsing behavior, a lucrative
commodity in the business of online
advertising. Interestingly, the SPDY
gateway’s ability to aggregate certain
critical resources may provide ben-
efits above and beyond regular SPDY,
as described later.

SPDY Protocol
SPDY is designed primarily to address
performance inhibitors inherent in
HTTP, including HTTP’s poor support
for pipelining and prioritization, the
inability to send compressed headers,
and lack of resource push capabilities.
SPDY’s hallmark features—request
multiplexing/prioritization, header
compression, and server push—are de-
scribed in the following sections:

Request multiplexing and prioritiza-
tion. SPDY multiplexes requests and re-
sponses over a single TCP connection
in independent streams, with request
multiplexing inspired by HTTP pipe-
lining while removing several limita-
tions. HTTP pipelining allows multiple
HTTP requests to be sent over a TCP
connection without waiting for cor-
responding responses (see Figure 4).
Though pipelining has been specified
since the 1999 HTTP 1.1 RFC,11 Opera
is the only browser that both imple-
ments the feature and enables it by de-
fault. Other major browsers either do
not implement pipelining or disable
pipelining by default, as compatibility
with older Web proxies and servers is
problematic. Besides a lack of wide-
spread adoption, HTTP pipelining also
suffers from head-of-line blocking, as
the specification mandates resources
be returned in the order they are re-
quested, meaning a large resource, or
one associated with a time-consuming

November 2009 post6 on the Google
Chromium blog (http://blog.chro-
mium.org) describing the protocol as
“an early-stage research project,” part
of Google’s effort to “make the Web
faster.” By September 2010, SPDY
had been implemented in the stable
version of the Google Chrome brows-
er,14 and by February 2011, Google
quietly flipped the server-side switch
on SPDY, using the protocol to serve
major services (such as Gmail, Maps,
and search) to Chrome and other
SPDY-enabled clients.4 In February
2011, the Android Honeycomb mo-
bile Web browser received client-side
SPDY support, also with little public-
ity.13 In September 2011, Amazon an-
nounced its Kindle Fire tablet, along
with the Silk Web browser that speaks
SPDY to Amazon cloud servers.3 In
January 2012, Mike Belshe, SPDY co-
author, commissioned development

of an open-source Apple iOS SPDY cli-
ent library.20 In March 2012, Firefox
11 implemented the SPDY protocol,19
which, by June 2012, was enabled by
default in Firefox 13,22 bringing com-
bined client-side support (Chrome +
Firefox) to approximately 50% of the
desktop browser market25 (see Figure
3). SPDY is currently an Internet En-
gineering Task Force (IETF) Internet
draft in its third revision.7

SPDY’s rapid client adoption is im-
pressive, though server adoption lags
considerably. SPDY gateways offer a
promising transition strategy, bring-
ing many of SPDY’s benefits to clients
without requiring server support.
The incentive for clients to use SPDY
gateways is simple: a faster and more
secure browsing experience; SPDY is
generally deployed over SSL for rea-
sons discussed later. There are also
commercial incentives for companies

Figure 2. Timeline of SPDY-related development milestones.

Nov.
2009

Sept.
2010

Fe
b. 2

011

Sept.
2011

Fe
b. 2

012
M

ar.
2012

SPDY
announced as
“early-stage

research
project”

SPDY
implemented

in Google Chrome
browser

Google begins
serving Search,

Gmail, Maps,
and other major

services over
SPDY to

compatible
clients

Amazon
announces

Kindle Fire tablet
using SPDY

between client
devices and

Amazon servers
to accelerate

browsing

SPDY
implemented in
Mozilla Firefox

browser

SPDY implemented
in Google Android

Honeycomb browser

Open-source iOS
SPDY client library
commissioned by

SPDY author
Mike Belshe

Figure 1. SPDY gateway translates between SPDY-capable clients and conventional HTTP
servers.

SPDY

SPDY Gateway
HTTP

HTTP

HTTP

situated on high-speed
Internet backbone

nytimes.com

facebook.com

netflix.com

YKCHANG
底線

YKCHANG
底線

YKCHANG
底線

YKCHANG
底線

contributed articles

december 2012 | vol. 55 | no. 12 | communications of the acm 67

back-end process, delays all other re-
sources (see Figure 5).

SPDY implements pipelining with-
out HTTP’s head-of-line blocking limi-
tation. Resources transferred through
a SPDY connection are carried in an-
notated “streams,” or independent se-
quences of bidirectional data divided
into frames; annotated streams allow
SPDY to not only return resources in
any order but interleave resources over
a single TCP connection7 (see Figure 6).

SPDY also includes request priori-
tization, allowing the client to specify
that certain resources be returned with
a higher priority than others. Unlike
many quality-of-service mechanisms
that work on prioritizing packets in
queues at lower layers in the network
stack, SPDY prioritization works at the
application layer, designed to allow
the client to specify what is important.
One use of prioritization is to request
that resources that block progressive
page rendering (such as cascading
style sheets and JavaScript) be returned
with higher priority. Another use of pri-
oritization is to increase the priority of
resources being downloaded for the
currently visible browser tab while de-
creasing priority of resources belong-
ing to a currently loading but hidden
tab. A further implication of imple-
menting priority at the application
layer is that a server can, at least theo-
retically, prioritize not only the order in
which resources are transmitted over
the wire but also the order in which re-
sources are generated on the back-end
if the task is time intensive.

Header compression. HTTP requests
and responses all include a set of HTTP
headers that provide additional infor-
mation about the request or response
(see Figure 7). There is significant re-
dundancy in these headers across re-
quests and responses; for example,
the “User-Agent” header describing
the user’s browser (such as Mozilla/5.0
compatible, MSIE 9.0, Windows NT
6.1, WOW64, and Trident/5.0 for In-
ternet Explorer 9) is sent to the server
many times over. Likewise, cookie
headers, which describe state infor-
mation about the client, are repeated
many times over across requests. Such
redundancy means HTTP headers tend
to compress relatively effectively. To
further improve compression, SPDY
seeds an out-of-band compression dic-

tionary based on a priori knowledge of
common HTTP headers.29

Server push. This advanced feature
of SPDY allows the server to initiate
resource transfer, rather than having
to wait until a corresponding client
request is received; Figure 8 outlines
a server using it to push a resource to
the client that would be requested im-
minently regardless. Server push saves
superfluous round trips by relying on
the server’s knowledge of resource de-
pendencies to determine what should
be sent to the client.

Performance engineers have em-
ployed a range of techniques to try to
achieve push-like behavior over HTTP,

though each involves certain short-
comings; for example, data URIs allow
inlining resources (such as images)
into the main HTML but are not cache-
able and increase resource size by ap-
proximately 33%. Another technique,
Comet, opens a long-held connection
to the server8 through which arbi-
trary resources may be pushed but re-
quires an additional initial round trip.
Bleeding-edge technologies (such as
Web Sockets28 and resource prefetch-
ing15,21) also enable push-like behavior
but, like Comet, require an additional
round trip to establish such behavior.
A universal limitation of current tech-
niques is they break resource modu-

Figure 3. Global browser usage share, as recorded by StatCounter (http://gs.statcounter.
com/#browser-ww-monthly-201103-201202); in February 2012, Chrome had 29.84% and
Firefox 24.88%.

0%

Opera Other (dotted)SafariChromeFirefoxIE

10%

20%

30%

40%

50%

M
ar

ch
 20

11
April

 20
11

M
ay

 20
11

June 2
011

July
20

11

July
20

11
Sep

t.
20

11
Oct

. 2
011

Nov
. 2

011
Dec

. 2
011

Jan
. 2

012
Feb

. 2
012

Top five browsers, Feb. 2011 to Feb. 2012
StatCounter Global Stats

Figure 4. HTTP pipelining allows multiple concurrent requests, reducing the number of
round trips to the server.

no pipelining

client server

pipelining

client server

68 communications of the acm | december 2012 | vol. 55 | no. 12

contributed articles

larity by inserting JavaScript, links, or
inlined content into the main HTML
document. SPDY push does not re-
quire modification of content to sup-
port push functionality.

SPDY Security
The SPDY protocol can be run over
either a secure (SSL encrypted) or in-
secure (non-encrypted) transport. In
practice, both philosophical views

on the role of Web encryption and
pragmatism in handling real-world
deployment constraints have led to
primarily SSL-encrypted implemen-
tations. Mike Belshe, SPDY co-au-
thor,7 and Patrick McManus, princi-
pal SPDY implementer for Firefox,
have expressed their interest in see-
ing the Web transition to a “secure
by default” model.5,18 Proponents of
encrypted SPDY say SSL is no longer
computationally expensive16 and its
security benefits outweigh its com-
munication overhead.

The pragmatic reason for deploy-
ing SPDY over SSL (port 443) rather
than HTTP (port 80) is that transpar-
ent HTTP proxies between the client
and the server handle HTTP upgrades
unreliably.13 Transparent HTTP prox-
ies do not modify encrypted traffic on
SSL port 443 (as they do on port 80)
and so should not interfere with newer
protocols like SPDY. The rationale for
choosing port 443 over an arbitrary
port number is that port 443 appears to
traverse firewalls more effectively13 (see
Figure 9).

SPDY relies on the next-protocol ne-
gotiation (NPN)17 SSL extension to up-
grade the SSL connection to the SPDY
protocol. NPN is currently an Internet
Engineering Task Force Internet Draft
and implemented in OpenSSL23; NPN
also allows negotiation of other com-
peting future protocols. SSL imple-
mentations that do not currently sup-
port NPN simply ignore the request to
upgrade the protocol, retaining back-
ward compatibility.

SPDY Performance
Only a handful of (publicly available)
studies quantitatively benchmark
SPDY against HTTP, all from the same
source—Google. Corroborating the
following results across different sites
represents important future work:

Google Chrome live A/B study. In
2011, Google benchmarked SPDY
against HTTP in real-life A/B tests
conducted through the Chrome
browser. From March 22 to April 5,
2011, Google configured “in the wild”
deployments of the Chrome 12 brows-
er to randomly assign 95% of browser
instantiations to use SPDY for SPDY-
capable sites; the other 5% of instanti-
ations used HTTPS. Google research-
ers observed a 15.4% improvement in

Figure 5. Head-of-line blocking in HTTP pipelining; a large resource blocks subsequent
smaller resources (left), and a slow-to-generate resource blocks subsequent resources
(right).

client server

loading A…

A takes
a long time
to produce

blocking
B and C

large
resource A

blocks
smaller
resource
B and C

client backend

RES A

server

RES A

RES B

RES C

REQ A

REQ B

REQ C

REQ A
REQ B

REQ C

RES B

RES C
RES A

RES B

RES C

Figure 6. Request multiplexing and prioritization in SPDY; resources are sent in chunks over
independent streams that can be interleaved and prioritized.

Client Server

SYN stream 1
Priority 3

SYN stream 3
Priority 3

SYN reply 3

SYN reply 5

Data frame
[stream 5]

Data frame + fin
[stream 5]

Data frame
[stream 3]

Data frame + fin
[stream 1]

Data frame + fin
[stream 3]

SYN reply 1

Data frame
[stream 1]

SYN stream 5
Priority 0

higher-priority
request

Server can
respond in
any order

Server
interleaves

higher-priority
response frames

before completing
previous transfers

YKCHANG
螢光標示

YKCHANG
底線

YKCHANG
矩形

contributed articles

december 2012 | vol. 55 | no. 12 | communications of the acm 69

page-load time across browser instan-
tiations using SPDY,13 though a caveat
was that domain names in the study
were neither recorded nor weighted.
Google itself is thought by Google de-
velopers to be the current dominant
consumer of server-side SPDY tech-
nology so is likely overrepresented
in these results. Google sites were, in
2011, already heavily optimized, sug-
gesting the stated improvement was
likely conservative, though further
data is needed for confirmation.

Google’s second result from the
study was that (encrypted) SPDY is
faster than (unencrypted) HTTP for
Google’s AJAX search; Google research-
ers provided no further detail.

Google lab tests set one. Google per-
formed a series of laboratory bench-
marks of SPDY vs. HTTP under various
conditions, though unencrypted SPDY,
which would be expected to be faster
than encrypted SPDY, was compared
against HTTP, despite SPDY deploy-
ments being predominantly encrypted.

For simulated downloads of the top
45 pages on the Web (as recorded by
Alexa), Google in 2011 reported a 51%
reduction in uploaded bytes, 4% re-
duction in downloaded bytes, and 19%
reduction in total packets vs. HTTP.13
Uploaded bytes were significantly re-
duced due to SPDY’s header compres-
sion and the fact that HTTP headers
are amenable to strong compression.
Google reported that download bytes
were only marginally reduced, as most
downloaded content in its tests was
not headers and in many cases already
compressed. The reduction in total
packets is due to both a reduction in
overall bytes and the fact that SPDY
uses only a single connection, result-
ing in more “full” packets.

Google lab tests set two. A 2009
Google SPDY white paper14 described
simulated page-load time of SPDY
vs. HTTP for the Alexa top 25 Web
sites. The first test simulated SPDY
vs. HTTP with 1% packet loss over
simulated home-network connec-
tions. Unencrypted SPDY exhibited
27%–60% improvement in page-load
time, and encrypted (SSL) SPDY ex-
hibited 39%–55% improvement in
page-load time. A second test deter-
mined how packet-loss affected SPDY
(unencrypted) vs. HTTP; at 0% packet
loss, SPDY was 11% faster, and at 2%

packet loss SPDY was up to 47% faster.
A third test simulated SPDY vs. HTTP
as a function of round-trip time; for
example, for a 20ms round trip, SPDY
was 12% faster than HTTP, and for
a 200ms round trip, SPDY was 26%
faster; for a full exposition of these re-
sults, see Google.14

Questions on SPDY performance.
There is a conspicuous lack of results
describing how SPDY performs on
mobile devices. SPDY’s dominant per-
formance improvements are due in
theory to reduced round trips between
client and server. Many mobile-carrier
technologies today exhibit latency sev-
eral times that of their fixed-line and
Wi-Fi counterparts. By some projec-
tions, the majority of the developing
world will have its first Internet experi-

ence through a mobile carrier, prolif-
erating high-latency connections. In
theory, SPDY is ideally suited to these
high-latency mobile environments,
though real-world results are needed
for confirmation.

SPDY push-and-request prioritiza-
tion is also underexplored. For push,
work is needed toward determining
how aggressive a server should pre-
emptively push resources to the client.
For prioritization, no studies exist on
SPDY’s efficacy in tabbed browser en-
vironments where the currently visible
tab’s downloading resources could be
assigned higher priority.

SPDY Effect on TCP Connections
Though SPDY is an application-layer
protocol, it involves broader implica-

Figure 7. HTTP request and response with example headers; header keys (such as
“User-Agent”) and header values (such as a particular user agent string) are repeated
many times over on a typical connection so make good candidates for compression.

GET /pub/WWW/picture.jpg HTTP/1.1
Host: www.w3.org
…
Accept-Endcoding: gzip, deflate, sdch
User-agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2012 04:16:13 GMT
…
Server: Apache/2.2.3 (Red Hat)
Content-Type: image/jpeg

Figure 8. HTTP is unable to push resources to the client, even when it knows the client will
require them soon (left); SPDY server push allows the server to initiate the transfer of a
resource it believes the client will need soon (right).

Standard HTTP

client

Client
learns

it needs
banner.jpg
only after
parsing

html

Server
preempts
client’s

imminent
request for
banner.jpg

and pushes it,
removing

a round trip

server

RES <html> … <img

src="banner.jpg" /> …

REQ example.com/home

SPDY Server

client server

REQ example.com/banner.jpg

RES [banner.jpg]

RES <html> … <img

src="banner.jpg" /> … </html>

REQ example.com/home

PUSH [banner.jpg]

YKCHANG
螢光標示

70 communications of the acm | december 2012 | vol. 55 | no. 12

contributed articles

tions and interesting interactions with
the TCP transport layer:

TCP connection proliferation in HTTP.
Prior to standardization of HTTP/1.1 in
1999, HTTP/1.0 permitted download-

ing only a single resource over a TCP
connection and only four concurrent
TCP connections to any given server.
HTTP/1.1 introduced persistent con-
nections, allowing connection reuse

for multiple resources. HTTP/1.1 con-
comitantly reduced maximum concur-
rent TCP connections from four to two,
helping reduce server load and allevi-
ate Internet congestion11 induced by
proliferation of short-lived TCP con-
nections at the time. Unfortunately,
halving concurrent connections had
the adverse effect of reducing down-
load parallelism. HTTP/1.1 envisaged
that the newly introduced HTTP pipe-
lining would remedy the problem, but,
as described earlier, pipelining proved
difficult to implement and suffers from
head-of-line blocking, as in Figure 5.

Having only two concurrent connec-
tions creates a serious performance
bottleneck for modern high-speed
Internet connections and complex
Web sites. First, TCP slow-start, slowly
ramping up usable-connection band-
width based on number of success-
fully received packets, is often overly
conservative in its initial bandwidth
allocation. Several round trips are
needed before the connection is satu-
rated, by which time much of the con-
tent may have been downloaded al-
ready (at a slower-than-necessary rate).
Second, a typical modern Web page
encapsulates 10s or 100s of resources,
only two of which may be requested at
any given time. Without HTTP pipelin-
ing, requests cannot be queued on the
server, so each new request incurs an
additional round trip. Because most
Web resources are small, the round-
trip time to the server often dominates
over the time to receive the resource
from first to last byte.

Modern browsers break from the
HTTP/1.1 standard by allowing six or
more concurrent TCP connections
to a server. This allocation largely cir-
cumvents both previously outlined
problems—effective initial bandwidth
becoming TCP slow-start constant * 6
(rather than * 2) and fewer round trips
incurred due to higher request concur-
rency. A common practice among large
Web properties (such as Facebook,
Google, and Twitter) is to “shard”24 a
Web page’s resources across multiple
domains (such as img1.facebook,
img2.facebook, img3.facebook, and
img4.facebook) to subvert browser pol-
icy and obtain greater concurrency. In
a modern browser, a Web page sharded
across four domains can receive 4 * 6 =
24 concurrent TCP connections.

Figure 9. Real-world success rates of upgrading to newer protocols over various port
numbers, as measured by Google Chrome’s WebSocket team. Firewalls drop traffic on arbi-
trary new ports, and transparent proxies inhibit protocol upgrades over port 80.

86% of traffic works

arbitrary new port

standard HTTP port

dest-port 61985

dest-port 80

firewalls can drop traffic
on arbitrary new ports

67% of traffic works

transparent proxies often don’t
handle protocol upgrades correctly

standard SSL port

dest-port 443

95% of traffic works

SSL traverses
transparent proxies

unaltered

most firewalls
permit port 443

Figure 10. A SPDY gateway offers security between client and gateway regardless of the
security of the destination server.

SPDY Gateway
unencrypted.com

plaintext.org

eavesdroppable.net

Secure connection between
client and gateway, regardless
of destination server security

SPDY gateway to HTTP
server remains insecure

SPDY HTTP

YKCHANG
矩形

YKCHANG
底線

YKCHANG
底線

YKCHANG
底線

contributed articles

december 2012 | vol. 55 | no. 12 | communications of the acm 71

TCP connection proliferation. In-
creasing concurrent connections
through browser policy and sharding
can improve page-load time but create
other problems. Though highly concur-
rent connections circumvent an overly
conservative slow start on a single TCP
connection, they may (in aggregate) ex-
ceed total available bandwidth, induc-
ing packet loss. Moreover, the likeli-
hood of losing a critical control packet
increases with the number of concur-
rent connections; for example, the TCP
SYN packet, which initiates a TCP con-
nection, has a retransmission timeout
measured on the order of seconds if no
acknowledgment is received.

Highly concurrent TCP connec-
tions also decrease the likelihood of
fast retransmit being invoked under
packet loss. Fast retransmit is a TCP
enhancement that immediately re-
sends a packet without waiting for
a fixed timeout delay if acknowledg-
ments for several packets subsequent
to the lost packet are received. High-
ly concurrent connections obtain
less bandwidth individually than a
single long-lived connection and are
therefore less likely to receive and ac-
knowledge enough packets in a short
enough duration to trigger fast re-

transmit. There is also less “body” in
each short-lived connection, increas-
ing the likelihood that any packet loss
would occur near the end of a connec-
tion where too few acknowledgments
exist to trigger fast retransmit.

Finally, highly concurrent TCP con-
nections create more connection states
to be maintained at various points in
the network, including at network-
address-translation boxes, as well as
state binding processes to TCP port
numbers. In some instances, this state
can even cause poorly implemented
hardware and software to fail or mis-
identify the highly concurrent connec-
tion openings as a SYN flood (a type of
denial-of-service attack).10

SPDY elephant vs. HTTP mice. The
highly concurrent short-lived TCP flows
of modern HTTP fall into the category
of connections colloquially known as
“mice” flows. In contrast, SPDY is able
to use a single long-lived “elephant”
flow, as it can multiplex and prioritize
all requests over a single connection.
SPDY therefore retains the benefits of
highly concurrent HTTP connections,
without detrimental side effects.

A short-term disadvantage of SP-
DY’s single-connection approach is
inequitable TCP “backoff” compared

to competing applications still using
multiple TCP connections; for exam-
ple, a backoff algorithm that responds
to packet loss by reducing the available
bandwidth of a connection by 50% will
likewise halve the total bandwidth
available to an application using a sin-
gle SPDY TCP connection. The same
backoff algorithm applied to an appli-
cation using 12 concurrent TCP con-
nections would reduce the total avail-
able bandwidth to the application by
only 4% (1/24) of the connections. Con-
nection proliferation should not be en-
couraged over the long term, though a
short-term mitigation strategy would
involve using a small number of con-
current SPDY connections. Long-term
research may look to address this issue
through smarter backoff algorithms
providing equitable treatment to ap-
plications, independent of the num-
ber of TCP connections.

Transitioning to SPDY
SPDY has been implemented in several
popular client browsers, most notably
Chrome and Firefox. Though server
support for SPDY continues to grow,
it has yet to reach the maturity and
adoption of client implementations.
SPDY gateways are one way to acceler-

Figure 11. A client can delegate DNS lookup to a SPDY gateway, helping minimize round trips.

No SPDY Gateway

client

Client sends
request
without

translating
domain name

DNS name server

example.com is 192.0.43.10

translate example.com

With SPDY Gateway

client SPDY gateway

GET example.com/home

200 OK
200 OK

example.com is 192.0.43.10

200 OK

GET example.com/home

DNS name server

translate example.com

GET example.com/home

example.com
(192.0.43.10)

example.com
(192.0.43.10)

YKCHANG
矩形

YKCHANG
螢光標示

YKCHANG
螢光標示

YKCHANG
矩形

72 communications of the acm | december 2012 | vol. 55 | no. 12

contributed articles

ate SPDY adoption, providing many
SPDY performance and security advan-
tages without requiring SPDY support
on the server. A SPDY gateway is an
explicit proxy that translates between
SPDY-enabled clients and HTTP-only
servers. By situating such a gateway on
the high-speed Internet, SPDY is used
over the slow “last mile” link between
the client and the Internet core. The
HTTP portion of the connection is in
turn isolated to the very-low-latency,
very-high-bandwidth link between the
gateway and the server, largely miti-
gating HTTP’s dominant performance
inhibitors. In addition to providing a
practical, viable SPDY transition solu-
tion, SPDY gateways also offer several
performance-enhancing features:

Secure connection to gateway, regard-
less of server-side SSL support. Because
SPDY operates over SSL, the client-to-
gateway connection is secure, regard-
less of whether SSL is supported on
the destination server (see Figure 10).
Though the gateway-to-server connec-
tion could remain insecure, clients are
protected from common attacks (such
as eavesdropping on insecure Wi-Fi ac-
cess points).

Single client-side connection across
all domains. As described earlier,
SPDY request multiplexing results in
dramatically fewer TCP connections
than HTTP browsers in use today.
However, clients still require at least
one new TCP connection for each new
server they contact. A SPDY gateway
can achieve even greater efficiency
than regular SPDY by multiplexing all
of a client’s requests to the gateway
over a single TCP connection covering
all servers.

A SPDY gateway might still create
multiple connections to a given HTTP
server to emulate pipelining and avoid
head-of-line blocking but isolate these
connections to the high-speed/low-
latency Internet core. A SPDY gateway
may also retain a small pool of TCP
connections to popular servers, allow-
ing new client requests to be forwarded
immediately without incurring a new
TCP connection handshake or slow-
start “warm-up.” Likewise, the client
needs to perform a single TCP connec-
tion handshake only with the gateway
and go through the slow-start warm-up
only once (as opposed to every time a
new server is contacted).

Delegated DNS lookup. This perfor-
mance enhancement specific to SPDY
gateways entails the gateway perform-
ing DNS translations from domain
names to server IP addresses on behalf
of the client, allowing the client to im-
mediately send a request for a resource
to the gateway without knowing the
IP address of the server on which it
is hosted (see Figure 11). Being situ-
ated on the high-speed Internet, the
gateway is better positioned to quickly
translate the domain name to an IP ad-
dress; moreover, a gateway that serves
a large number of users can cache the
IP addresses of popular domains.

Intelligent push. A SPDY gateway
can exploit its large user base to infer
resource dependencies, even across
domains. A regular SPDY-capable
server has a limited view of a user’s
browsing behavior, isolated to the
server itself. A gateway sees a user’s
requests for all servers so it can infer
complex patterns of cross-domain
navigation; for example, the gateway
could determine that 95% of users is-
suing a Google search query for “Twit-
ter” proceed to twitter.com, and, given
this knowledge, the gateway then pre-
emptively pushes resources from the
twitter.com homepage to the user.
In 2011, Amazon reported the Silk
browser on the Kindle Fire tablet al-
ready performed intelligent push of
this nature, called by Amazon “predic-
tive rendering.”2

Caching. Like a transparent proxy,
a SPDY gateway can cache resources
such that subsequent requests for the
same resource are served without con-
tacting the origin server.

SPDY gateways, a permanent fixture?
This description of SPDY gateways
highlights that in some respects gate-
ways offer more attractive features than
SPDY directly between clients and serv-
ers, including four notable functions:
further reduction in TCP connections
over the last mile; pre-warming of TCP
connections; delegation of DNS trans-
lations to the fast Internet core; and
intelligent push and resource caching.
We suggest that gateways may have
a persistent role on the Web, beyond
mere transition strategy.

Future SPDY Gateways
Several companies have deployed
large SPDY gateways. Perhaps most

Aside from offering
faster browsing
as a selling point,
Amazon and other
potential vendors
are likely interested
in the data mining
and advertising
opportunities
that come with
controlling
the gateway.

YKCHANG
螢光標示

YKCHANG
底線

YKCHANG
螢光標示

YKCHANG
螢光標示

YKCHANG
螢光標示

YKCHANG
底線

YKCHANG
螢光標示

YKCHANG
螢光標示

YKCHANG
螢光標示

YKCHANG
底線

YKCHANG
底線

YKCHANG
底線

YKCHANG
底線

contributed articles

december 2012 | vol. 55 | no. 12 | communications of the acm 73

notable is the gateway used by the de-
fault Silk browser on the Amazon Kindle
Fire tablet2; Silk proxies much of a
user’s Web traffic through an Amazon
SPDY gateway deployed on the Ama-
zon Web Services cloud infrastructure.
Other examples are content-delivery-
network/Web-acceleration providers
Contendo1 and Strangeloop,26 both
offering SPDY gateways as a service to
HTTP content providers.

Device-specific SPDY gateways. Ama-
zon’s decision to couple the Kindle
Fire Silk browser to its own propri-
etary SPDY-based gateway begs the
question: Could, and will, other major
providers do the same? Could there
be, say, an Apple SPDY gateway for
iPhones and iPads or a Google SPDY
gateway for Android devices in the fu-
ture? Could such gateways be in the
works already? The potential perfor-
mance advantage of SPDY gateways
is particularly intriguing on such re-
source-constrained mobile devices.
The controlled “appliancized” nature
of the devices and their operating
systems would also simplify vendor
implementation. Aside from offer-
ing faster browsing as a selling point,
Amazon and other potential vendors
are likely interested in the data min-
ing and advertising opportunities that
come with controlling the gateway.

Open SPDY gateways. Beyond de-
vice-specific gateways lies uncharted
though potentially lucrative territo-
ry—open SPDY gateways—that, like
an open proxy, are usable by anyone,
independent of device or platform.
Major Web companies have demon-
strated that free and universal services
can be made profitable through relat-
ed targeted advertising opportunities.
So, could SPDY gateways be turned
into another free, universal service
rendered profitable through better-
targeted advertising?

A limitation Web advertisers face
today is a restricted view of user activi-
ty on domains beyond their direct con-
trol. A SPDY gateway provides a van-
tage point from which to observe all
of a user’s Web activity, not just on do-
mains under the advertiser’s control.
Major Web companies like Facebook
and Google track users across the Web
on third-party sites through partner
advertising scripts and other embed-
dable features (such as the “Like” but-

ton), but the picture is incomplete.
An open SPDY gateway would provide
advertisers missing pieces from the
browsing-behavior puzzle that could
be fed back into targeted-advertising
algorithms. While much the same
could be done using device-specific
SPDY gateways, an open SPDY gate-
way would provide insight into a much
larger user population. Interesting to
consider therefore is whether SPDY
gateways (much like search) could
become a universal service accessible
through a broad range of devices.

Conclusion
SPDY is a high-performance appli-
cation-layer protocol and potential
successor to HTTP. Clients have been
quick to adopt it, though server imple-
mentations lag. SPDY gateways are
helping accelerate SPDY adoption by
removing the need for SPDY support
on the server. A range of compelling
incentives exists for deploying SPDY
gateways that are only beginning to
be explored. Beyond just a transition
strategy, SPDY gateways have per-
formance characteristics that make
them attractive for longer-term use.
Whether such long-term advantages
compared to SPDY support on the
server are substantial enough to war-
rant retaining SPDY gateways is an
open question.

Acknowledgments
This work is supported in part by an
Australian Government Australian
Postgraduate Awards scholarship and
Commonwealth Scientific and Indus-
trial Research Organisation Office of
the Chief Executive scholarship. The
authors would also like to thank the
anonymous reviewers for their valu-
able comments and suggestions. 	

References
1.	 Akamai. Akamai Acquires Contendo. Press Release,

Mar. 2012; http://www.akamai.com/cotendo
2.	 Amazon. Amazon Silk FAQs; http://www.amazon.com/

gp/help/customer/display.html/?nodeId=200775440
3.	 Amazon. Introducing Amazon Silk; http://amazonsilk.

wordpress.com/2011/09/28/introducing-amazon-silk
4.	 Belshe, M. SPDY on Google servers?

Jan. 2011; https://groups.google.com/
forum/?fromgroups#!searchin/spdy-dev/SPDY$20on$
20Google$20servers?$20/spdy-dev/TCOW7Lw2scQ/
INuev2A-ixAJ

5.	 Belshe, M. SSL: It’s a matter of life and death. Mike’s
Lookout blog, May 28, 2011; http://www.belshe.
com/2011/05/28/ssl-its-a-matter-of-life-and-death/

6.	 Belshe, M. and Peon, R. A 2x faster Web. The
Chromium Blog, Nov. 11, 2009; http://blog.chromium.
org/2009/11/2x-faster-web.html

7.	 Belshe, M. and Peon, R. SPDY Protocol. Chromium

Projects, Feb. 2012; http://dev.chromium.org/spdy/
spdy-protocol/spdy-protocol-draft3

8.	 Bozdag, E., Mesbah, A., and van Duersen, A. A
comparison of push and pull techniques for AJAX
in Web site evolution. In Proceedings of the Ninth
IEEE International Workshop (Paris, Oct. 5–6). IEEE
Computer Society, Washington, D.C., 2007, 15–22.

9.	 Brutlag, J. Speed Matters for Google Web Search.
Technical Report, 2009; http://services.google.com/fh/
files/blogs/google_delayexp.pdf

10.	 Eddy, W. TCP SYN Flooding Attacks and Common
Mitigations. Internet Engineering Task Force, Aug.
2007; http://tools.ietf.org/html/rfc4987

11.	 Fielding, R. et al. Hypertext Transfer Protocol—
HTTP/1.1: Connections. World Wide Web Consortium,
June 1999; http://www.w3.org/Protocols/rfc2616/
rfc2616-sec8.html

12.	G oogle Inc. mod-spdy: Apache SPDY module. May
2012; http://code.google.com/p/mod-spdy/

13.	G oogle Inc. SPDY essentials. Dec. 2011; http://www.
youtube.com/watch?feature=player_detailpage&v=T
NBkxA313kk#t=2179s

14.	G oogle Inc. The Chromium Projects. SPDY: An
Experimental Protocol for a Faster Web. White
Paper, 2009; http://www.chromium.org/spdy/spdy-
whitepaper

15.	 Komoroske, A. Prerendering in Chrome. The
Chromium Blog, June 2011; http://blog.chromium.
org/2011/06/prerendering-in-chrome.html

16.	 Langley, A. Overclocking SSL. Imperial Violet
Blog, June 25, 2010; http://www.imperialviolet.
org/2010/06/25/overclocking-ssl.html

17.	 Langley, A. Transport Layer Security Next Protocol
Negotiation Extension. Internet Engineering Task
Force, Mar. 30, 2011; http://tools.ietf.org/html/draft-
agl-tls-nextprotoneg-02

18.	M cManus, P. Maturing Web transport protocols with
SPDY and friends. Video of SPDY Talk at Codebits.
eu, Nov. 2011; http://bitsup.blogspot.com.au/2011/11/
video-of-spdy-talk-at-codebitseu.html

19.	M cManus, P. SPDY brings responsive and scalable
transport to Firefox 11. Mozilla Hacks blog, Feb.
2012; http://hacks.mozilla.org/2012/02/spdy-brings-
responsive-and-scalable-transport-to-firefox-11/

20.	M orrison, J. SPDY for iPhone. GitHub, Inc., Jan. 2012;
https://github.com/sorced-jim/SPDY-for-iPhone

21.	M ozilla Developer Network. Link prefetching FAQ.
Mar. 2003; https://developer.mozilla.org/en/Link_
prefetching_FAQ

22.	 Nyman, R. Firefox Aurora 13 is out—SPDY on by
default and a list of other improvements. Mar. 19,
2012; http://hacks.mozilla.org/2012/03/firefox-aurora-
13-is-out-spdy-on-by-default-and-a-list-of-other-
improvements/

23.	 OpenSSL. OpenSSL Cryptography and SSL/TLS
Toolkit. Mar. 2012; http://www.openssl.org/news/
changelog.html

24.	 Souders, S. Sharding dominant domains. Steve
Souders blog, May 12, 2009; http://www.stevesouders.
com/blog/2009/05/12/sharding-dominant-domains/

25.	 StatCounter. StatCounter GlobalStats, Feb.
2012; http://gs.statcounter.com/#browser-ww-
monthly-201102-201202

26.	 Strangeloop Networks. Strangeloop. Mar. 2012; http://
www.strangeloopnetworks.com/products/overview/

27.	 The Chromium Projects. SPDY, Mar. 2012; http://dev.
chromium.org/spdy

28.	 World Wide Web Consortium. The WebSocket API:
Editor’s Draft 29 August 2012; http://dev.w3.org/
html5/websockets/

29.	 Yang, F., Amer, P., Leighton, J., and Belshe, M. A
Methodology to Derive SPDY’s Initial Dictionary for
Zlib Compression. University of Delaware, Newark, DE,
2012; http://www.eecis.udel.edu/~amer/PEL/poc/pdf/
SPDY-Fan.pdf

Bryce Thomas (bryce.m.thomas@gmail.com) is a Ph.D.
candidate in the Discipline of Information Technology at
James Cook University, Townsville, Queensland, Australia.

Raja Jurdak (raja.jurdak@csiro.au) is a researcher in
the Commonwealth Scientific and Industrial Research
Organisation and a professor in the University of
Queensland, Brisbane, Australia.

Ian Atkinson (ian.atkinson@jcu.edu.au) is a professor
and director of the eResearch Centre of James Cook
University, Townsville, Queensland, Australia.

© 2012 ACM 0001-0782/12/12

YKCHANG
螢光標示

YKCHANG
螢光標示

YKCHANG
底線

YKCHANG
底線

YKCHANG
螢光標示

YKCHANG
螢光標示

YKCHANG
矩形

YKCHANG
矩形

