

Solutions for Chapter 5 Exercises

1

Solutions for Chapter 5 Exercises

5.1

Combinational logic only: a, b, c, h, i

Sequential logic only: f, g, j

Mixed sequential and combinational: d, e, k

5.2

a. RegWrite = 0: All R-format instructions, in addition to

lw

, will not work
because these instructions will not be able to write their results to the regis-
ter file.

b. ALUop1 = 0: All R-format instructions except subtract will not work cor-
rectly because the ALU will perform subtract instead of the required ALU
operation.

c. ALUop0 = 0:

beq

 instruction will not work because the ALU will perform
addition instead of subtraction (see Figure 5.12), so the branch outcome
may be wrong.

d. Branch (or PCSrc) = 0:

beq

 will not execute correctly. The branch instruc-
tion will always be not taken even when it should be taken.

e. MemRead = 0:

lw

 will not execute correctly because it will not be able to
read data from memory.

f. MemWrite = 0:

sw

 will not work correctly because it will not be able to write
to the data memory.

5.3

a. RegWrite = 1:

sw

 and

beq

 should not write results to the register file.

sw

(

beq

) will overwrite a random register with either the store address (branch
target) or random data from the memory data read port.

b. ALUop0 = 1:

lw

 and

sw

 will not work correctly because they will perform
subtraction instead of the addition necessary for address calculation.

c. ALUop1 = 1:

lw

 and

sw

 will not work correctly.

lw

 and

sw

 will perform a
random operation depending on the least significant bits of the address field
instead of addition operation necessary for address calculation.

d. Branch = 1: Instructions other than branches (

beq

) will not work correctly
if the ALU Zero signal is raised. An R-format instruction that produces zero
output will branch to a random address determined by its least significant
16 bits.

e. MemRead = 1: All instructions will work correctly. (Data memory is always
read, but memory data is never written to the register file except in the case
of

lw

.)

2

Solutions for Chapter 5 Exercises

f. MemWrite = 1: Only

sw

 will work correctly. The rest of instructions will
store their results in the data memory, while they should not.

5.7

No solution provided.

5.8

A modification to the datapath is necessary to allow the new PC to come
from a register (Read data 1 port), and a new signal (e.g., JumpReg) to control it
through a multiplexor as shown in Figure 5.42.

A new line should be added to the truth table in Figure 5.18 on page 308 to imple-
ment the

jr

 instruction and a new column to produce the JumpReg signal.

5.9

A modification to the data path is necessary (see Figure 5.43) to feed the
shamt field (instruction[10:6]) to the ALU in order to determine the shift amount.
The instruction is in R-Format and is controlled according to the first line in Fig-
ure 5.18 on page 308.

The ALU will identify the

sll

 operation by the ALUop field.

Figure 5.13 on page 302 should be modified to recognize the opcode of

sll

: the
third line should be changed to 1X1X0000 0010 (to discriminate the

add

 and

ssl

functions), and a new line, inserted, for example, 1X0X0000 0011 (to define

sll

by the 0011 operation code).

5.10

Here one possible

lui

 implementation is presented:

This implementation doesn't need a modification to the datapath. We can use the
ALU to implement the shift operation. The shift operation can be like the one pre-
sented for Exercise 5.9, but will make the shift amount as a constant 16. A new line
should be added to the truth table in Figure 5.18 on page 308 to define the new
shift function to the function unit. (Remember two things: first, there is no funct
field in this command; second, the shift operation is done to the immediate field,
not the register input.)

RegDst = 1: To write the ALU output back to the destination register (

$rt

).

ALUSrc = 1: Load the immediate field into the ALU.

MemtoReg = 0: Data source is the ALU.

RegWrite = 1: Write results back.

MemRead = 0: No memory read required.

MemWrite = 0: No memory write required.

Branch = 0: Not a branch.

ALUOp = 11:

sll

 operation.

This ALUOp (11) can be translated by the ALU as

shl,ALUI1,16

 by modifying
the truth table in Figure 5.13 in a way similar to Exercise 5.9.

Solutions for Chapter 5 Exercises

3

FIGURE 5.42

R
ea

d
re

gi
st

er
 1

R
ea

d
re

gi
st

er
 2

W
rit

e
re

gi
st

er

W
rit

e
da

ta
W

rit
e

da
ta

R
eg

is
te

rs

A
L

UA
d

d Z
er

o

R
ea

d
da

ta
 1

R
ea

d
da

ta
 2

S
ig

n
ex

te
n

d

16
32

In
st

ru
ct

io
n

[3
1–

0]
A

LU
re

su
lt

A
d

d

A
LU

re
su

lt

M u x

M u x

M u x

A
dd

re
ss

D
at

a
m

em
o

ry

R
ea

d
da

ta

S
h

if
t

le
ft

 2

4 R
ea

d
ad

dr
es

s

In
st

ru
ct

io
n

m
em

o
ry

P
C

1 0

0 1

0 1

M u x0 1

A
L

U
co

n
tr

o
l

In
st

ru
ct

io
n

[5
–0

]

In
st

ru
ct

io
n

[2
5–

21
]

In
st

ru
ct

io
n

[3
1–

26
]

In
st

ru
ct

io
n

[1
5–

11
]

In
st

ru
ct

io
n

[2
0–

16
]

In
st

ru
ct

io
n

[1
5–

0]

R
eg

D
st

B
ra

nc
h

M
em

R
ea

d
M

em
to

R
eg

A
LU

O
p

M
em

W
rit

e
A

LU
S

rc
R

eg
W

rit
e

C
o

n
tr

o
l

Ju
m

pR
eg

M u x0 1

4

Solutions for Chapter 5 Exercises

FIGURE 5.43

R
ea

d
re

gi
st

er
 1

R
ea

d
re

gi
st

er
 2

W
rit

e
re

gi
st

er

W
rit

e
da

ta
W

rit
e

da
ta

R
eg

is
te

rs

A
L

UA
d

d Z
er

o

R
ea

d
da

ta
 1

R
ea

d
da

ta
 2

S
ig

n
ex

te
n

d

16
32

In
st

ru
ct

io
n

[3
1–

0]
A

LU
re

su
lt

A
d

d

A
LU

re
su

lt

M u x

M u x

M u x

A
dd

re
ss

D
at

a
m

em
o

ry

R
ea

d
da

ta

S
h

if
t

le
ft

 2

4 R
ea

d
ad

dr
es

s

In
st

ru
ct

io
n

m
em

o
ry

P
C

1 0

0 1

0 1

M u x0 1

A
L

U
co

n
tr

o
l

In
st

ru
ct

io
n

[8
 0

]

In
st

ru
ct

io
n

[2
5–

21
]

In
st

ru
ct

io
n

[3
1–

26
]

In
st

ru
ct

io
n

[1
5–

11
]

In
st

ru
ct

io
n

[2
0–

16
]

In
st

ru
ct

io
n

[1
6

0]

In
st

ru
ct

io
n

[1
0

6]

R
eg

D
st

B
ra

nc
h

M
em

R
ea

d
M

em
to

R
eg

A
LU

O
p

M
em

W
rit

e
A

LU
S

rc
R

eg
W

rit
e

C
o

n
tr

o
l

sh
am

t

Solutions for Chapter 5 Exercises

5

5.11

A modification is required for the datapath of Figure 5.17 to perform the
autoincrement by adding 4 to the

$rs

 register through an incrementer. Also we
need a second write port to the register file because two register writes are
required for this instruction. The new write port will be controlled by a new sig-
nal, "Write 2", and a data port, "Write data 2." We assume that the Write register 2
identifier is always the same as Read register 1 (

$rs

). This way "Write 2" indicates
that there is second write to register file to the register identified by "Read register
1," and the data is fed through Write data 2.

A new line should be added to the truth table in Figure 5.18 for the

l_inc

 com-
mand as follows:

RegDst = 0: First write to

$rt

.

ALUSrc = 1: Address field for address calculation.

MemtoReg = 1: Write loaded data from memory.

RegWrite = 1: Write loaded data into

$rt

.

MemRead = 1: Data memory read.

MemWrite = 0: No memory write required.

Branch = 0: Not a branch, output from the PCSrc controlled mux ignored.

ALUOp = 00: Address calculation.

Write2 = 1: Second register write (to

$rs

).

Such a modification of the register file architecture may not be required for a mul-
tiple-cycle implementation, since multiple writes to the same port can occur on
different cycles.

5.12

This instruction requires two writes to the register file. The only way to
implement it is to modify the register file to have two write ports instead of one.

5.13

From Figure 5.18, the MemtoReg control signal looks identical to both sig-
nals, except for the don't care entries which have different settings for the other
signals. A don't care can be replaced by any signal; hence both signals can substi-
tute for the MemtoReg signal.

Signals ALUSrc and MemRead differ in that

sw

 sets ALSrc (for address calcula-
tion) and resets MemRead (writes memory: can't have a read and a write in the
same cycle), so they can't replace each other. If a read and a write operation can
take place in the same cycle, then ALUSrc can replace MemRead, and hence we
can eliminate the two signals MemtoReg and MemRead from the control system.

Insight: MemtoReg directs the memory output into the register file; this happens
only in loads. Because

sw

 and

beq

 don't produce output, they don't write to the

6

Solutions for Chapter 5 Exercises

register file (Regwrite = 0), and the setting of MemtoReg is hence a don't care. The
important setting for a signal that replaces the MemtoReg signal is that it is set for

lw

 (Mem->Reg), and reset for R-format (ALU->Reg), which is the case for the
ALUSrc (different sources for ALU identify

lw

 from R-format) and MemRead (

lw

reads memory but not R-format).

5.14

swap $rs,$rt can be implemented by

addi $rd,$rs,0

addi $rs,$rt,0

addi $rt,$rd,0

if there is an available register

$rd

or

sw $rs,temp($r0)

addi $rs,$rt,0

lw $rt,temp($r0)

if not.

Software takes three cycles, and hardware takes one cycle. Assume

Rs

 is the ratio of
swaps in the code mix and that the base CPI is 1:

Average MIPS time per instruction =

Rs

 * 3 *

T

 + (1 –

Rs

) * 1 *

T

 = (2

Rs

 + 1) *

T

Complex implementation time = 1.1 *

T

If swap instructions are greater than 5% of the instruction mix, then a hardware
implementation would be preferable.

5.27

l_incr $rt,Address($rs)

 can be implemented as

lw $rt,Address($rs)

addi $rs,$rs,1

Two cycles instead of one. This time the hardware implementation is more effi-
cient if the load with increment instruction constitute more than 10% of the
instruction mix.

5.28

Load instructions are on the critical path that includes the following func-
tional units: instruction memory, register file read, ALU, data memory, and regis-
ter file write. Increasing the delay of any of these units will increase the clock
period of this datapath. The units that are outside this critical path are the two

Solutions for Chapter 5 Exercises

7

adders used for PC calculation (PC + 4 and PC + Immediate field), which pro-
duce the branch outcome.

Based on the numbers given on page 315, the sum of the the two adder’s delay can
tolerate delays up to 400 more ps.

Any reduction in the critical path components will lead to a reduction in the clock
period.

5.29

a. RegWrite = 0: All R-format instructions, in addition to

lw

, will not work
because these instructions will not be able to write their results to the regis-
ter file.

b. MemRead = 0: None of the instructions will run correctly because instruc-
tions will not be fetched from memory.

c. MemWrite = 0:

sw

 will not work correctly because it will not be able to write
to the data memory.

d. IRWrite = 0: None of the instructions will run correctly because instructions
fetched from memory are not properly stored in the IR register.

e. PCWrite = 0: Jump instructions will not work correctly because their target
address will not be stored in the PC.

f. PCWriteCond = 0: Taken branches will not execute correctly because their
target address will not be written into the PC.

5.30

a. RegWrite = 1: Jump and branch will write their target address into the regis-
ter file.

sw

 will write the destination address or a random value into the reg-
ister file.

b. MemRead = 1: All instructions will work correctly. Memory will be read all
the time, but IRWrite and IorD will safeguard this signal.

c. MemWrite = 1: All instructions will not work correctly. Both instruction
and data memories will be written over by the contents of register B.

d. IRWrite = 1:

lw

 will not work correctly because data memory output will be
translated as instructions.

e. PCWrite = 1: All instructions except jump will not work correctly. This sig-
nal should be raised only at the time the new PC address is ready (PC + 4 at
cycle 1 and jump target in cycle 3). Raising this signal all the time will cor-
rupt the PC by either ALU results of R-format, memory address of

lw

/

sw, or
target address of conditional branch, even when they should not be taken.

f. PCWriteCond = 1: Instructions other than branches (beq) will not work
correctly if they raise the ALU's Zero signal. An R-format instruction that
produces zero output will branch to a random address determined by their
least significant 16 bits.

8 Solutions for Chapter 5 Exercises

5.31 RegDst can be replaced by ALUSrc, MemtoReg, MemRead, ALUop1.

MemtoReg can be replaced by RegDst, ALUSrc, MemRead, or ALUOp1.

Branch and ALUOp0 can replace each other.

5.32 We use the same datapath, so the immediate field shift will be done inside
the ALU.

1. Instruction fetch step: This is the same (IR <= Memory[PC]; PC <= PC + 4)

2. Instruction decode step: We don't really need to read any register in this stage if
we know that the instruction in hand is a lui, but we will not know this before
the end of this cycle. It is tempting to read the immediate field into the ALU to
start shifting next cycle, but we don't yet know what the instruction is. So we have
to perform the same way as the standard machine does.

A <= 0 ($r0); B <= $rt; ALUOut <= PC + (sign-extend(immediate field));

3. Execution: Only now we know that we have a lui. We have to use the ALU to
shift left the low-order 16 bits of input 2 of the multiplexor. (The sign extension is
useless, and sign bits will be flushed out during the shift process.)

ALUOut <= {IR[15-0],16(0)}

4. Instruction completion: Reg[IR[20-16]] = ALUOut.

The first two cycles are identical to the FSM of Figure 5.38. By the end of the sec-
ond cycle the FSM will recognize the opcode. We add the Op='lui', a new transi-
tion condition from state 1 to a new state 10. In this state we perform the left
shifting of the immediate field: ALUSrcA = x, ALUSrcB = 10, ALUOp = 11
(assume this means left shift of ALUSrcB). State 10 corresponds to cycle 3. Cycle 4
will be translated into a new state 11, in which RegDst = 0, RegWrite, MemtoReg
= 0. State 11 will make the transition back to state 0 after completion.

As shown above the instruction execution takes 4 cycles.

5.33 This solution can be done by modifying the data path to extract and shift
the immediate field outside the ALU. Once we recognize the instruction as lui (in
cycle 2), we will be ready to store the immediate field into the register file the next
cycle. This way the instruction takes 3 cycles instead of the 4 cycles of Exercise
5.26.

1. Instruction fetch step: Unchanged.

2. Instruction decode: Also unchanged, but the immediate field extraction
and shifting will be done in this cycle as well.

Solutions for Chapter 5 Exercises 9

3. Now the final form of the immediate value is ready to be loaded into the
register file. The MemtoReg control signal has to be modified in order to
allow its multiplexor to select the immediate upper field as the write data
source. We can assume that this signal becomes a 2-bit control signal, and
that the value 2 will select the immediate upper field.

Figure 5.44 plots the modified datapath.

The first two cycles are identical to the FSM of Figure 5.38. By the end of the sec-
ond cycle, the FSM will recognize the opcode. We add the Op = 'lui', a new transi-
tion condition from state 1 to a new state 10. In this state we store the immediate
upper field into the register file by these signals: RedDst = 0, RegWrite, MemtoReg
= 2. State 10 will make the transition back to state 0 after its completion.

5.34 We can use the same datapath.

1. Instruction fetch: Unchanged (IR <= Memory[PC]; PC<= PC + 4).

2. Instruction decode: Unchanged (A <= Reg[IR[25-21]]; B<=REG[IR[20-
16]]; ALUOut<=PC+(sign-extend(IR[15-0])<<2).

3. Load immediate value from memory (MDR <= Memory[PC]; PC <= PC +
4).

4. Complete instruction (Reg[IR[20-16]] (dependent on instruction format)
<= MDR).

The first two cycles are identical to the FSM of Figure 5.38.

We add the Op='ldi', a new transition condition from state 1 to a new state 10. In this
state we fetch the immediate value from memory into the MDR: MemRead, ALUSrcA
= 0, IorD = 0, MDWrite, ALUSrcB = 01, ALUOp = 00, PCWrite, PCSource = 00.

FSM then makes the transition to another new state 11.

In this state we store the MDR into the register file by these signals: RedDst = 0
(actually depends on the instruction format), RegWrite, MemtoReg = 1.

State 11 will make the transition back to state 0 after its completion.

Four cycles to complete this instruction, in which we have two instruction mem-
ory accesses.

5.35 Many solutions are possible. In all of them, a multiplexor will be needed as
well as a new control signal (e.g., RegRead) to select which register is going to be
read (i.e., using IR[25-11] or IR[20-16]). One simple solution is simply to
add a write signal to A and break up state 1 into two states, in which A and B are
read. It is possible to avoid adding the write signal to A if B is read first. Then A is

10 Solutions for Chapter 5 Exercises

FIGURE 5.44

R
ea

d
re

gi
st

er
 1

R
ea

d
re

gi
st

er
 2

W
rit

e
re

gi
st

er

W
rit

e
da

ta

R
eg

is
te

rs
A

L
U

Z
er

o

R
ea

d
da

ta
 1

R
ea

d
da

ta
 2

S
ig

n
ex

te
n

d

16
32

In
st

ru
ct

io
n

[3
1–

26
]

In
st

ru
ct

io
n

[2
5–

21
]

In
st

ru
ct

io
n

[2
0–

16
]

In
st

ru
ct

io
n

[1
5–

0]
A

LU
re

su
lt

M u x

M u x

S
h

if
t

le
ft

 2

S
h

if
t

le
ft

 2

In
st

ru
ct

io
n

re
g

is
te

r

P
C

0 1

M u x0 1M u x0 1

M u x0 1
A B

0 1 2 3

A
LU

O
ut

In
st

ru
ct

io
n

[1
5–

0]

M
em

o
ry

d
at

a
re

g
is

te
r

A
dd

re
ss

W
rit

e
da

ta

M
em

o
ry

M
em

D
at

a

4

In
st

ru
ct

io
n

[1
5–

11
]

P
C

W
rit

eC
on

d

P
C

W
rit

e

Io
rD

M
em

R
ea

d

M
em

W
rit

e

M
em

to
R

eg

IR
W

rit
e

P
C

S
ou

rc
e

A
LU

O
p

A
LU

S
rc

B

A
LU

S
rc

A

R
eg

W
rit

e

R
eg

D
st

26
28

O
ut

pu
ts

C
o

n
tr

o
l

O
p

[5
–0

]

A
L

U
co

n
tr

o
l

P
C

 [3
1–

28
]

In
st

ru
ct

io
n

[2
5-

0]

In
st

ru
ct

io
n

[5
–0

]

Ju
m

p
ad

dr
es

s
[3

1–
0]

[L,16[0]

Solutions for Chapter 5 Exercises 11

read and RegRead is held stable (because A always writes). Alternatively, you could
decide to read A first because it may be needed to calculate an address. You could
then postpone reading B until state 2 and avoid adding an extra cycle for the load
and store instructions. An extra cycle would be needed for the branch and R-type
instructions.

5.36 Effective CPI = Sum(operation frequency * operation latency)

MIPS = Frequency/CPIeffective

From the results above, the penalty imposed on frequency (for all instructions)
exceeds the gains attained through the CPI reduction. M1 is the fastest machine.

The more the load instructions in the instruction mix, the more the CPI gain we
can get for the M2 and M3 machines. In the extreme case we have all instructions
loads, M1 MIPS = 800, M2 MIPS = 300, and M3 MIPS = 933.3, so M3 becomes
the best machine in such a case.

5.37 Effective CPI = Sum(operation frequency * operation latency)

MIPS = Frequency/CPIeffective

Instruction Frequency M1 M2 M3

Loads CPI 25% 5 4 3

Stores CPI 13% 4 4 3

R-type CPI 47% 4 3 3

Branch/jmp CPI 15% 3 3 3

Effective CPI 4.1 3.38 3

MIPS 976 946 933

Instruction Frequency 2.8 GHz CPI 5.6 GHz CPI 6.4 GHz CPI

Loads CPI 26% 5 6 7

Stores CPI 10% 4 5 6

R-type CPI 49% 4 4 5

Branch/jmp CPI 15% 3 3 4

Effective CPI 4.11 4.47 5.47

MIPS 1167.9 1250 1170.0

12 Solutions for Chapter 5 Exercises

The two-cycle implementation increases the frequency, which benefits all instruc-
tions, and penalizes only loads and stores. The performance improvement is 7%
relative to the original implementation.

Further increase of the clock frequency by increasing the instruction fetch time
into two cycles will penalize all instructions and will reduce the performance to
about the same as that of the 4.8 GHz base performance. Such implementation
hurts the CPI more than the gain it brings through frequency increase and should
not be implemented.

5.38
slt $t4, $zero, $t3

beg $t4, $zero, exit
cmpr: lw $t4, 0($t1)

lw $t5, 0($t5)
bne $t4, $t5, done
addi $t3, $t3, –1
addi $t1, $t1, 4
addi $t2, $t2, 4
bne $t3, $zero, cmpr

exit addi $t1, $zero, $zero
done:

To compare two 100-work blocks we'll perform at most one sit 200 loads, 300
adds, and 201 branches = 803 instructions (if the two blocks are equal). Using
this chapter's multicycle implementation, this will take 4 cycles for sit 1000 cycles
for loads, 1200 cycles for adds, and 603 cycles for branches. The total cycles = 2811
cycles.

5.39 No solution provided.

5.49 No solution provided.

5.50 The exception cause can be represented through the status "cause" register,
which records the reason code for the exception. The instruction position at
which the exception occur is identified by saving it in the Exception Program
Counter (EPC) register.

Execution can be restarted for some exceptions like overflow, system call request,
or external I/O device interrupt by restarting execution at the EPC after handling
the exception.

Other exceptions are not restartable and program has to terminate. Examples of
this are invalid instructions (which can actually be restartable if defined as NOP
by the hardware), power/hardware failure, and divide by zero. In such a case, an
error message can be produced, and program termination takes place.

Solutions for Chapter 5 Exercises 13

5.51

a. Divide by zero exception can be detected in the ALU in cycle 3, before exe-
cuting the divide instruction.

b. Overflow can be hardware detected after the completion of the ALU opera-
tion. This is done in cycle 4 (see Figure 5.40)

c. Invalid opcode can be detected by the end of cycle 2 (see Figure 5.40).

d. This is an asynchronous exception event that can occur at any cycle. We can
design this machine to test for this condition either at a specific cycle (and
then the exception can take place only in a specific stage), or check in every
cycle (and then this exception can occur at any processor stage).

e. Check for instruction memory address can be done at the time we update
the PC. This can be done in cycle 1.

f. Check for data memory address can be done after address calculation at the
end of cycle 3.

5.53 No solution provided.

5.57 No solution provided.

5.58 a) will assign the same value (2) to both A and B.

b) will swap A and B (A = 2 and B = 1).

5.59

module ALUControl (ALUOp, FuncCode, ALUCtl);

input ALUOp[1:0], FuncCode[5:0];

output ALUCtl[3:0];

 if(ALUOp == 2'b 00)

 ALUCtl = 4'b 0010;

 if(ALUOp == 2'b 01)

 ALUCtl = 4'b 0110;

 if(ALUOp == 2'b 10) begin

 case(FuncCode)

 6'b 100000: ALUCtl = 4'b 0010;

 6'b 100010: ALUCtl = 4'b 0110;

 6'b 100100: ALUCtl = 4'b 0000;

 6'b 100101: ALUCtl = 4'b 0001;

14 Solutions for Chapter 5 Exercises

 6'b 101010: ALUCtl = 4'b 0111;

 default ALUCtl = 4'b xxxx;

 endcase

 end

endmodule

5.60
// Register File

module RegisterFile (Read1,Read2,Writereg,Writedata,Regwrite,
Data1Data2,clock);

 input [5:0] Read1,Read2,Writereg; // the registers numbers to read
or write

 input [31:0] Writedata; // data to write

 input RegWrite, // The write control

 clock; // the clock to trigger writes

 output [31:0] Data1, Data2; // the register values read;

 reg [31:0] RF [31:0]; // 32 registers each 32 bits long

 initial RF[0] = 32'h 00000000; // Initialize all registers to 0

 always begin

 Data1 <= RF[Read1]; Data2 <= RF[Read2];

 // write the register with new value if Regwrite is high

 @(negedge clock) if RegWrite then RF[Writereg] <= WriteData;

 end

endmodule

//ALU Control same as 5.30

module ALUControl (ALUOp, FuncCode, ALUCtl);

input ALUOp[1:0], FuncCode[5:0];

output ALUCtl[3:0];

 if(ALUOp == 2'b 00)

 ALUCtl = 4'b 0010;

 if(ALUOp == 2'b 01)

 ALUCtl = 4'b 0110;

 if(ALUOp == 2'b 10) begin

 case(funct)

 6'b 100000: ALUCtl = 4'b 0010;

 6'b 100010: ALUCtl = 4'b 0110;

 6'b 100100: ALUCtl = 4'b 0000;

 6'b 100101: ALUCtl = 4'b 0001;

 6'b 101010: ALUCtl = 4'b 0111;

 // Add more ALU control here

Solutions for Chapter 5 Exercises 15

 default ALUCtl = 4'b xxxx; //can report an error, or debug
information

 endcase

 end

endmodule

//ALU

module MIPSALU (ALUctl, A, B, ALUOut, Zero);

input [3:0] ALUctl;

input [31:0] A,B;

output [31:0] ALUOut;

output Zero;

assign Zero = (ALUOut==0); //Zero is true if ALUOut is 0

always @(ALUctl, A, B) begin //reevaluate if these change

 case (Aluctl)

 0: ALUOut <= A & B;

 1: ALUOut <= A | B;

 2: ALUOut <= A + B;

 6: ALUOut <= A - B;

 7: ALUOut <= A < B ? 1:0;

 // Add more ALU operations here

 default: ALUOut <= X; //can report an error, or debug information

 endcase

 end

endmodule

//2-to-1 Multiplexor

module Mult2to1 (In1,In2,Sel,Out);

input [31:0] In1, In2;

input Sel;

output [31:0] Out;

always @(In1, In2, Sel)

 case (Sel) //a 2->1 multiplexor

 0: Out <= In1;

 default: Out <= In2;

 endcase;

endmodule;

16 Solutions for Chapter 5 Exercises

//This represents every thing in Figure 5.19 on page 309 except the
"control block"

//Which decodes the opcode, and generate the control signals
accordingly

module DataPath(start,RegDst,Branch,MemRead,MemtoReg,ALUOp,Mem-
Write,ALUSrc,RegWrite,opcode,clock)

input [31:0] start; //PC initial value

input RegDst,Branch,MemRead,MemtoReg,

 ALUOp,MemWrite,ALUSrc,RegWrite,clock;

input [1:0] ALUOp;

output [5:0] opcode;

initial begin //initialize PC and Memories

PC = start;

IMemory = PROGRAM;

DMemory = DATA;

end

reg [31:0] PC, IMemory[0:1023], DMemory[0:1023];

wire [31:0] SignExtendOffset, PCOffset, PCValue, ALUResultOut,

IAddress, DAddress, IMemOut, DmemOut, DWriteData, Instruction,

RWriteData, DreadData, ALUAin, ALUBin;

wire [3:0] ALUctl;

wire Zero;

wire [5:0] WriteReg;

//Instruction fields, to improve code readability

wire [5:0] funct;

wire [4:0] rs, rt, rd, shamt;

wire [15:0] offset;

ALUControl alucontroller(ALUOp,Instruction[5:0],ALUctl);
//ALU control

MIPSALU ALU(ALUctl, ALUAin, ALUBin, ALUResultOut, Zero);

RegisterFile REG(rs, rt, WriteReg, RWriteData, ALUAin, DWriteData,
clock);

Mult2to1 regdst (rt, rd, RegDst, RegWrite),

 alusrc (DWriteData, SignExtendOffset, ALUSrc, ALUBin),

 pcsrc (PC+4, PC+4+PCOffset, Branch & Zero, PCValue);

assign {opcode, rs, rt, rd, shamt, funct} = Instruction;

assign offset = Instruction[15:0];

assign SignExtendOffset = {16{offset[15]},offset}; //sign-extend
lower 16 bits;

assign PCOffset = SignExtendOffset << 2;

Solutions for Chapter 5 Exercises 17

always @(negedge clock) begin

 Instruction = IMemory[PC];

 PC <= PCValue;

 end

 always @(posedge clock) begin

 if MemRead

 DreadData <= DMemory[ALUResultOut];

 else if MemWrite

 DMemory[ALUResultOut] <= DWriteData;

 end

 end

endmodule

module MIPS1CYCLE(start);

// Clock

reg clock; // clock is a register

initial clock = 0;

parameter LW = 6b 100011, SW = 6b 101011, BEQ=6b 000100;

input start;

wire [1:0] ALUOp;

wire [5:0] opcode;

wire [31:0] SignExtend;

wire RegDst,Branch,MemRead,MemtoReg,ALUOp,MemWrite,ALUSrc,RegWrite;

DataPath MIPSDP (start,RegDst,Branch,MemRead,MemtoReg,ALUOp,
MemWrite,ALUSrc,RegWrite,opcode,clock);

 //datapath control

always begin

 #1 clock = ~ clock; //clock generation

 case(opcode)

 0: {RegDst,ALUSrc,MemtoReg,RegWrite,MemRead,MemWrite,Branch,
ALUOp}= 9'b 100100010;//R-Format

 LW: {RegDst,ALUSrc,MemtoReg,RegWrite,MemRead,MemWrite,Branch,
ALUOp}= 9'b 011110000;

 SW: {RegDst,ALUSrc,MemtoReg,RegWrite,MemRead,MemWrite,Branch,
ALUOp}= 9'b x1x001000;

 BEQ: {RegDst,ALUSrc,MemtoReg,RegWrite,MemRead,Mem-
Write,Branch,ALUOp}= 9'b x0x000101;

 // Add more instructions here

 default: $finish; // end simulation if invalid opcode

 endcase

end

endmodule

18 Solutions for Chapter 5 Exercises

5.61 We implement the add shift functionality to the ALU using the Verilog code
provided in B.22 in Appendix B. The 32-bit multiply execution takes 32 cycles to
complete, so the instruction takes a total of 35 cycles. Assume the ALU control
recognizes the multiply code correctly.

We follow the CD Verilog code, but we add the following:

case(state)

.

.

3: begin //Execution starts at cycle 3

 state=4

 .

 .

 case(opcode==6'b 0)

 .

 .

 MPYU: begin

// issue load command to the multiplier

{RegDst,ALUSrc,MemtoReg,RegWrite,MemRead,
MemWrite,Branch,ALUOp}= 9'b 1001000110;//R-Format same
command. Alu should now recognize the Func Field

 end

 .

 .

35: // After 32 cycles the multiplication
results are available in the 32-bit Product output of
the ALU. Write the high order and low order words in
this and the next cycle.

 case(opcode==6'b 0) case (IR[5:0])

 .

 .

 MPYU: begin

 Regs[hi]=RegH

 end

Solutions for Chapter 5 Exercises 19

34:

 case(opcode==6'b 0) case (IR[5:0])

 .

 .

 MPYU: begin

 Regs[lo]=RegL

 end

end

5.62 We add the divide functionality to the ALU using the code of B.23. The rest
of the solution is almost exactly the same as the answer to Exercise 5.61.

5.63 No solution provided

5.64 No solution provided.

5.65 No solution provided.

5.66 No solution provided.

