
C Language Programming: Homework #7

Assigned on 12/17/2013(Tuesday), Due on 12/31/2013(Tuesday)

This homework is the extension of homework #4.

1. Read the original IDs in each bucket from an input file and stored them in

original_bucket[m], m is the number of original buckets and

original_bucket[m] are array of the following user-defined type:
typedef struct {
 int old_index;
 int size;
 int *id;
} bucket_type;
bucket_type original_bucket[m]

2. Assume the original buckets of numbers are already stored in array

original_bucket[m][n], where there are m buckets with maximum size = n.

As stated in homework 4, all the original buckets must be sorted in the

decreasing order of bucket sizes (by using function qsort() provided by C

library) before applying new mapping algorithm to store the numbers in

the original buckets into the new_buckets[M][N] (declared as int

new_buckets[M][N]) where N can be set to be equal or larger than n and

M is smaller than m.

3. Modify your homework 4 so that your program can answer

A. which original bucket is stored in which sorted bucket before

compression,

B. which original bucket is stored in which new bucket after compression,

C. given the new bucket i, how many original buckets are contained in

new bucket i and what are the indices of these original buckets

contained in new bucket i.

D. Compute the compression ratio(N) defined as ratio of the number of

original IDs before and after compression, where N  n and draw a

curve for compression ratio(N) with N = n to 3n to show how

compression ratio varies.

0 0 4
1 1 4
2 2 3
3 3 3
4 4 2
5 5 2
6 6 1
7 7 3
8 8 3

 Direct mapping.
New mapping.

 Bucket
Index

0 0
1 1
2 2
3 2
4 0
5 3
6 0
7 3
8 0

original_bucket[0..8]
n=4

N=4
sorted buckets

Index of original buckets

1 2 5 7
2 3 5 7
2 4 8
2 3 8
2 7
1 3
2
1 5 6
1 5 7

1 2 5 7
2 3 5 7
2 4 8
2 3 8
1 5 6
1 5 7
2 7
1 3
2

0 0 4
1 1 4
2 2 3
3 3 3
4 7 3
5 8 3
6 4 2
7 5 2
8 6 1

0 1 2 5 7
1 2 3 5 7
2 2 4 8 3
3 1 5 6 3

